Search Results

Search found 19768 results on 791 pages for 'hardware programming'.

Page 301/791 | < Previous Page | 297 298 299 300 301 302 303 304 305 306 307 308  | Next Page >

  • Romanian parter Omnilogic Delivers “No Limits” Scalability, Performance, Security, and Affordability through Next-Generation, Enterprise-Grade Engineered Systems

    - by swalker
    Omnilogic SRL is a leading technology and information systems provider in Romania and central and Eastern Europe. An Oracle Value-Added Distributor Partner, Omnilogic resells Oracle software, hardware, and engineered systems to Oracle Partner Network members and provides specialized training, support, and testing facilities. Independent software vendors (ISVs) also use Omnilogic’s demonstration and testing facilities to upgrade the performance and efficiency of their solutions and those of their customers by migrating them from competitor technologies to Oracle platforms. Omnilogic also has a dedicated offering for ISV solutions, based on Oracle technology in a hosting service provider model. Omnilogic wanted to help Oracle Partners and ISVs migrate solutions to Oracle Exadata and sell Oracle Exadata to end-customers. It installed Oracle Exadata Database Machine X2-2 Quarter Rack at its data center to create a demonstration and testing environment. Demonstrations proved that Oracle Exadata achieved processing speeds up to 100 times faster than competitor systems, cut typical back-up times from 6 hours to 20 minutes, and stored 10 times more data. Oracle Partners and ISVs learned that migrating solutions to Oracle Exadata’s preconfigured, pre-integrated hardware and software can be completed rapidly, at low cost, without business disruption, and with reduced ongoing operating costs. Challenges A word from Omnilogic “Oracle Exadata is the new killer application—the smartest solution on the market. There is no competition.” – Sorin Dragomir, Chief Operating Officer, Omnilogic SRL Enable Oracle Partners in Romania and central and eastern Europe to achieve Oracle Exadata Ready status by providing facilities to test and optimize existing applications and build real-life proofs of concept (POCs) for new solutions on Oracle Exadata Database Machine Provide technical support and demonstration facilities for ISVs migrating their customers’ solutions from competitor technologies to Oracle Exadata to maximize performance, scalability, and security; optimize hardware and datacenter space; cut maintenance costs; and improve return on investment Demonstrate power of Oracle Exadata’s high-performance, high-capacity engineered systems for customer-facing businesses, such as government organizations, telecommunications, banking and insurance, and utility companies, which typically require continuous availability to support very large data volumes Showcase Oracle Exadata’s unchallenged online transaction processing (OLTP) capabilities that cut application run times to provide unrivalled query turnaround and user response speeds while significantly reducing back-up times and eliminating risk of unplanned outages Capitalize on providing a world-class training and demonstration environment for Oracle Exadata to accelerate sales with Oracle Partners Solutions Created a testing environment to enable Oracle Partners and ISVs to test their own solutions and those of their customers on Oracle Exadata running on Oracle Enterprise Linux or Oracle Solaris Express to benchmark performance prior to migration Leveraged expertise on Oracle Exadata to offer Oracle Exadata training, migration, support seminars and to showcase live demonstrations for Oracle Partners Proved how Oracle Exadata’s pre-engineered systems, that come assembled, configured, and ready to run, reduce deployment time and cost, minimize risk, and help customers achieve the full performance potential immediately after go live Increased processing speeds 10-fold and with zero data loss for a telecommunications provider’s client-facing customer relationship management solution Achieved performance improvements of between 6 and 100 times faster for financial and utility company applications currently running on IBM, Microsoft, or SAP HANA platforms Showed how daily closure procedures carried out overnight by banks, insurance companies, and other financial institutions to analyze each day’s business, can typically be cut from around six hours to 20 minutes, some 18 times faster, when running on Oracle Exadata Simulated concurrent back-ups while running applications under normal working conditions to prove that Oracle Exadata-based solutions can be backed up during business hours without causing bottlenecks or impacting the end-user experience Demonstrated that Oracle Exadata’s built-in analytics, data mining and OLTP capabilities make it the highest-performance, lowest-cost choice for large data warehousing operations Showed how Oracle Exadata’s columnar compression and intelligent storage architecture allows 10 times more data to be stored than on competitor platforms Demonstrated how Oracle Exadata cuts hardware requirements significantly by consolidating workloads on to fewer servers which delivers greater power efficiency and lower operating costs that competing systems from IBM and other manufacturers Proved to ISVs that migrating solutions to Oracle Exadata’s preconfigured, pre-integrated hardware and software can be completed rapidly, at low cost, and with minimal business disruption Demonstrated how storage servers, database servers, and network switches can be added incrementally and inexpensively to the Oracle Exadata platform to support business expansion On track to grow revenues by 10% in year one and by 15% annually thereafter through increased business generated from Oracle Partners and ISVs

