Search Results

Search found 808 results on 33 pages for 'bala 88'.

Page 31/33 | < Previous Page | 27 28 29 30 31 32 33  | Next Page >

  • Understanding tcptraceroute versus http response

    - by kojiro
    I'm debugging a web server that has a very high wait time before responding. The server itself is quite fast and has no load, so I strongly suspect a network problem. Basically, I make a web request: wget -O/dev/null http://hostname/ --2013-10-18 11:03:08-- http://hostname/ Resolving hostname... 10.9.211.129 Connecting to hostname|10.9.211.129|:80... connected. HTTP request sent, awaiting response... 200 OK Length: unspecified [text/html] Saving to: ‘/dev/null’ 2013-10-18 11:04:11 (88.0 KB/s) - ‘/dev/null’ saved [13641] So you see it took about a minute to give me the page, but it does give it to me with a 200 response. So I try a tcptraceroute to see what's up: $ sudo tcptraceroute hostname 80 Password: Selected device en2, address 192.168.113.74, port 54699 for outgoing packets Tracing the path to hostname (10.9.211.129) on TCP port 80 (http), 30 hops max 1 192.168.113.1 0.842 ms 2.216 ms 2.130 ms 2 10.141.12.77 0.707 ms 0.767 ms 0.738 ms 3 10.141.12.33 1.227 ms 1.012 ms 1.120 ms 4 10.141.3.107 0.372 ms 0.305 ms 0.368 ms 5 12.112.4.41 6.688 ms 6.514 ms 6.467 ms 6 cr84.phlpa.ip.att.net (12.122.107.214) 19.892 ms 18.814 ms 15.804 ms 7 cr2.phlpa.ip.att.net (12.122.107.117) 17.554 ms 15.693 ms 16.122 ms 8 cr1.wswdc.ip.att.net (12.122.4.54) 15.838 ms 15.353 ms 15.511 ms 9 cr83.wswdc.ip.att.net (12.123.10.110) 17.451 ms 15.183 ms 16.198 ms 10 12.84.5.93 9.982 ms 9.817 ms 9.784 ms 11 12.84.5.94 14.587 ms 14.301 ms 14.238 ms 12 10.141.3.209 13.870 ms 13.845 ms 13.696 ms 13 * * * … 30 * * * I tried it again with 100 hops, just to be sure – the packets never get there. So how is it that the server does respond to requests via http, even after a minute? Shouldn't all requests just die? I'm not sure how to proceed debugging why this server is slow (as opposed to why it responds at all).

    Read the article

  • Can't ping localhost/or reach locally hosted domain

    - by Ian
    I can't reach a locally hosted domain, and in testing I have discovered I can't ping localhost or the actual IP either. OS is Windows7 64bit, Pro. DNS works, I can ping others on my network, they can ping me, and they can reach the hosted domain. The ONLY problem I have found is that I can't reach the locally hosted domains! C:\Users\ianipconfig /all Windows IP Configuration Host Name . . . . . . . . . . . . : leda Primary Dns Suffix . . . . . . . : Node Type . . . . . . . . . . . . : Hybrid IP Routing Enabled. . . . . . . . : No WINS Proxy Enabled. . . . . . . . : No DNS Suffix Search List. . . . . . : hcs Ethernet adapter Local Area Connection: Connection-specific DNS Suffix . : hcs Description . . . . . . . . . . . : Atheros AR8121/AR8113/AR8114 PCI-E Ethern et Controller Physical Address. . . . . . . . . : 00-23-54-7C-E2-2A DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes IPv4 Address. . . . . . . . . . . : 192.168.0.12(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.255.0 Default Gateway . . . . . . . . . : 192.168.0.1 DNS Servers . . . . . . . . . . . : 192.168.0.1 NetBIOS over Tcpip. . . . . . . . : Enabled Ethernet adapter VirtualBox Host-Only Network #2: Connection-specific DNS Suffix . : Description . . . . . . . . . . . : VirtualBox Host-Only Ethernet Adapter #2 Physical Address. . . . . . . . . : 08-00-27-00-88-4A DHCP Enabled. . . . . . . . . . . : No Autoconfiguration Enabled . . . . : Yes Autoconfiguration IPv4 Address. . : 169.254.205.215(Preferred) Subnet Mask . . . . . . . . . . . : 255.255.0.0 Default Gateway . . . . . . . . . : NetBIOS over Tcpip. . . . . . . . : Enabled C:\Users\ianping localhost Pinging leda [127.0.0.1] with 32 bytes of data: Request timed out. Request timed out. Request timed out. Request timed out. Ping statistics for 127.0.0.1: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss), C:\Users\ianping coachmaster.leda.hcs Pinging coachmaster.leda.hcs [192.168.0.12] with 32 bytes of data: Request timed out. Request timed out. Request timed out. Request timed out. Ping statistics for 192.168.0.12: Packets: Sent = 4, Received = 0, Lost = 4 (100% loss), C:\Users\ian I can reach a hosted VM in VirtualBox and the VM can browse the hosted sites. I've removed Zone Alarm and disabled Windows Firewall - same results. So how can I browse my locally hosted sited? What could be blocking it? Thanks Ian

    Read the article

  • Netbeans Error "build-impl.xml:688" : The module has not been deployed.

    - by Sarang
    Hi everyone, I am getting this error while deploying the jsp project : In-place deployment at C:\Users\Admin\Documents\NetBeansProjects\send-mail\build\web Initializing... deploy?path=C:\Users\Admin\Documents\NetBeansProjects\send-mail\build\web&name=send-mail&force=true failed on GlassFish Server 3 C:\Users\Admin\Documents\NetBeansProjects\send-mail\nbproject\build-impl.xml:688: The module has not been deployed. BUILD FAILED (total time: 0 seconds) Is there any solution for this ? Stack Trace : SEVERE: DPL8015: Invalid Deployment Descriptors in Deployment descriptor file WEB-INF/web.xml in archive [web]. Line 19 Column 23 -- cvc-complex-type.2.4.a: Invalid content was found starting with element 'display-name'. One of '{"http://java.sun.com/xml/ns/javaee":servlet-class, "http://java.sun.com/xml/ns/javaee":jsp-file, "http://java.sun.com/xml/ns/javaee":init-param, "http://java.sun.com/xml/ns/javaee":load-on-startup, "http://java.sun.com/xml/ns/javaee":enabled, "http://java.sun.com/xml/ns/javaee":async-supported, "http://java.sun.com/xml/ns/javaee":run-as, "http://java.sun.com/xml/ns/javaee":security-role-ref, "http://java.sun.com/xml/ns/javaee":multipart-config}' is expected. SEVERE: DPL8005: Deployment Descriptor parsing failure : cvc-complex-type.2.4.a: Invalid content was found starting with element 'display-name'. One of '{"http://java.sun.com/xml/ns/javaee":servlet-class, "http://java.sun.com/xml/ns/javaee":jsp-file, "http://java.sun.com/xml/ns/javaee":init-param, "http://java.sun.com/xml/ns/javaee":load-on-startup, "http://java.sun.com/xml/ns/javaee":enabled, "http://java.sun.com/xml/ns/javaee":async-supported, "http://java.sun.com/xml/ns/javaee":run-as, "http://java.sun.com/xml/ns/javaee":security-role-ref, "http://java.sun.com/xml/ns/javaee":multipart-config}' is expected. SEVERE: Exception while deploying the app java.io.IOException: org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found starting with element 'display-name'. One of '{"http://java.sun.com/xml/ns/javaee":servlet-class, "http://java.sun.com/xml/ns/javaee":jsp-file, "http://java.sun.com/xml/ns/javaee":init-param, "http://java.sun.com/xml/ns/javaee":load-on-startup, "http://java.sun.com/xml/ns/javaee":enabled, "http://java.sun.com/xml/ns/javaee":async-supported, "http://java.sun.com/xml/ns/javaee":run-as, "http://java.sun.com/xml/ns/javaee":security-role-ref, "http://java.sun.com/xml/ns/javaee":multipart-config}' is expected. at org.glassfish.javaee.core.deployment.DolProvider.load(DolProvider.java:170) at org.glassfish.javaee.core.deployment.DolProvider.load(DolProvider.java:79) at com.sun.enterprise.v3.server.ApplicationLifecycle.loadDeployer(ApplicationLifecycle.java:612) at com.sun.enterprise.v3.server.ApplicationLifecycle.setupContainerInfos(ApplicationLifecycle.java:554) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:262) at com.sun.enterprise.v3.server.ApplicationLifecycle.deploy(ApplicationLifecycle.java:183) at org.glassfish.deployment.admin.DeployCommand.execute(DeployCommand.java:272) at com.sun.enterprise.v3.admin.CommandRunnerImpl$1.execute(CommandRunnerImpl.java:305) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:320) at com.sun.enterprise.v3.admin.CommandRunnerImpl.doCommand(CommandRunnerImpl.java:1176) at com.sun.enterprise.v3.admin.CommandRunnerImpl.access$900(CommandRunnerImpl.java:83) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1235) at com.sun.enterprise.v3.admin.CommandRunnerImpl$ExecutionContext.execute(CommandRunnerImpl.java:1224) at com.sun.enterprise.v3.admin.AdminAdapter.doCommand(AdminAdapter.java:365) at com.sun.enterprise.v3.admin.AdminAdapter.service(AdminAdapter.java:204) at com.sun.grizzly.tcp.http11.GrizzlyAdapter.service(GrizzlyAdapter.java:166) at com.sun.enterprise.v3.server.HK2Dispatcher.dispath(HK2Dispatcher.java:100) at com.sun.enterprise.v3.services.impl.ContainerMapper.service(ContainerMapper.java:245) at com.sun.grizzly.http.ProcessorTask.invokeAdapter(ProcessorTask.java:791) at com.sun.grizzly.http.ProcessorTask.doProcess(ProcessorTask.java:693) at com.sun.grizzly.http.ProcessorTask.process(ProcessorTask.java:954) at com.sun.grizzly.http.DefaultProtocolFilter.execute(DefaultProtocolFilter.java:170) at com.sun.grizzly.DefaultProtocolChain.executeProtocolFilter(DefaultProtocolChain.java:135) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:102) at com.sun.grizzly.DefaultProtocolChain.execute(DefaultProtocolChain.java:88) at com.sun.grizzly.http.HttpProtocolChain.execute(HttpProtocolChain.java:76) at com.sun.grizzly.ProtocolChainContextTask.doCall(ProtocolChainContextTask.java:53) at com.sun.grizzly.SelectionKeyContextTask.call(SelectionKeyContextTask.java:57) at com.sun.grizzly.ContextTask.run(ContextTask.java:69) at com.sun.grizzly.util.AbstractThreadPool$Worker.doWork(AbstractThreadPool.java:330) at com.sun.grizzly.util.AbstractThreadPool$Worker.run(AbstractThreadPool.java:309) at java.lang.Thread.run(Thread.java:662) Caused by: org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found starting with element 'display-name'. One of '{"http://java.sun.com/xml/ns/javaee":servlet-class, "http://java.sun.com/xml/ns/javaee":jsp-file, "http://java.sun.com/xml/ns/javaee":init-param, "http://java.sun.com/xml/ns/javaee":load-on-startup, "http://java.sun.com/xml/ns/javaee":enabled, "http://java.sun.com/xml/ns/javaee":async-supported, "http://java.sun.com/xml/ns/javaee":run-as, "http://java.sun.com/xml/ns/javaee":security-role-ref, "http://java.sun.com/xml/ns/javaee":multipart-config}' is expected. at com.sun.enterprise.deployment.io.DeploymentDescriptorFile.read(DeploymentDescriptorFile.java:304) at com.sun.enterprise.deployment.io.DeploymentDescriptorFile.read(DeploymentDescriptorFile.java:225) at com.sun.enterprise.deployment.archivist.Archivist.readStandardDeploymentDescriptor(Archivist.java:614) at com.sun.enterprise.deployment.archivist.Archivist.readDeploymentDescriptors(Archivist.java:366) at com.sun.enterprise.deployment.archivist.Archivist.open(Archivist.java:238) at com.sun.enterprise.deployment.archivist.Archivist.open(Archivist.java:247) at com.sun.enterprise.deployment.archivist.Archivist.open(Archivist.java:208) at com.sun.enterprise.deployment.archivist.ApplicationFactory.openArchive(ApplicationFactory.java:148) at org.glassfish.javaee.core.deployment.DolProvider.load(DolProvider.java:162) ... 31 more Caused by: org.xml.sax.SAXParseException: cvc-complex-type.2.4.a: Invalid content was found starting with element 'display-name'. One of '{"http://java.sun.com/xml/ns/javaee":servlet-class, "http://java.sun.com/xml/ns/javaee":jsp-file, "http://java.sun.com/xml/ns/javaee":init-param, "http://java.sun.com/xml/ns/javaee":load-on-startup, "http://java.sun.com/xml/ns/javaee":enabled, "http://java.sun.com/xml/ns/javaee":async-supported, "http://java.sun.com/xml/ns/javaee":run-as, "http://java.sun.com/xml/ns/javaee":security-role-ref, "http://java.sun.com/xml/ns/javaee":multipart-config}' is expected. at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.createSAXParseException(ErrorHandlerWrapper.java:195) at com.sun.org.apache.xerces.internal.util.ErrorHandlerWrapper.error(ErrorHandlerWrapper.java:131) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(XMLErrorReporter.java:384) at com.sun.org.apache.xerces.internal.impl.XMLErrorReporter.reportError(XMLErrorReporter.java:318) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator$XSIErrorReporter.reportError(XMLSchemaValidator.java:417) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.reportSchemaError(XMLSchemaValidator.java:3182) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.handleStartElement(XMLSchemaValidator.java:1806) at com.sun.org.apache.xerces.internal.impl.xs.XMLSchemaValidator.startElement(XMLSchemaValidator.java:705) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.scanStartElement(XMLNSDocumentScannerImpl.java:400) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl$FragmentContentDriver.next(XMLDocumentFragmentScannerImpl.java:2755) at com.sun.org.apache.xerces.internal.impl.XMLDocumentScannerImpl.next(XMLDocumentScannerImpl.java:648) at com.sun.org.apache.xerces.internal.impl.XMLNSDocumentScannerImpl.next(XMLNSDocumentScannerImpl.java:140) at com.sun.org.apache.xerces.internal.impl.XMLDocumentFragmentScannerImpl.scanDocument(XMLDocumentFragmentScannerImpl.java:511) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(XML11Configuration.java:808) at com.sun.org.apache.xerces.internal.parsers.XML11Configuration.parse(XML11Configuration.java:737) at com.sun.org.apache.xerces.internal.parsers.XMLParser.parse(XMLParser.java:119) at com.sun.org.apache.xerces.internal.parsers.AbstractSAXParser.parse(AbstractSAXParser.java:1205) at com.sun.org.apache.xerces.internal.jaxp.SAXParserImpl$JAXPSAXParser.parse(SAXParserImpl.java:522) at javax.xml.parsers.SAXParser.parse(SAXParser.java:395) at com.sun.enterprise.deployment.io.DeploymentDescriptorFile.read(DeploymentDescriptorFile.java:298) ... 39 more Any Solution for this ?

    Read the article

  • Dataset.ReadXml() - Invalid character in the given encoding

    - by NLV
    Hello all I have saved a dataset in the sql database in an xml column using the following code. XmlDataDocument dd = new XmlDataDocument(dataset); and passing this xml document as sql parameter using param.value = new XmlNodeReader(dd); The XML is like <NewDataSet><SubContractChangeOrders><AGCol>1</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>006</Contract_x0020_Number><ContractID>30</ContractID><ChangeOrderID>211</ChangeOrderID><Amount>0.0000</Amount><Udf_CostReimbursableFlag>false</Udf_CostReimbursableFlag><Udf_CustomerCode /><Udf_SubChangeOrderStatus /></SubContractChangeOrders><SubContractChangeOrders><AGCol>2</AGCol><SCO_x0020_Number>002</SCO_x0020_Number><Contract_x0020_Number>006</Contract_x0020_Number><ContractID>30</ContractID><ChangeOrderID>212</ChangeOrderID><Amount>0.0000</Amount><Udf_CostReimbursableFlag>false</Udf_CostReimbursableFlag></SubContractChangeOrders><SubContractChangeOrders><AGCol>3</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>111</Contract_x0020_Number><ContractID>87</ContractID><ChangeOrderID>12</ChangeOrderID><Amount>300.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>4</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>222</Contract_x0020_Number><ContractID>80</ContractID><ChangeOrderID>6</ChangeOrderID><Amount>100.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>5</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>777</Contract_x0020_Number><ContractID>79</ContractID><ChangeOrderID>5</ChangeOrderID><Amount>200.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>6</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>786</Contract_x0020_Number><ContractID>77</ContractID><ChangeOrderID>3</ChangeOrderID><Amount>100.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>7</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>787</Contract_x0020_Number><ContractID>78</ContractID><ChangeOrderID>4</ChangeOrderID><Amount>500.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>8</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con 009</Contract_x0020_Number><ContractID>219</ContractID><ChangeOrderID>78</ChangeOrderID><Amount>9000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>9</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con 010</Contract_x0020_Number><ContractID>220</ContractID><ChangeOrderID>79</ChangeOrderID><Amount>13000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>10</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con 012</Contract_x0020_Number><ContractID>222</ContractID><ChangeOrderID>83</ChangeOrderID><Amount>2300.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>11</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con 020</Contract_x0020_Number><ContractID>226</ContractID><ChangeOrderID>86</ChangeOrderID><Amount>5400.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>12</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con 021</Contract_x0020_Number><ContractID>227</ContractID><ChangeOrderID>87</ChangeOrderID><Amount>2300.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>13</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con001</Contract_x0020_Number><ContractID>208</ContractID><ChangeOrderID>72</ChangeOrderID><Amount>3000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>14</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con002</Contract_x0020_Number><ContractID>209</ContractID><ChangeOrderID>73</ChangeOrderID><Amount>400.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>15</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con003</Contract_x0020_Number><ContractID>210</ContractID><ChangeOrderID>74</ChangeOrderID><Amount>6000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>16</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con004</Contract_x0020_Number><ContractID>211</ContractID><ChangeOrderID>75</ChangeOrderID><Amount>9000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>17</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Con005</Contract_x0020_Number><ContractID>213</ContractID><ChangeOrderID>76</ChangeOrderID><Amount>17000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>18</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>Cont001</Contract_x0020_Number><ContractID>228</ContractID><ChangeOrderID>89</ChangeOrderID><Amount>2000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>19</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>PUR001</Contract_x0020_Number><ContractID>229</ContractID><ChangeOrderID>88</ChangeOrderID><Amount>1000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>20</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>PUR002</Contract_x0020_Number><ContractID>230</ContractID><ChangeOrderID>90</ChangeOrderID><Amount>3000.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>21</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>SC-002</Contract_x0020_Number><ContractID>2</ContractID><ChangeOrderID>7</ChangeOrderID><Amount>200.0000</Amount></SubContractChangeOrders><SubContractChangeOrders><AGCol>22</AGCol><SCO_x0020_Number>001</SCO_x0020_Number><Contract_x0020_Number>SC-004</Contract_x0020_Number><ContractID>7</ContractID><ChangeOrderID>65</ChangeOrderID><Amount>1000.0000</Amount></SubContractChangeOrders></NewDataSet> I'm trying to read it back as follows using (SqlConnection con = new SqlConnection("Server=#####;Initial Catalog=#####;User ID=####;Pwd=########")) { using (SqlCommand com = new SqlCommand("select * from dbo.tbl_#####", con)) { using (SqlDataAdapter ada = new SqlDataAdapter(com)) { ada.Fill(dt); MemoryStream ms = new MemoryStream(); object contractXML1 = dt.Rows[0]["SCOXML1"]; System.Runtime.Serialization.Formatters.Binary.BinaryFormatter bf = new System.Runtime.Serialization.Formatters.Binary.BinaryFormatter(); bf.Serialize(ms, contractXML1); ms.Seek(0, SeekOrigin.Begin); ds.ReadXml(ms); } } } I'm getting the following error Data at the root level is invalid. Line 1, position 6. Any ideas? NLV

    Read the article

  • Ninject.ActivationException: Error activating IMainLicense

    - by Stefan Karlsson
    Im don't know fully how Ninject works thats wye i ask this question here to figure out whats wrong. If i create a empty constructor in ClaimsSecurityService it gets hit. This is my error: Error activating IMainLicense No matching bindings are available, and the type is not self-bindable. Activation path: 3) Injection of dependency IMainLicense into parameter mainLicenses of constructor of type ClaimsSecurityService 2) Injection of dependency ISecurityService into parameter securityService of constructor of type AccountController 1) Request for AccountController Stack: Ninject.KernelBase.Resolve(IRequest request) +474 Ninject.Planning.Targets.Target`1.GetValue(Type service, IContext parent) +153 Ninject.Planning.Targets.Target`1.ResolveWithin(IContext parent) +747 Ninject.Activation.Providers.StandardProvider.GetValue(IContext context, ITarget target) +269 Ninject.Activation.Providers.<>c__DisplayClass4.<Create>b__2(ITarget target) +69 System.Linq.WhereSelectArrayIterator`2.MoveNext() +66 System.Linq.Buffer`1..ctor(IEnumerable`1 source) +216 System.Linq.Enumerable.ToArray(IEnumerable`1 source) +77 Ninject.Activation.Providers.StandardProvider.Create(IContext context) +847 Ninject.Activation.Context.ResolveInternal(Object scope) +218 Ninject.Activation.Context.Resolve() +277 Ninject.<>c__DisplayClass15.<Resolve>b__f(IBinding binding) +86 System.Linq.WhereSelectEnumerableIterator`2.MoveNext() +145 System.Linq.Enumerable.SingleOrDefault(IEnumerable`1 source) +4059897 Ninject.Planning.Targets.Target`1.GetValue(Type service, IContext parent) +169 Ninject.Planning.Targets.Target`1.ResolveWithin(IContext parent) +747 Ninject.Activation.Providers.StandardProvider.GetValue(IContext context, ITarget target) +269 Ninject.Activation.Providers.<>c__DisplayClass4.<Create>b__2(ITarget target) +69 System.Linq.WhereSelectArrayIterator`2.MoveNext() +66 System.Linq.Buffer`1..ctor(IEnumerable`1 source) +216 System.Linq.Enumerable.ToArray(IEnumerable`1 source) +77 Ninject.Activation.Providers.StandardProvider.Create(IContext context) +847 Ninject.Activation.Context.ResolveInternal(Object scope) +218 Ninject.Activation.Context.Resolve() +277 Ninject.<>c__DisplayClass15.<Resolve>b__f(IBinding binding) +86 System.Linq.WhereSelectEnumerableIterator`2.MoveNext() +145 System.Linq.Enumerable.SingleOrDefault(IEnumerable`1 source) +4059897 Ninject.Web.Mvc.NinjectDependencyResolver.GetService(Type serviceType) +145 System.Web.Mvc.DefaultControllerActivator.Create(RequestContext requestContext, Type controllerType) +87 [InvalidOperationException: An error occurred when trying to create a controller of type 'Successful.Struct.Web.Controllers.AccountController'. Make sure that the controller has a parameterless public constructor.] System.Web.Mvc.DefaultControllerActivator.Create(RequestContext requestContext, Type controllerType) +247 System.Web.Mvc.DefaultControllerFactory.GetControllerInstance(RequestContext requestContext, Type controllerType) +438 System.Web.Mvc.DefaultControllerFactory.CreateController(RequestContext requestContext, String controllerName) +257 System.Web.Mvc.MvcHandler.ProcessRequestInit(HttpContextBase httpContext, IController& controller, IControllerFactory& factory) +326 System.Web.Mvc.MvcHandler.BeginProcessRequest(HttpContextBase httpContext, AsyncCallback callback, Object state) +157 System.Web.Mvc.MvcHandler.BeginProcessRequest(HttpContext httpContext, AsyncCallback callback, Object state) +88 System.Web.Mvc.MvcHandler.System.Web.IHttpAsyncHandler.BeginProcessRequest(HttpContext context, AsyncCallback cb, Object extraData) +50 System.Web.CallHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +301 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +155 Account controller: public class AccountController : Controller { private readonly ISecurityService _securityService; public AccountController(ISecurityService securityService) { _securityService = securityService; } // // GET: /Account/Login [AllowAnonymous] public ActionResult Login(string returnUrl) { ViewBag.ReturnUrl = returnUrl; return View(); } } NinjectWebCommon: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Http; using System.Web.Http.Dependencies; using Microsoft.Web.Infrastructure.DynamicModuleHelper; using Ninject; using Ninject.Extensions.Conventions; using Ninject.Parameters; using Ninject.Syntax; using Ninject.Web.Common; using Successful.Struct.Web; [assembly: WebActivator.PreApplicationStartMethod(typeof(NinjectWebCommon), "Start")] [assembly: WebActivator.ApplicationShutdownMethodAttribute(typeof(NinjectWebCommon), "Stop")] namespace Successful.Struct.Web { public static class NinjectWebCommon { private static readonly Bootstrapper Bootstrapper = new Bootstrapper(); /// <summary> /// Starts the application /// </summary> public static void Start() { DynamicModuleUtility.RegisterModule(typeof(OnePerRequestHttpModule)); DynamicModuleUtility.RegisterModule(typeof(NinjectHttpModule)); Bootstrapper.Initialize(CreateKernel); } /// <summary> /// Stops the application. /// </summary> public static void Stop() { Bootstrapper.ShutDown(); } /// <summary> /// Creates the kernel that will manage your application. /// </summary> /// <returns>The created kernel.</returns> private static IKernel CreateKernel() { var kernel = new StandardKernel(); kernel.Bind<Func<IKernel>>().ToMethod(ctx => () => new Bootstrapper().Kernel); kernel.Bind<IHttpModule>().To<HttpApplicationInitializationHttpModule>(); kernel.Load("Successful*.dll"); kernel.Bind(x => x.FromAssembliesMatching("Successful*.dll") .SelectAllClasses() .BindAllInterfaces() ); GlobalConfiguration.Configuration.DependencyResolver = new NinjectResolver(kernel); RegisterServices(kernel); return kernel; } /// <summary> /// Load your modules or register your services here! /// </summary> /// <param name="kernel">The kernel.</param> private static void RegisterServices(IKernel kernel) { } } public class NinjectResolver : NinjectScope, IDependencyResolver { private readonly IKernel _kernel; public NinjectResolver(IKernel kernel) : base(kernel) { _kernel = kernel; } public IDependencyScope BeginScope() { return new NinjectScope(_kernel.BeginBlock()); } } public class NinjectScope : IDependencyScope { protected IResolutionRoot ResolutionRoot; public NinjectScope(IResolutionRoot kernel) { ResolutionRoot = kernel; } public object GetService(Type serviceType) { var request = ResolutionRoot.CreateRequest(serviceType, null, new Parameter[0], true, true); return ResolutionRoot.Resolve(request).SingleOrDefault(); } public IEnumerable<object> GetServices(Type serviceType) { var request = ResolutionRoot.CreateRequest(serviceType, null, new Parameter[0], true, true); return ResolutionRoot.Resolve(request).ToList(); } public void Dispose() { var disposable = (IDisposable)ResolutionRoot; if (disposable != null) disposable.Dispose(); ResolutionRoot = null; } } } ClaimsSecurityService: public class ClaimsSecurityService : ISecurityService { private const string AscClaimsIdType = "http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider"; private const string SuccessfulStructWebNamespace = "Successful.Struct.Web"; private readonly IMainLicense _mainLicenses; private readonly ICompany _companys; private readonly IAuthTokenService _authService; [Inject] public IApplicationContext ApplicationContext { get; set; } [Inject] public ILogger<LocationService> Logger { get; set; } public ClaimsSecurityService(IMainLicense mainLicenses, ICompany companys, IAuthTokenService authService) { _mainLicenses = mainLicenses; _companys = companys; _authService = authService; } }

