Search Results

Search found 97840 results on 3914 pages for 'custom data type'.

Page 309/3914 | < Previous Page | 305 306 307 308 309 310 311 312 313 314 315 316  | Next Page >

  • Getting data from child controls loaded programmatically

    - by Farinha
    I've created 2 controls to manipulate a data object: 1 for viewing and another for editing. On one page I load the "view" User Control and pass data to it this way: ViewControl control = (ViewControl)LoadControl("ViewControl.ascx"); control.dataToView = dataObject; this.container.Controls.Add(control); That's all fine and inside the control I can grab that data and display it. Now I'm trying to follow a similar approach for editing. I have a different User Control for this (with some textboxes for editing) to which I pass the original data the same way I did for the view: EditControl control = (EditControl)LoadControl("EditControl.ascx"); control.dataToEdit = dataObject; this.container.Controls.Add(control); Which also works fine. The problem now is getting to this data. When the user clicks a button I need to fetch the data that was edited and do stuff with it. What's happening is that because the controls are being added programmatically, the data that the user changed doesn't seem to be accessible anywhere. Is there a solution for this? Or is this way of trying to keep things separated and possibly re-usable not possible? Thanks in advance.

    Read the article

  • Are bad data issues that common?

    - by Water Cooler v2
    I've worked for clients that had a large number of distinct, small to mid-sized projects, each interacting with each other via properly defined interfaces to share data, but not reading and writing to the same database. Each had their own separate database, their own cache, their own file servers/system that they had dedicated access to, and so they never caused any problems. One of these clients is a mobile content vendor, so they're lucky in a way that they do not have to face the same problems that everyday business applications do. They can create all those separate compartments where their components happily live in isolation of the others. However, for many business applications, this is not possible. I've worked with a few clients, one of whose applications I am doing the production support for, where there are "bad data issues" on an hourly basis. Yeah, it's that crazy. Some data records from one of the instances (lower than production, of course) would have been run a couple of weeks ago, and caused some other user's data to get corrupted. And then, a data script will have to be written to fix this issue. And I've seen this happening so much with this client that I have to ask. I've seen this happening at a moderate rate with other clients, but this one just seems to be out of order. If you're working with business applications that share a large amount of data by reading and writing to/from the same database, are "bad data issues" that common in your environment?

    Read the article

  • Twitter bootstrap modal loads wrong remote data

    - by Victor S
    I'm using Twitter Bootstrap modal featurs and loading data from remote locations. I'm providing the remote url for a set of thumbnails with the hope that once the thumbnail is clicked, the appropriate data (a large version of the image) is displayed. I'm using the html declarative style to define the remote urls and all the features of the modal. What I find is that Twitter bootstrap modal loads first remote url then does not display subsequent remote data, (although a request to the proper url is made in Chrome) but displays first loaded data always. How do I get it to show the proper data? View: #gallery-navigation %ul - @profile.background_images.each do |image| %li = link_to image_tag(image.background_image.url(:thumb)), remote_image_path(image.id), :role => "button", :data => {:toggle => "modal", :target => "#image-modal", :remote => remote_image_path(image.id)}, :id => "image-modal" / Modal #image-modal.modal.hide.fade(role="dialog" aria-hidden="true" data-backdrop="true") .modal-body Controller: def remote_image @image = current_user.profile.background_images.find(params[:image_id]) respond_to do |format| format.html { render :partial => "remote_image", :locals => { :image => @image } } end end

    Read the article

  • Codeigniter Session Data not available in other pages after login

    - by jswat
    So, I have set up a login page that verifies the user's credentials, and then sets codeigniter session data 'email' and 'is_logged_in' and a few other items. The first page after the login, the data is accessible. After that page, I can no longer access the session data. In fact, if I try reloading that first page, the session data is gone. I have tried storing it in the database, storing it unencrypted (bad idea I know, but it was for troubleshooting), and storing it encrypted. I have autoloaded the session library in config.php. Here's an example of the code I'm using to set the session data: $data = array( 'email' => $this->input->post('username'), 'is_logged_in' => true ); $this->session->set_userdata($data); And to retrieve it, I'm using : $this->session->userdata('email'); Or $this->session->userdata('is_logged_in'); I've done lots of work with PHP and cookies, and sessions before, but this is my first project with Codeigniter and I'm perplexed. Could it have something to do with directory issues? I have the login page and process controlled by a 'login' controller, and then it redirects to a 'site' controller. Thanks for your help, and please let me know if I need to clarify anything.

    Read the article

  • Packet fragmentation when sending data via SSLStream

    - by Ive
    When using an SSLStream to send a 'large' chunk of data (1 meg) to a (already authenticated) client, the packet fragmentation / dissasembly I'm seeing is FAR greater than when using a normal NetworkStream. Using an async read on the client (i.e. BeginRead()), the ReadCallback is repeatedly called with exactly the same size chunk of data up until the final packet (the remainder of the data). With the data I'm sending (it's a zip file), the segments happen to be 16363 bytes long. Note: My receive buffer is much bigger than this and changing it's size has no effect I understand that SSL encrypts data in chunks no bigger than 18Kb, but since SSL sits on top of TCP, I wouldn't think that the number of SSL chunks would have any relevance to the TCP packet fragmentation? Essentially, the data is taking about 20 times longer to be fully read by the client than with a standard NetworkStream (both on localhost!) What am I missing? EDIT: I'm beginning to suspect that the receive (or send) buffer size of an SSLStream is limited. Even if I use synchronous reads (i.e. SSLStream.Read()), no more data ever becomes available, regardless of how long I wait before attempting to read. This would be the same behavior as if I were to limit the receive buffer to 16363 bytes. Setting the Underlying NetworkStream's SendBufferSize (on the server), and ReceiveBufferSize (on the client) has no effect.

    Read the article

  • Dictionaries with more than one key per value in Python

    - by nickname
    I am attempting to create a nice interface to access a data set where each value has several possible keys. For example, suppose that I have both a number and a name for each value in the data set. I want to be able to access each value using either the number OR the name. I have considered several possible implementations: Using two separate dictionaries, one for the data values organized by number, and one for the data values organized by name. Simply assigning two keys to the same value in a dictionary. Creating dictionaries mapping each name to the corresponding number, and vice versa Attempting to create a hash function that maps each name to a number, etc. (related to the above) Creating an object to encapsulate all three pieces of data, then using one key to map dictionary keys to the objects and simply searching the dictionary to map the other key to the object. None of these seem ideal. The first seems ugly and unmaintainable. The second also seems fragile. The third/fourth seem plausible, but seem to require either much manual specification or an overly complex implementation. Finally, the fifth loses constant-time performance for one of the lookups. In C/C++, I believe that I would use pointers to reference the same piece of data from different keys. I know that the problem is rather similar to a database lookup problem by a non-key column, however, I would like (if possible), to maintain the approximate O(1) performance of Python dictionaries. What is the most Pythonic way to achieve this data structure?