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Windows Azure Use Case: New Development

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx Description: Computing platforms evolve over time. Originally computers were directed by hardware wiring - that, the “code” was the path of the wiring that directed an electrical signal from one component to another, or in some cases a physical switch controlled the path. From there software was developed, first in a very low machine language, then when compilers were created, computer languages could more closely mimic written statements. These language statements can be compiled into the lower-level machine language still used by computers today. Microprocessors replaced logic circuits, sometimes with fewer instructions (Reduced Instruction Set Computing, RISC) and sometimes with more instructions (Complex Instruction Set Computing, CISC). The reason this history is important is that along each technology advancement, computer code has adapted. Writing software for a RISC architecture is significantly different than developing for a CISC architecture. And moving to a Distributed Architecture like Windows Azure also has specific implementation details that our code must follow. But why make a change? As I’ve described, we need to make the change to our code to follow advances in technology. There’s no point in change for its own sake, but as a new paradigm offers benefits to our users, it’s important for us to leverage those benefits where it makes sense. That’s most often done in new development projects. It’s a far simpler task to take a new project and adapt it to Windows Azure than to try and retrofit older code designed in a previous computing environment. We can still use the same coding languages (.NET, Java, C++) to write code for Windows Azure, but we need to think about the architecture of that code on a new project so that it runs in the most efficient, cost-effective way in a Distributed Architecture. As we receive new requests from the organization for new projects, a distributed architecture paradigm belongs in the decision matrix for the platform target. Implementation: When you are designing new applications for Windows Azure (or any distributed architecture) there are many important details to consider. But at the risk of over-simplification, there are three main concepts to learn and architect within the new code: Stateless Programming - Stateless program is a prime concept within distributed architectures. Rather than each server owning the complete processing cycle, the information from an operation that needs to be retained (the “state”) should be persisted to another location c(like storage) common to all machines involved in the process.  An interesting learning process for Stateless Programming (although not unique to this language type) is to learn Functional Programming. Server-Side Processing - Along with developing using a Stateless Design, the closer you can locate the code processing to the data, the less expensive and faster the code will run. When you control the network layer, this is less important, since you can send vast amounts of data between the server and client, allowing the client to perform processing. In a distributed architecture, you don’t always own the network, so it’s performance is unpredictable. Also, you may not be able to control the platform the user is on (such as a smartphone, PC or tablet), so it’s imperative to deliver only results and graphical elements where possible.  Token-Based Authentication - Also called “Claims-Based Authorization”, this code practice means instead of allowing a user to log on once and then running code in that context, a more granular level of security is used. A “token” or “claim”, often represented as a Certificate, is sent along for a series or even one request. In other words, every call to the code is authenticated against the token, rather than allowing a user free reign within the code call. While this is more work initially, it can bring a greater level of security, and it is far more resilient to disconnections. Resources: See the references of “Nondistributed Deployment” and “Distributed Deployment” at the top of this article for more information with graphics:  http://msdn.microsoft.com/en-us/library/ee658120.aspx  Stack Overflow has a good thread on functional programming: http://stackoverflow.com/questions/844536/advantages-of-stateless-programming  Another good discussion on Stack Overflow on server-side processing is here: http://stackoverflow.com/questions/3064018/client-side-or-server-side-processing Claims Based Authorization is described here: http://msdn.microsoft.com/en-us/magazine/ee335707.aspx

    Read the article

  • Exalytics and Oracle Business Intelligence Enterprise Edition (OBIEE) Partner Workshop

