Search Results

Search found 763 results on 31 pages for 'casting'.

Page 31/31 | < Previous Page | 27 28 29 30 31 

  • How to Access a descendant object's internal method in C#

    - by Giovanni Galbo
    I'm trying to access a method that is marked as internal in the parent class (in its own assembly) in an object that inherits from the same parent. Let me explain what I'm trying to do... I want to create Service classes that return IEnumberable with an underlying List to non-Service classes (e.g. the UI) and optionally return an IEnumerable with an underlying IQueryable to other services. I wrote some sample code to demonstrate what I'm trying to accomplish, shown below. The example is not real life, so please remember that when commenting. All services would inherit from something like this (only relevant code shown): public class ServiceBase<T> { protected readonly ObjectContext _context; protected string _setName = String.Empty; public ServiceBase(ObjectContext context) { _context = context; } public IEnumerable<T> GetAll() { return GetAll(false); } //These are not the correct access modifiers.. I want something //that is accessible to children classes AND between descendant classes internal protected IEnumerable<T> GetAll(bool returnQueryable) { var query = _context.CreateQuery<T>(GetSetName()); if(returnQueryable) { return query; } else { return query.ToList(); } } private string GetSetName() { //Some code... return _setName; } } Inherited services would look like this: public class EmployeeService : ServiceBase<Employees> { public EmployeeService(ObjectContext context) : base(context) { } } public class DepartmentService : ServiceBase<Departments> { private readonly EmployeeService _employeeService; public DepartmentService(ObjectContext context, EmployeeService employeeService) : base(context) { _employeeService = employeeService; } public IList<Departments> DoSomethingWithEmployees(string lastName) { //won't work because method with this signature is not visible to this class var emps = _employeeService.GetAll(true); //more code... } } Because the parent class lives is reusable, it would live in a different assembly than the child services. With GetAll(bool returnQueryable) being marked internal, the children would not be able to see each other's GetAll(bool) method, just the public GetAll() method. I know that I can add a new internal GetAll method to each service (or perhaps an intermediary parent class within the same assembly) so that each child service within the assembly can see each other's method; but it seems unnecessary since the functionality is already available in the parent class. For example: internal IEnumerable<Employees> GetAll(bool returnIQueryable) { return base.GetAll(returnIQueryable); } Essentially what I want is for services to be able to access other service methods as IQueryable so that they can further refine the uncommitted results, while everyone else gets plain old lists. Any ideas? EDIT You know what, I had some fun playing a little code golf with this... but ultimately I wouldn't be able to use this scheme anyway because I pass interfaces around, not classes. So in my example GetAll(bool returnIQueryable) would not be in the interface, meaning I'd have to do casting, which goes against what I'm trying to accomplish. I'm not sure if I had a brain fart or if I was just too excited trying to get something that I thought was neat to work. Either way, thanks for the responses.

    Read the article

  • Android: Use XML Layout for List Cell rather than Java Code Layout (Widgets)