    Read the article

  • Postgres cannot connect to server

    - by user1408935
    Super stumped by why Postgres isn't working on a new app I just started. I've got it working for one app already. I'm using postgres.app, and it's running. I started a new app with rails new depot -d postgresql and then I went into the database.yml file and changed username to my $USER (which is what it is for the other app, which is working). So now my database.yml file has this development section: development: adapter: postgresql encoding: unicode database: depot_development pool: 5 username: <username> password: But when I run "rake db:create" or "rake db:create:all" I still got this error (in full, cause I don't know what's relevant): Couldn't create database for {"adapter"=>"postgresql", "encoding"=>"unicode", "database"=>"depot_development", "pool"=>5, "username"=>"<username>", "password"=>nil} could not connect to server: Permission denied Is the server running locally and accepting connections on Unix domain socket "/var/pgsql_socket/.s.PGSQL.5432"? /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:1213:in `initialize' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:1213:in `new' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:1213:in `connect' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:329:in `initialize' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:28:in `new' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/postgresql_adapter.rb:28:in `postgresql_connection' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:309:in `new_connection' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:319:in `checkout_new_connection' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:241:in `block (2 levels) in checkout' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:236:in `loop' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:236:in `block in checkout' /Users/<username>/.rvm/rubies/ruby-1.9.3-p194/lib/ruby/1.9.1/monitor.rb:211:in `mon_synchronize' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:233:in `checkout' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:96:in `block in connection' /Users/<username>/.rvm/rubies/ruby-1.9.3-p194/lib/ruby/1.9.1/monitor.rb:211:in `mon_synchronize' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:95:in `connection' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_pool.rb:404:in `retrieve_connection' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_specification.rb:170:in `retrieve_connection' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/connection_adapters/abstract/connection_specification.rb:144:in `connection' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/railties/databases.rake:107:in `rescue in create_database' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/railties/databases.rake:51:in `create_database' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/railties/databases.rake:40:in `block (3 levels) in <top (required)>' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/railties/databases.rake:40:in `each' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/gems/activerecord-3.2.8/lib/active_record/railties/databases.rake:40:in `block (2 levels) in <top (required)>' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/task.rb:205:in `call' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/task.rb:205:in `block in execute' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/task.rb:200:in `each' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/task.rb:200:in `execute' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/task.rb:158:in `block in invoke_with_call_chain' /Users/<username>/.rvm/rubies/ruby-1.9.3-p194/lib/ruby/1.9.1/monitor.rb:211:in `mon_synchronize' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/task.rb:151:in `invoke_with_call_chain' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/task.rb:144:in `invoke' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:116:in `invoke_task' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:94:in `block (2 levels) in top_level' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:94:in `each' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:94:in `block in top_level' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:133:in `standard_exception_handling' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:88:in `top_level' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:66:in `block in run' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:133:in `standard_exception_handling' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/lib/rake/application.rb:63:in `run' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/gems/rake-0.9.2.2/bin/rake:33:in `<top (required)>' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/bin/rake:19:in `load' /Users/<username>/.rvm/gems/ruby-1.9.3-p194@global/bin/rake:19:in `<main>' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/bin/ruby_noexec_wrapper:14:in `eval' /Users/<username>/.rvm/gems/ruby-1.9.3-p194/bin/ruby_noexec_wrapper:14:in `<main>' Couldn't create database for {"adapter"=>"postgresql", "encoding"=>"unicode", "database"=>"depot_test", "pool"=>5, "username"=>"<username>", "password"=>nil} I have tried createdb depot_development I have tried going into the psql environment and listing users (which included my username among them). In the same psql environment, I tried CREATE DATABASE depot; I've made sure that the pg gem is installed with bundle install, I've run "pg_ctl start", to which I got this response: pg_ctl: no database directory specified and environment variable PGDATA unset I ran "ps aux | grep postgres" to make sure postgres was running, to which I got this in return (which looks like it's doing OK, right?): <username> 10390 0.4 0.0 2425480 180 s000 R+ 6:15PM 0:00.00 grep postgres <username> 2907 0.0 0.0 2441604 464 ?? Ss 6:17PM 0:02.31 postgres: stats collector process <username> 2906 0.0 0.0 2445520 1664 ?? Ss 6:17PM 0:02.33 postgres: autovacuum launcher process <username> 2905 0.0 0.0 2445388 600 ?? Ss 6:17PM 0:09.25 postgres: wal writer process <username> 2904 0.0 0.0 2445388 1252 ?? Ss 6:17PM 0:12.08 postgres: writer process <username> 2902 0.0 0.0 2445388 3688 ?? S 6:17PM 0:00.54 /Applications/Postgres.app/Contents/MacOS/bin/postgres -D /Users/<username>/Library/Application Support/Postgres/var -p5432 The short of it, is I've been troubleshooting for a WHILE and have NO idea what's wrong. Any ideas? I'd really appreciate it, cause I'm pretty new to Rails, and this is a pretty disheartening roadblock. Thanks! EDIT -- Per request, posting the successful database.yml . It seems the difference is the inclusion of a password: development: adapter: postgresql encoding: unicode database: *******_development pool: 5 username: ******* password: ******* EDIT2 -- When I add a password to the .yml file, then run rake db:create again, I get this error. rake aborted! No Rakefile found (looking for: rakefile, Rakefile, rakefile.rb, Rakefile.rb)

    Read the article

  • SVG as CSS background for website navigation-bar

    - by Irfan Mir
    I drew a small (horizontal / in width) svg to be the background of my website's navigation. My website's navigation takes place a 100% of the browser's viewport and I want the svg image to fill that 100% space. So, using css I set the background of the navigation (.nav) to nav.svg but then I saw (whenI opened the html file in a browser) that the svg was not the full-width of the nav, but at the small width I drew it at. How can I get the SVG to stretch and fill the entire width of the navigation (100% of the page) ? Here is the code for the html file where the navigation is in: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=utf-8"> <title>Distributed Horizontal Menu</title> <meta name="generator" content="PSPad editor, www.pspad.com"> <style type="text/css"> *{ margin:0; padding:0; } .nav { margin:0; padding:0; min-width:42em; width:100%; height:47px; overflow:hidden; background:transparent url(nav.svg) no-repeat; text-align:justify; font:bold 88%/1.1 verdana; } .nav li { display:inline; list-style:none; } .nav li.last { margin-right:100%; } .nav li a { display:inline-block; padding:13px 4px 0; height:31px; color:#fff; vertical-align:middle; text-decoration:none; } .nav li a:hover { color:#ff6; background:#36c; } @media screen and (max-width:322px){ /* styling causing first break will go here*/ /* but in the meantime, a test */ body{ background:#ff0000; } } </style></head><body> <ul class="nav"> <!--[test to comment out random items] <li>&nbsp; <a href="#">netscape&nbsp;9</a></li> [the spacing should be distributed]--> <li>&nbsp; <a href="#">internet&nbsp;explorer&nbsp;6-8</a></li> <li>&nbsp; <a href="#">opera&nbsp;10</a></li> <li>&nbsp; <a href="#">firefox&nbsp;3</a></li> <li>&nbsp; <a href="#">safari&nbsp;4</a></li> <li class="last">&nbsp; <a href="#">chrome&nbsp;2</a> &nbsp; &nbsp;</li> </ul> </body></html> and Here is the code for the svg: <?xml version="1.0" encoding="utf-8"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg version="1.1" id="Layer_1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" x="0px" y="0px" width="321.026px" height="44.398px" viewBox="39.487 196.864 321.026 44.398" enable-background="new 39.487 196.864 321.026 44.398" xml:space="preserve"> <linearGradient id="SVGID_1_" gradientUnits="userSpaceOnUse" x1="280" y1="316.8115" x2="280" y2="275.375" gradientTransform="matrix(1 0 0 1 -80 -77)"> <stop offset="0" style="stop-color:#5A4A6A"/> <stop offset="0.3532" style="stop-color:#605170"/> <stop offset="0.8531" style="stop-color:#726382"/> <stop offset="1" style="stop-color:#796A89"/> </linearGradient> <path fill="url(#SVGID_1_)" d="M360,238.721c0,1.121-0.812,2.029-1.812,2.029H41.813c-1.001,0-1.813-0.908-1.813-2.029v-39.316 c0-1.119,0.812-2.027,1.813-2.027h316.375c1.002,0,1.812,0.908,1.812,2.027V238.721z"/> <path opacity="0.1" fill="#FFFFFF" enable-background="new " d="M358.188,197.376H41.813c-1.001,0-1.813,0.908-1.813,2.028 v39.316c0,1.12,0.812,2.028,1.813,2.028h316.375c1,0,1.812-0.908,1.812-2.028v-39.316C360,198.284,359.189,197.376,358.188,197.376z M358.75,238.721c0,0.415-0.264,0.779-0.562,0.779H41.813c-0.3,0-0.563-0.363-0.563-0.779v-39.316c0-0.414,0.263-0.777,0.563-0.777 h316.375c0.301,0,0.562,0.363,0.562,0.777V238.721z"/> <path opacity="0.5" fill="#FFFFFF" enable-background="new " d="M358.188,197.376H41.813c-1.001,0-1.813,0.908-1.813,2.028v1.461 c0-1.12,0.812-2.028,1.813-2.028h316.375c1.002,0,1.812,0.908,1.812,2.028v-1.461C360,198.284,359.189,197.376,358.188,197.376z"/> <g id="seperators"> <line fill="none" stroke="#000000" stroke-width="1.0259" stroke-miterlimit="10" x1="104.5" y1="197.375" x2="104.5" y2="240.75"/> <line opacity="0.1" fill="none" stroke="#FFFFFF" stroke-width="1.0259" stroke-miterlimit="10" enable-background="new " x1="103.5" y1="197.375" x2="103.5" y2="240.75"/> <line opacity="0.1" fill="none" stroke="#FFFFFF" stroke-width="1.0259" stroke-miterlimit="10" enable-background="new " x1="105.5" y1="197.375" x2="105.5" y2="240.75"/> <line fill="none" stroke="#000000" stroke-width="1.0259" stroke-miterlimit="10" x1="167.5" y1="197.375" x2="167.5" y2="240.75"/> <line opacity="0.1" fill="none" stroke="#FFFFFF" stroke-width="1.0259" stroke-miterlimit="10" enable-background="new " x1="166.5" y1="197.375" x2="166.5" y2="240.75"/> <line opacity="0.1" fill="none" stroke="#FFFFFF" stroke-width="1.0259" stroke-miterlimit="10" enable-background="new " x1="168.5" y1="197.375" x2="168.5" y2="240.75"/> <line fill="none" stroke="#000000" stroke-width="1.0259" stroke-miterlimit="10" x1="231.5" y1="197.375" x2="231.5" y2="240.75"/> <line opacity="0.1" fill="none" stroke="#FFFFFF" stroke-width="1.0259" stroke-miterlimit="10" enable-background="new " x1="232.5" y1="197.375" x2="232.5" y2="240.75"/> <line opacity="0.1" fill="none" stroke="#FFFFFF" stroke-width="1.0259" stroke-miterlimit="10" enable-background="new " x1="230.5" y1="197.375" x2="230.5" y2="240.75"/> <line fill="none" stroke="#000000" stroke-width="1.0259" stroke-miterlimit="10" x1="295.5" y1="197.375" x2="295.5" y2="240.75"/> <line opacity="0.1" fill="none" stroke="#FFFFFF" stroke-width="1.0259" stroke-miterlimit="10" enable-background="new " x1="294.5" y1="197.375" x2="294.5" y2="240.75"/> <line opacity="0.1" fill="none" stroke="#FFFFFF" stroke-width="1.0259" stroke-miterlimit="10" enable-background="new " x1="296.5" y1="197.375" x2="296.5" y2="240.75"/> </g> <path fill="none" stroke="#000000" stroke-width="1.0259" stroke-miterlimit="10" d="M360,238.721c0,1.121-0.812,2.029-1.812,2.029 H41.813c-1.001,0-1.813-0.908-1.813-2.029v-39.316c0-1.119,0.812-2.027,1.813-2.027h316.375c1.002,0,1.812,0.908,1.812,2.027 V238.721z"/> </svg> I appreciate and welcome any and all comments, help, and suggestions. Thanks in Advance!

    Read the article

  • JMS MQ Connection closed in JSF 2 SessionBean

    - by veote
    I use Websphere Application Server 8 with MQ Series as Messaging Queue. When I open close the connection in sessionbean in a "postConstruct" method and I use it in another method then its closed. My Code is: import java.io.Serializable; import javax.annotation.PostConstruct; import javax.annotation.PreDestroy; import javax.annotation.Resource; import javax.faces.application.FacesMessage; import javax.faces.bean.ManagedBean; import javax.faces.bean.SessionScoped; import javax.faces.context.FacesContext; import javax.jms.JMSException; import javax.jms.Queue; import javax.jms.QueueConnection; import javax.jms.QueueConnectionFactory; import javax.jms.QueueSender; import javax.jms.QueueSession; import javax.jms.Session; import javax.jms.TextMessage; @ManagedBean @SessionScoped public class MQRequest implements Serializable { private static final long serialVersionUID = 1L; @Resource(name = "jms/wasmqtest/wasmqtest_QCF") private QueueConnectionFactory connectionFactory; @Resource(name = "jms/wasmqtest/Request_Q") private Queue requestQueue; private QueueConnection connection; private String text = ""; public void sendMessage() { System.out.println("Connection in sendMessage: \n" + connection); TextMessage msg; try { QueueSession queueSession = connection.createQueueSession(false, Session.AUTO_ACKNOWLEDGE); QueueSender sender = queueSession.createSender(requestQueue); msg = queueSession.createTextMessage(text); sender.send(msg); queueSession.close(); sender.close(); } catch (JMSException e) { // TODO Auto-generated catch block e.printStackTrace(); } text = ""; } @PostConstruct public void openConenction() { System.out.println("Open Connection"); try { connection = connectionFactory.createQueueConnection(); connection.start(); System.out.println("Connection in OpenConnectioN: \n" + connection); } catch (JMSException e) { e.printStackTrace(); } } @PreDestroy public void closeConnection() { try { System.out.println("Closing Connection"); connection.close(); } catch (JMSException e) { e.printStackTrace(); } } public void setText(String text) { this.text = text; } public String getText() { return text; } } In PostConstruct method the connection is initialized: [21.10.13 07:36:05:574 CEST] 00000025 SystemOut O Connection in OpenConnectioN: com.ibm.ejs.jms.JMSQueueConnectionHandle@36c9b1a managed connection = com.ibm.ejs.jms.JMSManagedQueueConnection@3657e8b physical connection = com.ibm.mq.jms.MQXAQueueConnection@36618b6 closed = false invalid = false restricted methods enabled = false open session handles = [] temporary queues = [] But in sendMessage() method it isnt and I get a ConnectionClosed Problem: [21.10.13 07:36:12:493 CEST] 00000025 SystemOut O Connection in sendMessage: com.ibm.ejs.jms.JMSQueueConnectionHandle@36c9b1a managed connection = null physical connection = null closed = true invalid = false restricted methods enabled = false open session handles = [] temporary queues = [] 21.10.13 07:36:12:461 CEST] 00000025 SystemErr R 15 [WebContainer : 3] INFO org.apache.bval.jsr303.ConfigurationImpl - ignoreXmlConfiguration == true [21.10.13 07:36:12:601 CEST] 00000025 SystemErr R javax.jms.IllegalStateException: Connection closed [21.10.13 07:36:12:601 CEST] 00000025 SystemErr R at com.ibm.ejs.jms.JMSConnectionHandle.checkOpen(JMSConnectionHandle.java:821) [21.10.13 07:36:12:601 CEST] 00000025 SystemErr R at com.ibm.ejs.jms.JMSQueueConnectionHandle.createQueueSession(JMSQueueConnectionHandle.java:206) [21.10.13 07:36:12:601 CEST] 00000025 SystemErr R at de.volkswagen.wasmqtest.queue.MQRequest.sendMessage(MQRequest.java:51) [21.10.13 07:36:12:601 CEST] 00000025 SystemErr R at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) [21.10.13 07:36:12:601 CEST] 00000025 SystemErr R at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:60) [21.10.13 07:36:12:601 CEST] 00000025 SystemErr R at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:37) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at java.lang.reflect.Method.invoke(Method.java:611) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at org.apache.el.parser.AstValue.invoke(AstValue.java:262) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at org.apache.el.MethodExpressionImpl.invoke(MethodExpressionImpl.java:278) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at org.apache.myfaces.view.facelets.el.TagMethodExpression.invoke(TagMethodExpression.java:83) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at javax.faces.component._MethodExpressionToMethodBinding.invoke(_MethodExpressionToMethodBinding.java:88) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at org.apache.myfaces.application.ActionListenerImpl.processAction(ActionListenerImpl.java:100) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at javax.faces.component.UICommand.broadcast(UICommand.java:120) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at javax.faces.component.UIViewRoot._broadcastAll(UIViewRoot.java:973) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at javax.faces.component.UIViewRoot.broadcastEvents(UIViewRoot.java:275) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at javax.faces.component.UIViewRoot._process(UIViewRoot.java:1285) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at javax.faces.component.UIViewRoot.processApplication(UIViewRoot.java:711) [21.10.13 07:36:12:602 CEST] 00000025 SystemErr R at org.apache.myfaces.lifecycle.InvokeApplicationExecutor.execute(InvokeApplicationExecutor.java:34) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at org.apache.myfaces.lifecycle.LifecycleImpl.executePhase(LifecycleImpl.java:171) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at org.apache.myfaces.lifecycle.LifecycleImpl.execute(LifecycleImpl.java:118) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at javax.faces.webapp.FacesServlet.service(FacesServlet.java:189) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.service(ServletWrapper.java:1147) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:722) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapper.handleRequest(ServletWrapper.java:449) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.servlet.ServletWrapperImpl.handleRequest(ServletWrapperImpl.java:178) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.filter.WebAppFilterManager.invokeFilters(WebAppFilterManager.java:1020) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.webapp.WebApp.handleRequest(WebApp.java:3703) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.webapp.WebGroup.handleRequest(WebGroup.java:304) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.WebContainer.handleRequest(WebContainer.java:953) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.WSWebContainer.handleRequest(WSWebContainer.java:1655) [21.10.13 07:36:12:603 CEST] 00000025 SystemErr R at com.ibm.ws.webcontainer.channel.WCChannelLink.ready(WCChannelLink.java:195) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleDiscrimination(HttpInboundLink.java:452) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.handleNewRequest(HttpInboundLink.java:511) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpInboundLink.processRequest(HttpInboundLink.java:305) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.ws.http.channel.inbound.impl.HttpICLReadCallback.complete(HttpICLReadCallback.java:83) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.ws.tcp.channel.impl.AioReadCompletionListener.futureCompleted(AioReadCompletionListener.java:165) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.io.async.AbstractAsyncFuture.invokeCallback(AbstractAsyncFuture.java:217) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.io.async.AsyncChannelFuture.fireCompletionActions(AsyncChannelFuture.java:161) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.io.async.AsyncFuture.completed(AsyncFuture.java:138) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.io.async.ResultHandler.complete(ResultHandler.java:204) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.io.async.ResultHandler.runEventProcessingLoop(ResultHandler.java:775) [21.10.13 07:36:12:604 CEST] 00000025 SystemErr R at com.ibm.io.async.ResultHandler$2.run(ResultHandler.java:905) [21.10.13 07:36:12:605 CEST] 00000025 SystemErr R at com.ibm.ws.util.ThreadPool$Worker.run(ThreadPool.java:1650) Do you have an idea why the connection is closed?

    Read the article

  • how to store data in ram in verilog

    - by anum
    i am having a bit stream of 128 bits @ each posedge of clk,i.e.total 10 bit streams each of length 128 bits. i want to divide the 128 bit stream into 8, 8 bits n hve to store them in a ram / memory of width 8 bits. i did it by assigning 8, 8 bits to wires of size 8 bit.in this way there are 16 wires. and i am using dual port ram...wen i cal module of memory in stimulus.i don know how to give input....as i am hving 16 different wires naming from k1 to k16. **codeeee** // this is stimulus file module final_stim; reg [7:0] in,in_data; reg clk,rst_n,rd,wr,rd_data,wr_data; wire [7:0] out,out_wr, ouut; wire[7:0] d; integer i; //wire[7:0] xor_out; reg kld,f; reg [127:0]key; wire [127:0] key_expand; wire [7:0]out_data; reg [7:0] k; //wire [7:0] k1,k2,k3,k4,k5,k6,k7,k8,k9,k10,k11,k12,k13,k14,k15,k16; wire [7:0] out_data1; **//key_expand is da output which is giving 10 streams of size 128 bits.** assign k1=key_expand[127:120]; assign k2=key_expand[119:112]; assign k3=key_expand[111:104]; assign k4=key_expand[103:96]; assign k5=key_expand[95:88]; assign k6=key_expand[87:80]; assign k7=key_expand[79:72]; assign k8=key_expand[71:64]; assign k9=key_expand[63:56]; assign k10=key_expand[55:48]; assign k11=key_expand[47:40]; assign k12=key_expand[39:32]; assign k13=key_expand[31:24]; assign k14=key_expand[23:16]; assign k15=key_expand[15:8]; assign k16=key_expand[7:0]; **// then the module of memory is instanciated. //here k1 is sent as input.but i don know how to save the other values of k. //i tried to use for loop but it dint help** memory m1(clk,rst_n,rd, wr,k1,out_data1); aes_sbox b(out,d); initial begin clk=1'b1; rst_n=1'b0; #20 rst_n = 1; //rd=1'b1; wr_data=1'b1; in=8'hd4; #20 //rst_n=1'b1; in=8'h27; rd_data=1'b0; wr_data=1'b1; #20 in=8'h11; rd_data=1'b0; wr_data=1'b1; #20 in=8'hae; rd_data=1'b0; wr_data=1'b1; #20 in=8'he0; rd_data=1'b0; wr_data=1'b1; #20 in=8'hbf; rd_data=1'b0; wr_data=1'b1; #20 in=8'h98; rd_data=1'b0; wr_data=1'b1; #20 in=8'hf1; rd_data=1'b0; wr_data=1'b1; #20 in=8'hb8; rd_data=1'b0; wr_data=1'b1; #20 in=8'hb4; rd_data=1'b0; wr_data=1'b1; #20 in=8'h5d; rd_data=1'b0; wr_data=1'b1; #20 in=8'he5; rd_data=1'b0; wr_data=1'b1; #20 in=8'h1e; rd_data=1'b0; wr_data=1'b1; #20 in=8'h41; rd_data=1'b0; wr_data=1'b1; #20 in=8'h52; rd_data=1'b0; wr_data=1'b1; #20 in=8'h30; rd_data=1'b0; wr_data=1'b1; #20 wr_data=1'b0; #380 rd_data=1'b1; #320 rd_data = 1'b0; /////////////// #10 kld = 1'b1; key=128'h 2b7e151628aed2a6abf7158809cf4f3c; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b0; #10 wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 kld = 1'b0; key = 128'h 2b7e151628aed2a6abf7158809cf4f3c; wr = 1'b1; rd = 1'b1; #20 wr = 1'b0; #20 rd = 1'b1; #4880 f=1'b1; ///////////////////////////////////////////////// // out_data[i] end /*always@(*) begin while(i) mem[i]^mem1[i] ; i<=16; break; end*/ always #10 clk=~clk; always@(posedge clk) begin //$monitor($time," out_wr=%h,out_rd=%h\n ",out_wr,out); #10000 $stop; end endmodule

    Read the article

  • Deadlock in SQL Server 2005! Two real-time bulk upserts are fighting. WHY?