    - by mseika
    Workshop Description Oracle Fusion Middleware 11g is the #1 application infrastructure foundation. It enables enterprises to create and run agile and intelligent business applications and maximize IT efficiency by exploiting modern hardware and software architectures. Oracle Exalytics Business Intelligence Machine is the world’s first engineered system specifically designed to deliver high performance analysis, modeling and planning. Built using industry-standard hardware, market-leading business intelligence software and in-memory database technology, Oracle Exalytics is an optimized system that delivers unmatched speed, visualizations and scalability for Business Intelligence and Enterprise Performance Management applications. This FREE hands-on, partner workshop highlights both the hardware and software components that are engineered to work together to deliver Oracle Exalytics - an optimized version of the industry-leading Oracle TimesTen In-Memory Database with analytic extensions, a highly scalable Oracle server designed specifically for in-memory business intelligence, and Oracle’s proven Business Intelligence Foundation with enhanced visualization capabilities and performance optimizations. This workshop will provide hands-on experience with Oracle's latest engineered system. Topics covered will include TimesTen In-Memory Database and the new Summary Advisor for Exalytics, the technical details (including mobile features) of the latest release of visualization enhancements for OBI-EE, and technical updates on Essbase. After taking this course, you will be well prepared to architect, build, demo, and implement an end-to-end Exalytics solution. You will also be able to extend your current analytical and enterprise performance management application implementations with numerous Oracle technologies specifically enhanced to take advantage of the compute capacity and in-memory capabilities of Oracle Exalytics.If you are a BI or Data Warehouse Architect, developer or consultant, you don’t want to miss this 3-day workshop. Register Now! Presentations Exalytics Architectural Overview Upgrade and Lifecycle Management Times Ten for Exalytics Summary Advisor Utility Essbase and EPM System on Exalytics Dashboard and Analysis Interactions OBIEE 11.1.1.6 Features and Advanced Topics Lab OutlineThe labs showcase Oracle Exalytics core components and functionality and provide expertise of Oracle Business Intelligence 11.1.1.6 new features and updates from prior releases. The hands-on activities are based on an Oracle VirtualBox image with software and training samples pre-installed. Lab Environment Setup Creating and Working with Oracle TimesTen In-Memory Database Running Summary Advisor Utility Working with Exalytics Visualization Features – Dashboard and Analysis Interactions Audience Oracle Partners BI and EPM Application Developers and Implementers System Integrators and Solution Consultants Data Warehouse Developers Enterprise Architects Prerequisites Experience and understanding of OBIEE 11g is required Previous attendance of Oracle Business Intelligence Foundation Suite Workshop or BIEE 11gIntroduction Workshop is highly recommended Good understanding of data warehousing and data modeling for reporting and analysis purpose Strong experience with database technologies preferred Equipment RequirementsThis workshop requires attendees to provide their own laptops for this class.Attendee laptops must meet the following minimum hardware/software requirements: Hardware Minimum 8GB RAM 60 GB free space (includes staging) USB 2.0 port (at least one available) It is strongly recommended that you bring a mouse. You will be working in a development environment and using the mouse heavily. Software One of the following operating systems: 64-bit Windows host/laptop OS 64-bit host/laptop OS with a Windows VM (XP, Server, or Win 7, BIC2g, etc.) Internet Explorer 7.x/8.x or Firefox 3.5.x WINRAR or 7ziputility to unzip workshop files: Download-able from http://www.win-rar.com/download.html Download-able from http://www.7zip.com/ Oracle VirtualBox 4.0.2 or higher Downloadable from http://www.virtualbox.org/wiki/Downloads CPU virtualization mode needs to be enabled. We will provide guidance on the day of the workshop. Attendees will be given a VirtualBox image containing a pre-installed Oracle Exalytics environment. Schedule This workshop is 3 days. - Times vary by country!9:00am: Sign-in and technical setup 9:30am: Workshop starts 5:00pm: Workshop ends Oracle Exalytics and Business Intelligence (OBIEE) Workshop December 11-13, 2012: Oracle BVP, Birmingham, UK Register Here. Questions? Send email to: [email protected] Oracle Platform Technologies Enablement Services

    Read the article

  • Is a university education really worth it for a good programmer?