    - by Stephen Finucane
    Hi, I'm in the process of making a music app and I'm currently working on the library functionality. I'm having some problems, however, in working with a list view (In particular, the cells). I'm trying to move from a simple textview layout in each cell that's created within java to one that uses an XML file for layout (Hence keeping the Java file mostly semantic) This is my original code for the cell layout: public View getView(int position, View convertView, ViewGroup parent) { String id = null; TextView tv = new TextView(mContext.getApplicationContext()); if (convertView == null) { music_column_index = musiccursor.getColumnIndexOrThrow(MediaStore.Audio.Media.TITLE); musiccursor.moveToPosition(position); id = musiccursor.getString(music_column_index); music_column_index = musiccursor.getColumnIndexOrThrow(MediaStore.Audio.Media.DISPLAY_NAME); musiccursor.moveToPosition(position); id += "\n" + musiccursor.getString(music_column_index); music_column_index = musiccursor.getColumnIndexOrThrow(MediaStore.Audio.Albums.ALBUM); musiccursor.moveToPosition(position); id += "\n" + musiccursor.getString(music_column_index); tv.setText(id); } else tv = (TextView) convertView; return tv; } And my new version: public View getView(int position, View convertView, ViewGroup parent) { View cellLayout = findViewById(R.id.albums_list_cell); ImageView album_art = (ImageView) findViewById(R.id.album_cover); TextView album_title = (TextView) findViewById(R.id.album_title); TextView artist_title = (TextView) findViewById(R.id.artist_title); if (convertView == null) { music_column_index = musiccursor.getColumnIndexOrThrow(MediaStore.Audio.Albums.ALBUM); musiccursor.moveToPosition(position); album_title.setText(musiccursor.getString(music_column_index)); //music_column_index = musiccursor.getColumnIndexOrThrow(MediaStore.Audio.Media.DISPLAY_NAME); //musiccursor.moveToPosition(position); music_column_index = musiccursor.getColumnIndexOrThrow(MediaStore.Audio.Media.TITLE); musiccursor.moveToPosition(position); artist_title.setText(musiccursor.getString(music_column_index)); } else{ cellLayout = (TextView) convertView; } return cellLayout; } The initialisation (done in the on create file): musiclist = (ListView) findViewById(R.id.PhoneMusicList); musiclist.setAdapter(new MusicAdapter(this)); musiclist.setOnItemClickListener(musicgridlistener); And the respective XML files: (main) <?xml version="1.0" encoding="utf-8"?> <LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical" android:layout_width="fill_parent" android:layout_height="fill_parent"> <ListView android:id="@+id/PhoneMusicList" android:layout_width="fill_parent" android:layout_height="fill_parent" /> <TextView android:id="@android:id/empty" android:layout_width="wrap_content" android:layout_height="0dip" android:layout_weight="1.0" android:text="@string/no_list_data" /> </LinearLayout> (albums_list_cell) <?xml version="1.0" encoding="utf-8"?> <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" android:id="@+id/albums_list_cell" android:layout_width="wrap_content" android:layout_height="wrap_content"> <ImageView android:id="@+id/album_cover" android:layout_alignParentLeft="true" android:layout_alignParentTop="true" android:layout_width="50dip" android:layout_height="50dip" /> <TextView android:id="@+id/album_title" android:layout_toRightOf="@+id/album_cover" android:layout_alignParentTop="true" android:layout_width="wrap_content" android:layout_height="wrap_content" /> <TextView android:id="@+id/artist_title" android:layout_toRightOf="@+id/album_cover" android:layout_below="@+id/album_title" android:layout_width="wrap_content" android:layout_height="15dip" /> </RelativeLayout> In theory (based on the tiny bit of Android I've done so far) this should work..it doesn't though. Logcat gives me a null pointer exception at line 96 of the faulty code, which is the album_title.setText line. It could be a problem with my casting but Google tells me this is ok :D Thanks for any help and let me know if you need more info!

    Read the article

  • A rocket following the tracks height. Not Homing Missile.