    Read the article

  • Best Method For High Data Availability for SQL Server

    - by omatase
    I have a web service that runs 24/7. Periodically it needs to refresh its database with data from another web service. There is a lot of data. It's tens of thousands of rows. (no, I don't mean this is a lot of data for SQL Server, just trying to point out that I expect it to take some time to come down the pipe from the other web service) The data refresh can take between 5 and 10 minutes. The actual data update portion of that is between 1 and 2 minutes. This means the service would be down for all intents and purposes when consumers would be requesting this type of data. I would like to implement a system where data is always available. The only thing that comes to mind is some type of system where I maintain two separate databases. I populate the inactive one, swapping it to active before populating the other one. I'm not sure I know the best way to do this. My current ideas just revolve around two sets of the schema in a single database (using views to access the active set) or two databases each with the same schema. The application would rotate between the two databases. Any suggestions from someone who has done something like this before?

    Read the article

  • Read varbinary data in java

    - by masoud farahani
    I made a Java application which reads some files from SQL server. Those files are saved to a varbinary(MAX) field in SQL Server by a third party web service. My problem is that when I want to read those files with my Java application, those binary data show different content in the Java application. In fact, I read data byte by byte and I figured out that some bytes did not show the real values which were saved in the database. I found out what the problem is, but I couldn’t find a solution yet. I found out that in the web service every varbinary data is saved to database as byte data (in .Net each byte takes 0 to 255). But, when I want to read the binary data in Java, it takes different values and cause an exception with some values, because in Java a byte value takes -127 to 127. In my Java application I want to write those data to a file by OutputStream.write(byte[]) method. How can I solve this problem? I think that I have to find a way to convert c# byte[] to a Java byte[] (or binary data), but how can I do that?

    Read the article

  • Waiting for data via select not working

    - by BSchlinker
    I'm currently working on a project which involves multiple clients connected to a server and waiting for data. I'm using select and monitoring the connection for incoming data. However, the client just continues to print nothing, acting as if select has discovered incoming data. Perhaps I'm attacking this wrong? For the first piece of data the server does send, it is displayed correctly. However, the server then disconnects and the client continues to spew blank lines. FD_ZERO(&readnet); FD_SET(sockfd, &readnet); while(1){ rv = select(socketdescrip, &readnet, NULL, NULL, &timeout); if (rv == -1) { perror("select"); // error occurred in select() } else if (rv == 0) { printf("Connection timeout! No data after 10 seconds.\n"); } else { // one or both of the descriptors have data if (FD_ISSET(sockfd, &readnet)) { numbytes = recv(sockfd, buf, sizeof buf, 0); printf("Data Received\n"); buf[numbytes] = '\0'; printf("client: received '%s'\n",buf); sleep(10); } } }

    Read the article

  • Evenly distribute data into columns with JavaScript

    - by marius.cdm
    I'm looking for a way to evenly distribute my JSON data into HTML columns. Using javascript to pull the data $.ajax({ url: "url", dataType: 'json', data: "e="+escape(divID), cache: true, success: function(data) { var items = data; // ??? $('.result').html(list); } }); Input data: ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K"] Expected result: <ul> <li>A</li> <li>B</li> <li>C</li> <li>D</li> </ul> <ul> <li>E</li> <li>F</li> <li>G</li> <li>H</li> </ul> <ul> <li>I</li> <li>J</li> <li>K</li> </ul> I found a partial result here, but the output data is in console. Any help would be appreciated.

    Read the article

  • java hashmap array to double array

    - by Tweety
    Hi, I declared LinkedHashMap<String, float[]> and now I want to convert float[] values into double[][]. I am using following code. LinkedHashMap<String, float[]> fData; double data[][] = null; Iterator<String> iter = fData.keySet().iterator(); int i = 0; while (iter.hasNext()) { faName = iter.next(); tValue = fData.get(faName); //data = new double[fData.size()][tValue.length]; for (int j = 0; j < tValue.length; j++) { data[i][j] = tValue[j]; } i++; } When I try to print data System.out.println(Arrays.deepToString(data)); it doesn't show the data :( I tried to debug my code and i figured out that I have to initialize data outside the while loop but then I don't know the array dimensions :( How to solve it? Thanks

    Read the article

  • load data from grid row into (pop up) form for editing

    - by user1495457
    I read in Ext JS in Action ( by J. Garcia) that if we have an instance of Ext.data.Record, we can use the form's loadRecord method to set the form's values. However, he does not give a working example of this (in the example that he uses data is loaded into a form through a file called data.php). I have searched many forums and found the following entry helpful as it gave me an idea on how to solve my problem by using form's loadRecord method: load data from grid to form Now the code for my store and grid is as follows: var userstore = Ext.create('Ext.data.Store', { storeId: 'viewUsersStore', model: 'Configs', autoLoad: true, proxy: { type: 'ajax', url: '/user/getuserviewdata.castle', reader: { type: 'json', root: 'users' }, listeners: { exception: function (proxy, response, operation, eOpts) { Ext.MessageBox.alert("Error", "Session has timed-out. Please re-login and try again."); } } } }); var grid = Ext.create('Ext.grid.Panel', { id: 'viewUsersGrid', title: 'List of all users', store: Ext.data.StoreManager.lookup('viewUsersStore'), columns: [ { header: 'Username', dataIndex: 'username' }, { header: 'Full Name', dataIndex: 'fullName' }, { header: 'Company', dataIndex: 'companyName' }, { header: 'Latest Time Login', dataIndex: 'lastLogin' }, { header: 'Current Status', dataIndex: 'status' }, { header: 'Edit', menuDisabled: true, sortable: false, xtype: 'actioncolumn', width: 50, items: [{ icon: '../../../Content/ext/img/icons/fam/user_edit.png', tooltip: 'Edit user', handler: function (grid, rowIndex, colIndex) { var rec = userstore.getAt(rowIndex); alert("Edit " + rec.get('username')+ "?"); EditUser(rec.get('id')); } }] }, ] }); function EditUser(id) { //I think I need to have this code here - I don't think it's complete/correct though var formpanel = Ext.getCmp('CreateUserForm'); formpanel.getForm().loadRecord(rec); } 'CreateUserForm' is the ID of a form that already exists and which should appear when user clicks on Edit icon. That pop-up form should then automatically be populated with the correct data from the grid row. However my code is not working. I get an error at the line 'formpanel.getForm().loadRecord(rec)' - it says 'Microsoft JScript runtime error: 'undefined' is null or not an object'. Any tips on how to solve this?