    - by Jon Purdy
    The title says it all, but here's the personal side of it: I've been doing design and programming for about as long as I can remember. If there's a programming problem, I can figure it out. (Though admittedly StackOverflow has allowed me to skip the figuring out and get straight to the doing in many instances.) I've made games, esoteric programming languages, and widgets and gizmos galore. I'm currently working on a general-purpose programming language. There's nothing I do better than programming. However, I'm just as passionate about design. Thus when I felt leaving high school that my design skills were lacking, I decided to attend university for New Media Design and Imaging, a digital design-related major. For a year, I diligently studied art and programmed in my free time. As the next year progressed, however, I was obligated to take fewer art and design classes and more technical classes. The trouble was of course that these classes were geared toward non-technical students, and were far beneath my skill level at the time. No amount of petitioning could overcome the institution's reluctance to allow me to test out of such classes, and the major offered no promise for any greater challenge in the future, so I took the extreme route: I switched into the technical equivalent of the major, New Media Interactive Development. A lot of my credits moved over into the new major, but many didn't. It would have been infeasible to switch to a more rigorous technical major such as Computer Science, and having tutored Computer Science students at every level here, I doubt I would be exposed to anything that I haven't already or won't eventually find out on my own, since I'm so involved in the field. I'm now on track to graduate perhaps a year later than I had planned, which puts a significant financial strain on my family and my future self. My schedule continues to be bogged down with classes that are wholly unnecessary for me to take. I'm being re-introduced to subjects that I've covered a thousand times over, simply because I've always been interested in it all. And though I succeed in avoiding the cynical and immature tactic of failing to complete work out of some undeserved sense of superiority, I'm becoming increasingly disillusioned by the lack of intellectual stimulation. Further, my school requires students to complete a number of quarters of co-op work experience proportional to their major. My original major required two quarters, but my current requires three, delaying my graduation even more. To top it all off, college is putting a severe strain on my relationship with my very close partner of a few years, so I've searched diligently for co-op jobs in my area, alas to no avail. I'm now in my third year, and approaching that point past which I can no longer handle this. Either I keep my head down, get a degree no matter what it takes, and try to get a job with a company that will pay me enough to do what I love that I can eventually pay off my loans; or I cut my losses now, move wherever there is work, and in six months start paying off what debt I've accumulated thus far. So the real question is: is a university education really more than just a formality? It's a big decision, and one I can't make lightly. I think this is the appropriate venue for this kind of question, and I hope it sticks around for the sake of others who might someday find themselves in similar situations. My heartfelt thanks for reading, and in advance for your help.

    Read the article

  • Why is there no service-oriented language?

    - by Wolfgang
    Edit: To avoid further confusion: I am not talking about web services and such. I am talking about structuring applications internally, it's not about how computers communicate. It's about programming languages, compilers and how the imperative programming paradigm is extended. Original: In the imperative programming field, we saw two paradigms in the past 20 years (or more): object-oriented (OO), and service-oriented (SO) aka. component-based (CB). Both paradigms extend the imperative programming paradigm by introducing their own notion of modules. OO calls them objects (and classes) and lets them encapsulates both data (fields) and procedures (methods) together. SO, in contrast, separates data (records, beans, ...) from code (components, services). However, only OO has programming languages which natively support its paradigm: Smalltalk, C++, Java and all other JVM-compatibles, C# and all other .NET-compatibles, Python etc. SO has no such native language. It only comes into existence on top of procedural languages or OO languages: COM/DCOM (binary, C, C++), CORBA, EJB, Spring, Guice (all Java), ... These SO frameworks clearly suffer from the missing native language support of their concepts. They start using OO classes to represent services and records. This leads to designs where there is a clear distinction between classes that have methods only (services) and those that have fields only (records). Inheritance between services or records is then simulated by inheritance of classes. Technically, its not kept so strictly but in general programmers are adviced to make classes to play only one of the two roles. They use additional, external languages to represent the missing parts: IDL's, XML configurations, Annotations in Java code, or even embedded DSL like in Guice. This is especially needed, but not limited to, since the composition of services is not part of the service code itself. In OO, objects create other objects so there is no need for such facilities but for SO there is because services don't instantiate or configure other services. They establish an inner-platform effect on top of OO (early EJB, CORBA) where the programmer has to write all the code that is needed to "drive" SO. Classes represent only a part of the nature of a service and lots of classes have to be written to form a service together. All that boiler plate is necessary because there is no SO compiler which would do it for the programmer. This is just like some people did it in C for OO when there was no C++. You just pass the record which holds the data of the object as a first parameter to the procedure which is the method. In a OO language this parameter is implicit and the compiler produces all the code that we need for virtual functions etc. For SO, this is clearly missing. Especially the newer frameworks extensively use AOP or introspection to add the missing parts to a OO language. This doesn't bring the necessary language expressiveness but avoids the boiler platform code described in the previous point. Some frameworks use code generation to produce the boiler plate code. Configuration files in XML or annotations in OO code is the source of information for this. Not all of the phenomena that I mentioned above can be attributed to SO but I hope it clearly shows that there is a need for a SO language. Since this paradigm is so popular: why isn't there one? Or maybe there are some academic ones but at least the industry doesn't use one.