    - by skimania
    Here's the scenario: I've got a table called MarketDataCurrent (MDC) that has live updating stock prices. I've got one process called 'LiveFeed' which reads prices streaming from the wire, queues up inserts, and uses a 'bulk upload to temp table then insert/update to MDC table.' (BulkUpsert) I've got another process which then reads this data, computes other data, and then saves the results back into the same table, using a similar BulkUpsert stored proc. Thirdly, there are a multitude of users running a C# Gui polling the MDC table and reading updates from it. Now, during the day when the data is changing rapidly, things run pretty smoothly, but then, after market hours, we've recently started seeing an increasing number of Deadlock exceptions coming out of the database, nowadays we see 10-20 a day. The imporant thing to note here is that these happen when the values are NOT changing. Here's all the relevant info: Table Def: CREATE TABLE [dbo].[MarketDataCurrent]( [MDID] [int] NOT NULL, [LastUpdate] [datetime] NOT NULL, [Value] [float] NOT NULL, [Source] [varchar](20) NULL, CONSTRAINT [PK_MarketDataCurrent] PRIMARY KEY CLUSTERED ( [MDID] ASC )WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY] ) ON [PRIMARY] - I've got a Sql Profiler Trace Running, catching the deadlocks, and here's what all the graphs look like. Process 258 is called the following 'BulkUpsert' stored proc, repeatedly, while 73 is calling the next one: ALTER proc [dbo].[MarketDataCurrent_BulkUpload] @updateTime datetime, @source varchar(10) as begin transaction update c with (rowlock) set LastUpdate = getdate(), Value = t.Value, Source = @source from MarketDataCurrent c INNER JOIN #MDTUP t ON c.MDID = t.mdid where c.lastUpdate < @updateTime and c.mdid not in (select mdid from MarketData where LiveFeedTicker is not null and PriceSource like 'LiveFeed.%') and c.value <> t.value insert into MarketDataCurrent with (rowlock) select MDID, getdate(), Value, @source from #MDTUP where mdid not in (select mdid from MarketDataCurrent with (nolock)) and mdid not in (select mdid from MarketData where LiveFeedTicker is not null and PriceSource like 'LiveFeed.%') commit And the other one: ALTER PROCEDURE [dbo].[MarketDataCurrent_LiveFeedUpload] AS begin transaction -- Update existing mdid UPDATE c WITH (ROWLOCK) SET LastUpdate = t.LastUpdate, Value = t.Value, Source = t.Source FROM MarketDataCurrent c INNER JOIN #TEMPTABLE2 t ON c.MDID = t.mdid; -- Insert new MDID INSERT INTO MarketDataCurrent with (ROWLOCK) SELECT * FROM #TEMPTABLE2 WHERE MDID NOT IN (SELECT MDID FROM MarketDataCurrent with (NOLOCK)) -- Clean up the temp table DELETE #TEMPTABLE2 commit To clarify, those Temp Tables are being created by the C# code on the same connection and are populated using the C# SqlBulkCopy class. To me it looks like it's deadlocking on the PK of the table, so I tried removing that PK and switching to a Unique Constraint instead but that increased the number of deadlocks 10-fold. I'm totally lost as to what to do about this situation and am open to just about any suggestion. HELP!! In response to the request for the XDL, here it is: <deadlock-list> <deadlock victim="processc19978"> <process-list> <process id="processaf0b68" taskpriority="0" logused="0" waitresource="KEY: 6:72057594090487808 (d900ed5a6cc6)" waittime="718" ownerId="1102128174" transactionname="user_transaction" lasttranstarted="2010-06-11T16:30:44.750" XDES="0xffffffff817f9a40" lockMode="U" schedulerid="3" kpid="8228" status="suspended" spid="73" sbid="0" ecid="0" priority="0" transcount="2" lastbatchstarted="2010-06-11T16:30:44.750" lastbatchcompleted="2010-06-11T16:30:44.750" clientapp=".Net SqlClient Data Provider" hostname="RISKAPPS_VM" hostpid="3836" loginname="RiskOpt" isolationlevel="read committed (2)" xactid="1102128174" currentdb="6" lockTimeout="4294967295" clientoption1="671088672" clientoption2="128056"> <executionStack> <frame procname="MKP_RISKDB.dbo.MarketDataCurrent_BulkUpload" line="28" stmtstart="1062" stmtend="1720" sqlhandle="0x03000600a28e5e4ef4fd8e00849d00000100000000000000"> UPDATE c WITH (ROWLOCK) SET LastUpdate = getdate(), Value = t.Value, Source = @source FROM MarketDataCurrent c INNER JOIN #MDTUP t ON c.MDID = t.mdid WHERE c.lastUpdate &lt; @updateTime and c.mdid not in (select mdid from MarketData where BloombergTicker is not null and PriceSource like &apos;Blbg.%&apos;) and c.value &lt;&gt; t.value </frame> <frame procname="adhoc" line="1" stmtstart="88" sqlhandle="0x01000600c1653d0598706ca7000000000000000000000000"> exec MarketDataCurrent_BulkUpload @clearBefore, @source </frame> <frame procname="unknown" line="1" sqlhandle="0x000000000000000000000000000000000000000000000000"> unknown </frame> </executionStack> <inputbuf> (@clearBefore datetime,@source nvarchar(10))exec MarketDataCurrent_BulkUpload @clearBefore, @source </inputbuf> </process> <process id="processc19978" taskpriority="0" logused="0" waitresource="KEY: 6:72057594090487808 (74008e31572b)" waittime="718" ownerId="1102128228" transactionname="user_transaction" lasttranstarted="2010-06-11T16:30:44.780" XDES="0x380be9d8" lockMode="U" schedulerid="5" kpid="8464" status="suspended" spid="248" sbid="0" ecid="0" priority="0" transcount="2" lastbatchstarted="2010-06-11T16:30:44.780" lastbatchcompleted="2010-06-11T16:30:44.780" clientapp=".Net SqlClient Data Provider" hostname="RISKBBG_VM" hostpid="4480" loginname="RiskOpt" isolationlevel="read committed (2)" xactid="1102128228" currentdb="6" lockTimeout="4294967295" clientoption1="671088672" clientoption2="128056"> <executionStack> <frame procname="MKP_RISKDB.dbo.MarketDataCurrentBlbgRtUpload" line="14" stmtstart="840" stmtend="1220" sqlhandle="0x03000600005f9d24c8878f00849d00000100000000000000"> UPDATE c WITH (ROWLOCK) SET LastUpdate = t.LastUpdate, Value = t.Value, Source = t.Source FROM MarketDataCurrent c INNER JOIN #TEMPTABLE2 t ON c.MDID = t.mdid; -- Insert new MDID </frame> <frame procname="adhoc" line="1" sqlhandle="0x010006004a58132228bf8d73000000000000000000000000"> MarketDataCurrentBlbgRtUpload </frame> </executionStack> <inputbuf> MarketDataCurrentBlbgRtUpload </inputbuf> </process> </process-list> <resource-list> <keylock hobtid="72057594090487808" dbid="6" objectname="MKP_RISKDB.dbo.MarketDataCurrent" indexname="PK_MarketDataCurrent" id="lock5ba77b00" mode="U" associatedObjectId="72057594090487808"> <owner-list> <owner id="processc19978" mode="U"/> </owner-list> <waiter-list> <waiter id="processaf0b68" mode="U" requestType="wait"/> </waiter-list> </keylock> <keylock hobtid="72057594090487808" dbid="6" objectname="MKP_RISKDB.dbo.MarketDataCurrent" indexname="PK_MarketDataCurrent" id="lock65dca340" mode="U" associatedObjectId="72057594090487808"> <owner-list> <owner id="processaf0b68" mode="U"/> </owner-list> <waiter-list> <waiter id="processc19978" mode="U" requestType="wait"/> </waiter-list> </keylock> </resource-list> </deadlock> </deadlock-list>

    Read the article

  • HttpsCookieFilter - IllegalStateException: getOutputStream() has already been called for this response

    - by Mat Banik
    Following exception is thrown every once in a while and it shows up in localhost log file in tomcat log directory. If anyone know how to get rid of it, all help would be appreciated. BTW the filter is working fine I just don't know why this exception is happening. Stack trace: java.lang.IllegalStateException: getOutputStream() has already been called for this response at org.apache.catalina.connector.Response.getWriter(Response.java:611) at org.apache.catalina.connector.ResponseFacade.getWriter(ResponseFacade.java:198) at javax.servlet.ServletResponseWrapper.getWriter(ServletResponseWrapper.java:112) at javax.servlet.ServletResponseWrapper.getWriter(ServletResponseWrapper.java:112) at org.springframework.web.servlet.view.freemarker.FreeMarkerView.processTemplate(FreeMarkerView.java:366) at org.springframework.web.servlet.view.freemarker.FreeMarkerView.doRender(FreeMarkerView.java:283) at org.springframework.web.servlet.view.freemarker.FreeMarkerView.renderMergedTemplateModel(FreeMarkerView.java:233) at org.springframework.web.servlet.view.AbstractTemplateView.renderMergedOutputModel(AbstractTemplateView.java:167) at org.springframework.web.servlet.view.AbstractView.render(AbstractView.java:250) at org.springframework.web.servlet.DispatcherServlet.render(DispatcherServlet.java:1047) at org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet.java:817) at org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet.java:719) at org.springframework.web.servlet.FrameworkServlet.processRequest(FrameworkServlet.java:644) at org.springframework.web.servlet.FrameworkServlet.doGet(FrameworkServlet.java:549) at javax.servlet.http.HttpServlet.service(HttpServlet.java:617) at javax.servlet.http.HttpServlet.service(HttpServlet.java:717) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:290) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.springframework.web.filter.CharacterEncodingFilter.doFilterInternal(CharacterEncodingFilter.java:88) at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:76) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at com.opensymphony.sitemesh.webapp.SiteMeshFilter.doFilter(SiteMeshFilter.java:65) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.springframework.orm.hibernate3.support.OpenSessionInViewFilter.doFilterInternal(OpenSessionInViewFilter.java:198) at org.springframework.web.filter.OncePerRequestFilter.doFilter(OncePerRequestFilter.java:76) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.tuckey.web.filters.urlrewrite.RuleChain.handleRewrite(RuleChain.java:176) at org.tuckey.web.filters.urlrewrite.RuleChain.doRules(RuleChain.java:145) at org.tuckey.web.filters.urlrewrite.UrlRewriter.processRequest(UrlRewriter.java:92) at org.tuckey.web.filters.urlrewrite.UrlRewriteFilter.doFilter(UrlRewriteFilter.java:381) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:368) at org.springframework.security.web.access.intercept.FilterSecurityInterceptor.invoke(FilterSecurityInterceptor.java:109) at org.springframework.security.web.access.intercept.FilterSecurityInterceptor.doFilter(FilterSecurityInterceptor.java:83) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.access.ExceptionTranslationFilter.doFilter(ExceptionTranslationFilter.java:97) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.authentication.AnonymousAuthenticationFilter.doFilter(AnonymousAuthenticationFilter.java:78) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.authentication.rememberme.RememberMeAuthenticationFilter.doFilter(RememberMeAuthenticationFilter.java:119) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.authentication.AbstractAuthenticationProcessingFilter.doFilter(AbstractAuthenticationProcessingFilter.java:187) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.authentication.logout.LogoutFilter.doFilter(LogoutFilter.java:105) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.context.SecurityContextPersistenceFilter.doFilter(SecurityContextPersistenceFilter.java:57) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.context.SecurityContextPersistenceFilter.doFilter(SecurityContextPersistenceFilter.java:79) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.access.channel.ChannelProcessingFilter.doFilter(ChannelProcessingFilter.java:109) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.session.ConcurrentSessionFilter.doFilter(ConcurrentSessionFilter.java:109) at org.springframework.security.web.FilterChainProxy$VirtualFilterChain.doFilter(FilterChainProxy.java:380) at org.springframework.security.web.FilterChainProxy.doFilter(FilterChainProxy.java:169) at org.springframework.web.filter.DelegatingFilterProxy.invokeDelegate(DelegatingFilterProxy.java:237) at org.springframework.web.filter.DelegatingFilterProxy.doFilter(DelegatingFilterProxy.java:167) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) //Here is the servlet I suspect is trowing the exception. at package.HttpsCookieFilter.doFilter(HttpsCookieFilter.java:38) at org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) at org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) at org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) at org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) at org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) at org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) at org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) at org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) at org.apache.coyote.http11.Http11NioProcessor.process(Http11NioProcessor.java:886) at org.apache.coyote.http11.Http11NioProtocol$Http11ConnectionHandler.process(Http11NioProtocol.java:721) at org.apache.tomcat.util.net.NioEndpoint$SocketProcessor.run(NioEndpoint.java:2256) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1110) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:603) at java.lang.Thread.run(Thread.java:717) The HttpsCookieFilter class: public class HttpsCookieFilter implements Filter { private static Logger log = Logger.getLogger(HttpsCookieFilter.class); @Override public void destroy() { } @Override public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException, ServletException { final HttpServletRequest req = (HttpServletRequest) request; final HttpServletResponse res = (HttpServletResponse) response; final HttpSession session = req.getSession(false); if (session != null) { setCookie(req, res); } try{ chain.doFilter(request, response); // <- Exception thrown from here }catch (IllegalStateException e){ log.warn("HttpsCookieFilter redirect problem! ", e); } } @Override public void init(FilterConfig arg0) throws ServletException { } private void setCookie( HttpServletRequest request, HttpServletResponse response) { Cookie cookie = new Cookie("JSESSIONID", request.getSession(false).getId()); cookie.setMaxAge(-1); cookie.setPath(getCookiePath(request)); cookie.setSecure(false); response.addCookie(cookie); } private String getCookiePath(HttpServletRequest request) { String contextPath = request.getContextPath(); return contextPath.length() > 0 ? contextPath : "/"; } } web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app version="2.5" xmlns="http://java.sun.com/xml/ns/j2ee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee/web-app_2_5.xsd"> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> <listener> <listener-class>org.springframework.web.context.request.RequestContextListener</listener-class> </listener> <listener> <listener-class>org.springframework.security.web.session.HttpSessionEventPublisher</listener-class> </listener> <filter> <filter-name>httpsCookieFilter</filter-name> <filter-class>com.iteezy.server.web.servlet.HttpsCookieFilter</filter-class> </filter> <filter-mapping> <filter-name>httpsCookieFilter</filter-name> <url-pattern>/*</url-pattern> </filter-mapping> <filter> <filter-name>filterChainProxy</filter-name> <filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class> </filter> <filter-mapping> <filter-name>filterChainProxy</filter-name> <url-pattern>/*</url-pattern> </filter-mapping> ... The reason for integrating this filter comes from Spring security FAQs: I'm using Tomcat (or some other servlet container) and have enabled HTTPS for my login page, switching back to HTTP afterwards. It doesn't work - I just end up back at the login page after authenticating. This happens because sessions created under HTTPS, for which the session cookie is marked as “secure”, cannot subsequently be used under HTTP. The browser will not send the cookie back to the server and any session state will be lost (including the security context information). Starting a session in HTTP first should work as the session cookie won't be marked as secure.

    Read the article

  • Help with java GUI- has error in main thread

    - by jan
    Hello guys, Basically im trying to do a Insurance Application form in java. And it uses multiple JPanels in a JFrame. -adding of JPanel into main program frame was done like this: //jpCenterArea to hold jp1-jp7 jpCenterArea.add(jp1); jpCenterArea.add(jp2); jpCenterArea.add(jp3); jpCenterArea.add(jp4); ...etc ********Add Jpanels to JFrame*****/ add(jpTitle, BorderLayout.NORTH); add(jpCenterArea, BorderLayout.CENTER); add(jpBottom, BorderLayout.SOUTH); However, even though program can compile, it cannot be run. error as mentioned below: Exception in thread "main" java.lang.NullPointerException at java.awt.Container.addImpl<Container.java:1045> at java.awt.Container.add<Container.java:365> at TravelInsuranceApplication.<init>TravelInsuranceApplication.java:120> at TravelInsuranceApplication.main<TravelInsuranceApplication.java:154> 1 import javax.swing.*; 2 import java.awt.*; 3 public class TravelInsuranceApplication extends JFrame 4 { 5 //declare private variables 6 private JLabel jlblTitle, jlblName, jlblNRIC, jlblAdd, jlblPostal, jlblContact, jlblDOB, 7 jlblEmail, jlblPeriod; 8 private JLabel jlblDeparture, jlblDays, jlblZone, jlblPlan; 9 private JTextField jtfName, jtfIC, jtfAdd, jtfPostal, jtfContact, jtfEmail, jtfZone; 10 private JRadioButton jrbResident, jrbOffice, jrbDeluxe, jrbClassic, jrbAsia, jrbWorldwide; 11 private ButtonGroup bgContact, bgZone, bgPlan; 12 private JComboBox jcDay, jcMonth, jcYear; 13 private JButton jbtnSubmit, jbtnCalculate, jbtnClear; 14 private JPanel jpTitle,jp1, jp2, jp3, jp4, jp5, jp6, jp7, jpBottom, jpCenterArea; 15 String[] day = {"1", "2", "3"}; 16 String[] month = {"january", "february"}; 17 String[] year = {"1981", "1985", "1990", "1995"}; 18 19 //constructor and GUI development 20 public TravelInsuranceApplication() 21 { 22 setSize(500,200); 23 setTitle("Travel Insurance Application"); 24 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 25 setLayout(new BorderLayout()); 26 27 //create ALL component objects/ 28 jlblTitle = new JLabel("Travel Insurance Application: "); 29 jlblName = new JLabel("Name of Insured: "); 30 jlblNRIC = new JLabel("NRIC: "); 31 jlblAdd = new JLabel("Address: "); 32 jlblPostal = new JLabel("Postal Code: "); 33 jlblContact = new JLabel("Telephone: "); 34 jlblDOB = new JLabel("Date Of Birth: "); 35 jlblEmail = new JLabel("Email Address: "); 36 jlblPeriod = new JLabel("Period Of Insurance "); 37 jlblDeparture = new JLabel("Departure Date "); 38 jlblDays = new JLabel("How Many Days To Insure "); 39 jlblZone = new JLabel("Zone: "); 40 jlblPlan = new JLabel("Plan: "); 41 42 jtfName = new JTextField(50); 43 jtfIC = new JTextField(15); 44 jtfAdd = new JTextField(50); 45 jtfPostal = new JTextField(15); 46 jtfContact = new JTextField(15); 47 jtfEmail = new JTextField(50); 48 jtfZone = new JTextField(100); 49 50 jrbResident = new JRadioButton("Rseident/Pgr"); 51 jrbOffice = new JRadioButton("Office/HP"); 52 jrbAsia = new JRadioButton("Asia"); 53 jrbAsia = new JRadioButton("Worldwide"); 54 jrbDeluxe = new JRadioButton("Deluxe"); 55 jrbClassic = new JRadioButton("Classic"); 56 57 jcDay = new JComboBox(day); 58 jcMonth = new JComboBox(month); 59 jcYear = new JComboBox(year); 60 61 jbtnSubmit = new JButton("Submit"); 62 jbtnCalculate = new JButton("Calculate"); 63 jbtnClear = new JButton("Clear"); 64 65 /****create JPanels - jpTitle, JpCenterArea & jp2-jp8 , jpBottom + setLayout 66 for ALL JPanels******/ 67 jpTitle = new JPanel(new FlowLayout(FlowLayout.CENTER)); 68 jpCenterArea = new JPanel(new FlowLayout()); 69 jp1 = new JPanel(new FlowLayout()); 70 jp2 = new JPanel(new FlowLayout(FlowLayout.CENTER)); 71 jp3 = new JPanel(new FlowLayout()); 72 jp4 = new JPanel(new FlowLayout()); 73 jp5 = new JPanel(new FlowLayout()); 74 jp6 = new JPanel(new FlowLayout(FlowLayout.CENTER)); 75 jp7 = new JPanel(new FlowLayout(FlowLayout.CENTER)); 76 jpBottom = new JPanel(new FlowLayout(FlowLayout.CENTER)); 77 78 79 80 81 //add components to JPanels 82 jpTitle.add(jlblTitle); 83 84 //jp1 85 jp1.add(jlblName); 86 jp1.add(jtfName); 87 jp1.add(jlblNRIC); 88 jp1.add(jtfIC); 89 90 //jp2 91 jp2.add(jlblAdd); 92 jp2.add(jtfAdd); 93 jp2.add(jlblPostal); 94 jp2.add(jtfPostal); 95 96 //jp3 97 jp3.add(jlblContact); 98 jp3.add(jtfContact); 99 jp3.add(jrbResident); 100 jp3.add(jrbOffice); 101 jp3.add(jlblDOB); 102 jp3.add(jcDay); 103 jp3.add(jcMonth); 104 jp3.add(jcYear); 105 106 //jp4 107 jp4.add(jlblEmail); 108 jp4.add(jtfEmail); 109 110 //jp5 111 jp5.add(jlblPeriod); 112 jp5.add(jlblDeparture); 113 jp5.add(jcDay); 114 jp5.add(jcMonth); 115 jp5.add(jcYear); 116 jp5.add(jlblDays); 117 jp5.add(jcDay); 118 119 //jp6 120 jp6.add(jlblZone); 121 jp6.add(jrbAsia); 122 jp6.add(jrbWorldwide); 123 jp6.add(jlblPlan); 124 jp6.add(jrbDeluxe); 125 jp6.add(jrbClassic); 126 127 //jp7 128 jp7.add(jtfZone); 129 130 //jpCenterArea to hold jp1-jp7 131 jpCenterArea.add(jp1); 132 jpCenterArea.add(jp2); 133 jpCenterArea.add(jp3); 134 jpCenterArea.add(jp4); 135 jpCenterArea.add(jp5); 136 jpCenterArea.add(jp6); 137 jpCenterArea.add(jp7); 138 139 //jpBottom 140 jpBottom.add(jbtnSubmit); 141 jpBottom.add(jbtnCalculate); 142 jpBottom.add(jbtnClear); 143 144 /********Add Jpanels to JFrame*****/ 145 add(jpTitle, BorderLayout.NORTH); 146 add(jpCenterArea, BorderLayout.CENTER); 147 add(jpBottom, BorderLayout.SOUTH); 148 149 setVisible(true); 150 151 152 153 }//end null constructor 154 public static void main(String[] args) 155 { 156 TravelInsuranceApplication travel = new TravelInsuranceApplication(); 157 158 }//end main 159 160 }//end class

    Read the article

  • Hide/Show some HTML table cells individually and align the remaining cells as they belong to the same row [closed]

    - by Brian
    [Edited at the resquest of admins] The best way I can explain my problem is showning an example. I have the table that you can see on the link below (since I can't post images...), that ha a table head (blue) and four rows, whose cells are green and white in color. I just want the white cells to hide/show alternately by clicking on green cells, which would remain always visible as parent cells. After hiding white cells, the green ones should be aligned into the same row, as they would fit like tetris bricks. That's all, I think more clear is impossible. http://i.stack.imgur.com/3n3In.jpg (follow the link to see the image explanation) The table code: <table class="columns" cellspacing="0" border="0"> <tr> <td class="left" rowspan="2"> <div style="text-align:center;"></div> </td> </tr><tr><td class="middle"> <div id="detail_table_source" style="display:none"></div> <br> <table id="detail_table" class="detail"> <colgroup> <col style="width:20px;"> <col style="width:40px;"> <col style="width:70px;"> <col style="width:20px;"> </colgroup> <thead> <tr> <th width="88">Blahhh</th> <th width="211">BLAHH</th> <th width="229">BLAHH</th> </tr> </thead> <tbody> <tr class="parent" id="row123" style="cursor: pointer; " title="Click to expand/collapse"> <td bgcolor="#A6A4CC">Blahhh</td> <td bgcolor="#A6A4CC">blah blah </td> <td bgcolor="#A6A4CC">Blahh</td> </tr> <tr class="child-row123" style="display: none; "> <td rowspan="3" bgcolor="#5B5B5B">&nbsp;</td> <td>blah blah </td> <td>blah blah</td> </tr> <tr class="child-row123" style="display: none; "> <td>blah blah</td> <td>blah blah</td> </tr> <tr class="child-row123" style="display: none; "> <td>blah blah</td> <td>blah blah</td> </tr> <tr> <td bgcolor="#6B7A94" class="parent" id="row456" style="cursor: pointer; " title="Click to expand/collapse"><strong>Blahh</strong></td> <td bgcolor="#FFFFFF" class="child-cell456" style="display: none; ">blah blah</td> <td bgcolor="#FFFFFF" class="child-cell456" style="display: none; ">blah blah</td> </tr> <tr> <td rowspan="4" valign="top" bgcolor="#5B5B5B" class="child-row456" style="display: none; ">&nbsp;</td> <td bgcolor="#6B7A94" class="parent" id="cell456" style="cursor: pointer; " title="Click to expand/collapse">blah blah</td> <td bgcolor="#6B7A94" class="parent" id="cell456" style="cursor: pointer; " title="Click to expand/collapse">blah blah</td> </tr> <tr> <td class="child-cell456" style="display: none; ">blah blah</td> <td class="child-cell456" style="display: none; ">blah blah</td> </tr> <tr> <td class="child-cell456" style="display: none; ">blah blah</td> <td class="child-cell456" style="display: none; ">blah blah</td> </tr> </tbody> </table> The script to hide/show whole rows (this works because it is copied from another example): <script language="javascript"> $(function() { $('tr.parent') .css("cursor","pointer") .attr("title","Click to expand/collapse") .click(function(){ $(this).siblings('.child-'+this.id).toggle(); }); $('tr[@class^=child-]').hide().children('td'); }); </script> And the failed attempt at expanding/hiding individual cells: <script language="javascript"> $(function() { $('td.parent') .css("cursor","pointer") .attr("title","Click to expand/collapse") .click(function(){ $(this).siblings('.child-'+this.id).toggle(); }); $('td[@class^=child-]').hide().children('td'); }); </script>

    Read the article

  • Upload File to Windows Azure Blob in Chunks through ASP.NET MVC, JavaScript and HTML5