    Read the article

  • Data conversion from accelerometer

    - by mrigendra
    Hi all I am working on an accelerometer bma220 , and its datasheet says that data is in 2's complement form.So what i had to do was getting that 8 bit data in any 8 bit signed char and done. the bma220 have an 8 bit register of which first 6 bits are data and last two are zero. void properdata(int16_t *msgData) { printf("\nin proper data\n"); int16_t temp, i; for(i=0; i<3; i++) { temp = *(msgData + i); printf("temp = %d sense = %d\n", temp, sense); temp = temp >> 2; // only 6 bits data temp = temp / sense; //decimal value * .0625 = value in g printf("temp = %d\n", temp); } } in this program i am taking data in a unsigned variable msgdata and doing all the calculations on a signed variable. I just need to know if this is the correct way to convert data?

    Read the article

  • Getting Values from fetched Core Data

    - by user571905
    Hi there, Thanks to the wonderful people on this forum, I have overcome most of my Core Data woes. However one persists, and I'm certain it is a simple fix. I have a recipe app that parses an XML doc on load and puts the data in Core Data. Then I search that Core Data for particular recipes, ingredients, etc. Everything is working with one exception... I cannot do anything with the data I retrieve. For example, I search the core data for "eggplant" and get this at the end of the process: "<RecipeData: 0x6112a40> (entity: RecipeData; id: 0x6113880 <x-coredata:///RecipeData/tCDE9A0EE-DA3F-4BD0-AEF8-3C038586991D4> ; data: {\n ingredients = \"Eggplant|Cheese|Tomatoes|\";\n name = \"Eggplant Parm\";\n time = 40;\n})" How do I get the info out of there? I tried looping through, but that causes the app to crash: for (NSString* key in selectedRecipe) { id value = [selectedRecipe objectForKey:key]; NSLog(@"IN LOOP: %@", value); } Any suggestions? Thank you for your time.

    Read the article

  • Server Unable to Capture the POST Data sent from another server by Redirecting the URL

    - by user1749092
    Recently i started working on the Payment Gateway( further spelled as 'PG') process for my site. And for the process we have to send the Post data by form to PG server by redirecting to there page and by response from the PG about the Transaction they are sending POST data by redirecting the URL to our server page, the problem arises here, as my server unable to retrieve the POST Data sent from PG server. As i am coding in PHP, i tried to print all the response coming from PG by print_r($_POST); and even tried with print_r($_REQUEST);. I didn't found any data printing except the PHPSESSID and some other data array. As for the confirmation I checked wether they sending the Data or not by the IE addon as "TamperIE" where it is showing the all the POST Data sending from there server. But it is not at all coming to our server. And I tried this process on some other Server, there i able to get the POST response but not with currently working server. So please can you suggest me what might be the problem. Thanks!

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How should I refactor switch statements like this (Switching on type) to be more OO?

    - by Taytay
    I'm seeing some code like this in our code base, and want to refactor it: (Typescript psuedocode follows): class EntityManager{ private findEntityForServerObject(entityType:string, serverObject:any):IEntity { var existingEntity:IEntity = null; switch(entityType) { case Types.UserSetting: existingEntity = this.getUserSettingByUserIdAndSettingName(serverObject.user_id, serverObject.setting_name); break; case Types.Bar: existingEntity = this.getBarByUserIdAndId(serverObject.user_id, serverObject.id); break; //Lots more case statements here... } return existingEntity; } } The downsides of switching on type are self-explanatory. Normally, when switching behavior based on type, I try to push the behavior into subclasses so that I can reduce this to a single method call, and let polymorphism take care of the rest. However, the following two things are giving me pause: 1) I don't want to couple the serverObject with the class that is storing all of these objects. It doesn't know where to look for entities of a certain type. And unfortunately, the identity of a type of ServerObject varies with the type of ServerObject. (So sometimes it's just an ID, other times it's a combination of an id and a uniquely identifying string, etc). And this behavior doesn't belong down there on those subclasses. It is the responsibility of the EntityManager and its delegates. 2) In this case, I can't modify the ServerObject classes since they're plain old data objects. It should be mentioned that I've got other instances of the above method that take a parameter like "IEntity" and proceed to do almost the same thing (but slightly modify the name of the methods they're calling to get the identity of the entity). So, we might have: case Types.Bar: existingEntity = this.getBarByUserIdAndId(entity.getUserId(), entity.getId()); break; So in that case, I can change the entity interface and subclasses, but this isn't behavior that belongs in that class. So, I think that points me to some sort of map. So eventually I will call: private findEntityForServerObject(entityType:string, serverObject:any):IEntity { return aMapOfSomeSort[entityType].findByServerObject(serverObject); } private findEntityForEntity(someEntity:IEntity):IEntity { return aMapOfSomeSort[someEntity.entityType].findByEntity(someEntity); } Which means I need to register some sort of strategy classes/functions at runtime with this map. And again, I darn well better remember to register one for each my my types, or I'll get a runtime exception. Is there a better way to refactor this? I feel like I'm missing something really obvious here.

    Read the article

  • How to transfer data between two networks efficiently

    - by Tono Nam
    I would like to transfer files between two places over the internet. Right now I have a VPN and I am able to browse, download and transfer files. So my question is not really how to transfer the files; Instead, I would like to use the most efficient approach because the two places constantly share a lot of data. The reason why I want to get rid of the VPN is because it is two slow. Having high upload speed is very expensive/impossible in residential places so I would like to use a different approach. I was thinking about using programs such as http://www.dropbox.com . The problem with Dropbox is that the free version comes with only 2 GB of storage. I think the deals they offer are OK and I might be willing to pay to get that increase in speed. But I am concerned with the speed of transferring data. Dropbox will upload the file to their server then send it from the server to the other location. I would like it to be even faster. Anyway I was thinking why not create a program myself. This is the algorithm that I was thinking of. Let me know if it sounds too crazy. (Remember my goal is to transfer files as fast as possible) Things that I will use in this algorithm: Server on the internet called S (Has fast download and upload speed. I pay to host a website and some services in there. I want to take advantage of it.) Client A at location 1 Client B at location 2 So lets say at location 1, 20 large files are created and need to be transferred to location 2. Client A compresses the files with the highest compression ratio possible. Client A starts sending data via UDP to client B. Because I am using UDP I will include the sequence number on each packet. Have server S help speed up things. For example every time a packet is lost we can use Server S to inform client A that it needs to resend a packet. Anyways I think this approach will increase the transfer rate. I do not know if it is possible to start sending data while it is being compressed. Or if it is possible to start decompressing data even if we are not done receiving the whole file. Maybe it will be faster to start sending the files right away without compressing. If I knew that I will always be sending large text files then I will obviously use the compression. I need this as a general algorithm. So I guess my question is could I increase performance by using UDP instead of TCP and by using an extra server to keep track of lost packets? And how should I compress files before sending? Compressing a 1 GB file with the highest compression ratio takes about 1 hour! I would like to take advantage of that time by sending it as it is being compressed.