    Read the article

  • Consolidation in a Database Cloud

    - by B R Clouse
    Consolidation of multiple databases onto a shared infrastructure is the next step after Standardization.  The potential consolidation density is a function of the extent to which the infrastructure is shared.  The three models provide increasing degrees of sharing: Server: each database is deployed in a dedicated VM. Hardware is shared, but most of the software infrastructure is not. Standardization is often applied incompletely since operating environments can be moved as-is onto the shared platform. The potential for VM sprawl is an additional downside. Database: multiple database instances are deployed on a shared software / hardware infrastructure. This model is very efficient and easily implemented with the features in the Oracle Database and supporting products. Many customers have moved to this model and achieved significant, measurable benefits. Schema: multiple schemas are deployed within a single database instance. The most efficient model, it places constraints on the environment. Usually this model will be implemented only by customers deploying their own applications.  (Note that a single deployment can combine Database and Schema consolidations.) Customer value: lower costs, better system utilization In this phase of the maturity model, under-utilized hardware can be used to host more workloads, or retired and those workloads migrated to consolidation platforms. Customers benefit from higher utilization of the hardware resources, resulting in reduced data center floor space, and lower power and cooling costs. And, the OpEx savings from Standardization are multiplied, since there are fewer physical components (both hardware and software) to manage. Customer value: higher productivity The OpEx benefits from Standardization are compounded since not only are there fewer types of things to manage, now there are fewer entities to manage. In this phase, customers discover that their IT staff has time to move away from "day-to-day" tasks and start investing in higher value activities. Database users benefit from consolidating onto shared infrastructures by relieving themselves of the requirement to maintain their own dedicated servers. Also, if the shared infrastructure offers capabilities such as High Availability / Disaster Recovery, which are often beyond the budget and skillset of a standalone database environment, then moving to the consolidation platform can provide access to those capabilities, resulting in less downtime. Capabilities / Characteristics In this phase, customers will typically deploy fixed-size clusters and consolidate on a cluster until that cluster is deemed "full," at which point a new cluster is built. Customers will define one or a few cluster architectures that are used wherever possible; occasionally there may be deployments which must be handled as exceptions. The "full" policy may be based on number of databases deployed on the cluster, or observed peak workload, etc. IT will own the provisioning of new databases on a cluster, making the decision of when and where to place new workloads. Resources may be managed dynamically, e.g., as a priority workload increases, it may be given more CPU and memory to handle the spike. Users will be charged at a fixed, relatively coarse level; or in some cases, no charging will be applied. Activities / Tasks Oracle offers several tools to plan a successful consolidation. Real Application Testing (RAT) has a feature to help plan and validate database consolidations. Enterprise Manager 12c's Cloud Management Pack for Database includes a planning module. Looking ahead, customers should start planning for the Services phase by defining the Service Catalog that will be made available for database services.

    Read the article

  • Appropriate design / technologies to handle dynamic string formatting?