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2013/07/01/upload-file-to-windows-azure-blob-in-chunks-through-asp.net.aspxMany people are using Windows Azure Blob Storage to store their data in the cloud. Blob storage provides 99.9% availability with easy-to-use API through .NET SDK and HTTP REST. For example, we can store JavaScript files, images, documents in blob storage when we are building an ASP.NET web application on a Web Role in Windows Azure. Or we can store our VHD files in blob and mount it as a hard drive in our cloud service. If you are familiar with Windows Azure, you should know that there are two kinds of blob: page blob and block blob. The page blob is optimized for random read and write, which is very useful when you need to store VHD files. The block blob is optimized for sequential/chunk read and write, which has more common usage. Since we can upload block blob in blocks through BlockBlob.PutBlock, and them commit them as a whole blob with invoking the BlockBlob.PutBlockList, it is very powerful to upload large files, as we can upload blocks in parallel, and provide pause-resume feature. There are many documents, articles and blog posts described on how to upload a block blob. Most of them are focus on the server side, which means when you had received a big file, stream or binaries, how to upload them into blob storage in blocks through .NET SDK.  But the problem is, how can we upload these large files from client side, for example, a browser. This questioned to me when I was working with a Chinese customer to help them build a network disk production on top of azure. The end users upload their files from the web portal, and then the files will be stored in blob storage from the Web Role. My goal is to find the best way to transform the file from client (end user’s machine) to the server (Web Role) through browser. In this post I will demonstrate and describe what I had done, to upload large file in chunks with high speed, and save them as blocks into Windows Azure Blob Storage.   Traditional Upload, Works with Limitation The simplest way to implement this requirement is to create a web page with a form that contains a file input element and a submit button. 1: @using (Html.BeginForm("About", "Index", FormMethod.Post, new { enctype = "multipart/form-data" })) 2: { 3: <input type="file" name="file" /> 4: <input type="submit" value="upload" /> 5: } And then in the backend controller, we retrieve the whole content of this file and upload it in to the blob storage through .NET SDK. We can split the file in blocks and upload them in parallel and commit. The code had been well blogged in the community. 1: [HttpPost] 2: public ActionResult About(HttpPostedFileBase file) 3: { 4: var container = _client.GetContainerReference("test"); 5: container.CreateIfNotExists(); 6: var blob = container.GetBlockBlobReference(file.FileName); 7: var blockDataList = new Dictionary<string, byte[]>(); 8: using (var stream = file.InputStream) 9: { 10: var blockSizeInKB = 1024; 11: var offset = 0; 12: var index = 0; 13: while (offset < stream.Length) 14: { 15: var readLength = Math.Min(1024 * blockSizeInKB, (int)stream.Length - offset); 16: var blockData = new byte[readLength]; 17: offset += stream.Read(blockData, 0, readLength); 18: blockDataList.Add(Convert.ToBase64String(BitConverter.GetBytes(index)), blockData); 19:  20: index++; 21: } 22: } 23:  24: Parallel.ForEach(blockDataList, (bi) => 25: { 26: blob.PutBlock(bi.Key, new MemoryStream(bi.Value), null); 27: }); 28: blob.PutBlockList(blockDataList.Select(b => b.Key).ToArray()); 29:  30: return RedirectToAction("About"); 31: } This works perfect if we selected an image, a music or a small video to upload. But if I selected a large file, let’s say a 6GB HD-movie, after upload for about few minutes the page will be shown as below and the upload will be terminated. In ASP.NET there is a limitation of request length and the maximized request length is defined in the web.config file. It’s a number which less than about 4GB. So if we want to upload a really big file, we cannot simply implement in this way. Also, in Windows Azure, a cloud service network load balancer will terminate the connection if exceed the timeout period. From my test the timeout looks like 2 - 3 minutes. Hence, when we need to upload a large file we cannot just use the basic HTML elements. Besides the limitation mentioned above, the simple HTML file upload cannot provide rich upload experience such as chunk upload, pause and pause-resume. So we need to find a better way to upload large file from the client to the server.   Upload in Chunks through HTML5 and JavaScript In order to break those limitation mentioned above we will try to upload the large file in chunks. This takes some benefit to us such as - No request size limitation: Since we upload in chunks, we can define the request size for each chunks regardless how big the entire file is. - No timeout problem: The size of chunks are controlled by us, which means we should be able to make sure request for each chunk upload will not exceed the timeout period of both ASP.NET and Windows Azure load balancer. It was a big challenge to upload big file in chunks until we have HTML5. There are some new features and improvements introduced in HTML5 and we will use them to implement our solution.   In HTML5, the File interface had been improved with a new method called “slice”. It can be used to read part of the file by specifying the start byte index and the end byte index. For example if the entire file was 1024 bytes, file.slice(512, 768) will read the part of this file from the 512nd byte to 768th byte, and return a new object of interface called "Blob”, which you can treat as an array of bytes. In fact,  a Blob object represents a file-like object of immutable, raw data. The File interface is based on Blob, inheriting blob functionality and expanding it to support files on the user's system. For more information about the Blob please refer here. File and Blob is very useful to implement the chunk upload. We will use File interface to represent the file the user selected from the browser and then use File.slice to read the file in chunks in the size we wanted. For example, if we wanted to upload a 10MB file with 512KB chunks, then we can read it in 512KB blobs by using File.slice in a loop.   Assuming we have a web page as below. User can select a file, an input box to specify the block size in KB and a button to start upload. 1: <div> 2: <input type="file" id="upload_files" name="files[]" /><br /> 3: Block Size: <input type="number" id="block_size" value="512" name="block_size" />KB<br /> 4: <input type="button" id="upload_button_blob" name="upload" value="upload (blob)" /> 5: </div> Then we can have the JavaScript function to upload the file in chunks when user clicked the button. 1: <script type="text/javascript"> 1: 2: $(function () { 3: $("#upload_button_blob").click(function () { 4: }); 5: });</script> Firstly we need to ensure the client browser supports the interfaces we are going to use. Just try to invoke the File, Blob and FormData from the “window” object. If any of them is “undefined” the condition result will be “false” which means your browser doesn’t support these premium feature and it’s time for you to get your browser updated. FormData is another new feature we are going to use in the future. It could generate a temporary form for us. We will use this interface to create a form with chunk and associated metadata when invoked the service through ajax. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: if (window.File && window.Blob && window.FormData) { 4: alert("Your brwoser is awesome, let's rock!"); 5: } 6: else { 7: alert("Oh man plz update to a modern browser before try is cool stuff out."); 8: return; 9: } 10: }); Each browser supports these interfaces by their own implementation and currently the Blob, File and File.slice are supported by Chrome 21, FireFox 13, IE 10, Opera 12 and Safari 5.1 or higher. After that we worked on the files the user selected one by one since in HTML5, user can select multiple files in one file input box. 1: var files = $("#upload_files")[0].files; 2: for (var i = 0; i < files.length; i++) { 3: var file = files[i]; 4: var fileSize = file.size; 5: var fileName = file.name; 6: } Next, we calculated the start index and end index for each chunks based on the size the user specified from the browser. We put them into an array with the file name and the index, which will be used when we upload chunks into Windows Azure Blob Storage as blocks since we need to specify the target blob name and the block index. At the same time we will store the list of all indexes into another variant which will be used to commit blocks into blob in Azure Storage once all chunks had been uploaded successfully. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10:  11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: var blockSizeInKB = $("#block_size").val(); 14: var blockSize = blockSizeInKB * 1024; 15: var blocks = []; 16: var offset = 0; 17: var index = 0; 18: var list = ""; 19: while (offset < fileSize) { 20: var start = offset; 21: var end = Math.min(offset + blockSize, fileSize); 22:  23: blocks.push({ 24: name: fileName, 25: index: index, 26: start: start, 27: end: end 28: }); 29: list += index + ","; 30:  31: offset = end; 32: index++; 33: } 34: } 35: }); Now we have all chunks’ information ready. The next step should be upload them one by one to the server side, and at the server side when received a chunk it will upload as a block into Blob Storage, and finally commit them with the index list through BlockBlobClient.PutBlockList. But since all these invokes are ajax calling, which means not synchronized call. So we need to introduce a new JavaScript library to help us coordinate the asynchronize operation, which named “async.js”. You can download this JavaScript library here, and you can find the document here. I will not explain this library too much in this post. We will put all procedures we want to execute as a function array, and pass into the proper function defined in async.js to let it help us to control the execution sequence, in series or in parallel. Hence we will define an array and put the function for chunk upload into this array. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4:  5: // start to upload each files in chunks 6: var files = $("#upload_files")[0].files; 7: for (var i = 0; i < files.length; i++) { 8: var file = files[i]; 9: var fileSize = file.size; 10: var fileName = file.name; 11: // calculate the start and end byte index for each blocks(chunks) 12: // with the index, file name and index list for future using 13: ... ... 14:  15: // define the function array and push all chunk upload operation into this array 16: blocks.forEach(function (block) { 17: putBlocks.push(function (callback) { 18: }); 19: }); 20: } 21: }); 22: }); As you can see, I used File.slice method to read each chunks based on the start and end byte index we calculated previously, and constructed a temporary HTML form with the file name, chunk index and chunk data through another new feature in HTML5 named FormData. Then post this form to the backend server through jQuery.ajax. This is the key part of our solution. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: blocks.forEach(function (block) { 15: putBlocks.push(function (callback) { 16: // load blob based on the start and end index for each chunks 17: var blob = file.slice(block.start, block.end); 18: // put the file name, index and blob into a temporary from 19: var fd = new FormData(); 20: fd.append("name", block.name); 21: fd.append("index", block.index); 22: fd.append("file", blob); 23: // post the form to backend service (asp.net mvc controller action) 24: $.ajax({ 25: url: "/Home/UploadInFormData", 26: data: fd, 27: processData: false, 28: contentType: "multipart/form-data", 29: type: "POST", 30: success: function (result) { 31: if (!result.success) { 32: alert(result.error); 33: } 34: callback(null, block.index); 35: } 36: }); 37: }); 38: }); 39: } 40: }); Then we will invoke these functions one by one by using the async.js. And once all functions had been executed successfully I invoked another ajax call to the backend service to commit all these chunks (blocks) as the blob in Windows Azure Storage. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.series(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); That’s all in the client side. The outline of our logic would be - Calculate the start and end byte index for each chunks based on the block size. - Defined the functions of reading the chunk form file and upload the content to the backend service through ajax. - Execute the functions defined in previous step with “async.js”. - Commit the chunks by invoking the backend service in Windows Azure Storage finally.   Save Chunks as Blocks into Blob Storage In above we finished the client size JavaScript code. It uploaded the file in chunks to the backend service which we are going to implement in this step. We will use ASP.NET MVC as our backend service, and it will receive the chunks, upload into Windows Azure Bob Storage in blocks, then finally commit as one blob. As in the client side we uploaded chunks by invoking the ajax call to the URL "/Home/UploadInFormData", I created a new action under the Index controller and it only accepts HTTP POST request. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: } 8: catch (Exception e) 9: { 10: error = e.ToString(); 11: } 12:  13: return new JsonResult() 14: { 15: Data = new 16: { 17: success = string.IsNullOrWhiteSpace(error), 18: error = error 19: } 20: }; 21: } Then I retrieved the file name, index and the chunk content from the Request.Form object, which was passed from our client side. And then, used the Windows Azure SDK to create a blob container (in this case we will use the container named “test”.) and create a blob reference with the blob name (same as the file name). Then uploaded the chunk as a block of this blob with the index, since in Blob Storage each block must have an index (ID) associated with so that finally we can put all blocks as one blob by specifying their block ID list. 1: [HttpPost] 2: public JsonResult UploadInFormData() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var index = int.Parse(Request.Form["index"]); 9: var file = Request.Files[0]; 10: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 11:  12: var container = _client.GetContainerReference("test"); 13: container.CreateIfNotExists(); 14: var blob = container.GetBlockBlobReference(name); 15: blob.PutBlock(id, file.InputStream, null); 16: } 17: catch (Exception e) 18: { 19: error = e.ToString(); 20: } 21:  22: return new JsonResult() 23: { 24: Data = new 25: { 26: success = string.IsNullOrWhiteSpace(error), 27: error = error 28: } 29: }; 30: } Next, I created another action to commit the blocks into blob once all chunks had been uploaded. Similarly, I retrieved the blob name from the Request.Form. I also retrieved the chunks ID list, which is the block ID list from the Request.Form in a string format, split them as a list, then invoked the BlockBlob.PutBlockList method. After that our blob will be shown in the container and ready to be download. 1: [HttpPost] 2: public JsonResult Commit() 3: { 4: var error = string.Empty; 5: try 6: { 7: var name = Request.Form["name"]; 8: var list = Request.Form["list"]; 9: var ids = list 10: .Split(',') 11: .Where(id => !string.IsNullOrWhiteSpace(id)) 12: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 13: .ToArray(); 14:  15: var container = _client.GetContainerReference("test"); 16: container.CreateIfNotExists(); 17: var blob = container.GetBlockBlobReference(name); 18: blob.PutBlockList(ids); 19: } 20: catch (Exception e) 21: { 22: error = e.ToString(); 23: } 24:  25: return new JsonResult() 26: { 27: Data = new 28: { 29: success = string.IsNullOrWhiteSpace(error), 30: error = error 31: } 32: }; 33: } Now we finished all code we need. The whole process of uploading would be like this below. Below is the full client side JavaScript code. 1: <script type="text/javascript" src="~/Scripts/async.js"></script> 2: <script type="text/javascript"> 3: $(function () { 4: $("#upload_button_blob").click(function () { 5: // assert the browser support html5 6: if (window.File && window.Blob && window.FormData) { 7: alert("Your brwoser is awesome, let's rock!"); 8: } 9: else { 10: alert("Oh man plz update to a modern browser before try is cool stuff out."); 11: return; 12: } 13:  14: // start to upload each files in chunks 15: var files = $("#upload_files")[0].files; 16: for (var i = 0; i < files.length; i++) { 17: var file = files[i]; 18: var fileSize = file.size; 19: var fileName = file.name; 20:  21: // calculate the start and end byte index for each blocks(chunks) 22: // with the index, file name and index list for future using 23: var blockSizeInKB = $("#block_size").val(); 24: var blockSize = blockSizeInKB * 1024; 25: var blocks = []; 26: var offset = 0; 27: var index = 0; 28: var list = ""; 29: while (offset < fileSize) { 30: var start = offset; 31: var end = Math.min(offset + blockSize, fileSize); 32:  33: blocks.push({ 34: name: fileName, 35: index: index, 36: start: start, 37: end: end 38: }); 39: list += index + ","; 40:  41: offset = end; 42: index++; 43: } 44:  45: // define the function array and push all chunk upload operation into this array 46: var putBlocks = []; 47: blocks.forEach(function (block) { 48: putBlocks.push(function (callback) { 49: // load blob based on the start and end index for each chunks 50: var blob = file.slice(block.start, block.end); 51: // put the file name, index and blob into a temporary from 52: var fd = new FormData(); 53: fd.append("name", block.name); 54: fd.append("index", block.index); 55: fd.append("file", blob); 56: // post the form to backend service (asp.net mvc controller action) 57: $.ajax({ 58: url: "/Home/UploadInFormData", 59: data: fd, 60: processData: false, 61: contentType: "multipart/form-data", 62: type: "POST", 63: success: function (result) { 64: if (!result.success) { 65: alert(result.error); 66: } 67: callback(null, block.index); 68: } 69: }); 70: }); 71: }); 72:  73: // invoke the functions one by one 74: // then invoke the commit ajax call to put blocks into blob in azure storage 75: async.series(putBlocks, function (error, result) { 76: var data = { 77: name: fileName, 78: list: list 79: }; 80: $.post("/Home/Commit", data, function (result) { 81: if (!result.success) { 82: alert(result.error); 83: } 84: else { 85: alert("done!"); 86: } 87: }); 88: }); 89: } 90: }); 91: }); 92: </script> And below is the full ASP.NET MVC controller code. 1: public class HomeController : Controller 2: { 3: private CloudStorageAccount _account; 4: private CloudBlobClient _client; 5:  6: public HomeController() 7: : base() 8: { 9: _account = CloudStorageAccount.Parse(CloudConfigurationManager.GetSetting("DataConnectionString")); 10: _client = _account.CreateCloudBlobClient(); 11: } 12:  13: public ActionResult Index() 14: { 15: ViewBag.Message = "Modify this template to jump-start your ASP.NET MVC application."; 16:  17: return View(); 18: } 19:  20: [HttpPost] 21: public JsonResult UploadInFormData() 22: { 23: var error = string.Empty; 24: try 25: { 26: var name = Request.Form["name"]; 27: var index = int.Parse(Request.Form["index"]); 28: var file = Request.Files[0]; 29: var id = Convert.ToBase64String(BitConverter.GetBytes(index)); 30:  31: var container = _client.GetContainerReference("test"); 32: container.CreateIfNotExists(); 33: var blob = container.GetBlockBlobReference(name); 34: blob.PutBlock(id, file.InputStream, null); 35: } 36: catch (Exception e) 37: { 38: error = e.ToString(); 39: } 40:  41: return new JsonResult() 42: { 43: Data = new 44: { 45: success = string.IsNullOrWhiteSpace(error), 46: error = error 47: } 48: }; 49: } 50:  51: [HttpPost] 52: public JsonResult Commit() 53: { 54: var error = string.Empty; 55: try 56: { 57: var name = Request.Form["name"]; 58: var list = Request.Form["list"]; 59: var ids = list 60: .Split(',') 61: .Where(id => !string.IsNullOrWhiteSpace(id)) 62: .Select(id => Convert.ToBase64String(BitConverter.GetBytes(int.Parse(id)))) 63: .ToArray(); 64:  65: var container = _client.GetContainerReference("test"); 66: container.CreateIfNotExists(); 67: var blob = container.GetBlockBlobReference(name); 68: blob.PutBlockList(ids); 69: } 70: catch (Exception e) 71: { 72: error = e.ToString(); 73: } 74:  75: return new JsonResult() 76: { 77: Data = new 78: { 79: success = string.IsNullOrWhiteSpace(error), 80: error = error 81: } 82: }; 83: } 84: } And if we selected a file from the browser we will see our application will upload chunks in the size we specified to the server through ajax call in background, and then commit all chunks in one blob. Then we can find the blob in our Windows Azure Blob Storage.   Optimized by Parallel Upload In previous example we just uploaded our file in chunks. This solved the problem that ASP.NET MVC request content size limitation as well as the Windows Azure load balancer timeout. But it might introduce the performance problem since we uploaded chunks in sequence. In order to improve the upload performance we could modify our client side code a bit to make the upload operation invoked in parallel. The good news is that, “async.js” library provides the parallel execution function. If you remembered the code we invoke the service to upload chunks, it utilized “async.series” which means all functions will be executed in sequence. Now we will change this code to “async.parallel”. This will invoke all functions in parallel. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallel(putBlocks, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: }); In this way all chunks will be uploaded to the server side at the same time to maximize the bandwidth usage. This should work if the file was not very large and the chunk size was not very small. But for large file this might introduce another problem that too many ajax calls are sent to the server at the same time. So the best solution should be, upload the chunks in parallel with maximum concurrency limitation. The code below specified the concurrency limitation to 4, which means at the most only 4 ajax calls could be invoked at the same time. 1: $("#upload_button_blob").click(function () { 2: // assert the browser support html5 3: ... ... 4: // start to upload each files in chunks 5: var files = $("#upload_files")[0].files; 6: for (var i = 0; i < files.length; i++) { 7: var file = files[i]; 8: var fileSize = file.size; 9: var fileName = file.name; 10: // calculate the start and end byte index for each blocks(chunks) 11: // with the index, file name and index list for future using 12: ... ... 13: // define the function array and push all chunk upload operation into this array 14: ... ... 15: // invoke the functions one by one 16: // then invoke the commit ajax call to put blocks into blob in azure storage 17: async.parallelLimit(putBlocks, 4, function (error, result) { 18: var data = { 19: name: fileName, 20: list: list 21: }; 22: $.post("/Home/Commit", data, function (result) { 23: if (!result.success) { 24: alert(result.error); 25: } 26: else { 27: alert("done!"); 28: } 29: }); 30: }); 31: } 32: });   Summary In this post we discussed how to upload files in chunks to the backend service and then upload them into Windows Azure Blob Storage in blocks. We focused on the frontend side and leverage three new feature introduced in HTML 5 which are - File.slice: Read part of the file by specifying the start and end byte index. - Blob: File-like interface which contains the part of the file content. - FormData: Temporary form element that we can pass the chunk alone with some metadata to the backend service. Then we discussed the performance consideration of chunk uploading. Sequence upload cannot provide maximized upload speed, but the unlimited parallel upload might crash the browser and server if too many chunks. So we finally came up with the solution to upload chunks in parallel with the concurrency limitation. We also demonstrated how to utilize “async.js” JavaScript library to help us control the asynchronize call and the parallel limitation.   Regarding the chunk size and the parallel limitation value there is no “best” value. You need to test vary composition and find out the best one for your particular scenario. It depends on the local bandwidth, client machine cores and the server side (Windows Azure Cloud Service Virtual Machine) cores, memory and bandwidth. Below is one of my performance test result. The client machine was Windows 8 IE 10 with 4 cores. I was using Microsoft Cooperation Network. The web site was hosted on Windows Azure China North data center (in Beijing) with one small web role (1.7GB 1 core CPU, 1.75GB memory with 100Mbps bandwidth). The test cases were - Chunk size: 512KB, 1MB, 2MB, 4MB. - Upload Mode: Sequence, parallel (unlimited), parallel with limit (4 threads, 8 threads). - Chunk Format: base64 string, binaries. - Target file: 100MB. - Each case was tested 3 times. Below is the test result chart. Some thoughts, but not guidance or best practice: - Parallel gets better performance than series. - No significant performance improvement between parallel 4 threads and 8 threads. - Transform with binaries provides better performance than base64. - In all cases, chunk size in 1MB - 2MB gets better performance.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Service Discovery in WCF 4.0 &ndash; Part 1