    Read the article

  • How to transfer data between two netowks efficiently

    - by Tono Nam
    I will like to transfer files between two places over the internet. Right now I have a VPN and I am able to browse, download and transfer files. So my question is not really how to transfer the files; Instead, I will like to use the most efficient approach because the two places constantly share a lot of data. The reason why I want to get rid of the vpn is because it is two slow. Having high upload speed is very expensive/impossible on residential places so I will like to use a different approach. I was thinking about using programs such as http://www.dropbox.com . The problem with dropbox is it only enables 2 GB of storage in order for it to be free. I think the deals they offer are ok and I might be willing to pay to get that increase in speed. But I am concerned with the speed of transferring data. Dropbox will upload the file to their server then send it from the server to the other location. I will like it even faster lol. Anyways I was thinking why not create a program my self. This is the algorithm that I was thinking let me know if it sounds to crazy. (remember my goal is to transfer files as fastest as possible) Things that I will use in this algorithm: Server on the internet called S ( has fast download and upload speed. I pay to host a website and some services in there. I want to take advantage of it) Client A on location 1 Client B on location 2 So lets say on location 1 20 large files are created and need to be transferred to location 2. Client A compresses the files with the highest compression ratio possible. Client A starts sending data via UDP to client B. Because I am using UDP I will include the sequence number on each package. Have server S help speed up things. For example every time a package is lost we can use Server S to inform client A that it needs to resend a package. Anyways I think this approach will increase the transfer rate. I do not know if it is possible to start sending data meanwhile it is being compressed. Also if it is possible to start decompressing data even if we are not done receiving all the info. Maybe it will be faster to start sending the files right away without compressing. If I knew that I will always be sending large text files then I will obviously use the compression. I need this as a general algorithm. So i guess my question is should using UDP over TCP could increase performance by using an extra server to keep track of lost packages? and How should I compress files before sending? compressing a 1 GB file with the highest compression ration takes about 1 hour! I will like to take advantage of that time by sending it meanwhile it is compressed.

    Read the article

  • display data from json file in datagrid

    - by kayn
    I want to display data from a json files in a data grid using dojo ver 1.0.0. I am able to diplay the data when i declare it on my code but when i store the same data in a json format so i can reference it in my script,i get an empty grid. This is my json file; { data: [ ['10''myfile','Css', 'CS Degree','Dr. Bottoman','This is mine'], ['10'myfile2','CS716', 'CS Degree','Prof Frank', 'This is course'], ['10'myfile3 ','CS714', 'CS Degree', 'Dr. Ree', 'Welcome'], ['14', 'myfile4','CS772', 'CS Degree', 'Mr. Boss', 'This will display content' ], ['18', 'myfile5','CS774', 'CS Degree','Ms. Kirk', 'This is networks.' ] ] } and below is my code; @import "../../../dojo/resources/dojo.css"; @import "../_grid/Grid.css"; body { font-size: 1.0em; } #grid { height: 400px; border: 1px solid silver; } .text-oneline { white-space: nowrap; overflow: hidden; text-overflow: ellipsis; } .text-scrolling { height: 4em; overflow: auto; } .text-scrolling { width: 21.5em; } dojo.require("dojox.grid.Grid"); dojo.require("dojox.grid._data.model"); dojo.require("dojo.parser"); <script type="text/javascript"> /*<span dojoType="dojo.data.ItemFileWriteStore" jsId="myStore" url="course.json"> </span>*/ data = [ ['10''myfile','Css', 'CS Degree','Dr. Bottoman','This is mine'], ['10'myfile2','CS716', 'CS Degree','Prof Frank', 'This is course'], ['10'myfile3 ','CS714', 'CS Degree', 'Dr. Ree', 'Welcome'], ['14', 'myfile4','CS772', 'CS Degree', 'Mr. Boss', 'This will display content' ], ['18', 'myfile5','CS774', 'CS Degree','Ms. Kirk', 'This is networks.' ] ]; getDetailData = function(inRowIndex) { var row = data[this.grid.dataRow % data.length ]; switch (this.index) { case 0: return row[5]; case 1: return row[2]; case 2: return row[0]; case 3: return row[1]; case 4: return row[3]; case 5: return row[4]; default: return row[this.index]; } } getName = function(inRowIndex) { var row = data[inRowIndex % data.length]; return row[1]; } // Main grid structure var gridCells = [ { type: 'dojox.GridRowView', width: '20px' }, { onBeforeRow: function(inDataIndex, inSubRows) { inSubRows[1].hidden = !detailRows[inDataIndex]; }, cells: [[ { name: 'Master', width: 3, get: getCheck, styles: 'text-align: center;' }, { name: 'Detail', get: getName, width: 60 }, ], [ { name: '', get: getDetail, colSpan: 2, styles: 'padding: 0; margin: 0;'} ]] } ]; // html for the +/- cell function getCheck(inRowIndex) { var image = (detailRows[inRowIndex] ? 'open.gif' : 'closed.gif'); var show = (detailRows[inRowIndex] ? 'false' : 'true') return ''; } // provide html for the Detail cell in the master grid function getDetail(inRowIndex) { var cell = this; // we can affect styles and content here, but we have to wait to access actual nodes setTimeout(function() { buildDetailgrid(inRowIndex, cell); }, 1); // look for a Detailgrid var Detailgrid = dijit.byId(makeDetailgridId(inRowIndex)); var h = (Detailgrid ? Detailgrid.cacheHeight : "120") + "px"; // insert a placeholder return ''; } // the Detail cell contains a Detailgrid which we set up below var DetailgridCells = [{ noscroll: true, cells: [ [ {name: "Brief Course Description",width: "auto"}, {name: "Course Code" }, {name: "Credits" }, {name: "Subject" }, {name: "Prerequisite" }, {name: "Lecturer"}], [] ]}]; var DetailgridProps = { structure: DetailgridCells, rowCount: 1, autoHeight: true, autoRender: false, "get": getDetailData }; // identify Detailgrids by their row indices function makeDetailgridId(inRowIndex) { return grid.widgetId + "Detailgrid"/+ inRowIndex/; } // if a Detailgrid exists at inRowIndex, detach it from the DOM function detachDetailgrid(inRowIndex) { var Detailgrid = dijit.byId(makeDetailgridId(inRowIndex)); if (Detailgrid) dojox.grid.removeNode(Detailgrid.domNode); } // render a Detailgrid into inCell at inRowIndex function buildDetailgrid(inRowIndex, inCell) { var n = inCell.getNode(inRowIndex).firstChild; var id = makeDetailgridId(inRowIndex); var Detailgrid = dijit.byId(id); if (Detailgrid) { n.appendChild(Detailgrid.domNode); } else { DetailgridProps.dataRow = inRowIndex; DetailgridProps.widgetId = id; Detailgrid = new dojox.VirtualGrid(DetailgridProps, n); } if (Detailgrid) { Detailgrid.render(); Detailgrid.cacheHeight = Detailgrid.domNode.offsetHeight; inCell.grid.rowHeightChanged(inRowIndex); } } // destroy Detailgrid at inRowIndex function destroyDetailgrid(inRowIndex) { var Detailgrid = dijit.byId(makeDetailgridId(inRowIndex)); if (Detailgrid) Detailgrid.destroy(); } // when user clicks the +/- detailRows = []; function toggleDetail(inIndex, inShow) { if (!inShow) detachDetailgrid(inIndex); detailRows[inIndex] = inShow; grid.updateRow(inIndex); } dojo.addOnLoad(function() { window["grid"] = dijit.byId("grid"); dojo.connect(grid, 'rowRemoved', destroyDetailgrid); }); Test grid