    - by Mark W
    recently I was tasked with implementing a way of adding support for versioning of hardware packet specifications to one of our libraries. First a bit of information about the project. We have a hardware library which has classes for each of the various commands we support sending to our hardware. These hardware modules are essentially just lights with a few buttons, and a 2 or 4 digit display. The packets typically follow the format {SOH}AADD{ETX}, where AA is our sentinel action code, and DD is the device ID. These packet specs are different from one command to the next obviously, and the different firmware versions we have support different specifications. For example, on version 1 an action code of 14 may have a spec of {SOH}AADDTEXT{ETX} which would be AA = 14 literal, DD = device ID, TEXT = literal text to display on the device. Then we come out with a revision with adds an extended byte(s) onto the end of the packet like this {SOH}AADDTEXTE{ETX}. Assume the TEXT field is fixed width for this example. We have now added a new field onto the end which could be used to say specify the color or flash rate of the text/buttons. Currently this java library only supports one version of the commands, the latest. In our hardware library we would have a class for this command, say a DisplayTextArgs.java. That class would have fields for the device ID, the text, and the extended byte. The command class would expose a method which generates the string ("{SOH}AADDTEXTE{ETX}") using the value from the class. In practice we would create the Args class as needed, populate the fields, call the method to get our packet string, then ship that down across the CAN. Some of our other commands specification can vary for the same command, on the same version, depending on some runtime state. For example, another command for version 1 may be {SOH}AA{ETX}, where this action code clears all of the modules behind a specific controller device of their text. We may overload this packet to have option fields with multiple meanings like {SOH}AAOC{ETX} where OC is literal text, which tells the controller to only clear text on a specific module type, and to leave the others alone, or the spec could also have an option format of {SOH}AADD{ETX} to clear the text off a a specific device. Currently, in the method which generates the packet string, we would evaluate fields on the args class to determine which spec we will be using when formatting the packet. For this example, it would be along the lines of: if m_DeviceID != null then use {SOH}AADD{ETX} else if m_ClearOCs == true then use {SOH}AAOC{EXT} else use {SOH}AA{ETX} I had considered using XML, or a database to store String.format format strings, which were linked to firmware version numbers in some table. We would load them up at startup, and pass in the version number of the hardwares firmware we are currently using (I can query the devices for their firmware version, but the version is not included in all packets as part of the spec). This breaks down pretty quickly because of the dynamic nature of how we select which version of the command to use. I then considered using a rule engine to possibly build out expressions which could be interpreted at runtume, to evaluate the args class's state, and from that select the appropriate format string to use, but my brief look at rule engines for java scared me away with its complexity. While it seems like it might be a viable solution, it seems overly complex. So this is why I am here. I wouldn't say design is my strongest skill, and im having trouble figuring out the best way to approach this problem. I probably wont be able to radically change the args classes, but if the trade off was good enough, I may be able to convince my boss that the change is appropriate. What I would like from the community is some feedback on some best practices / design methodologies / API or other resources which I could use to accomplish: Logic to determine which set of commands to use for a given firmware version Of those command, which version of each command to use (based on the args classes state) Keep the rules logic decoupled from the application so as to avoid needing releases for every firmware version Be simple enough so I don't need weeks of study and trial and error to implement effectively.

    Read the article

  • C# Winforms vs WPF

    - by m0s
    Hi pros, I am a student and I do freelance here and there when I have opportunity. I believe my strongest language is C#. I don't really know what is going on in real programming world, so I was wondering if WPF did take over WinForms? I know the differences between two and how two can be used simultaneously but, I just don't want to invest my time in learning dying technologies, I hope you understand. So, for windows desktop programming what would you recommend to master WinForms, WPF or maybe both? I also get a lot that desktop programming is dead already and one should only care about learning web programming. Thanks for attention, any comments are greatly appreciated.

    Read the article

  • Emacs X11 autocompletion (intellisense)

    - by JC
    Hi everyone, I use visual studio for day to day programming (read putting food in my mouth) but for personal programming (read c/c++ hacking) I use Emacs. Right now I am doing a programming exercise involving the X11 API. I am continually referring to the programming API manual to find the signature of function calls. What would be really nice would be if there was an emacs alternative to the visual studio intellisense. I know there is autocompletion for the language specifics. Is there such an extension available to Emacs? Or if not, is there way of creating one, maybe using the language specifics mechanism already used for auto completion?