    - by Shaun
    When designing a service oriented architecture (SOA) system, there will be a lot of services with many service contracts, endpoints and behaviors. Besides the client calling the service, in a large distributed system a service may invoke other services. In this case, one service might need to know the endpoints it invokes. This might not be a problem in a small system. But when you have more than 10 services this might be a problem. For example in my current product, there are around 10 services, such as the user authentication service, UI integration service, location service, license service, device monitor service, event monitor service, schedule job service, accounting service, player management service, etc..   Benefit of Discovery Service Since almost all my services need to invoke at least one other service. This would be a difficult task to make sure all services endpoints are configured correctly in every service. And furthermore, it would be a nightmare when a service changed its endpoint at runtime. Hence, we need a discovery service to remove the dependency (configuration dependency). A discovery service plays as a service dictionary which stores the relationship between the contracts and the endpoints for every service. By using the discovery service, when service X wants to invoke service Y, it just need to ask the discovery service where is service Y, then the discovery service will return all proper endpoints of service Y, then service X can use the endpoint to send the request to service Y. And when some services changed their endpoint address, all need to do is to update its records in the discovery service then all others will know its new endpoint. In WCF 4.0 Discovery it supports both managed proxy discovery mode and ad-hoc discovery mode. In ad-hoc mode there is no standalone discovery service. When a client wanted to invoke a service, it will broadcast an message (normally in UDP protocol) to the entire network with the service match criteria. All services which enabled the discovery behavior will receive this message and only those matched services will send their endpoint back to the client. The managed proxy discovery service works as I described above. In this post I will only cover the managed proxy mode, where there’s a discovery service. For more information about the ad-hoc mode please refer to the MSDN.   Service Announcement and Probe The main functionality of discovery service should be return the proper endpoint addresses back to the service who is looking for. In most cases the consume service (as a client) will send the contract which it wanted to request to the discovery service. And then the discovery service will find the endpoint and respond. Sometimes the contract and endpoint are not enough. It also contains versioning, extensions attributes. This post I will only cover the case includes contract and endpoint. When a client (or sometimes a service who need to invoke another service) need to connect to a target service, it will firstly request the discovery service through the “Probe” method with the criteria. Basically the criteria contains the contract type name of the target service. Then the discovery service will search its endpoint repository by the criteria. The repository might be a database, a distributed cache or a flat XML file. If it matches, the discovery service will grab the endpoint information (it’s called discovery endpoint metadata in WCF) and send back. And this is called “Probe”. Finally the client received the discovery endpoint metadata and will use the endpoint to connect to the target service. Besides the probe, discovery service should take the responsible to know there is a new service available when it goes online, as well as stopped when it goes offline. This feature is named “Announcement”. When a service started and stopped, it will announce to the discovery service. So the basic functionality of a discovery service should includes: 1, An endpoint which receive the service online message, and add the service endpoint information in the discovery repository. 2, An endpoint which receive the service offline message, and remove the service endpoint information from the discovery repository. 3, An endpoint which receive the client probe message, and return the matches service endpoints, and return the discovery endpoint metadata. WCF 4.0 discovery service just covers all these features in it's infrastructure classes.   Discovery Service in WCF 4.0 WCF 4.0 introduced a new assembly named System.ServiceModel.Discovery which has all necessary classes and interfaces to build a WS-Discovery compliant discovery service. It supports ad-hoc and managed proxy modes. For the case mentioned in this post, what we need to build is a standalone discovery service, which is the managed proxy discovery service mode. To build a managed discovery service in WCF 4.0 just create a new class inherits from the abstract class System.ServiceModel.Discovery.DiscoveryProxy. This class implemented and abstracted the procedures of service announcement and probe. And it exposes 8 abstract methods where we can implement our own endpoint register, unregister and find logic. These 8 methods are asynchronized, which means all invokes to the discovery service are asynchronously, for better service capability and performance. 1, OnBeginOnlineAnnouncement, OnEndOnlineAnnouncement: Invoked when a service sent the online announcement message. We need to add the endpoint information to the repository in this method. 2, OnBeginOfflineAnnouncement, OnEndOfflineAnnouncement: Invoked when a service sent the offline announcement message. We need to remove the endpoint information from the repository in this method. 3, OnBeginFind, OnEndFind: Invoked when a client sent the probe message that want to find the service endpoint information. We need to look for the proper endpoints by matching the client’s criteria through the repository in this method. 4, OnBeginResolve, OnEndResolve: Invoked then a client sent the resolve message. Different from the find method, when using resolve method the discovery service will return the exactly one service endpoint metadata to the client. In our example we will NOT implement this method.   Let’s create our own discovery service, inherit the base System.ServiceModel.Discovery.DiscoveryProxy. We also need to specify the service behavior in this class. Since the build-in discovery service host class only support the singleton mode, we must set its instance context mode to single. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using System.ServiceModel; 7:  8: namespace Phare.Service 9: { 10: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 11: public class ManagedProxyDiscoveryService : DiscoveryProxy 12: { 13: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 14: { 15: throw new NotImplementedException(); 16: } 17:  18: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 19: { 20: throw new NotImplementedException(); 21: } 22:  23: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 24: { 25: throw new NotImplementedException(); 26: } 27:  28: protected override IAsyncResult OnBeginResolve(ResolveCriteria resolveCriteria, AsyncCallback callback, object state) 29: { 30: throw new NotImplementedException(); 31: } 32:  33: protected override void OnEndFind(IAsyncResult result) 34: { 35: throw new NotImplementedException(); 36: } 37:  38: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 39: { 40: throw new NotImplementedException(); 41: } 42:  43: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 44: { 45: throw new NotImplementedException(); 46: } 47:  48: protected override EndpointDiscoveryMetadata OnEndResolve(IAsyncResult result) 49: { 50: throw new NotImplementedException(); 51: } 52: } 53: } Then let’s implement the online, offline and find methods one by one. WCF discovery service gives us full flexibility to implement the endpoint add, remove and find logic. For the demo purpose we will use an internal dictionary to store the services’ endpoint metadata. In the next post we will see how to serialize and store these information in database. Define a concurrent dictionary inside the service class since our it will be used in the multiple threads scenario. 1: [ServiceBehavior(InstanceContextMode = InstanceContextMode.Single, ConcurrencyMode = ConcurrencyMode.Multiple)] 2: public class ManagedProxyDiscoveryService : DiscoveryProxy 3: { 4: private ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata> _services; 5:  6: public ManagedProxyDiscoveryService() 7: { 8: _services = new ConcurrentDictionary<EndpointAddress, EndpointDiscoveryMetadata>(); 9: } 10: } Then we can simply implement the logic of service online and offline. 1: protected override IAsyncResult OnBeginOnlineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 2: { 3: _services.AddOrUpdate(endpointDiscoveryMetadata.Address, endpointDiscoveryMetadata, (key, value) => endpointDiscoveryMetadata); 4: return new OnOnlineAnnouncementAsyncResult(callback, state); 5: } 6:  7: protected override void OnEndOnlineAnnouncement(IAsyncResult result) 8: { 9: OnOnlineAnnouncementAsyncResult.End(result); 10: } 11:  12: protected override IAsyncResult OnBeginOfflineAnnouncement(DiscoveryMessageSequence messageSequence, EndpointDiscoveryMetadata endpointDiscoveryMetadata, AsyncCallback callback, object state) 13: { 14: EndpointDiscoveryMetadata endpoint = null; 15: _services.TryRemove(endpointDiscoveryMetadata.Address, out endpoint); 16: return new OnOfflineAnnouncementAsyncResult(callback, state); 17: } 18:  19: protected override void OnEndOfflineAnnouncement(IAsyncResult result) 20: { 21: OnOfflineAnnouncementAsyncResult.End(result); 22: } Regards the find method, the parameter FindRequestContext.Criteria has a method named IsMatch, which can be use for us to evaluate which service metadata is satisfied with the criteria. So the implementation of find method would be like this. 1: protected override IAsyncResult OnBeginFind(FindRequestContext findRequestContext, AsyncCallback callback, object state) 2: { 3: _services.Where(s => findRequestContext.Criteria.IsMatch(s.Value)) 4: .Select(s => s.Value) 5: .All(meta => 6: { 7: findRequestContext.AddMatchingEndpoint(meta); 8: return true; 9: }); 10: return new OnFindAsyncResult(callback, state); 11: } 12:  13: protected override void OnEndFind(IAsyncResult result) 14: { 15: OnFindAsyncResult.End(result); 16: } As you can see, we checked all endpoints metadata in repository by invoking the IsMatch method. Then add all proper endpoints metadata into the parameter. Finally since all these methods are asynchronized we need some AsyncResult classes as well. Below are the base class and the inherited classes used in previous methods. 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.Threading; 6:  7: namespace Phare.Service 8: { 9: abstract internal class AsyncResult : IAsyncResult 10: { 11: AsyncCallback callback; 12: bool completedSynchronously; 13: bool endCalled; 14: Exception exception; 15: bool isCompleted; 16: ManualResetEvent manualResetEvent; 17: object state; 18: object thisLock; 19:  20: protected AsyncResult(AsyncCallback callback, object state) 21: { 22: this.callback = callback; 23: this.state = state; 24: this.thisLock = new object(); 25: } 26:  27: public object AsyncState 28: { 29: get 30: { 31: return state; 32: } 33: } 34:  35: public WaitHandle AsyncWaitHandle 36: { 37: get 38: { 39: if (manualResetEvent != null) 40: { 41: return manualResetEvent; 42: } 43: lock (ThisLock) 44: { 45: if (manualResetEvent == null) 46: { 47: manualResetEvent = new ManualResetEvent(isCompleted); 48: } 49: } 50: return manualResetEvent; 51: } 52: } 53:  54: public bool CompletedSynchronously 55: { 56: get 57: { 58: return completedSynchronously; 59: } 60: } 61:  62: public bool IsCompleted 63: { 64: get 65: { 66: return isCompleted; 67: } 68: } 69:  70: object ThisLock 71: { 72: get 73: { 74: return this.thisLock; 75: } 76: } 77:  78: protected static TAsyncResult End<TAsyncResult>(IAsyncResult result) 79: where TAsyncResult : AsyncResult 80: { 81: if (result == null) 82: { 83: throw new ArgumentNullException("result"); 84: } 85:  86: TAsyncResult asyncResult = result as TAsyncResult; 87:  88: if (asyncResult == null) 89: { 90: throw new ArgumentException("Invalid async result.", "result"); 91: } 92:  93: if (asyncResult.endCalled) 94: { 95: throw new InvalidOperationException("Async object already ended."); 96: } 97:  98: asyncResult.endCalled = true; 99:  100: if (!asyncResult.isCompleted) 101: { 102: asyncResult.AsyncWaitHandle.WaitOne(); 103: } 104:  105: if (asyncResult.manualResetEvent != null) 106: { 107: asyncResult.manualResetEvent.Close(); 108: } 109:  110: if (asyncResult.exception != null) 111: { 112: throw asyncResult.exception; 113: } 114:  115: return asyncResult; 116: } 117:  118: protected void Complete(bool completedSynchronously) 119: { 120: if (isCompleted) 121: { 122: throw new InvalidOperationException("This async result is already completed."); 123: } 124:  125: this.completedSynchronously = completedSynchronously; 126:  127: if (completedSynchronously) 128: { 129: this.isCompleted = true; 130: } 131: else 132: { 133: lock (ThisLock) 134: { 135: this.isCompleted = true; 136: if (this.manualResetEvent != null) 137: { 138: this.manualResetEvent.Set(); 139: } 140: } 141: } 142:  143: if (callback != null) 144: { 145: callback(this); 146: } 147: } 148:  149: protected void Complete(bool completedSynchronously, Exception exception) 150: { 151: this.exception = exception; 152: Complete(completedSynchronously); 153: } 154: } 155: } 1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5: using System.ServiceModel.Discovery; 6: using Phare.Service; 7:  8: namespace Phare.Service 9: { 10: internal sealed class OnOnlineAnnouncementAsyncResult : AsyncResult 11: { 12: public OnOnlineAnnouncementAsyncResult(AsyncCallback callback, object state) 13: : base(callback, state) 14: { 15: this.Complete(true); 16: } 17:  18: public static void End(IAsyncResult result) 19: { 20: AsyncResult.End<OnOnlineAnnouncementAsyncResult>(result); 21: } 22:  23: } 24:  25: sealed class OnOfflineAnnouncementAsyncResult : AsyncResult 26: { 27: public OnOfflineAnnouncementAsyncResult(AsyncCallback callback, object state) 28: : base(callback, state) 29: { 30: this.Complete(true); 31: } 32:  33: public static void End(IAsyncResult result) 34: { 35: AsyncResult.End<OnOfflineAnnouncementAsyncResult>(result); 36: } 37: } 38:  39: sealed class OnFindAsyncResult : AsyncResult 40: { 41: public OnFindAsyncResult(AsyncCallback callback, object state) 42: : base(callback, state) 43: { 44: this.Complete(true); 45: } 46:  47: public static void End(IAsyncResult result) 48: { 49: AsyncResult.End<OnFindAsyncResult>(result); 50: } 51: } 52:  53: sealed class OnResolveAsyncResult : AsyncResult 54: { 55: EndpointDiscoveryMetadata matchingEndpoint; 56:  57: public OnResolveAsyncResult(EndpointDiscoveryMetadata matchingEndpoint, AsyncCallback callback, object state) 58: : base(callback, state) 59: { 60: this.matchingEndpoint = matchingEndpoint; 61: this.Complete(true); 62: } 63:  64: public static EndpointDiscoveryMetadata End(IAsyncResult result) 65: { 66: OnResolveAsyncResult thisPtr = AsyncResult.End<OnResolveAsyncResult>(result); 67: return thisPtr.matchingEndpoint; 68: } 69: } 70: } Now we have finished the discovery service. The next step is to host it. The discovery service is a standard WCF service. So we can use ServiceHost on a console application, windows service, or in IIS as usual. The following code is how to host the discovery service we had just created in a console application. 1: static void Main(string[] args) 2: { 3: using (var host = new ServiceHost(new ManagedProxyDiscoveryService())) 4: { 5: host.Opened += (sender, e) => 6: { 7: host.Description.Endpoints.All((ep) => 8: { 9: Console.WriteLine(ep.ListenUri); 10: return true; 11: }); 12: }; 13:  14: try 15: { 16: // retrieve the announcement, probe endpoint and binding from configuration 17: var announcementEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 18: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 19: var binding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 20: var announcementEndpoint = new AnnouncementEndpoint(binding, announcementEndpointAddress); 21: var probeEndpoint = new DiscoveryEndpoint(binding, probeEndpointAddress); 22: probeEndpoint.IsSystemEndpoint = false; 23: // append the service endpoint for announcement and probe 24: host.AddServiceEndpoint(announcementEndpoint); 25: host.AddServiceEndpoint(probeEndpoint); 26:  27: host.Open(); 28:  29: Console.WriteLine("Press any key to exit."); 30: Console.ReadKey(); 31: } 32: catch (Exception ex) 33: { 34: Console.WriteLine(ex.ToString()); 35: } 36: } 37:  38: Console.WriteLine("Done."); 39: Console.ReadKey(); 40: } What we need to notice is that, the discovery service needs two endpoints for announcement and probe. In this example I just retrieve them from the configuration file. I also specified the binding of these two endpoints in configuration file as well. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> And this is the console screen when I ran my discovery service. As you can see there are two endpoints listening for announcement message and probe message.   Discoverable Service and Client Next, let’s create a WCF service that is discoverable, which means it can be found by the discovery service. To do so, we need to let the service send the online announcement message to the discovery service, as well as offline message before it shutdown. Just create a simple service which can make the incoming string to upper. The service contract and implementation would be like this. 1: [ServiceContract] 2: public interface IStringService 3: { 4: [OperationContract] 5: string ToUpper(string content); 6: } 1: public class StringService : IStringService 2: { 3: public string ToUpper(string content) 4: { 5: return content.ToUpper(); 6: } 7: } Then host this service in the console application. In order to make the discovery service easy to be tested the service address will be changed each time it’s started. 1: static void Main(string[] args) 2: { 3: var baseAddress = new Uri(string.Format("net.tcp://localhost:11001/stringservice/{0}/", Guid.NewGuid().ToString())); 4:  5: using (var host = new ServiceHost(typeof(StringService), baseAddress)) 6: { 7: host.Opened += (sender, e) => 8: { 9: Console.WriteLine("Service opened at {0}", host.Description.Endpoints.First().ListenUri); 10: }; 11:  12: host.AddServiceEndpoint(typeof(IStringService), new NetTcpBinding(), string.Empty); 13:  14: host.Open(); 15:  16: Console.WriteLine("Press any key to exit."); 17: Console.ReadKey(); 18: } 19: } Currently this service is NOT discoverable. We need to add a special service behavior so that it could send the online and offline message to the discovery service announcement endpoint when the host is opened and closed. WCF 4.0 introduced a service behavior named ServiceDiscoveryBehavior. When we specified the announcement endpoint address and appended it to the service behaviors this service will be discoverable. 1: var announcementAddress = new EndpointAddress(ConfigurationManager.AppSettings["announcementEndpointAddress"]); 2: var announcementBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 3: var announcementEndpoint = new AnnouncementEndpoint(announcementBinding, announcementAddress); 4: var discoveryBehavior = new ServiceDiscoveryBehavior(); 5: discoveryBehavior.AnnouncementEndpoints.Add(announcementEndpoint); 6: host.Description.Behaviors.Add(discoveryBehavior); The ServiceDiscoveryBehavior utilizes the service extension and channel dispatcher to implement the online and offline announcement logic. In short, it injected the channel open and close procedure and send the online and offline message to the announcement endpoint.   On client side, when we have the discovery service, a client can invoke a service without knowing its endpoint. WCF discovery assembly provides a class named DiscoveryClient, which can be used to find the proper service endpoint by passing the criteria. In the code below I initialized the DiscoveryClient, specified the discovery service probe endpoint address. Then I created the find criteria by specifying the service contract I wanted to use and invoke the Find method. This will send the probe message to the discovery service and it will find the endpoints back to me. The discovery service will return all endpoints that matches the find criteria, which means in the result of the find method there might be more than one endpoints. In this example I just returned the first matched one back. In the next post I will show how to extend our discovery service to make it work like a service load balancer. 1: static EndpointAddress FindServiceEndpoint() 2: { 3: var probeEndpointAddress = new EndpointAddress(ConfigurationManager.AppSettings["probeEndpointAddress"]); 4: var probeBinding = Activator.CreateInstance(Type.GetType(ConfigurationManager.AppSettings["bindingType"], true, true)) as Binding; 5: var discoveryEndpoint = new DiscoveryEndpoint(probeBinding, probeEndpointAddress); 6:  7: EndpointAddress address = null; 8: FindResponse result = null; 9: using (var discoveryClient = new DiscoveryClient(discoveryEndpoint)) 10: { 11: result = discoveryClient.Find(new FindCriteria(typeof(IStringService))); 12: } 13:  14: if (result != null && result.Endpoints.Any()) 15: { 16: var endpointMetadata = result.Endpoints.First(); 17: address = endpointMetadata.Address; 18: } 19: return address; 20: } Once we probed the discovery service we will receive the endpoint. So in the client code we can created the channel factory from the endpoint and binding, and invoke to the service. When creating the client side channel factory we need to make sure that the client side binding should be the same as the service side. WCF discovery service can be used to find the endpoint for a service contract, but the binding is NOT included. This is because the binding was not in the WS-Discovery specification. In the next post I will demonstrate how to add the binding information into the discovery service. At that moment the client don’t need to create the binding by itself. Instead it will use the binding received from the discovery service. 1: static void Main(string[] args) 2: { 3: Console.WriteLine("Say something..."); 4: var content = Console.ReadLine(); 5: while (!string.IsNullOrWhiteSpace(content)) 6: { 7: Console.WriteLine("Finding the service endpoint..."); 8: var address = FindServiceEndpoint(); 9: if (address == null) 10: { 11: Console.WriteLine("There is no endpoint matches the criteria."); 12: } 13: else 14: { 15: Console.WriteLine("Found the endpoint {0}", address.Uri); 16:  17: var factory = new ChannelFactory<IStringService>(new NetTcpBinding(), address); 18: factory.Opened += (sender, e) => 19: { 20: Console.WriteLine("Connecting to {0}.", factory.Endpoint.ListenUri); 21: }; 22: var proxy = factory.CreateChannel(); 23: using (proxy as IDisposable) 24: { 25: Console.WriteLine("ToUpper: {0} => {1}", content, proxy.ToUpper(content)); 26: } 27: } 28:  29: Console.WriteLine("Say something..."); 30: content = Console.ReadLine(); 31: } 32: } Similarly, the discovery service probe endpoint and binding were defined in the configuration file. 1: <?xml version="1.0"?> 2: <configuration> 3: <startup> 4: <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> 5: </startup> 6: <appSettings> 7: <add key="announcementEndpointAddress" value="net.tcp://localhost:10010/announcement"/> 8: <add key="probeEndpointAddress" value="net.tcp://localhost:10011/probe"/> 9: <add key="bindingType" value="System.ServiceModel.NetTcpBinding, System.ServiceModel, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"/> 10: </appSettings> 11: </configuration> OK, now let’s have a test. Firstly start the discovery service, and then start our discoverable service. When it started it will announced to the discovery service and registered its endpoint into the repository, which is the local dictionary. And then start the client and type something. As you can see the client asked the discovery service for the endpoint and then establish the connection to the discoverable service. And more interesting, do NOT close the client console but terminate the discoverable service but press the enter key. This will make the service send the offline message to the discovery service. Then start the discoverable service again. Since we made it use a different address each time it started, currently it should be hosted on another address. If we enter something in the client we could see that it asked the discovery service and retrieve the new endpoint, and connect the the service.   Summary In this post I discussed the benefit of using the discovery service and the procedures of service announcement and probe. I also demonstrated how to leverage the WCF Discovery feature in WCF 4.0 to build a simple managed discovery service. For test purpose, in this example I used the in memory dictionary as the discovery endpoint metadata repository. And when finding I also just return the first matched endpoint back. I also hard coded the bindings between the discoverable service and the client. In next post I will show you how to solve the problem mentioned above, as well as some additional feature for production usage. You can download the code here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Node.js Adventure - Storage Services and Service Runtime

    - by Shaun
    When I described on how to host a Node.js application on Windows Azure, one of questions might be raised about how to consume the vary Windows Azure services, such as the storage, service bus, access control, etc.. Interact with windows azure services is available in Node.js through the Windows Azure Node.js SDK, which is a module available in NPM. In this post I would like to describe on how to use Windows Azure Storage (a.k.a. WAS) as well as the service runtime.   Consume Windows Azure Storage Let’s firstly have a look on how to consume WAS through Node.js. As we know in the previous post we can host Node.js application on Windows Azure Web Site (a.k.a. WAWS) as well as Windows Azure Cloud Service (a.k.a. WACS). In theory, WAWS is also built on top of WACS worker roles with some more features. Hence in this post I will only demonstrate for hosting in WACS worker role. The Node.js code can be used when consuming WAS when hosted on WAWS. But since there’s no roles in WAWS, the code for consuming service runtime mentioned in the next section cannot be used for WAWS node application. We can use the solution that I created in my last post. Alternatively we can create a new windows azure project in Visual Studio with a worker role, add the “node.exe” and “index.js” and install “express” and “node-sqlserver” modules, make all files as “Copy always”. In order to use windows azure services we need to have Windows Azure Node.js SDK, as knows as a module named “azure” which can be installed through NPM. Once we downloaded and installed, we need to include them in our worker role project and make them as “Copy always”. You can use my “Copy all always” tool mentioned in my last post to update the currently worker role project file. You can also find the source code of this tool here. The source code of Windows Azure SDK for Node.js can be found in its GitHub page. It contains two parts. One is a CLI tool which provides a cross platform command line package for Mac and Linux to manage WAWS and Windows Azure Virtual Machines (a.k.a. WAVM). The other is a library for managing and consuming vary windows azure services includes tables, blobs, queues, service bus and the service runtime. I will not cover all of them but will only demonstrate on how to use tables and service runtime information in this post. You can find the full document of this SDK here. Back to Visual Studio and open the “index.js”, let’s continue our application from the last post, which was working against Windows Azure SQL Database (a.k.a. WASD). The code should looks like this. 1: var express = require("express"); 2: var sql = require("node-sqlserver"); 3:  4: var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:ac6271ya9e.database.windows.net,1433;Database=synctile;Uid=shaunxu@ac6271ya9e;Pwd={PASSWORD};Encrypt=yes;Connection Timeout=30;"; 5: var port = 80; 6:  7: var app = express(); 8:  9: app.configure(function () { 10: app.use(express.bodyParser()); 11: }); 12:  13: app.get("/", function (req, res) { 14: sql.open(connectionString, function (err, conn) { 15: if (err) { 16: console.log(err); 17: res.send(500, "Cannot open connection."); 18: } 19: else { 20: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 21: if (err) { 22: console.log(err); 23: res.send(500, "Cannot retrieve records."); 24: } 25: else { 26: res.json(results); 27: } 28: }); 29: } 30: }); 31: }); 32:  33: app.get("/text/:key/:culture", function (req, res) { 34: sql.open(connectionString, function (err, conn) { 35: if (err) { 36: console.log(err); 37: res.send(500, "Cannot open connection."); 38: } 39: else { 40: var key = req.params.key; 41: var culture = req.params.culture; 42: var command = "SELECT * FROM [Resource] WHERE [Key] = '" + key + "' AND [Culture] = '" + culture + "'"; 43: conn.queryRaw(command, function (err, results) { 44: if (err) { 45: console.log(err); 46: res.send(500, "Cannot retrieve records."); 47: } 48: else { 49: res.json(results); 50: } 51: }); 52: } 53: }); 54: }); 55:  56: app.get("/sproc/:key/:culture", function (req, res) { 57: sql.open(connectionString, function (err, conn) { 58: if (err) { 59: console.log(err); 60: res.send(500, "Cannot open connection."); 61: } 62: else { 63: var key = req.params.key; 64: var culture = req.params.culture; 65: var command = "EXEC GetItem '" + key + "', '" + culture + "'"; 66: conn.queryRaw(command, function (err, results) { 67: if (err) { 68: console.log(err); 69: res.send(500, "Cannot retrieve records."); 70: } 71: else { 72: res.json(results); 73: } 74: }); 75: } 76: }); 77: }); 78:  79: app.post("/new", function (req, res) { 80: var key = req.body.key; 81: var culture = req.body.culture; 82: var val = req.body.val; 83:  84: sql.open(connectionString, function (err, conn) { 85: if (err) { 86: console.log(err); 87: res.send(500, "Cannot open connection."); 88: } 89: else { 90: var command = "INSERT INTO [Resource] VALUES ('" + key + "', '" + culture + "', N'" + val + "')"; 91: conn.queryRaw(command, function (err, results) { 92: if (err) { 93: console.log(err); 94: res.send(500, "Cannot retrieve records."); 95: } 96: else { 97: res.send(200, "Inserted Successful"); 98: } 99: }); 100: } 101: }); 102: }); 103:  104: app.listen(port); Now let’s create a new function, copy the records from WASD to table service. 1. Delete the table named “resource”. 2. Create a new table named “resource”. These 2 steps ensures that we have an empty table. 3. Load all records from the “resource” table in WASD. 4. For each records loaded from WASD, insert them into the table one by one. 5. Prompt to user when finished. In order to use table service we need the storage account and key, which can be found from the developer portal. Just select the storage account and click the Manage Keys button. Then create two local variants in our Node.js application for the storage account name and key. Since we need to use WAS we need to import the azure module. Also I created another variant stored the table name. In order to work with table service I need to create the storage client for table service. This is very similar as the Windows Azure SDK for .NET. As the code below I created a new variant named “client” and use “createTableService”, specified my storage account name and key. 1: var azure = require("azure"); 2: var storageAccountName = "synctile"; 3: var storageAccountKey = "/cOy9L7xysXOgPYU9FjDvjrRAhaMX/5tnOpcjqloPNDJYucbgTy7MOrAW7CbUg6PjaDdmyl+6pkwUnKETsPVNw=="; 4: var tableName = "resource"; 5: var client = azure.createTableService(storageAccountName, storageAccountKey); Now create a new function for URL “/was/init” so that we can trigger it through browser. Then in this function we will firstly load all records from WASD. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: } 18: } 19: }); 20: } 21: }); 22: }); When we succeed loaded all records we can start to transform them into table service. First I need to recreate the table in table service. This can be done by deleting and creating the table through table client I had just created previously. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: // transform the records 26: } 27: }); 28: }); 29: } 30: } 31: }); 32: } 33: }); 34: }); As you can see, the azure SDK provide its methods in callback pattern. In fact, almost all modules in Node.js use the callback pattern. For example, when I deleted a table I invoked “deleteTable” method, provided the name of the table and a callback function which will be performed when the table had been deleted or failed. Underlying, the azure module will perform the table deletion operation in POSIX async threads pool asynchronously. And once it’s done the callback function will be performed. This is the reason we need to nest the table creation code inside the deletion function. If we perform the table creation code after the deletion code then they will be invoked in parallel. Next, for each records in WASD I created an entity and then insert into the table service. Finally I send the response to the browser. Can you find a bug in the code below? I will describe it later in this post. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: // transform the records 26: for (var i = 0; i < results.rows.length; i++) { 27: var entity = { 28: "PartitionKey": results.rows[i][1], 29: "RowKey": results.rows[i][0], 30: "Value": results.rows[i][2] 31: }; 32: client.insertEntity(tableName, entity, function (error) { 33: if (error) { 34: error["target"] = "insertEntity"; 35: res.send(500, error); 36: } 37: else { 38: console.log("entity inserted"); 39: } 40: }); 41: } 42: // send the 43: console.log("all done"); 44: res.send(200, "All done!"); 45: } 46: }); 47: }); 48: } 49: } 50: }); 51: } 52: }); 53: }); Now we can publish it to the cloud and have a try. But normally we’d better test it at the local emulator first. In Node.js SDK there are three build-in properties which provides the account name, key and host address for local storage emulator. We can use them to initialize our table service client. We also need to change the SQL connection string to let it use my local database. The code will be changed as below. 1: // windows azure sql database 2: //var connectionString = "Driver={SQL Server Native Client 10.0};Server=tcp:ac6271ya9e.database.windows.net,1433;Database=synctile;Uid=shaunxu@ac6271ya9e;Pwd=eszqu94XZY;Encrypt=yes;Connection Timeout=30;"; 3: // sql server 4: var connectionString = "Driver={SQL Server Native Client 11.0};Server={.};Database={Caspar};Trusted_Connection={Yes};"; 5:  6: var azure = require("azure"); 7: var storageAccountName = "synctile"; 8: var storageAccountKey = "/cOy9L7xysXOgPYU9FjDvjrRAhaMX/5tnOpcjqloPNDJYucbgTy7MOrAW7CbUg6PjaDdmyl+6pkwUnKETsPVNw=="; 9: var tableName = "resource"; 10: // windows azure storage 11: //var client = azure.createTableService(storageAccountName, storageAccountKey); 12: // local storage emulator 13: var client = azure.createTableService(azure.ServiceClient.DEVSTORE_STORAGE_ACCOUNT, azure.ServiceClient.DEVSTORE_STORAGE_ACCESS_KEY, azure.ServiceClient.DEVSTORE_TABLE_HOST); Now let’s run the application and navigate to “localhost:12345/was/init” as I hosted it on port 12345. We can find it transformed the data from my local database to local table service. Everything looks fine. But there is a bug in my code. If we have a look on the Node.js command window we will find that it sent response before all records had been inserted, which is not what I expected. The reason is that, as I mentioned before, Node.js perform all IO operations in non-blocking model. When we inserted the records we executed the table service insert method in parallel, and the operation of sending response was also executed in parallel, even though I wrote it at the end of my logic. The correct logic should be, when all entities had been copied to table service with no error, then I will send response to the browser, otherwise I should send error message to the browser. To do so I need to import another module named “async”, which helps us to coordinate our asynchronous code. Install the module and import it at the beginning of the code. Then we can use its “forEach” method for the asynchronous code of inserting table entities. The first argument of “forEach” is the array that will be performed. The second argument is the operation for each items in the array. And the third argument will be invoked then all items had been performed or any errors occurred. Here we can send our response to browser. 1: app.get("/was/init", function (req, res) { 2: // load all records from windows azure sql database 3: sql.open(connectionString, function (err, conn) { 4: if (err) { 5: console.log(err); 6: res.send(500, "Cannot open connection."); 7: } 8: else { 9: conn.queryRaw("SELECT * FROM [Resource]", function (err, results) { 10: if (err) { 11: console.log(err); 12: res.send(500, "Cannot retrieve records."); 13: } 14: else { 15: if (results.rows.length > 0) { 16: // begin to transform the records into table service 17: // recreate the table named 'resource' 18: client.deleteTable(tableName, function (error) { 19: client.createTableIfNotExists(tableName, function (error) { 20: if (error) { 21: error["target"] = "createTableIfNotExists"; 22: res.send(500, error); 23: } 24: else { 25: async.forEach(results.rows, 26: // transform the records 27: function (row, callback) { 28: var entity = { 29: "PartitionKey": row[1], 30: "RowKey": row[0], 31: "Value": row[2] 32: }; 33: client.insertEntity(tableName, entity, function (error) { 34: if (error) { 35: callback(error); 36: } 37: else { 38: console.log("entity inserted."); 39: callback(null); 40: } 41: }); 42: }, 43: // send reponse 44: function (error) { 45: if (error) { 46: error["target"] = "insertEntity"; 47: res.send(500, error); 48: } 49: else { 50: console.log("all done"); 51: res.send(200, "All done!"); 52: } 53: } 54: ); 55: } 56: }); 57: }); 58: } 59: } 60: }); 61: } 62: }); 63: }); Run it locally and now we can find the response was sent after all entities had been inserted. Query entities against table service is simple as well. Just use the “queryEntity” method from the table service client and providing the partition key and row key. We can also provide a complex query criteria as well, for example the code here. In the code below I queried an entity by the partition key and row key, and return the proper localization value in response. 1: app.get("/was/:key/:culture", function (req, res) { 2: var key = req.params.key; 3: var culture = req.params.culture; 4: client.queryEntity(tableName, culture, key, function (error, entity) { 5: if (error) { 6: res.send(500, error); 7: } 8: else { 9: res.json(entity); 10: } 11: }); 12: }); And then tested it on local emulator. Finally if we want to publish this application to the cloud we should change the database connection string and storage account. For more information about how to consume blob and queue service, as well as the service bus please refer to the MSDN page.   Consume Service Runtime As I mentioned above, before we published our application to the cloud we need to change the connection string and account information in our code. But if you had played with WACS you should have known that the service runtime provides the ability to retrieve configuration settings, endpoints and local resource information at runtime. Which means we can have these values defined in CSCFG and CSDEF files and then the runtime should be able to retrieve the proper values. For example we can add some role settings though the property window of the role, specify the connection string and storage account for cloud and local. And the can also use the endpoint which defined in role environment to our Node.js application. In Node.js SDK we can get an object from “azure.RoleEnvironment”, which provides the functionalities to retrieve the configuration settings and endpoints, etc.. In the code below I defined the connection string variants and then use the SDK to retrieve and initialize the table client. 1: var connectionString = ""; 2: var storageAccountName = ""; 3: var storageAccountKey = ""; 4: var tableName = ""; 5: var client; 6:  7: azure.RoleEnvironment.getConfigurationSettings(function (error, settings) { 8: if (error) { 9: console.log("ERROR: getConfigurationSettings"); 10: console.log(JSON.stringify(error)); 11: } 12: else { 13: console.log(JSON.stringify(settings)); 14: connectionString = settings["SqlConnectionString"]; 15: storageAccountName = settings["StorageAccountName"]; 16: storageAccountKey = settings["StorageAccountKey"]; 17: tableName = settings["TableName"]; 18:  19: console.log("connectionString = %s", connectionString); 20: console.log("storageAccountName = %s", storageAccountName); 21: console.log("storageAccountKey = %s", storageAccountKey); 22: console.log("tableName = %s", tableName); 23:  24: client = azure.createTableService(storageAccountName, storageAccountKey); 25: } 26: }); In this way we don’t need to amend the code for the configurations between local and cloud environment since the service runtime will take care of it. At the end of the code we will listen the application on the port retrieved from SDK as well. 1: azure.RoleEnvironment.getCurrentRoleInstance(function (error, instance) { 2: if (error) { 3: console.log("ERROR: getCurrentRoleInstance"); 4: console.log(JSON.stringify(error)); 5: } 6: else { 7: console.log(JSON.stringify(instance)); 8: if (instance["endpoints"] && instance["endpoints"]["nodejs"]) { 9: var endpoint = instance["endpoints"]["nodejs"]; 10: app.listen(endpoint["port"]); 11: } 12: else { 13: app.listen(8080); 14: } 15: } 16: }); But if we tested the application right now we will find that it cannot retrieve any values from service runtime. This is because by default, the entry point of this role was defined to the worker role class. In windows azure environment the service runtime will open a named pipeline to the entry point instance, so that it can connect to the runtime and retrieve values. But in this case, since the entry point was worker role and the Node.js was opened inside the role, the named pipeline was established between our worker role class and service runtime, so our Node.js application cannot use it. To fix this problem we need to open the CSDEF file under the azure project, add a new element named Runtime. Then add an element named EntryPoint which specify the Node.js command line. So that the Node.js application will have the connection to service runtime, then it’s able to read the configurations. Start the Node.js at local emulator we can find it retrieved the connections, storage account for local. And if we publish our application to azure then it works with WASD and storage service through the configurations for cloud.   Summary In this post I demonstrated how to use Windows Azure SDK for Node.js to interact with storage service, especially the table service. I also demonstrated on how to use WACS service runtime, how to retrieve the configuration settings and the endpoint information. And in order to make the service runtime available to my Node.js application I need to create an entry point element in CSDEF file and set “node.exe” as the entry point. I used five posts to introduce and demonstrate on how to run a Node.js application on Windows platform, how to use Windows Azure Web Site and Windows Azure Cloud Service worker role to host our Node.js application. I also described how to work with other services provided by Windows Azure platform through Windows Azure SDK for Node.js. Node.js is a very new and young network application platform. But since it’s very simple and easy to learn and deploy, as well as, it utilizes single thread non-blocking IO model, Node.js became more and more popular on web application and web service development especially for those IO sensitive projects. And as Node.js is very good at scaling-out, it’s more useful on cloud computing platform. Use Node.js on Windows platform is new, too. The modules for SQL database and Windows Azure SDK are still under development and enhancement. It doesn’t support SQL parameter in “node-sqlserver”. It does support using storage connection string to create the storage client in “azure”. But Microsoft is working on make them easier to use, working on add more features and functionalities.   PS, you can download the source code here. You can download the source code of my “Copy all always” tool here.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • why jQuery.parseJSON is not a function?