    Read the article

  • When I shutdown the computer, it restarts

    - by Prabu
    I am unable to shutdown. Whenever I try to shutdown, it reboots. I am running Ubuntu 12.10. I have run the boot-repair and this is the result: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v2.00) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos1)/boot/grub. sda1: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 12.10 Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/i386-pc/core.img sda2: __________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 2,048 1,936,809,983 1,936,807,936 83 Linux /dev/sda2 1,936,812,030 1,953,523,711 16,711,682 5 Extended /dev/sda5 1,936,812,032 1,953,523,711 16,711,680 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/loop0 squashfs /dev/sda1 229a5484-7659-4ce1-98ce-2f05f61a1ffa ext4 /dev/sda5 6c6dca25-ab67-4de4-8602-26fdb6154781 swap /dev/sr0 iso9660 Ubuntu 12.10 amd64 ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /rofs squashfs (ro,noatime) /dev/sr0 /cdrom iso9660 (ro,noatime) =========================== sda1/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=auto load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_US insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=10 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff initrd /boot/initrd.img-3.5.0-19-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { menuentry 'Ubuntu, with Linux 3.5.0-19-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-19-generic-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-19-generic ...' linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-19-generic } menuentry 'Ubuntu, with Linux 3.5.0-19-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-19-generic-recovery-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-19-generic ...' linux /boot/vmlinuz-3.5.0-19-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-19-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-advanced-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro quiet splash acpi=force $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-recovery-229a5484-7659-4ce1-98ce-2f05f61a1ffa' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 229a5484-7659-4ce1-98ce-2f05f61a1ffa else search --no-floppy --fs-uuid --set=root 229a5484-7659-4ce1-98ce-2f05f61a1ffa fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda1/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> # / was on /dev/sda1 during installation UUID=229a5484-7659-4ce1-98ce-2f05f61a1ffa / ext4 errors=remount-ro 0 1 # swap was on /dev/sda5 during installation UUID=6c6dca25-ab67-4de4-8602-26fdb6154781 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda1: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 200.155235291 = 214.915047424 boot/grub/grub.cfg 1 40.280788422 = 43.251167232 boot/initrd.img-3.5.0-17-generic 1 2.468288422 = 2.650304512 boot/initrd.img-3.5.0-19-generic 1 200.149234772 = 214.908604416 boot/vmlinuz-3.5.0-17-generic 1 1.990135193 = 2.136891392 boot/vmlinuz-3.5.0-19-generic 1 2.468288422 = 2.650304512 initrd.img 1 1.990135193 = 2.136891392 vmlinuz 1 1.990135193 = 2.136891392 vmlinuz.old 1 =============================== StdErr Messages: =============================== cat: write error: Broken pipe File descriptor 8 (/proc/6297/mounts) leaked on lvscan invocation. Parent PID 13390: bash No volume groups found ADDITIONAL INFORMATION : =================== log of boot-repair 2012-12-17__01h53 =================== boot-repair version : 3.197~ppa1~quantal boot-sav version : 3.197~ppa1~quantal glade2script version : 3.2.2~ppa45~quantal boot-sav-extra version : 3.197~ppa1~quantal boot-repair is executed in live-session (Ubuntu 12.10, quantal, Ubuntu, x86_64) CPU op-mode(s): 32-bit, 64-bit file=/cdrom/preseed/ubuntu.seed boot=casper initrd=/casper/initrd.lz quiet splash -- maybe-ubiquity =================== os-prober: /dev/sda1:Ubuntu 12.10 (12.10):Ubuntu:linux =================== blkid: /dev/loop0: TYPE="squashfs" /dev/sr0: LABEL="Ubuntu 12.10 amd64" TYPE="iso9660" /dev/sda1: UUID="229a5484-7659-4ce1-98ce-2f05f61a1ffa" TYPE="ext4" /dev/sda5: UUID="6c6dca25-ab67-4de4-8602-26fdb6154781" TYPE="swap" 1 disks with OS, 1 OS : 1 Linux, 0 MacOS, 0 Windows, 0 unknown type OS. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== sda1/etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash acpi=force" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== sda1/etc/grub.d/ : drwxr-xr-x 2 root root 4096 Oct 17 14:59 grub.d total 72 -rwxr-xr-x 1 root root 7541 Oct 14 17:36 00_header -rwxr-xr-x 1 root root 5488 Oct 4 09:30 05_debian_theme -rwxr-xr-x 1 root root 10891 Oct 14 17:36 10_linux -rwxr-xr-x 1 root root 10258 Oct 14 17:36 20_linux_xen -rwxr-xr-x 1 root root 1688 Oct 11 14:10 20_memtest86+ -rwxr-xr-x 1 root root 10976 Oct 14 17:36 30_os-prober -rwxr-xr-x 1 root root 1426 Oct 14 17:36 30_uefi-firmware -rwxr-xr-x 1 root root 214 Oct 14 17:36 40_custom -rwxr-xr-x 1 root root 216 Oct 14 17:36 41_custom -rw-r--r-- 1 root root 483 Oct 14 17:36 README =================== UEFI/Legacy mode: This live-session is not in EFI-mode. SecureBoot maybe enabled. =================== PARTITIONS & DISKS: sda1 : sda, not-sepboot, grubenv-ok grub2, grub-pc , update-grub, 64, with-boot, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, /mnt/boot-sav/sda1. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 2048 sectors * 512 bytes =================== parted -l: Model: ATA ST1000DM003-1CH1 (scsi) Disk /dev/sda: 1000GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags 1 1049kB 992GB 992GB primary ext4 boot 2 992GB 1000GB 8556MB extended 5 992GB 1000GB 8556MB logical linux-swap(v1) Warning: Unable to open /dev/sr0 read-write (Read-only file system). /dev/sr0 has been opened read-only. Error: Can't have a partition outside the disk! =================== parted -lm: BYT; /dev/sda:1000GB:scsi:512:4096:msdos:ATA ST1000DM003-1CH1; 1:1049kB:992GB:992GB:ext4::boot; 2:992GB:1000GB:8556MB:::; 5:992GB:1000GB:8556MB:linux-swap(v1)::; Warning: Unable to open /dev/sr0 read-write (Read-only file system). /dev/sr0 has been opened read-only. Error: Can't have a partition outside the disk! =================== mount: /cow on / type overlayfs (rw) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) /dev/sr0 on /cdrom type iso9660 (ro,noatime) /dev/loop0 on /rofs type squashfs (ro,noatime) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) tmpfs on /tmp type tmpfs (rw,nosuid,nodev) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) gvfsd-fuse on /run/user/ubuntu/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=ubuntu) /dev/sda1 on /mnt/boot-sav/sda1 type ext4 (rw) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda5 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): alarm ashmem autofs binder block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fd full fuse fw0 hidraw0 hidraw1 hpet input kmsg kvm log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda5 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom usb vga_arbiter vhost-net zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /cow overlayfs 3.9G 100M 3.8G 3% / udev devtmpfs 3.9G 12K 3.9G 1% /dev tmpfs tmpfs 1.6G 864K 1.6G 1% /run /dev/sr0 iso9660 763M 763M 0 100% /cdrom /dev/loop0 squashfs 717M 717M 0 100% /rofs tmpfs tmpfs 3.9G 32K 3.9G 1% /tmp none tmpfs 5.0M 4.0K 5.0M 1% /run/lock none tmpfs 3.9G 176K 3.9G 1% /run/shm none tmpfs 100M 52K 100M 1% /run/user /dev/sda1 ext4 910G 26G 838G 3% /mnt/boot-sav/sda1 =================== fdisk -l: Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders, total 1953525168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x000da1e9 Device Boot Start End Blocks Id System /dev/sda1 * 2048 1936809983 968403968 83 Linux /dev/sda2 1936812030 1953523711 8355841 5 Extended Partition 2 does not start on physical sector boundary. /dev/sda5 1936812032 1953523711 8355840 82 Linux swap / Solaris Partition outside the disk detected. =================== Recommended repair Recommended-Repair This setting will reinstall the grub2 of sda1 into the MBR of sda. Additional repair will be performed: unhide-bootmenu-10s Unhide GRUB boot menu in sda1/etc/default/grub grub-install (GRUB) 2.00-7ubuntu11,grub-install (GRUB) 2. Reinstall the GRUB of sda1 into the MBR of sda Installation finished. No error reported. grub-install /dev/sda: exit code of grub-install /dev/sda:0 chroot /mnt/boot-sav/sda1 update-grub Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.5.0-19-generic Found initrd image: /boot/initrd.img-3.5.0-19-generic Found linux image: /boot/vmlinuz-3.5.0-17-generic Found initrd image: /boot/initrd.img-3.5.0-17-generic Found memtest86+ image: /boot/memtest86+.bin Unhide GRUB boot menu in sda1/boot/grub/grub.cfg Boot successfully repaired. You can now reboot your computer.