    Read the article

  • When should one use the following: Amazon EC2, Google App Engine, Microsoft Azure and Salesforce.com

    - by vicky21
    I am asking this in very general sense. Both from cloud provider and cloud consumer's perspective. Also the question is not for any specific kind of application (in fact the intention is to know which type of applications/domains can fit into which of the cloud slab -SaaS PaaS IaaS). My understanding so far is: IaaS: Raw Hardware (Processors, Networks, Storage). PaaS: OS, System Softwares, Development Framework, Virtual Machines. SaaS: Software Applications. It would be great if Stackoverflower's can share their understanding and experiences of cloud computing concept. EDIT: Ok, I will put it in more specific way - Amazon EC2: You don't have control over hardware layer. But you can take your choice of OS image, Dev Framework (.NET, J2EE, LAMP) and Application and put it on EC2 hardware. Can you deploy an applications built with Google App Engine or Azure on EC2? Google App Engine: You don't have control over hardware and OS and you get a specific Dev Framework to build your application. Can you take any existing Java or Python application and port it to GAE? Or vice versa, can applications that were built on GAE be taken out of GAE and ported to any Application Server like Websphere or Weblogic? Azure: You don't have control over hardware and OS and you get a specific Dev Framework to build your application. Can you take any existing .NET application and port it to Azure? Or vice versa, can applications that were built on Azure be taken out of Azure and ported to any Application Server like Biztalk?

    Read the article

  • Tricks to avoid losing motivation?

    - by AareP
    Motivation is a tricky thing to upkeep. Once I thought that ambitious projects will keep programmer motivated, and too simple tasks will hinder his motivation. Now I have plenty of experience with small and large projects, desktop/web/database programming, c++/c#/java/php languages, oop/non-oop paradigms, day-job/free-time programming.. but I still can't answer the question of motivation. Which programming tasks I like, and which don't? It seems to depend on too many variables. One thing remains constant though. It's that starting everything from scratch is always more motivating than extending some existing system. Unfortunately it's hard to use this trick in productive programming. :) So my question is, what tricks programmer can use to stay motivated? For example should we use pen and paper as much as possible, in order not to get fed up with monitor and keyboard?

    Read the article

  • SQL Join to only the maximum row puzzle

    - by Billy ONeal
    Given the following example data: Users +--------------------------------------------------+ | ID | First Name | Last Name | Network Identifier | +--------------------------------------------------+ | 1 | Billy | O'Neal | bro4 | +----+------------+-----------+--------------------+ | 2 | John | Skeet | jsk1 | +----+------------+-----------+--------------------+ Hardware +----+-------------------+---------------+ | ID | Hardware Name | Serial Number | +----+-------------------+---------------+ | 1 | Latitude E6500 | 5555555 | +----+-------------------+---------------+ | 2 | Latitude E6200 | 2222222 | +----+-------------------+---------------+ HardwareAssignments +---------+-------------+-------------+ | User ID | Hardware ID | Assigned On | +---------+-------------+-------------+ | 1 | 1 | April 1 | +---------+-------------+-------------+ | 1 | 2 | April 10 | +---------+-------------+-------------+ | 2 | 2 | April 1 | +---------+-------------+-------------+ | 2 | 1 | April 11 | +---------+-------------+-------------+ I'd like to write a SQL query which would give the following result: +--------------------+------------+-----------+----------------+---------------+-------------+ | Network Identifier | First Name | Last Name | Hardware Name | Serial Number | Assigned On | +--------------------+------------+-----------+----------------+---------------+-------------+ | bro4 | Billy | O'Neal | Latitude E6200 | 2222222 | April 10 | +--------------------+------------+-----------+----------------+---------------+-------------+ | jsk1 | John | Skeet | Latitude E6500 | 5555555 | April 11 | +--------------------+------------+-----------+----------------+---------------+-------------+ My trouble is that the maximum "Assigned On" date for each user needs to be selected for each individual user and used for the actual join ... Is there a clever way accomplish this in SQL?

    Read the article

  • good books on numerical computation with C

    - by yCalleecharan
    Hi, I've read the post "What is the best book on numerical methods?" and I wish to ask more or less the same question but in relation to C programming. Most of the time, C programming books on numerical methods are just another version of the author's previous Fortran book on the same subject. I've seen Applied numerical methods in C by Nakamura, Shoichiro and the C codes are not good programming practice. I've heard bad comments about Numerical Recipes by Press. Do you know good books on C that discusses numerical methods. It's seem better for me to ask about good books on C discussing numerical methods than rather asking books on numerical methods that discusses C. I've heard about Numerical Algorithms with C by Giesela Engeln-Müllges and A Numerical Library in C for Scientists and Engineers bu Lau but haven't read them. Good books will always have algorithms implemented in the programming language in a smart way. Thanks a lot...