    - by Pandiya Chendur
    I use the following jquery statements and i am getting the error, jQuery.parseJSON is not a function my function is, function Iteratejsondata() {var HfJsonValue = { "Table": [{ "Emp_Id": "3", "Identity_No": "", "Emp_Name": "Jerome", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Supervisior", "Desig_Description": "Supervisior of the Construction", "SalaryBasis": "Monthly", "FixedSalary": "25000.00" }, { "Emp_Id": "4", "Identity_No": "", "Emp_Name": "Mohan", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Acc ", "Desig_Description": "Accountant", "SalaryBasis": "Monthly", "FixedSalary": "200.00" }, { "Emp_Id": "5", "Identity_No": "", "Emp_Name": "Murugan", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Mason", "Desig_Description": "Mason", "SalaryBasis": "Weekly", "FixedSalary": "150.00" }, { "Emp_Id": "6", "Identity_No": "", "Emp_Name": "Ram", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Mason", "Desig_Description": "Mason", "SalaryBasis": "Weekly", "FixedSalary": "120.00" }, { "Emp_Id": "7", "Identity_No": "", "Emp_Name": "Raja", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Mason", "Desig_Description": "Mason", "SalaryBasis": "Weekly", "FixedSalary": "135.00" }, { "Emp_Id": "8", "Identity_No": "", "Emp_Name": "Raja kumar", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Mason Helper", "Desig_Description": "Mason Helper", "SalaryBasis": "Weekly", "FixedSalary": "105.00" }, { "Emp_Id": "9", "Identity_No": "", "Emp_Name": "Lakshmi", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Mason Helper", "Desig_Description": "Mason Helper", "SalaryBasis": "Weekly", "FixedSalary": "100.00" }, { "Emp_Id": "10", "Identity_No": "", "Emp_Name": "Palani", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Carpenter", "Desig_Description": "Carpenter", "SalaryBasis": "Weekly", "FixedSalary": "200.00" }, { "Emp_Id": "11", "Identity_No": "", "Emp_Name": "Annamalai", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Carpenter", "Desig_Description": "Carpenter", "SalaryBasis": "Weekly", "FixedSalary": "220.00" }, { "Emp_Id": "12", "Identity_No": "", "Emp_Name": "David", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Steel Fixer", "Desig_Description": "Steel Fixer", "SalaryBasis": "Weekly", "FixedSalary": "220.00" }, { "Emp_Id": "13", "Identity_No": "", "Emp_Name": "Chandru", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Steel Fixer", "Desig_Description": "Steel Fixer", "SalaryBasis": "Weekly", "FixedSalary": "220.00" }, { "Emp_Id": "14", "Identity_No": "", "Emp_Name": "Mani", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Steel Helper", "Desig_Description": "Steel Helper", "SalaryBasis": "Weekly", "FixedSalary": "175.00" }, { "Emp_Id": "15", "Identity_No": "", "Emp_Name": "Karthik", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Wood Fixer", "Desig_Description": "Wood Fixer", "SalaryBasis": "Weekly", "FixedSalary": "195.00" }, { "Emp_Id": "16", "Identity_No": "", "Emp_Name": "Bala", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Wood Fixer", "Desig_Description": "Wood Fixer", "SalaryBasis": "Weekly", "FixedSalary": "185.00" }, { "Emp_Id": "17", "Identity_No": "", "Emp_Name": "Tamil arasi", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Wood Helper", "Desig_Description": "Wood Helper", "SalaryBasis": "Weekly", "FixedSalary": "185.00" }, { "Emp_Id": "18", "Identity_No": "", "Emp_Name": "Perumal", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Cook", "Desig_Description": "Cook", "SalaryBasis": "Weekly", "FixedSalary": "105.00" }, { "Emp_Id": "19", "Identity_No": "", "Emp_Name": "Andiappan", "Address": "Madurai", "Date_Of_Birth": "", "Desig_Name": "Watchman", "Desig_Description": "Watchman", "SalaryBasis": "Weekly", "FixedSalary": "150.00"}] }; //var jsonObj = eval('(' + HfJsonValue + ')'); var jsonObj = jQuery.parseJSON(HfJsonValue); and my page looks like this <div id="Pagination" class="page-numbers"></div> <br style="clear:both;" /> <div id="Searchresult"></div> <div id="hiddenresult" style="display:none;"> </div> <script type="text/javascript"> var pagination_options = { num_edge_entries: 2, num_display_entries: 8, callback: pageselectCallback, items_per_page: 3 } function pageselectCallback(page_index, jq) { var items_per_page = pagination_options.items_per_page; var offset = page_index * items_per_page; var new_content = $('#hiddenresult div.resultsdiv').slice(offset, offset + items_per_page).clone(); $('#Searchresult').empty().append(new_content); return false; } function initPagination() { var num_entries = $('#hiddenresult div.resultsdiv').length; // Create pagination element $("#Pagination").pagination(num_entries, pagination_options); } $(document).ready(function() { Iteratejsondata(); initPagination(); }); </script> I ve inspected through firebug and saw all jquery files have been downloaded but why this is hapenning? Any suggestion....

    Read the article

  • Paging through records (json data) using jQuery...

    - by Pandiya Chendur
    I have a JSON result that contains numerous records. I'd like to show the first five records in one page and create pager links which have to move to that page with five record so on. I don't want the page to refresh which is why I'm hoping for a combination of JavaScript and jQuery. My json data looks like this: {"Table" : [ {"Emp_Id" : "3","Identity_No" : "","Emp_Name" : "Jerome","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Supervisior","Desig_Description" : "Supervisior of the Construction","SalaryBasis" : "Monthly","FixedSalary" : "25000.00"}, {"Emp_Id" : "4","Identity_No" : "","Emp_Name" : "Mohan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Acc ","Desig_Description" : "Accountant","SalaryBasis" : "Monthly","FixedSalary" : "200.00"}, {"Emp_Id" : "5","Identity_No" : "","Emp_Name" : "Murugan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "150.00"}, {"Emp_Id" : "6","Identity_No" : "","Emp_Name" : "Ram","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "120.00"}, {"Emp_Id" : "7","Identity_No" : "","Emp_Name" : "Raja","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "135.00"}, {"Emp_Id" : "8","Identity_No" : "","Emp_Name" : "Raja kumar","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason Helper","Desig_Description" : "Mason Helper","SalaryBasis" : "Weekly","FixedSalary" : "105.00"}, {"Emp_Id" : "9","Identity_No" : "","Emp_Name" : "Lakshmi","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason Helper","Desig_Description" : "Mason Helper","SalaryBasis" : "Weekly","FixedSalary" : "100.00"}, {"Emp_Id" : "10","Identity_No" : "","Emp_Name" : "Palani","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Carpenter","Desig_Description" : "Carpenter","SalaryBasis" : "Weekly","FixedSalary" : "200.00"}, {"Emp_Id" : "11","Identity_No" : "","Emp_Name" : "Annamalai","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Carpenter","Desig_Description" : "Carpenter","SalaryBasis" : "Weekly","FixedSalary" : "220.00"}, {"Emp_Id" : "12","Identity_No" : "","Emp_Name" : "David","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Fixer","Desig_Description" : "Steel Fixer","SalaryBasis" : "Weekly","FixedSalary" : "220.00"}, {"Emp_Id" : "13","Identity_No" : "","Emp_Name" : "Chandru","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Fixer","Desig_Description" : "Steel Fixer","SalaryBasis" : "Weekly","FixedSalary" : "220.00"}, {"Emp_Id" : "14","Identity_No" : "","Emp_Name" : "Mani","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Helper","Desig_Description" : "Steel Helper","SalaryBasis" : "Weekly","FixedSalary" : "175.00"}, {"Emp_Id" : "15","Identity_No" : "","Emp_Name" : "Karthik","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Fixer","Desig_Description" : "Wood Fixer","SalaryBasis" : "Weekly","FixedSalary" : "195.00"}, {"Emp_Id" : "16","Identity_No" : "","Emp_Name" : "Bala","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Fixer","Desig_Description" : "Wood Fixer","SalaryBasis" : "Weekly","FixedSalary" : "185.00"}, {"Emp_Id" : "17","Identity_No" : "","Emp_Name" : "Tamil arasi","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Helper","Desig_Description" : "Wood Helper","SalaryBasis" : "Weekly","FixedSalary" : "185.00"}, {"Emp_Id" : "18","Identity_No" : "","Emp_Name" : "Perumal","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Cook","Desig_Description" : "Cook","SalaryBasis" : "Weekly","FixedSalary" : "105.00"}, {"Emp_Id" : "19","Identity_No" : "","Emp_Name" : "Andiappan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Watchman","Desig_Description" : "Watchman","SalaryBasis" : "Weekly","FixedSalary" : "150.00"} ] } And as of now my result looks like this, http://img401.imageshack.us/img401/2500/yuidtsum.jpg I have used jQuery for this: var jsonObj = JSON.parse(HfJsonValue); for (var i = jsonObj.Table.length - 1; i >= 0; i--) { var employee = jsonObj.Table[i]; $('<div class="resultsdiv"><br /><span class="resultName">' + employee.Emp_Name + '</span><span class="resultfields" style="padding-left:100px;">Category&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.Desig_Name + '</span><br /><br /><span id="SalaryBasis" class="resultfields">Salary Basis&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.SalaryBasis + '</span><span class="resultfields" style="padding-left:25px;">Salary&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.FixedSalary + '</span><span style="font-size:110%;font-weight:bolder;padding-left:25px;">Address&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.Address + '</span></div>') .insertAfter('#ResultsDiv'); } My image contains only 6 records as of now. Any suggestions?

    Read the article

  • Paging Through Records(json data) Using jQuery...

    - by Pandiya Chendur
    I have a JSON result that contains numerous records. I'd like to show the first five records in one page and create pager links which have to move to that page with five record so on. I don't want the page to refresh which is why I'm hoping a combination of JavaScript and jQuery... My json Data looks like this... {"Table" : [{"Emp_Id" : "3","Identity_No" : "","Emp_Name" : "Jerome","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Supervisior","Desig_Description" : "Supervisior of the Construction","SalaryBasis" : "Monthly","FixedSalary" : "25000.00"},{"Emp_Id" : "4","Identity_No" : "","Emp_Name" : "Mohan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Acc ","Desig_Description" : "Accountant","SalaryBasis" : "Monthly","FixedSalary" : "200.00"},{"Emp_Id" : "5","Identity_No" : "","Emp_Name" : "Murugan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "150.00"},{"Emp_Id" : "6","Identity_No" : "","Emp_Name" : "Ram","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "120.00"},{"Emp_Id" : "7","Identity_No" : "","Emp_Name" : "Raja","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "135.00"},{"Emp_Id" : "8","Identity_No" : "","Emp_Name" : "Raja kumar","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason Helper","Desig_Description" : "Mason Helper","SalaryBasis" : "Weekly","FixedSalary" : "105.00"},{"Emp_Id" : "9","Identity_No" : "","Emp_Name" : "Lakshmi","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason Helper","Desig_Description" : "Mason Helper","SalaryBasis" : "Weekly","FixedSalary" : "100.00"},{"Emp_Id" : "10","Identity_No" : "","Emp_Name" : "Palani","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Carpenter","Desig_Description" : "Carpenter","SalaryBasis" : "Weekly","FixedSalary" : "200.00"},{"Emp_Id" : "11","Identity_No" : "","Emp_Name" : "Annamalai","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Carpenter","Desig_Description" : "Carpenter","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "12","Identity_No" : "","Emp_Name" : "David","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Fixer","Desig_Description" : "Steel Fixer","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "13","Identity_No" : "","Emp_Name" : "Chandru","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Fixer","Desig_Description" : "Steel Fixer","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "14","Identity_No" : "","Emp_Name" : "Mani","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Helper","Desig_Description" : "Steel Helper","SalaryBasis" : "Weekly","FixedSalary" : "175.00"},{"Emp_Id" : "15","Identity_No" : "","Emp_Name" : "Karthik","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Fixer","Desig_Description" : "Wood Fixer","SalaryBasis" : "Weekly","FixedSalary" : "195.00"},{"Emp_Id" : "16","Identity_No" : "","Emp_Name" : "Bala","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Fixer","Desig_Description" : "Wood Fixer","SalaryBasis" : "Weekly","FixedSalary" : "185.00"},{"Emp_Id" : "17","Identity_No" : "","Emp_Name" : "Tamil arasi","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Helper","Desig_Description" : "Wood Helper","SalaryBasis" : "Weekly","FixedSalary" : "185.00"},{"Emp_Id" : "18","Identity_No" : "","Emp_Name" : "Perumal","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Cook","Desig_Description" : "Cook","SalaryBasis" : "Weekly","FixedSalary" : "105.00"},{"Emp_Id" : "19","Identity_No" : "","Emp_Name" : "Andiappan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Watchman","Desig_Description" : "Watchman","SalaryBasis" : "Weekly","FixedSalary" : "150.00"}]} And as of now my result looks like this, http://img401.imageshack.us/img401/2500/yuidtsum.jpg I have used jquery for this, var jsonObj = JSON.parse(HfJsonValue); for (var i = jsonObj.Table.length - 1; i >= 0; i--) { var employee = jsonObj.Table[i]; $('<div class="resultsdiv"><br /><span class="resultName">' + employee.Emp_Name + '</span><span class="resultfields" style="padding-left:100px;">Category&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.Desig_Name + '</span><br /><br /><span id="SalaryBasis" class="resultfields">Salary Basis&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.SalaryBasis + '</span><span class="resultfields" style="padding-left:25px;">Salary&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.FixedSalary + '</span><span style="font-size:110%;font-weight:bolder;padding-left:25px;">Address&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.Address + '</span></div>').insertAfter('#ResultsDiv'); } My image contains only 6 records as of now.. Any suggestions?

    Read the article

  • Good jquery pagination plugin to use with json Data...

    - by bala3569
    I am looking for a good jquery pagination plugin to use in my aspx page.... I have the following parameters currentpage,pagesize,TotalRecords,NumberofPages... I would like my plugin to same as stackoverflow paging .... EDIT: It should paginate through json data.... similar to this I use my json data and iterating with jquery var jsonObj = jQuery.parseJSON(HfJsonValue); for (var i = jsonObj.Table.length - 1; i >= 0; i--) { var employee = jsonObj.Table[i]; $('<div class="resultsdiv"><br /><span class="resultName">' + employee.Emp_Name + '</span><span class="resultfields" style="padding-left:100px;">Category&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.Desig_Name + '</span><br /><br /><span id="SalaryBasis" class="resultfields">Salary Basis&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.SalaryBasis + '</span><span class="resultfields" style="padding-left:25px;">Salary&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.FixedSalary + '</span><span style="font-size:110%;font-weight:bolder;padding-left:25px;">Address&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.Address + '</span></div>').insertAfter('#ResultsDiv'); } There are 25 divs in my page as a result i want to show first five divs in page 1 and so on... Any suggestion... My HfJsonValue contains the following json data {"Table" : [{"Emp_Id" : "3","Identity_No" : "","Emp_Name" : "Jerome","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Supervisior","Desig_Description" : "Supervisior of the Construction","SalaryBasis" : "Monthly","FixedSalary" : "25000.00"},{"Emp_Id" : "4","Identity_No" : "","Emp_Name" : "Mohan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Acc ","Desig_Description" : "Accountant","SalaryBasis" : "Monthly","FixedSalary" : "200.00"},{"Emp_Id" : "5","Identity_No" : "","Emp_Name" : "Murugan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "150.00"},{"Emp_Id" : "6","Identity_No" : "","Emp_Name" : "Ram","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "120.00"},{"Emp_Id" : "7","Identity_No" : "","Emp_Name" : "Raja","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "135.00"},{"Emp_Id" : "8","Identity_No" : "","Emp_Name" : "Raja kumar","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason Helper","Desig_Description" : "Mason Helper","SalaryBasis" : "Weekly","FixedSalary" : "105.00"},{"Emp_Id" : "9","Identity_No" : "","Emp_Name" : "Lakshmi","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason Helper","Desig_Description" : "Mason Helper","SalaryBasis" : "Weekly","FixedSalary" : "100.00"},{"Emp_Id" : "10","Identity_No" : "","Emp_Name" : "Palani","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Carpenter","Desig_Description" : "Carpenter","SalaryBasis" : "Weekly","FixedSalary" : "200.00"},{"Emp_Id" : "11","Identity_No" : "","Emp_Name" : "Annamalai","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Carpenter","Desig_Description" : "Carpenter","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "12","Identity_No" : "","Emp_Name" : "David","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Fixer","Desig_Description" : "Steel Fixer","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "13","Identity_No" : "","Emp_Name" : "Chandru","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Fixer","Desig_Description" : "Steel Fixer","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "14","Identity_No" : "","Emp_Name" : "Mani","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Helper","Desig_Description" : "Steel Helper","SalaryBasis" : "Weekly","FixedSalary" : "175.00"},{"Emp_Id" : "15","Identity_No" : "","Emp_Name" : "Karthik","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Fixer","Desig_Description" : "Wood Fixer","SalaryBasis" : "Weekly","FixedSalary" : "195.00"},{"Emp_Id" : "16","Identity_No" : "","Emp_Name" : "Bala","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Fixer","Desig_Description" : "Wood Fixer","SalaryBasis" : "Weekly","FixedSalary" : "185.00"},{"Emp_Id" : "17","Identity_No" : "","Emp_Name" : "Tamil arasi","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Helper","Desig_Description" : "Wood Helper","SalaryBasis" : "Weekly","FixedSalary" : "185.00"},{"Emp_Id" : "18","Identity_No" : "","Emp_Name" : "Perumal","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Cook","Desig_Description" : "Cook","SalaryBasis" : "Weekly","FixedSalary" : "105.00"},{"Emp_Id" : "19","Identity_No" : "","Emp_Name" : "Andiappan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Watchman","Desig_Description" : "Watchman","SalaryBasis" : "Weekly","FixedSalary" : "150.00"}]}

    Read the article

  • How to use jquery to paginate json data?

    - by Pandiya Chendur
    My json Data looks like this {"Table" : [{"Emp_Id" : "3","Identity_No" : "","Emp_Name" : "Jerome","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Supervisior","Desig_Description" : "Supervisior of the Construction","SalaryBasis" : "Monthly","FixedSalary" : "25000.00"},{"Emp_Id" : "4","Identity_No" : "","Emp_Name" : "Mohan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Acc ","Desig_Description" : "Accountant","SalaryBasis" : "Monthly","FixedSalary" : "200.00"},{"Emp_Id" : "5","Identity_No" : "","Emp_Name" : "Murugan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "150.00"},{"Emp_Id" : "6","Identity_No" : "","Emp_Name" : "Ram","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "120.00"},{"Emp_Id" : "7","Identity_No" : "","Emp_Name" : "Raja","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason","Desig_Description" : "Mason","SalaryBasis" : "Weekly","FixedSalary" : "135.00"},{"Emp_Id" : "8","Identity_No" : "","Emp_Name" : "Raja kumar","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason Helper","Desig_Description" : "Mason Helper","SalaryBasis" : "Weekly","FixedSalary" : "105.00"},{"Emp_Id" : "9","Identity_No" : "","Emp_Name" : "Lakshmi","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Mason Helper","Desig_Description" : "Mason Helper","SalaryBasis" : "Weekly","FixedSalary" : "100.00"},{"Emp_Id" : "10","Identity_No" : "","Emp_Name" : "Palani","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Carpenter","Desig_Description" : "Carpenter","SalaryBasis" : "Weekly","FixedSalary" : "200.00"},{"Emp_Id" : "11","Identity_No" : "","Emp_Name" : "Annamalai","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Carpenter","Desig_Description" : "Carpenter","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "12","Identity_No" : "","Emp_Name" : "David","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Fixer","Desig_Description" : "Steel Fixer","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "13","Identity_No" : "","Emp_Name" : "Chandru","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Fixer","Desig_Description" : "Steel Fixer","SalaryBasis" : "Weekly","FixedSalary" : "220.00"},{"Emp_Id" : "14","Identity_No" : "","Emp_Name" : "Mani","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Steel Helper","Desig_Description" : "Steel Helper","SalaryBasis" : "Weekly","FixedSalary" : "175.00"},{"Emp_Id" : "15","Identity_No" : "","Emp_Name" : "Karthik","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Fixer","Desig_Description" : "Wood Fixer","SalaryBasis" : "Weekly","FixedSalary" : "195.00"},{"Emp_Id" : "16","Identity_No" : "","Emp_Name" : "Bala","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Fixer","Desig_Description" : "Wood Fixer","SalaryBasis" : "Weekly","FixedSalary" : "185.00"},{"Emp_Id" : "17","Identity_No" : "","Emp_Name" : "Tamil arasi","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Wood Helper","Desig_Description" : "Wood Helper","SalaryBasis" : "Weekly","FixedSalary" : "185.00"},{"Emp_Id" : "18","Identity_No" : "","Emp_Name" : "Perumal","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Cook","Desig_Description" : "Cook","SalaryBasis" : "Weekly","FixedSalary" : "105.00"},{"Emp_Id" : "19","Identity_No" : "","Emp_Name" : "Andiappan","Address" : "Madurai","Date_Of_Birth" : "","Desig_Name" : "Watchman","Desig_Description" : "Watchman","SalaryBasis" : "Weekly","FixedSalary" : "150.00"}]} There are 22 records in this json... How to paginate this json data 5 per page using jquery? EDIT: The above image is my summary view of employee list iterated using jquery var jsonObj = JSON.parse(HfJsonValue); for (var i = jsonObj.Table.length - 1; i >= 0; i--) { var employee = jsonObj.Table[i]; $('<div class="resultsdiv"><br /><span class="resultName">' + employee.Emp_Name + '</span><span class="resultfields" style="padding-left:100px;">Category&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.Desig_Name + '</span><br /><br /><span id="SalaryBasis" class="resultfields">Salary Basis&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.SalaryBasis + '</span><span class="resultfields" style="padding-left:25px;">Salary&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.FixedSalary + '</span><span style="font-size:110%;font-weight:bolder;padding-left:25px;">Address&nbsp;:</span>&nbsp;<span class="resultfieldvalues">' + employee.Address + '</span></div>').insertAfter('#ResultsDiv'); } I get 22 records now it may grow how to paginate json date by using jquery pagination.. Any suggestion...