    Read the article

  • Metro: Creating an IndexedDbDataSource for WinJS

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can create custom data sources which you can use with the controls in the WinJS library. In particular, I explain how you can create an IndexedDbDataSource which you can use to store and retrieve data from an IndexedDB database. If you want to skip ahead, and ignore all of the fascinating content in-between, I’ve included the complete code for the IndexedDbDataSource at the very bottom of this blog entry. What is IndexedDB? IndexedDB is a database in the browser. You can use the IndexedDB API with all modern browsers including Firefox, Chrome, and Internet Explorer 10. And, of course, you can use IndexedDB with Metro style apps written with JavaScript. If you need to persist data in a Metro style app written with JavaScript then IndexedDB is a good option. Each Metro app can only interact with its own IndexedDB databases. And, IndexedDB provides you with transactions, indices, and cursors – the elements of any modern database. An IndexedDB database might be different than the type of database that you normally use. An IndexedDB database is an object-oriented database and not a relational database. Instead of storing data in tables, you store data in object stores. You store JavaScript objects in an IndexedDB object store. You create new IndexedDB object stores by handling the upgradeneeded event when you attempt to open a connection to an IndexedDB database. For example, here’s how you would both open a connection to an existing database named TasksDB and create the TasksDB database when it does not already exist: var reqOpen = window.indexedDB.open(“TasksDB”, 2); reqOpen.onupgradeneeded = function (evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); }; reqOpen.onsuccess = function () { var db = reqOpen.result; // Do something with db }; When you call window.indexedDB.open(), and the database does not already exist, then the upgradeneeded event is raised. In the code above, the upgradeneeded handler creates a new object store named tasks. The new object store has an auto-increment column named id which acts as the primary key column. If the database already exists with the right version, and you call window.indexedDB.open(), then the success event is raised. At that point, you have an open connection to the existing database and you can start doing something with the database. You use asynchronous methods to interact with an IndexedDB database. For example, the following code illustrates how you would add a new object to the tasks object store: var transaction = db.transaction(“tasks”, “readwrite”); var reqAdd = transaction.objectStore(“tasks”).add({ name: “Feed the dog” }); reqAdd.onsuccess = function() { // Tasks added successfully }; The code above creates a new database transaction, adds a new task to the tasks object store, and handles the success event. If the new task gets added successfully then the success event is raised. Creating a WinJS IndexedDbDataSource The most powerful control in the WinJS library is the ListView control. This is the control that you use to display a collection of items. If you want to display data with a ListView control, you need to bind the control to a data source. The WinJS library includes two objects which you can use as a data source: the List object and the StorageDataSource object. The List object enables you to represent a JavaScript array as a data source and the StorageDataSource enables you to represent the file system as a data source. If you want to bind an IndexedDB database to a ListView then you have a choice. You can either dump the items from the IndexedDB database into a List object or you can create a custom data source. I explored the first approach in a previous blog entry. In this blog entry, I explain how you can create a custom IndexedDB data source. Implementing the IListDataSource Interface You create a custom data source by implementing the IListDataSource interface. This interface contains the contract for the methods which the ListView needs to interact with a data source. The easiest way to implement the IListDataSource interface is to derive a new object from the base VirtualizedDataSource object. The VirtualizedDataSource object requires a data adapter which implements the IListDataAdapter interface. Yes, because of the number of objects involved, this is a little confusing. Your code ends up looking something like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); The code above is used to create a new class named IndexedDbDataSource which derives from the base VirtualizedDataSource class. In the constructor for the new class, the base class _baseDataSourceConstructor() method is called. A data adapter is passed to the _baseDataSourceConstructor() method. The code above creates a new method exposed by the IndexedDbDataSource named nuke(). The nuke() method deletes all of the objects from an object store. The code above also overrides a method named remove(). Our derived remove() method accepts any type of key and removes the matching item from the object store. Almost all of the work of creating a custom data source goes into building the data adapter class. The data adapter class implements the IListDataAdapter interface which contains the following methods: · change() · getCount() · insertAfter() · insertAtEnd() · insertAtStart() · insertBefore() · itemsFromDescription() · itemsFromEnd() · itemsFromIndex() · itemsFromKey() · itemsFromStart() · itemSignature() · moveAfter() · moveBefore() · moveToEnd() · moveToStart() · remove() · setNotificationHandler() · compareByIdentity Fortunately, you are not required to implement all of these methods. You only need to implement the methods that you actually need. In the case of the IndexedDbDataSource, I implemented the getCount(), itemsFromIndex(), insertAtEnd(), and remove() methods. If you are creating a read-only data source then you really only need to implement the getCount() and itemsFromIndex() methods. Implementing the getCount() Method The getCount() method returns the total number of items from the data source. So, if you are storing 10,000 items in an object store then this method would return the value 10,000. Here’s how I implemented the getCount() method: getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); } The first thing that you should notice is that the getCount() method returns a WinJS promise. This is a requirement. The getCount() method is asynchronous which is a good thing because all of the IndexedDB methods (at least the methods implemented in current browsers) are also asynchronous. The code above retrieves an object store and then uses the IndexedDB count() method to get a count of the items in the object store. The value is returned from the promise by calling complete(). Implementing the itemsFromIndex