    Read the article

  • What should I learn after HTML and CSS?

    - by Ryan B
    I am 5 days into learning how to make my website, flying through my HTML & CSS book and having fun. I’m starting to consider what to order next. I’m not sure what to study next, so please give me some advice if you can. My end goal is to create a site that has a lot of the functionality that www.edufire.com and similar sites have, just for example. I think I’m learning well with the Head First Series, and the style will probably serve me well as an intro to programming. However, I don't think the books dive too deeply into any 1 subject. I could order: A: Head First Programming: A Learner’s Guide to Programming Using the Python Language B: Head First Javascript C: Head First PHP & MySQL D: a different programming book or E: another CSS or design book to solidify my basic HTML & CSS skills Any guidance would be appreciated. Thanks!

    Read the article

  • Master thesis in software engineering

    - by maya
    Hi everyone, I will be Master student and I look for a topic in software engineering for my thesis , I want a topic which is less programming and more analysis. I mean a topic without programming because I'm not professional in programming. I'm thinking in UML tools but I really don't have specific topic. any suggestion please any one help me thanks in advance

    Read the article

  • Is there a way to watch all COM activity on a computer?

    - by Fake Name
    I'm trying to deal with a piece of specialized hardware, that presents it's interface as a COM object, using win32com in Python. However, the documentation for how to actually set up the hardware through the COM object is sparse (it requires a significant amount of initialization), and entirely oriented at using a bunch of pre-built libraries for Visual Studio, which are not accessible through python. That said, is there any way to watch all local COM activity, so I can sort through the activity logs to try and figure out how the existing demo programs properly initialize the hardware, and replicate the behavior in my python script? Ideally, there would be something in the vein of wireshark for doing this. Note: I have very little (read: basically no) experience using COM, as my focus is mostly embedded hardware (and a little python dev on the side). However, I'm stuck with this particular device.

    Read the article

  • How do I program an AVR Raven with Linux or a Mac?

    - by Andrew McGregor
    This tutorial for programming these starts with programming the Ravens and Jackdaw with a Windows box. Can I do those initial steps with avrdude on a Linux or OS X machine instead? If so, how? Is there any risk of bricking the hardware if I just try? I have a USB JTAG ICE MKii clone, which is supposed to work for this. I'm totally new to AVR, but very experienced with C/C++ programming on Linux or OS X, up to and including kernel programming... so any hint at all would be appreciated, I can read man pages, but only if I know what I'm looking for.

    Read the article

  • running a parallel port controlling program through php.

    - by prateek
    I have a program that is interacting with hardware via parallel port programming. i had compiled it and using its object file to interact with the hardware (a simple led). when i execute it directly on the shell it serves the purpose of glowing the LED but when i execute it using shell_exec() in php the command is executed but unable to interact with the hardware. i am totally confused.. .

    Read the article

  • Need help finding a good curriculum/methodology for self-teaching to program from scratch

    - by BrotherGA2
    My friend and I have both dedicated ourselves to learning the essentials of programming by June of this year from nearly no programming experience. I have done some research and have come to the conclusion that using the Python language will be the best for us, but I am open to suggestions with good reasoning behind them. My motives for learning programming are: Potential Career Path to be able to create programs that can: solve problems; entertain, i.e. useful applications and games. Online college lectures + book (which I am willing to purchase) sounds like a good combination, but I do not know which would be most suitable for me. tl;dr: What I would like to find from the excellent people here is the following: a good, potentially best, programming course and/or book that is well structured and uses good pedagogy so that a person dedicated to learn programming may do so by following its curriculum (or use it to develop a curriculum) over the course of a few months. Thanks! (I apologize if this type of question is not considered proper etiquette, but I haven't found a consensus on this, and would like some guidance beyond the research I've already done)

    Read the article

< Previous Page | 297 298 299 300 301 302 303 304 305 306 307 308  | Next Page >