    Read the article

  • Converting linear colors to SRGB shows banding in FFmpeg

    - by user1863947
    When I convert an EXR file sequence with x264 using FFmpeg and convert the colorspace from linear to SRGB (with gamma 0.45454545) I get some heavy banding issues (most visible on a dark gradient). Here is the ffmpeg command I use: C:/ffmpeg.exe -y -i C:/seq_v001.%04d.exr -vf lutrgb=r=gammaval(0.45454545):g=gammaval(0.45454545):b=gammaval(0.45454545) -vcodec libx264 -pix_fmt yuv420p -preset slow -crf 18 -r 25 C:/out.mov Here is the output: ffmpeg version N-47062-g26c531c Copyright (c) 2000-2012 the FFmpeg developers built on Nov 25 2012 12:25:21 with gcc 4.7.2 (GCC) configuration: --enable-gpl --enable-version3 --disable-pthreads --enable-runtime-cpudetect --enable-avisynth --enable-bzlib --enable-frei0r --enable-libass --enable-libopencore-amrnb --enable-libopencore-amrwb --enable-libfreetype --enable-libgsm --enable-libmp3lame --enable-libnut --enable-libopenjpeg --enable-libopus --enable-librtmp --enable-libschroedinger --enable-libspeex --enable-libtheora --enable-libutvideo --enable-libvo-aacenc --enable-libvo-amrwbenc --enable-libvorbis --enable-libvpx --enable-libx264 --enable-libxavs --enable-libxvid --enable-zlib libavutil 52. 9.100 / 52. 9.100 libavcodec 54. 77.100 / 54. 77.100 libavformat 54. 37.100 / 54. 37.100 libavdevice 54. 3.100 / 54. 3.100 libavfilter 3. 23.102 / 3. 23.102 libswscale 2. 1.102 / 2. 1.102 libswresample 0. 17.101 / 0. 17.101 libpostproc 52. 2.100 / 52. 2.100 Input #0, image2, from 'C:/seq_v001.%04d.exr': Duration: 00:00:09.60, start: 0.000000, bitrate: N/A Stream #0:0: Video: exr, rgb48le, 960x540 [SAR 1:1 DAR 16:9], 25 fps, 25 tbr, 25 tbn, 25 tbc [libx264 @ 0000000004d11540] using SAR=1/1 [libx264 @ 0000000004d11540] using cpu capabilities: MMX2 SSE2Fast SSSE3 FastShuffle SSE4.2 [libx264 @ 0000000004d11540] profile High, level 3.1 [libx264 @ 0000000004d11540] 264 - core 128 r2216 198a7ea - H.264/MPEG-4 AVC codec - Copyleft 2003-2012 - http://www.videolan.org/x264.html - options: cabac=1 ref=5 deblock=1:0:0 analyse=0x3:0x113 me=umh subme=8 psy=1 psy_rd=1.00:0.00 mixed_ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pskip=1 chroma_qp_offset=-2 threads=18 lookahead_threads=3 sliced_threads=0 nr=0 decimate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_adapt=2 b_bias=0 direct=3 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=25 scenecut=40 intra_refresh=0 rc_lookahead=50 rc=crf mbtree=1 crf=18.0 qcomp=0.60 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, mov, to 'C:/out.mov': Metadata: encoder : Lavf54.37.100 Stream #0:0: Video: h264 (avc1 / 0x31637661), yuv420p, 960x540 [SAR 1:1 DAR 16:9], q=-1--1, 12800 tbn, 25 tbc Stream mapping: Stream #0:0 -> #0:0 (exr -> libx264) Press [q] to stop, [?] for help [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute frame= 16 fps=0.0 q=0.0 size= 0kB time=00:00:00.00 bitrate= 0.0kbits/s Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute frame= 34 fps= 33 q=0.0 size= 0kB time=00:00:00.00 bitrate= 0.0kbits/s Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute frame= 52 fps= 34 q=0.0 size= 0kB time=00:00:00.00 bitrate= 0.0kbits/s Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute frame= 68 fps= 34 q=0.0 size= 0kB time=00:00:00.00 bitrate= 0.0kbits/s Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute frame= 85 fps= 33 q=23.0 size= 47kB time=00:00:00.44 bitrate= 867.5kbits/s Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute frame= 104 fps= 34 q=23.0 size= 94kB time=00:00:01.20 bitrate= 640.3kbits/s Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute frame= 121 fps= 34 q=23.0 size= 133kB time=00:00:01.88 bitrate= 577.8kbits/s Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute frame= 139 fps= 34 q=23.0 size= 172kB time=00:00:02.60 bitrate= 543.4kbits/s Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute frame= 157 fps= 34 q=23.0 size= 213kB time=00:00:03.32 bitrate= 525.6kbits/s Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute frame= 175 fps= 34 q=23.0 size= 254kB time=00:00:04.04 bitrate= 516.0kbits/s Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute frame= 193 fps= 35 q=23.0 size= 287kB time=00:00:04.76 bitrate= 494.6kbits/s Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute frame= 211 fps= 35 q=23.0 size= 332kB time=00:00:05.48 bitrate= 496.4kbits/s Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute [exr @ 000000000dffa660] Found more than one compression attribute [exr @ 000000000dffaaa0] Found more than one compression attribute [exr @ 000000000dffaf00] Found more than one compression attribute [exr @ 000000000dffb340] Found more than one compression attribute [exr @ 000000000dffb7a0] Found more than one compression attribute [exr @ 000000000dffbbe0] Found more than one compression attribute [exr @ 000000000dffc040] Found more than one compression attribute [exr @ 000000000dff8c40] Found more than one compression attribute [exr @ 000000000dff90c0] Found more than one compression attribute [exr @ 000000000dff9520] Found more than one compression attribute [exr @ 000000000dff9960] Found more than one compression attribute [exr @ 000000000dff9dc0] Found more than one compression attribute [exr @ 000000000dffa200] Found more than one compression attribute frame= 228 fps= 34 q=23.0 size= 421kB time=00:00:06.16 bitrate= 559.8kbits/s frame= 240 fps= 32 q=-1.0 Lsize= 708kB time=00:00:09.52 bitrate= 609.3kbits/s video:705kB audio:0kB subtitle:0 global headers:0kB muxing overhead 0.505636% [libx264 @ 0000000004d11540] frame I:2 Avg QP:15.07 size: 18186 [libx264 @ 0000000004d11540] frame P:73 Avg QP:16.51 size: 3719 [libx264 @ 0000000004d11540] frame B:165 Avg QP:18.38 size: 2502 [libx264 @ 0000000004d11540] consecutive B-frames: 2.5% 3.3% 42.5% 51.7% [libx264 @ 0000000004d11540] mb I I16..4: 46.2% 33.3% 20.4% [libx264 @ 0000000004d11540] mb P I16..4: 6.8% 2.0% 0.6% P16..4: 29.4% 10.5% 4.6% 0.0% 0.0% skip:46.1% [libx264 @ 0000000004d11540] mb B I16..4: 1.8% 0.7% 0.2% B16..8: 40.9% 6.5% 0.3% direct: 1.2% skip:48.5% L0:52.0% L1:47.5% BI: 0.5% [libx264 @ 0000000004d11540] 8x8 transform intra:24.7% inter:81.3% [libx264 @ 0000000004d11540] direct mvs spatial:93.3% temporal:6.7% [libx264 @ 0000000004d11540] coded y,uvDC,uvAC intra: 10.7% 31.4% 24.9% inter: 2.3% 9.0% 2.9% [libx264 @ 0000000004d11540] i16 v,h,dc,p: 83% 11% 6% 1% [libx264 @ 0000000004d11540] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 9% 9% 52% 6% 4% 4% 5% 5% 5% [libx264 @ 0000000004d11540] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 22% 11% 44% 5% 4% 3% 3% 4% 3% [libx264 @ 0000000004d11540] i8c dc,h,v,p: 69% 15% 15% 2% [libx264 @ 0000000004d11540] Weighted P-Frames: Y:0.0% UV:0.0% [libx264 @ 0000000004d11540] ref P L0: 48.9% 0.1% 16.8% 17.0% 11.3% 5.8% [libx264 @ 0000000004d11540] ref B L0: 57.7% 21.9% 13.9% 6.4% [libx264 @ 0000000004d11540] ref B L1: 82.4% 17.6% [libx264 @ 0000000004d11540] kb/s:600.61 For me it looks like it converts the video first and afterwards applies the gamma correction on 8-bit clipped video. Does someone have an idea?

    Read the article

  • MySQL is running VERY slow

    - by user1032531
    I have two servers: a VPS and a laptop. I recently re-built both of them, and MySQL is running about 20 times slower on the laptop. Both servers used to run CentOS 5.8 and I think MySQL 5.1, and the laptop used to do great so I do not think it is the hardware. For the VPS, my provider installed CentOS 6.4, and then I installed MySQL 5.1.69 using yum with the CentOS repo. For the laptop, I installed CentOS 6.4 basic server and then installed MySQL 5.1.69 using yum with the CentOS repo. my.cnf for both servers are identical, and I have shown below. For both servers, I've also included below the output from SHOW VARIABLES; as well as output from sysbench, file system information, and cpu information. I have tried adding skip-name-resolve, but it didn't help. The matrix below shows the SHOW VARIABLES output from both servers which is different. Again, MySQL was installed the same way, so I do not know why it is different, but it is and I think this might be why the laptop is executing MySQL so slowly. Why is the laptop running MySQL slowly, and how do I fix it? Differences between SHOW VARIABLES on both servers +---------------------------+-----------------------+-------------------------+ | Variable | Value-VPS | Value-Laptop | +---------------------------+-----------------------+-------------------------+ | hostname | vps.site1.com | laptop.site2.com | | max_binlog_cache_size | 4294963200 | 18446744073709500000 | | max_seeks_for_key | 4294967295 | 18446744073709500000 | | max_write_lock_count | 4294967295 | 18446744073709500000 | | myisam_max_sort_file_size | 2146435072 | 9223372036853720000 | | myisam_mmap_size | 4294967295 | 18446744073709500000 | | plugin_dir | /usr/lib/mysql/plugin | /usr/lib64/mysql/plugin | | pseudo_thread_id | 7568 | 2 | | system_time_zone | EST | PDT | | thread_stack | 196608 | 262144 | | timestamp | 1372252112 | 1372252046 | | version_compile_machine | i386 | x86_64 | +---------------------------+-----------------------+-------------------------+ my.cnf for both servers [root@server1 ~]# cat /etc/my.cnf [mysqld] datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock user=mysql # Disabling symbolic-links is recommended to prevent assorted security risks symbolic-links=0 [mysqld_safe] log-error=/var/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid innodb_strict_mode=on sql_mode=TRADITIONAL # sql_mode=STRICT_TRANS_TABLES,NO_ZERO_DATE,NO_ZERO_IN_DATE character-set-server=utf8 collation-server=utf8_general_ci log=/var/log/mysqld_all.log [root@server1 ~]# VPS SHOW VARIABLES Info Same as Laptop shown below but changes per above matrix (removed to allow me to be under the 30000 characters as required by ServerFault) Laptop SHOW VARIABLES Info auto_increment_increment 1 auto_increment_offset 1 autocommit ON automatic_sp_privileges ON back_log 50 basedir /usr/ big_tables OFF binlog_cache_size 32768 binlog_direct_non_transactional_updates OFF binlog_format STATEMENT bulk_insert_buffer_size 8388608 character_set_client utf8 character_set_connection utf8 character_set_database latin1 character_set_filesystem binary character_set_results utf8 character_set_server latin1 character_set_system utf8 character_sets_dir /usr/share/mysql/charsets/ collation_connection utf8_general_ci collation_database latin1_swedish_ci collation_server latin1_swedish_ci completion_type 0 concurrent_insert 1 connect_timeout 10 datadir /var/lib/mysql/ date_format %Y-%m-%d datetime_format %Y-%m-%d %H:%i:%s default_week_format 0 delay_key_write ON delayed_insert_limit 100 delayed_insert_timeout 300 delayed_queue_size 1000 div_precision_increment 4 engine_condition_pushdown ON error_count 0 event_scheduler OFF expire_logs_days 0 flush OFF flush_time 0 foreign_key_checks ON ft_boolean_syntax + -><()~*:""&| ft_max_word_len 84 ft_min_word_len 4 ft_query_expansion_limit 20 ft_stopword_file (built-in) general_log OFF general_log_file /var/run/mysqld/mysqld.log group_concat_max_len 1024 have_community_features YES have_compress YES have_crypt YES have_csv YES have_dynamic_loading YES have_geometry YES have_innodb YES have_ndbcluster NO have_openssl DISABLED have_partitioning YES have_query_cache YES have_rtree_keys YES have_ssl DISABLED have_symlink DISABLED hostname server1.site2.com identity 0 ignore_builtin_innodb OFF init_connect init_file init_slave innodb_adaptive_hash_index ON innodb_additional_mem_pool_size 1048576 innodb_autoextend_increment 8 innodb_autoinc_lock_mode 1 innodb_buffer_pool_size 8388608 innodb_checksums ON innodb_commit_concurrency 0 innodb_concurrency_tickets 500 innodb_data_file_path ibdata1:10M:autoextend innodb_data_home_dir innodb_doublewrite ON innodb_fast_shutdown 1 innodb_file_io_threads 4 innodb_file_per_table OFF innodb_flush_log_at_trx_commit 1 innodb_flush_method innodb_force_recovery 0 innodb_lock_wait_timeout 50 innodb_locks_unsafe_for_binlog OFF innodb_log_buffer_size 1048576 innodb_log_file_size 5242880 innodb_log_files_in_group 2 innodb_log_group_home_dir ./ innodb_max_dirty_pages_pct 90 innodb_max_purge_lag 0 innodb_mirrored_log_groups 1 innodb_open_files 300 innodb_rollback_on_timeout OFF innodb_stats_method nulls_equal innodb_stats_on_metadata ON innodb_support_xa ON innodb_sync_spin_loops 20 innodb_table_locks ON innodb_thread_concurrency 8 innodb_thread_sleep_delay 10000 innodb_use_legacy_cardinality_algorithm ON insert_id 0 interactive_timeout 28800 join_buffer_size 131072 keep_files_on_create OFF key_buffer_size 8384512 key_cache_age_threshold 300 key_cache_block_size 1024 key_cache_division_limit 100 language /usr/share/mysql/english/ large_files_support ON large_page_size 0 large_pages OFF last_insert_id 0 lc_time_names en_US license GPL local_infile ON locked_in_memory OFF log OFF log_bin OFF log_bin_trust_function_creators OFF log_bin_trust_routine_creators OFF log_error /var/log/mysqld.log log_output FILE log_queries_not_using_indexes OFF log_slave_updates OFF log_slow_queries OFF log_warnings 1 long_query_time 10.000000 low_priority_updates OFF lower_case_file_system OFF lower_case_table_names 0 max_allowed_packet 1048576 max_binlog_cache_size 18446744073709547520 max_binlog_size 1073741824 max_connect_errors 10 max_connections 151 max_delayed_threads 20 max_error_count 64 max_heap_table_size 16777216 max_insert_delayed_threads 20 max_join_size 18446744073709551615 max_length_for_sort_data 1024 max_long_data_size 1048576 max_prepared_stmt_count 16382 max_relay_log_size 0 max_seeks_for_key 18446744073709551615 max_sort_length 1024 max_sp_recursion_depth 0 max_tmp_tables 32 max_user_connections 0 max_write_lock_count 18446744073709551615 min_examined_row_limit 0 multi_range_count 256 myisam_data_pointer_size 6 myisam_max_sort_file_size 9223372036853727232 myisam_mmap_size 18446744073709551615 myisam_recover_options OFF myisam_repair_threads 1 myisam_sort_buffer_size 8388608 myisam_stats_method nulls_unequal myisam_use_mmap OFF net_buffer_length 16384 net_read_timeout 30 net_retry_count 10 net_write_timeout 60 new OFF old OFF old_alter_table OFF old_passwords OFF open_files_limit 1024 optimizer_prune_level 1 optimizer_search_depth 62 optimizer_switch index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on pid_file /var/run/mysqld/mysqld.pid plugin_dir /usr/lib64/mysql/plugin port 3306 preload_buffer_size 32768 profiling OFF profiling_history_size 15 protocol_version 10 pseudo_thread_id 3 query_alloc_block_size 8192 query_cache_limit 1048576 query_cache_min_res_unit 4096 query_cache_size 0 query_cache_type ON query_cache_wlock_invalidate OFF query_prealloc_size 8192 rand_seed1 rand_seed2 range_alloc_block_size 4096 read_buffer_size 131072 read_only OFF read_rnd_buffer_size 262144 relay_log relay_log_index relay_log_info_file relay-log.info relay_log_purge ON relay_log_space_limit 0 report_host report_password report_port 3306 report_user rpl_recovery_rank 0 secure_auth OFF secure_file_priv server_id 0 skip_external_locking ON skip_name_resolve OFF skip_networking OFF skip_show_database OFF slave_compressed_protocol OFF slave_exec_mode STRICT slave_load_tmpdir /tmp slave_max_allowed_packet 1073741824 slave_net_timeout 3600 slave_skip_errors OFF slave_transaction_retries 10 slow_launch_time 2 slow_query_log OFF slow_query_log_file /var/run/mysqld/mysqld-slow.log socket /var/lib/mysql/mysql.sock sort_buffer_size 2097144 sql_auto_is_null ON sql_big_selects ON sql_big_tables OFF sql_buffer_result OFF sql_log_bin ON sql_log_off OFF sql_log_update ON sql_low_priority_updates OFF sql_max_join_size 18446744073709551615 sql_mode sql_notes ON sql_quote_show_create ON sql_safe_updates OFF sql_select_limit 18446744073709551615 sql_slave_skip_counter sql_warnings OFF ssl_ca ssl_capath ssl_cert ssl_cipher ssl_key storage_engine MyISAM sync_binlog 0 sync_frm ON system_time_zone PDT table_definition_cache 256 table_lock_wait_timeout 50 table_open_cache 64 table_type MyISAM thread_cache_size 0 thread_handling one-thread-per-connection thread_stack 262144 time_format %H:%i:%s time_zone SYSTEM timed_mutexes OFF timestamp 1372254399 tmp_table_size 16777216 tmpdir /tmp transaction_alloc_block_size 8192 transaction_prealloc_size 4096 tx_isolation REPEATABLE-READ unique_checks ON updatable_views_with_limit YES version 5.1.69 version_comment Source distribution version_compile_machine x86_64 version_compile_os redhat-linux-gnu wait_timeout 28800 warning_count 0 VPS Sysbench Info [root@vps ~]# cat sysbench.txt sysbench 0.4.12: multi-threaded system evaluation benchmark Running the test with following options: Number of threads: 8 Doing OLTP test. Running mixed OLTP test Doing read-only test Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases) Using "BEGIN" for starting transactions Using auto_inc on the id column Threads started! Time limit exceeded, exiting... (last message repeated 7 times) Done. OLTP test statistics: queries performed: read: 1449966 write: 0 other: 207138 total: 1657104 transactions: 103569 (1726.01 per sec.) deadlocks: 0 (0.00 per sec.) read/write requests: 1449966 (24164.08 per sec.) other operations: 207138 (3452.01 per sec.) Test execution summary: total time: 60.0050s total number of events: 103569 total time taken by event execution: 479.1544 per-request statistics: min: 1.98ms avg: 4.63ms max: 330.73ms approx. 95 percentile: 8.26ms Threads fairness: events (avg/stddev): 12946.1250/381.09 execution time (avg/stddev): 59.8943/0.00 [root@vps ~]# Laptop Sysbench Info [root@server1 ~]# cat sysbench.txt sysbench 0.4.12: multi-threaded system evaluation benchmark Running the test with following options: Number of threads: 8 Doing OLTP test. Running mixed OLTP test Doing read-only test Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases) Using "BEGIN" for starting transactions Using auto_inc on the id column Threads started! Time limit exceeded, exiting... (last message repeated 7 times) Done. OLTP test statistics: queries performed: read: 634718 write: 0 other: 90674 total: 725392 transactions: 45337 (755.56 per sec.) deadlocks: 0 (0.00 per sec.) read/write requests: 634718 (10577.78 per sec.) other operations: 90674 (1511.11 per sec.) Test execution summary: total time: 60.0048s total number of events: 45337 total time taken by event execution: 479.4912 per-request statistics: min: 2.04ms avg: 10.58ms max: 85.56ms approx. 95 percentile: 19.70ms Threads fairness: events (avg/stddev): 5667.1250/42.18 execution time (avg/stddev): 59.9364/0.00 [root@server1 ~]# VPS File Info [root@vps ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/simfs simfs 20971520 16187440 4784080 78% / none tmpfs 6224432 4 6224428 1% /dev none tmpfs 6224432 0 6224432 0% /dev/shm [root@vps ~]# Laptop File Info [root@server1 ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/mapper/vg_server1-lv_root ext4 72383800 4243964 64462860 7% / tmpfs tmpfs 956352 0 956352 0% /dev/shm /dev/sdb1 ext4 495844 60948 409296 13% /boot [root@server1 ~]# VPS CPU Info Removed to stay under the 30000 character limit required by ServerFault Laptop CPU Info [root@server1 ~]# cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 1 cpu cores : 2 apicid : 1 initial apicid : 1 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: [root@server1 ~]# EDIT New Info requested by shakalandy [root@localhost ~]# cat /proc/meminfo MemTotal: 2044804 kB MemFree: 761464 kB Buffers: 68868 kB Cached: 369708 kB SwapCached: 0 kB Active: 881080 kB Inactive: 246016 kB Active(anon): 688312 kB Inactive(anon): 4416 kB Active(file): 192768 kB Inactive(file): 241600 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 4095992 kB SwapFree: 4095992 kB Dirty: 0 kB Writeback: 0 kB AnonPages: 688428 kB Mapped: 65156 kB Shmem: 4216 kB Slab: 92428 kB SReclaimable: 31260 kB SUnreclaim: 61168 kB KernelStack: 2392 kB PageTables: 28356 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 5118392 kB Committed_AS: 1530212 kB VmallocTotal: 34359738367 kB VmallocUsed: 343604 kB VmallocChunk: 34359372920 kB HardwareCorrupted: 0 kB AnonHugePages: 520192 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 8556 kB DirectMap2M: 2078720 kB [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501360 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3036 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14449 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501356 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3048 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14470 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# vmstat 1 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 742172 76376 371064 0 0 6 6 78 202 2 1 97 1 0 0 0 0 742164 76380 371060 0 0 0 16 191 467 2 1 93 5 0 0 0 0 742164 76380 371064 0 0 0 0 148 388 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 418 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 145 380 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 166 429 2 1 97 0 0 1 0 0 742164 76380 371064 0 0 0 0 148 373 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 149 382 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 168 408 2 0 97 0 0 0 0 0 742164 76380 371064 0 0 0 0 165 394 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 354 2 1 98 0 0 0 0 0 742164 76388 371060 0 0 0 16 180 447 2 0 91 6 0 0 0 0 742164 76388 371064 0 0 0 0 143 344 2 1 98 0 0 0 1 0 742784 76416 370044 0 0 28 580 360 678 3 1 74 23 0 1 0 0 744768 76496 367772 0 0 40 1036 437 865 3 1 53 43 0 0 1 0 747248 76596 365412 0 0 48 1224 561 923 3 2 53 43 0 0 1 0 749232 76696 363092 0 0 32 1132 512 883 3 2 52 44 0 0 1 0 751340 76772 361020 0 0 32 1008 472 872 2 1 52 45 0 0 1 0 753448 76840 358540 0 0 36 1088 512 860 2 1 51 46 0 0 1 0 755060 76936 357636 0 0 28 1012 481 922 2 2 52 45 0 0 1 0 755060 77064 357988 0 0 12 896 444 902 2 1 53 45 0 0 1 0 754688 77148 358448 0 0 16 1096 506 1007 1 1 56 42 0 0 2 0 754192 77268 358932 0 0 12 1060 481 957 1 2 53 44 0 0 1 0 753696 77380 359392 0 0 12 1052 512 1025 2 1 55 42 0 0 1 0 751028 77480 359828 0 0 8 984 423 909 2 2 52 45 0 0 1 0 750524 77620 360200 0 0 8 788 367 869 1 2 54 44 0 0 1 0 749904 77700 360664 0 0 8 928 439 924 2 2 55 43 0 0 1 0 749408 77796 361084 0 0 12 976 468 967 1 1 56 43 0 0 1 0 748788 77896 361464 0 0 12 992 453 944 1 2 54 43 0 1 1 0 748416 77992 361996 0 0 12 784 392 868 2 1 52 46 0 0 1 0 747920 78092 362336 0 0 4 896 382 874 1 1 52 46 0 0 1 0 745252 78172 362780 0 0 12 1040 444 923 1 1 56 42 0 0 1 0 744764 78288 363220 0 0 8 1024 448 934 2 1 55 43 0 0 1 0 744144 78408 363668 0 0 8 1000 461 982 2 1 53 44 0 0 1 0 743648 78488 364148 0 0 8 872 443 888 2 1 54 43 0 0 1 0 743152 78548 364468 0 0 16 1020 511 995 2 1 55 43 0 0 1 0 742656 78632 365024 0 0 12 928 431 913 1 2 53 44 0 0 1 0 742160 78728 365468 0 0 12 996 470 955 2 2 54 44 0 1 1 0 739492 78840 365896 0 0 8 988 447 939 1 2 52 46 0 0 1 0 738872 78996 366352 0 0 12 972 442 928 1 1 55 44 0 1 1 0 738244 79148 366812 0 0 8 948 549 1126 2 2 54 43 0 0 1 0 737624 79312 367188 0 0 12 996 456 953 2 2 54 43 0 0 1 0 736880 79456 367660 0 0 12 960 444 918 1 1 53 46 0 0 1 0 736260 79584 368124 0 0 8 884 414 921 1 1 54 44 0 0 1 0 735648 79716 368488 0 0 12 976 450 955 2 1 56 41 0 0 1 0 733104 79840 368988 0 0 12 932 453 918 1 2 55 43 0 0 1 0 732608 79996 369356 0 0 16 916 444 889 1 2 54 43 0 1 1 0 731476 80128 369800 0 0 16 852 514 978 2 2 54 43 0 0 1 0 731244 80252 370200 0 0 8 904 398 870 2 1 55 43 0 1 1 0 730624 80384 370612 0 0 12 1032 447 977 1 2 57 41 0 0 1 0 730004 80524 371096 0 0 12 984 469 941 2 2 52 45 0 0 1 0 729508 80636 371544 0 0 12 928 438 922 2 1 52 46 0 0 1 0 728888 80756 371948 0 0 16 972 439 943 2 1 55 43 0 0 1 0 726468 80900 372272 0 0 8 960 545 1024 2 1 54 43 0 1 1 0 726344 81024 372272 0 0 8 464 490 1057 1 2 53 44 0 0 1 0 726096 81148 372276 0 0 4 328 441 1063 2 1 53 45 0 1 1 0 726096 81256 372292 0 0 0 296 387 975 1 1 53 45 0 0 1 0 725848 81380 372284 0 0 4 332 425 1034 2 1 54 44 0 1 1 0 725848 81496 372300 0 0 4 308 386 992 2 1 54 43 0 0 1 0 725600 81616 372296 0 0 4 328 404 1060 1 1 54 44 0 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 1 0 725600 81732 372296 0 0 4 328 439 1011 1 1 53 44 0 0 1 0 725476 81848 372308 0 0 0 316 441 1023 2 2 52 46 0 1 1 0 725352 81972 372300 0 0 4 344 451 1021 1 1 55 43 0 2 1 0 725228 82088 372320 0 0 0 328 427 1058 1 1 54 44 0 1 1 0 724980 82220 372300 0 0 4 336 419 999 2 1 54 44 0 1 1 0 724980 82328 372320 0 0 4 320 430 1019 1 1 54 44 0 1 1 0 724732 82436 372328 0 0 0 388 363 942 2 1 54 44 0 1 1 0 724608 82560 372312 0 0 4 308 419 993 1 2 54 44 0 1 0 0 724360 82684 372320 0 0 0 304 421 1028 2 1 55 42 0 1 0 0 724360 82684 372388 0 0 0 0 158 416 2 1 98 0 0 1 1 0 724236 82720 372360 0 0 0 6464 243 855 3 2 84 12 0 1 0 0 724112 82748 372360 0 0 0 5356 266 895 3 1 84 12 0 2 1 0 724112 82764 372380 0 0 0 3052 221 511 2 2 93 4 0 1 0 0 724112 82796 372372 0 0 0 4548 325 1067 2 2 81 16 0 1 0 0 724112 82816 372368 0 0 0 3240 259 829 3 1 90 6 0 1 0 0 724112 82836 372380 0 0 0 3260 309 822 3 2 88 8 0 1 1 0 724112 82876 372364 0 0 0 4680 326 978 3 1 77 19 0 1 0 0 724112 82884 372380 0 0 0 512 207 508 2 1 95 2 0 1 0 0 724112 82884 372388 0 0 0 0 138 361 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 158 397 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 146 395 2 1 98 0 0 2 0 0 724112 82884 372388 0 0 0 0 160 395 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 163 382 1 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 176 422 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 134 351 2 1 98 0 0 0 0 0 724112 82884 372388 0 0 0 0 190 429 2 1 97 0 0 0 0 0 724104 82884 372392 0 0 0 0 139 358 2 1 98 0 0 0 0 0 724848 82884 372392 0 0 0 4 211 432 2 1 97 0 0 1 0 0 724980 82884 372392 0 0 0 0 166 370 2 1 98 0 0 0 0 0 724980 82884 372392 0 0 0 0 164 397 2 1 98 0 0 ^C [root@localhost ~]#