method When a ListView displays its items, it calls the itemsFromIndex() method. By default, it calls this method multiple times to get different ranges of items. Three parameters are passed to the itemsFromIndex() method: the requestIndex, countBefore, and countAfter parameters. The requestIndex indicates the index of the item from the database to show. The countBefore and countAfter parameters represent hints. These are integer values which represent the number of items before and after the requestIndex to retrieve. Again, these are only hints and you can return as many items before and after the request index as you please. Here’s how I implemented the itemsFromIndex method: itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); } In the code above, a cursor is used to iterate through the objects in an object store. You fetch the next item in the cursor by calling either the cursor.continue() or cursor.advance() method. The continue() method moves forward by one object and the advance() method moves forward a specified number of objects. Each time you call continue() or advance(), the success event is raised again. If the cursor is null then you know that you have reached the end of the cursor and you can return the results. Some things to be careful about here. First, the return value from the itemsFromIndex() method must implement the IFetchResult interface. In particular, you must return an object which has an items, offset, and totalCount property. Second, each item in the items array must implement the IListItem interface. Each item should have a key and a data property. Implementing the insertAtEnd() Method When creating the IndexedDbDataSource, I wanted to go beyond creating a simple read-only data source and support inserting and deleting objects. If you want to support adding new items with your data source then you need to implement the insertAtEnd() method. Here’s how I implemented the insertAtEnd() method for the IndexedDbDataSource: insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); } When implementing the insertAtEnd() method, you need to be careful to return an object which implements the IItem interface. In particular, you should return an object that has a key and a data property. The key must be a string and it uniquely represents the new item added to the data source. The value of the data property represents the new item itself. Implementing the remove() Method Finally, you use the remove() method to remove an item from the data source. You call the remove() method with the key of the item which you want to remove. Implementing the remove() method in the case of the IndexedDbDataSource was a little tricky. The problem is that an IndexedDB object store uses an integer key and the VirtualizedDataSource requires a string key. For that reason, I needed to override the remove() method in the derived IndexedDbDataSource class like this: var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); When you call remove(), you end up calling a method of the IndexedDbDataAdapter named removeInternal() . Here’s what the removeInternal() method looks like: setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); } The removeInternal() method calls the IndexedDB delete() method to delete an item from the object store. If the item is deleted successfully then the _notificationHandler.remove() method is called. Because we are not implementing the standard IListDataAdapter remove() method, we need to notify the data source (and the ListView control bound to the data source) that an item has been removed. The way that you notify the data source is by calling the _notificationHandler.remove() method. Notice that we get the _notificationHandler in the code above by implementing another method in the IListDataAdapter interface: the setNotificationHandler() method. You can raise the following types of notifications using the _notificationHandler: · beginNotifications() · changed() · endNotifications() · inserted() · invalidateAll() · moved() · removed() · reload() These methods are all part of the IListDataNotificationHandler interface in the WinJS library. Implementing the nuke() Method I wanted to implement a method which would remove all of the items from an object store. Therefore, I created a method named nuke() which calls the IndexedDB clear() method: nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); } Notice that the nuke() method calls the _notificationHandler.reload() method to notify the ListView to reload all of the items from its data source. Because we are implementing a custom method here, we need to use the _notificationHandler to send an update. Using the IndexedDbDataSource To illustrate how you can use the IndexedDbDataSource, I created a simple task list app. You can add new tasks, delete existing tasks, and nuke all of the tasks. You delete an item by selecting an item (swipe or right-click) and clicking the Delete button. Here’s the HTML page which contains the ListView, the form for adding new tasks, and the buttons for deleting and nuking tasks: <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title>DataSources</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.1.0.RC/css/ui-dark.css" rel="stylesheet" /> <script src="//Microsoft.WinJS.1.0.RC/js/base.js"></script> <script src="//Microsoft.WinJS.1.0.RC/js/ui.js"></script> <!-- DataSources references --> <link href="indexedDb.css" rel="stylesheet" /> <script type="text/javascript" src="indexedDbDataSource.js"></script> <script src="indexedDb.js"></script> </head> <body> <div id="tmplTask" data-win-control="WinJS.Binding.Template"> <div class="taskItem"> Id: <span data-win-bind="innerText:id"></span> <br /><br /> Name: <span data-win-bind="innerText:name"></span> </div> </div> <div id="lvTasks" data-win-control="WinJS.UI.ListView" data-win-options="{ itemTemplate: select('#tmplTask'), selectionMode: 'single' }"></div> <form id="frmAdd"> <fieldset> <legend>Add Task</legend> <label>New Task</label> <input id="inputTaskName" required /> <button>Add</button> </fieldset> </form> <button id="btnNuke">Nuke</button> <button id="btnDelete">Delete</button> </body> </html> And here is the JavaScript code for the TaskList app: /// <reference path="//Microsoft.WinJS.1.0.RC/js/base.js" /> /// <reference path="//Microsoft.WinJS.1.0.RC/js/ui.js" /> function init() { WinJS.UI.processAll().done(function () { var lvTasks = document.getElementById("lvTasks").winControl; // Bind the ListView to its data source var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; // Wire-up Add, Delete, Nuke buttons document.getElementById("frmAdd").addEventListener("submit", function (evt) { evt.preventDefault(); tasksDataSource.beginEdits(); tasksDataSource.insertAtEnd(null, { name: document.getElementById("inputTaskName").value }).done(function (newItem) { tasksDataSource.endEdits(); document.getElementById("frmAdd").reset(); lvTasks.ensureVisible(newItem.index); }); }); document.getElementById("btnDelete").addEventListener("click", function () { if (lvTasks.selection.count() == 1) { lvTasks.selection.getItems().done(function (items) { tasksDataSource.remove(items[0].data.id); }); } }); document.getElementById("btnNuke").addEventListener("click", function () { tasksDataSource.nuke(); }); // This method is called to initialize the IndexedDb database function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } }); } document.addEventListener("DOMContentLoaded", init); The IndexedDbDataSource is created and bound to the ListView control with the following two lines of code: var tasksDataSource = new DataSources.IndexedDbDataSource("TasksDB", 1, "tasks", upgrade); lvTasks.itemDataSource = tasksDataSource; The IndexedDbDataSource is created with four parameters: the name of the database to create, the version of the database to create, the name of the object store to create, and a function which contains code to initialize the new database. The upgrade function creates a new object store named tasks with an auto-increment property named id: function upgrade(evt) { var newDB = evt.target.result; newDB.createObjectStore("tasks", { keyPath: "id", autoIncrement: true }); } The Complete Code for the IndexedDbDataSource Here’s the complete code for the IndexedDbDataSource: (function () { /************************************************ * The IndexedDBDataAdapter enables you to work * with a HTML5 IndexedDB database. *************************************************/ var IndexedDbDataAdapter = WinJS.Class.define( function (dbName, dbVersion, objectStoreName, upgrade, error) { this._dbName = dbName; // database name this._dbVersion = dbVersion; // database version this._objectStoreName = objectStoreName; // object store name this._upgrade = upgrade; // database upgrade script this._error = error || function (evt) { console.log(evt.message); }; }, { /******************************************* * IListDataAdapter Interface Methods ********************************************/ getCount: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore().then(function (store) { var reqCount = store.count(); reqCount.onerror = that._error; reqCount.onsuccess = function (evt) { complete(evt.target.result); }; }); }); }, itemsFromIndex: function (requestIndex, countBefore, countAfter) { var that = this; return new WinJS.Promise(function (complete, error) { that.getCount().then(function (count) { if (requestIndex >= count) { return WinJS.Promise.wrapError(new WinJS.ErrorFromName(WinJS.UI.FetchError.doesNotExist)); } var startIndex = Math.max(0, requestIndex - countBefore); var endIndex = Math.min(count, requestIndex + countAfter + 1); that._getObjectStore().then(function (store) { var index = 0; var items = []; var req = store.openCursor(); req.onerror = that._error; req.onsuccess = function (evt) { var cursor = evt.target.result; if (index < startIndex) { index = startIndex; cursor.advance(startIndex); return; } if (cursor && index < endIndex) { index++; items.push({ key: cursor.value[store.keyPath].toString(), data: cursor.value }); cursor.continue(); return; } results = { items: items, offset: requestIndex - startIndex, totalCount: count }; complete(results); }; }); }); }); }, insertAtEnd:function(unused, data) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function(store) { var reqAdd = store.add(data); reqAdd.onerror = that._error; reqAdd.onsuccess = function (evt) { var reqGet = store.get(evt.target.result); reqGet.onerror = that._error; reqGet.onsuccess = function (evt) { var newItem = { key:evt.target.result[store.keyPath].toString(), data:evt.target.result } complete(newItem); }; }; }); }); }, setNotificationHandler: function (notificationHandler) { this._notificationHandler = notificationHandler; }, /***************************************** * IndexedDbDataSource Method ******************************************/ removeInternal: function(key) { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqDelete = store.delete (key); reqDelete.onerror = that._error; reqDelete.onsuccess = function (evt) { that._notificationHandler.removed(key.toString()); complete(); }; }); }); }, nuke: function () { var that = this; return new WinJS.Promise(function (complete, error) { that._getObjectStore("readwrite").done(function (store) { var reqClear = store.clear(); reqClear.onerror = that._error; reqClear.onsuccess = function (evt) { that._notificationHandler.reload(); complete(); }; }); }); }, /******************************************* * Private Methods ********************************************/ _ensureDbOpen: function () { var that = this; // Try to get cached Db if (that._cachedDb) { return WinJS.Promise.wrap(that._cachedDb); } // Otherwise, open the database return new WinJS.Promise(function (complete, error, progress) { var reqOpen = window.indexedDB.open(that._dbName, that._dbVersion); reqOpen.onerror = function (evt) { error(); }; reqOpen.onupgradeneeded = function (evt) { that._upgrade(evt); that._notificationHandler.invalidateAll(); }; reqOpen.onsuccess = function () { that._cachedDb = reqOpen.result; complete(that._cachedDb); }; }); }, _getObjectStore: function (type) { type = type || "readonly"; var that = this; return new WinJS.Promise(function (complete, error) { that._ensureDbOpen().then(function (db) { var transaction = db.transaction(that._objectStoreName, type); complete(transaction.objectStore(that._objectStoreName)); }); }); }, _get: function (key) { return new WinJS.Promise(function (complete, error) { that._getObjectStore().done(function (store) { var reqGet = store.get(key); reqGet.onerror = that._error; reqGet.onsuccess = function (item) { complete(item); }; }); }); } } ); var IndexedDbDataSource = WinJS.Class.derive( WinJS.UI.VirtualizedDataSource, function (dbName, dbVersion, objectStoreName, upgrade, error) { this._adapter = new IndexedDbDataAdapter(dbName, dbVersion, objectStoreName, upgrade, error); this._baseDataSourceConstructor(this._adapter); }, { nuke: function () { this._adapter.nuke(); }, remove: function (key) { this._adapter.removeInternal(key); } } ); WinJS.Namespace.define("DataSources", { IndexedDbDataSource: IndexedDbDataSource }); })(); Summary In this blog post, I provided an overview of how you can create a new data source which you can use with the WinJS library. I described how you can create an IndexedDbDataSource which you can use to bind a ListView control to an IndexedDB database. While describing how you can create a custom data source, I explained how you can implement the IListDataAdapter interface. You also learned how to raise notifications — such as a removed or invalidateAll notification — by taking advantage of the methods of the IListDataNotificationHandler interface.

    Read the article

< Previous Page | 305 306 307 308 309 310 311 312 313 314 315 316  | Next Page >