    Read the article

  • MySQL is running VERY slow on CentOS 6x (not 5x)

    - by user1032531
    I have two servers: a VPS and a laptop. I recently re-built both of them, and MySQL is running about 20 times slower on the laptop. Both servers used to run CentOS 5.8 and I think MySQL 5.1, and the laptop used to do great so I do not think it is the hardware. For the VPS, my provider installed CentOS 6.4, and then I installed MySQL 5.1.69 using yum with the CentOS repo. For the laptop, I installed CentOS 6.4 basic server and then installed MySQL 5.1.69 using yum with the CentOS repo. my.cnf for both servers are identical, and I have shown below. For both servers, I've also included below the output from SHOW VARIABLES; as well as output from sysbench, file system information, and cpu information. I have tried adding skip-name-resolve, but it didn't help. The matrix below shows the SHOW VARIABLES output from both servers which is different. Again, MySQL was installed the same way, so I do not know why it is different, but it is and I think this might be why the laptop is executing MySQL so slowly. Why is the laptop running MySQL slowly, and how do I fix it? Differences between SHOW VARIABLES on both servers +---------------------------+-----------------------+-------------------------+ | Variable | Value-VPS | Value-Laptop | +---------------------------+-----------------------+-------------------------+ | hostname | vps.site1.com | laptop.site2.com | | max_binlog_cache_size | 4294963200 | 18446744073709500000 | | max_seeks_for_key | 4294967295 | 18446744073709500000 | | max_write_lock_count | 4294967295 | 18446744073709500000 | | myisam_max_sort_file_size | 2146435072 | 9223372036853720000 | | myisam_mmap_size | 4294967295 | 18446744073709500000 | | plugin_dir | /usr/lib/mysql/plugin | /usr/lib64/mysql/plugin | | pseudo_thread_id | 7568 | 2 | | system_time_zone | EST | PDT | | thread_stack | 196608 | 262144 | | timestamp | 1372252112 | 1372252046 | | version_compile_machine | i386 | x86_64 | +---------------------------+-----------------------+-------------------------+ my.cnf for both servers [root@server1 ~]# cat /etc/my.cnf [mysqld] datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock user=mysql # Disabling symbolic-links is recommended to prevent assorted security risks symbolic-links=0 [mysqld_safe] log-error=/var/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid innodb_strict_mode=on sql_mode=TRADITIONAL # sql_mode=STRICT_TRANS_TABLES,NO_ZERO_DATE,NO_ZERO_IN_DATE character-set-server=utf8 collation-server=utf8_general_ci log=/var/log/mysqld_all.log [root@server1 ~]# VPS SHOW VARIABLES Info Same as Laptop shown below but changes per above matrix (removed to allow me to be under the 30000 characters as required by ServerFault) Laptop SHOW VARIABLES Info auto_increment_increment 1 auto_increment_offset 1 autocommit ON automatic_sp_privileges ON back_log 50 basedir /usr/ big_tables OFF binlog_cache_size 32768 binlog_direct_non_transactional_updates OFF binlog_format STATEMENT bulk_insert_buffer_size 8388608 character_set_client utf8 character_set_connection utf8 character_set_database latin1 character_set_filesystem binary character_set_results utf8 character_set_server latin1 character_set_system utf8 character_sets_dir /usr/share/mysql/charsets/ collation_connection utf8_general_ci collation_database latin1_swedish_ci collation_server latin1_swedish_ci completion_type 0 concurrent_insert 1 connect_timeout 10 datadir /var/lib/mysql/ date_format %Y-%m-%d datetime_format %Y-%m-%d %H:%i:%s default_week_format 0 delay_key_write ON delayed_insert_limit 100 delayed_insert_timeout 300 delayed_queue_size 1000 div_precision_increment 4 engine_condition_pushdown ON error_count 0 event_scheduler OFF expire_logs_days 0 flush OFF flush_time 0 foreign_key_checks ON ft_boolean_syntax + -><()~*:""&| ft_max_word_len 84 ft_min_word_len 4 ft_query_expansion_limit 20 ft_stopword_file (built-in) general_log OFF general_log_file /var/run/mysqld/mysqld.log group_concat_max_len 1024 have_community_features YES have_compress YES have_crypt YES have_csv YES have_dynamic_loading YES have_geometry YES have_innodb YES have_ndbcluster NO have_openssl DISABLED have_partitioning YES have_query_cache YES have_rtree_keys YES have_ssl DISABLED have_symlink DISABLED hostname server1.site2.com identity 0 ignore_builtin_innodb OFF init_connect init_file init_slave innodb_adaptive_hash_index ON innodb_additional_mem_pool_size 1048576 innodb_autoextend_increment 8 innodb_autoinc_lock_mode 1 innodb_buffer_pool_size 8388608 innodb_checksums ON innodb_commit_concurrency 0 innodb_concurrency_tickets 500 innodb_data_file_path ibdata1:10M:autoextend innodb_data_home_dir innodb_doublewrite ON innodb_fast_shutdown 1 innodb_file_io_threads 4 innodb_file_per_table OFF innodb_flush_log_at_trx_commit 1 innodb_flush_method innodb_force_recovery 0 innodb_lock_wait_timeout 50 innodb_locks_unsafe_for_binlog OFF innodb_log_buffer_size 1048576 innodb_log_file_size 5242880 innodb_log_files_in_group 2 innodb_log_group_home_dir ./ innodb_max_dirty_pages_pct 90 innodb_max_purge_lag 0 innodb_mirrored_log_groups 1 innodb_open_files 300 innodb_rollback_on_timeout OFF innodb_stats_method nulls_equal innodb_stats_on_metadata ON innodb_support_xa ON innodb_sync_spin_loops 20 innodb_table_locks ON innodb_thread_concurrency 8 innodb_thread_sleep_delay 10000 innodb_use_legacy_cardinality_algorithm ON insert_id 0 interactive_timeout 28800 join_buffer_size 131072 keep_files_on_create OFF key_buffer_size 8384512 key_cache_age_threshold 300 key_cache_block_size 1024 key_cache_division_limit 100 language /usr/share/mysql/english/ large_files_support ON large_page_size 0 large_pages OFF last_insert_id 0 lc_time_names en_US license GPL local_infile ON locked_in_memory OFF log OFF log_bin OFF log_bin_trust_function_creators OFF log_bin_trust_routine_creators OFF log_error /var/log/mysqld.log log_output FILE log_queries_not_using_indexes OFF log_slave_updates OFF log_slow_queries OFF log_warnings 1 long_query_time 10.000000 low_priority_updates OFF lower_case_file_system OFF lower_case_table_names 0 max_allowed_packet 1048576 max_binlog_cache_size 18446744073709547520 max_binlog_size 1073741824 max_connect_errors 10 max_connections 151 max_delayed_threads 20 max_error_count 64 max_heap_table_size 16777216 max_insert_delayed_threads 20 max_join_size 18446744073709551615 max_length_for_sort_data 1024 max_long_data_size 1048576 max_prepared_stmt_count 16382 max_relay_log_size 0 max_seeks_for_key 18446744073709551615 max_sort_length 1024 max_sp_recursion_depth 0 max_tmp_tables 32 max_user_connections 0 max_write_lock_count 18446744073709551615 min_examined_row_limit 0 multi_range_count 256 myisam_data_pointer_size 6 myisam_max_sort_file_size 9223372036853727232 myisam_mmap_size 18446744073709551615 myisam_recover_options OFF myisam_repair_threads 1 myisam_sort_buffer_size 8388608 myisam_stats_method nulls_unequal myisam_use_mmap OFF net_buffer_length 16384 net_read_timeout 30 net_retry_count 10 net_write_timeout 60 new OFF old OFF old_alter_table OFF old_passwords OFF open_files_limit 1024 optimizer_prune_level 1 optimizer_search_depth 62 optimizer_switch index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on pid_file /var/run/mysqld/mysqld.pid plugin_dir /usr/lib64/mysql/plugin port 3306 preload_buffer_size 32768 profiling OFF profiling_history_size 15 protocol_version 10 pseudo_thread_id 3 query_alloc_block_size 8192 query_cache_limit 1048576 query_cache_min_res_unit 4096 query_cache_size 0 query_cache_type ON query_cache_wlock_invalidate OFF query_prealloc_size 8192 rand_seed1 rand_seed2 range_alloc_block_size 4096 read_buffer_size 131072 read_only OFF read_rnd_buffer_size 262144 relay_log relay_log_index relay_log_info_file relay-log.info relay_log_purge ON relay_log_space_limit 0 report_host report_password report_port 3306 report_user rpl_recovery_rank 0 secure_auth OFF secure_file_priv server_id 0 skip_external_locking ON skip_name_resolve OFF skip_networking OFF skip_show_database OFF slave_compressed_protocol OFF slave_exec_mode STRICT slave_load_tmpdir /tmp slave_max_allowed_packet 1073741824 slave_net_timeout 3600 slave_skip_errors OFF slave_transaction_retries 10 slow_launch_time 2 slow_query_log OFF slow_query_log_file /var/run/mysqld/mysqld-slow.log socket /var/lib/mysql/mysql.sock sort_buffer_size 2097144 sql_auto_is_null ON sql_big_selects ON sql_big_tables OFF sql_buffer_result OFF sql_log_bin ON sql_log_off OFF sql_log_update ON sql_low_priority_updates OFF sql_max_join_size 18446744073709551615 sql_mode sql_notes ON sql_quote_show_create ON sql_safe_updates OFF sql_select_limit 18446744073709551615 sql_slave_skip_counter sql_warnings OFF ssl_ca ssl_capath ssl_cert ssl_cipher ssl_key storage_engine MyISAM sync_binlog 0 sync_frm ON system_time_zone PDT table_definition_cache 256 table_lock_wait_timeout 50 table_open_cache 64 table_type MyISAM thread_cache_size 0 thread_handling one-thread-per-connection thread_stack 262144 time_format %H:%i:%s time_zone SYSTEM timed_mutexes OFF timestamp 1372254399 tmp_table_size 16777216 tmpdir /tmp transaction_alloc_block_size 8192 transaction_prealloc_size 4096 tx_isolation REPEATABLE-READ unique_checks ON updatable_views_with_limit YES version 5.1.69 version_comment Source distribution version_compile_machine x86_64 version_compile_os redhat-linux-gnu wait_timeout 28800 warning_count 0 VPS Sysbench Info Deleted to stay under 30000 characters. Laptop Sysbench Info [root@server1 ~]# cat sysbench.txt sysbench 0.4.12: multi-threaded system evaluation benchmark Running the test with following options: Number of threads: 8 Doing OLTP test. Running mixed OLTP test Doing read-only test Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases) Using "BEGIN" for starting transactions Using auto_inc on the id column Threads started! Time limit exceeded, exiting... (last message repeated 7 times) Done. OLTP test statistics: queries performed: read: 634718 write: 0 other: 90674 total: 725392 transactions: 45337 (755.56 per sec.) deadlocks: 0 (0.00 per sec.) read/write requests: 634718 (10577.78 per sec.) other operations: 90674 (1511.11 per sec.) Test execution summary: total time: 60.0048s total number of events: 45337 total time taken by event execution: 479.4912 per-request statistics: min: 2.04ms avg: 10.58ms max: 85.56ms approx. 95 percentile: 19.70ms Threads fairness: events (avg/stddev): 5667.1250/42.18 execution time (avg/stddev): 59.9364/0.00 [root@server1 ~]# VPS File Info [root@vps ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/simfs simfs 20971520 16187440 4784080 78% / none tmpfs 6224432 4 6224428 1% /dev none tmpfs 6224432 0 6224432 0% /dev/shm [root@vps ~]# Laptop File Info [root@server1 ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/mapper/vg_server1-lv_root ext4 72383800 4243964 64462860 7% / tmpfs tmpfs 956352 0 956352 0% /dev/shm /dev/sdb1 ext4 495844 60948 409296 13% /boot [root@server1 ~]# VPS CPU Info Removed to stay under the 30000 character limit required by ServerFault Laptop CPU Info [root@server1 ~]# cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 1 cpu cores : 2 apicid : 1 initial apicid : 1 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: [root@server1 ~]# EDIT New Info requested by shakalandy [root@localhost ~]# cat /proc/meminfo MemTotal: 2044804 kB MemFree: 761464 kB Buffers: 68868 kB Cached: 369708 kB SwapCached: 0 kB Active: 881080 kB Inactive: 246016 kB Active(anon): 688312 kB Inactive(anon): 4416 kB Active(file): 192768 kB Inactive(file): 241600 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 4095992 kB SwapFree: 4095992 kB Dirty: 0 kB Writeback: 0 kB AnonPages: 688428 kB Mapped: 65156 kB Shmem: 4216 kB Slab: 92428 kB SReclaimable: 31260 kB SUnreclaim: 61168 kB KernelStack: 2392 kB PageTables: 28356 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 5118392 kB Committed_AS: 1530212 kB VmallocTotal: 34359738367 kB VmallocUsed: 343604 kB VmallocChunk: 34359372920 kB HardwareCorrupted: 0 kB AnonHugePages: 520192 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 8556 kB DirectMap2M: 2078720 kB [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501360 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3036 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14449 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501356 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3048 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14470 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# vmstat 1 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 742172 76376 371064 0 0 6 6 78 202 2 1 97 1 0 0 0 0 742164 76380 371060 0 0 0 16 191 467 2 1 93 5 0 0 0 0 742164 76380 371064 0 0 0 0 148 388 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 418 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 145 380 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 166 429 2 1 97 0 0 1 0 0 742164 76380 371064 0 0 0 0 148 373 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 149 382 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 168 408 2 0 97 0 0 0 0 0 742164 76380 371064 0 0 0 0 165 394 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 354 2 1 98 0 0 0 0 0 742164 76388 371060 0 0 0 16 180 447 2 0 91 6 0 0 0 0 742164 76388 371064 0 0 0 0 143 344 2 1 98 0 0 0 1 0 742784 76416 370044 0 0 28 580 360 678 3 1 74 23 0 1 0 0 744768 76496 367772 0 0 40 1036 437 865 3 1 53 43 0 0 1 0 747248 76596 365412 0 0 48 1224 561 923 3 2 53 43 0 0 1 0 749232 76696 363092 0 0 32 1132 512 883 3 2 52 44 0 0 1 0 751340 76772 361020 0 0 32 1008 472 872 2 1 52 45 0 0 1 0 753448 76840 358540 0 0 36 1088 512 860 2 1 51 46 0 0 1 0 755060 76936 357636 0 0 28 1012 481 922 2 2 52 45 0 0 1 0 755060 77064 357988 0 0 12 896 444 902 2 1 53 45 0 0 1 0 754688 77148 358448 0 0 16 1096 506 1007 1 1 56 42 0 0 2 0 754192 77268 358932 0 0 12 1060 481 957 1 2 53 44 0 0 1 0 753696 77380 359392 0 0 12 1052 512 1025 2 1 55 42 0 0 1 0 751028 77480 359828 0 0 8 984 423 909 2 2 52 45 0 0 1 0 750524 77620 360200 0 0 8 788 367 869 1 2 54 44 0 0 1 0 749904 77700 360664 0 0 8 928 439 924 2 2 55 43 0 0 1 0 749408 77796 361084 0 0 12 976 468 967 1 1 56 43 0 0 1 0 748788 77896 361464 0 0 12 992 453 944 1 2 54 43 0 1 1 0 748416 77992 361996 0 0 12 784 392 868 2 1 52 46 0 0 1 0 747920 78092 362336 0 0 4 896 382 874 1 1 52 46 0 0 1 0 745252 78172 362780 0 0 12 1040 444 923 1 1 56 42 0 0 1 0 744764 78288 363220 0 0 8 1024 448 934 2 1 55 43 0 0 1 0 744144 78408 363668 0 0 8 1000 461 982 2 1 53 44 0 0 1 0 743648 78488 364148 0 0 8 872 443 888 2 1 54 43 0 0 1 0 743152 78548 364468 0 0 16 1020 511 995 2 1 55 43 0 0 1 0 742656 78632 365024 0 0 12 928 431 913 1 2 53 44 0 0 1 0 742160 78728 365468 0 0 12 996 470 955 2 2 54 44 0 1 1 0 739492 78840 365896 0 0 8 988 447 939 1 2 52 46 0 0 1 0 738872 78996 366352 0 0 12 972 442 928 1 1 55 44 0 1 1 0 738244 79148 366812 0 0 8 948 549 1126 2 2 54 43 0 0 1 0 737624 79312 367188 0 0 12 996 456 953 2 2 54 43 0 0 1 0 736880 79456 367660 0 0 12 960 444 918 1 1 53 46 0 0 1 0 736260 79584 368124 0 0 8 884 414 921 1 1 54 44 0 0 1 0 735648 79716 368488 0 0 12 976 450 955 2 1 56 41 0 0 1 0 733104 79840 368988 0 0 12 932 453 918 1 2 55 43 0 0 1 0 732608 79996 369356 0 0 16 916 444 889 1 2 54 43 0 1 1 0 731476 80128 369800 0 0 16 852 514 978 2 2 54 43 0 0 1 0 731244 80252 370200 0 0 8 904 398 870 2 1 55 43 0 1 1 0 730624 80384 370612 0 0 12 1032 447 977 1 2 57 41 0 0 1 0 730004 80524 371096 0 0 12 984 469 941 2 2 52 45 0 0 1 0 729508 80636 371544 0 0 12 928 438 922 2 1 52 46 0 0 1 0 728888 80756 371948 0 0 16 972 439 943 2 1 55 43 0 0 1 0 726468 80900 372272 0 0 8 960 545 1024 2 1 54 43 0 1 1 0 726344 81024 372272 0 0 8 464 490 1057 1 2 53 44 0 0 1 0 726096 81148 372276 0 0 4 328 441 1063 2 1 53 45 0 1 1 0 726096 81256 372292 0 0 0 296 387 975 1 1 53 45 0 0 1 0 725848 81380 372284 0 0 4 332 425 1034 2 1 54 44 0 1 1 0 725848 81496 372300 0 0 4 308 386 992 2 1 54 43 0 0 1 0 725600 81616 372296 0 0 4 328 404 1060 1 1 54 44 0 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 1 0 725600 81732 372296 0 0 4 328 439 1011 1 1 53 44 0 0 1 0 725476 81848 372308 0 0 0 316 441 1023 2 2 52 46 0 1 1 0 725352 81972 372300 0 0 4 344 451 1021 1 1 55 43 0 2 1 0 725228 82088 372320 0 0 0 328 427 1058 1 1 54 44 0 1 1 0 724980 82220 372300 0 0 4 336 419 999 2 1 54 44 0 1 1 0 724980 82328 372320 0 0 4 320 430 1019 1 1 54 44 0 1 1 0 724732 82436 372328 0 0 0 388 363 942 2 1 54 44 0 1 1 0 724608 82560 372312 0 0 4 308 419 993 1 2 54 44 0 1 0 0 724360 82684 372320 0 0 0 304 421 1028 2 1 55 42 0 1 0 0 724360 82684 372388 0 0 0 0 158 416 2 1 98 0 0 1 1 0 724236 82720 372360 0 0 0 6464 243 855 3 2 84 12 0 1 0 0 724112 82748 372360 0 0 0 5356 266 895 3 1 84 12 0 2 1 0 724112 82764 372380 0 0 0 3052 221 511 2 2 93 4 0 1 0 0 724112 82796 372372 0 0 0 4548 325 1067 2 2 81 16 0 1 0 0 724112 82816 372368 0 0 0 3240 259 829 3 1 90 6 0 1 0 0 724112 82836 372380 0 0 0 3260 309 822 3 2 88 8 0 1 1 0 724112 82876 372364 0 0 0 4680 326 978 3 1 77 19 0 1 0 0 724112 82884 372380 0 0 0 512 207 508 2 1 95 2 0 1 0 0 724112 82884 372388 0 0 0 0 138 361 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 158 397 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 146 395 2 1 98 0 0 2 0 0 724112 82884 372388 0 0 0 0 160 395 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 163 382 1 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 176 422 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 134 351 2 1 98 0 0 0 0 0 724112 82884 372388 0 0 0 0 190 429 2 1 97 0 0 0 0 0 724104 82884 372392 0 0 0 0 139 358 2 1 98 0 0 0 0 0 724848 82884 372392 0 0 0 4 211 432 2 1 97 0 0 1 0 0 724980 82884 372392 0 0 0 0 166 370 2 1 98 0 0 0 0 0 724980 82884 372392 0 0 0 0 164 397 2 1 98 0 0 ^C [root@localhost ~]# Database size mysql> SELECT table_schema "Data Base Name", sum( data_length + index_length ) / 1024 / 1024 "Data Base Size in MB", sum( data_free )/ 1024 / 1024 "Free Space in MB" FROM information_schema.TABLES GROUP BY table_schema; +--------------------+----------------------+------------------+ | Data Base Name | Data Base Size in MB | Free Space in MB | +--------------------+----------------------+------------------+ | bidjunction | 4.68750000 | 0.00000000 | | information_schema | 0.00976563 | 0.00000000 | | mysql | 0.63899899 | 0.00105286 | +--------------------+----------------------+------------------+ 3 rows in set (0.01 sec) mysql> Before Query mysql> SHOW SESSION STATUS like '%Tmp%'; +-------------------------+-------+ | Variable_name | Value | +-------------------------+-------+ | Created_tmp_disk_tables | 0 | | Created_tmp_files | 6 | | Created_tmp_tables | 0 | +-------------------------+-------+ 3 rows in set (0.00 sec) mysql> After Query mysql> SHOW SESSION STATUS like '%Tmp%'; +-------------------------+-------+ | Variable_name | Value | +-------------------------+-------+ | Created_tmp_disk_tables | 0 | | Created_tmp_files | 6 | | Created_tmp_tables | 2 | +-------------------------+-------+ 3 rows in set (0.00 sec) mysql>

    Read the article

< Previous Page | 27 28 29 30 31 32 33  | Next Page >