    - by confusedEj
    What I am trying to create is a rocket that will hug the track in a straight direction. ie) The rocket travels in a straight direction and can orientate based on its local x axis. This is so it can go up/down ramps and never hit the ground. Currently I am using PhysX opengl and C++. This is the method I'm trying right now: 1. Ray cast from ahead of the missile (ray casting downwards) 2. If the ray cast is less then the expected ray cast length, then I have to orientate up. 3. If the ray cast is more then the expected ray cast length, then I have to orientate down. Now the problem, I am having is that my missile is orientating at an arbitary angle (I'm giving it 1 degrees.) Though I think this is a bad approach because the amount of frames in the game is not as much as I would think there would be. So the rocket would run into a ramp. My main question is: is there a better way of approaching this and how? NxVec3 frontRayLoc = m_rocketConfig->getValueForKey<NxVec3>("r_frontRayCastLocation"); float threshhold = m_rocketConfig->getValueForKey<float>("r_angleThreshhold"); float predRayCastHeight = m_rocketConfig->getValueForKey<float>("r_predRayCastHeight"); NxVec3 rayGlobalPos_1 = m_actor->getGlobalPosition() + m_actor->getGlobalOrientation() * frontRayLoc; NxVec3 dir = m_actor->getGlobalOrientation() * NxVec3(0,-1.0,0); NxReal dist1 = castRay(rayGlobalPos_1, dir); // Get the percentage difference float actualFrontHeight = abs(1 - (dist1/predRayCastHeight)); // See if the percentage difference is greater then threshold // Also check if we are being shot off track if ((actualFrontHeight > threshhold) && (dist1 != m_rayMaxDist)){ // Dip Down if (dist1 > predRayCastHeight){ printf("DOWN - Distance 1: %f\n", dist1); // Get axis of rotation NxVec3 newAxis = m_actor->getGlobalOrientation() * NxVec3(1.0,0,0.0); // Rotate based on that axis m_orientateAngle = -1.0 * m_orientateAngle; // For rotating clockwise NxQuat newOrientation(m_orientateAngle, newAxis); NxMat33 orientation(newOrientation); m_orientation = m_orientation * orientation; // Orientate the linear velocity to keep speed of rocket and direct away from road NxVec3 linVel = m_actor->getLinearVelocity(); m_actor->setLinearVelocity(m_orientation * linVel); } // Go Up else if (dist1 < predRayCastHeight){ printf("UP - Distance 1: %f\n", dist1); // Get axis of rotation NxVec3 newAxis = m_actor->getGlobalOrientation() * NxVec3(1.0,0,0.0); // Rotate around axis NxQuat newOrientation(m_orientateAngle, newAxis); m_actor->setGlobalOrientationQuat(newOrientation); NxMat33 orientation(newOrientation); m_orientation = m_orientation * orientation; // Orientate the linear velocity to keep speed of rocket and direct away from road NxVec3 linVel = m_actor->getLinearVelocity(); m_actor->setLinearVelocity(m_orientation*linVel); } m_actor->setGlobalOrientation(m_orientation); } Thanks for the support :)

    Read the article

  • How do I solve "Two different CRTLDLLs are loaded" when using packages in C++ Builder 2010?

    - by David M
    Hi, We are trying to split up our monolithic EXE into a combination of an EXE and several packages. So far, we have one package that we're trying to use, and when running the EXE Codeguard shows the following error on startup: CG Error Two different CRTLDLLs are loaded. CG might report false errors (C:\Windows\system32\CC32100MT.DLL) (D:\Projects\Foo\Bar.bpl) OK I read this as two different runtime libraries being loaded - one, the correct one (CC32100MT.dll), one incorrect, which is the package we're trying to use. Continuing to run the program shows odd errors, especially casting between classes or passing a pointer to a class as a parameter in a method that crosses the EXE/DLL boundary. Codeguard itself doesn't show any other errors at all though. How do we solve this? Some more details We've looked at as many things as we (the developer working on this and I) can collectively think of: Each project is built using runtime packages. The EXE host lists Bar in its package list. Each project is set to compile with dynamic RTL. However, changing this does not solve the problem. The package is linked to the EXE via its BPI file, but linking via a LIB makes no difference either. The EXE and BPL are compiled with the same project settings, where the same options exist for both types of project. We think, anyway :) There is only one copy of the BPL and BPI on the system: it's definitely linking to the right one. Examining the EXE and BPL with Depends and TDump show they are both using C:\Windows\system32\CC32100MT.DLL. They should both be using the one RTL. Creating a new project (a plain VCL forms application) and linking to the BPL (via its BPI) works fine. Something in the process of adding all the files and LIBs that make our EXE contain the code it needs to changes this, but we haven't been able to figure out what. The LIBs all either correspond to DLLs we use (flat C interface, usually look as though they were built with MSVC) or are simple projects with lots of related files, compiled to a lib for the purpose of linking into the EXE - these correspond roughly to the areas of the program we want to split to BPLs, by the way. There don't seem to be project options for the LIB projects that would affect RTL linking, unless we've missed them. I have exhaustively hunted through Depends and looked at all RTL and CC32*.dll files the EXE and every single DLL references. All are identical: rtl140.bpl and CC32100MT.DLL. Fully qualified paths show they are the same files, too. Everything should be using the one same run-time library. We're stumped. Absolutely stumped. We've had other problems using BPLs (they seem to be surprisingly tricky things, especially using C++) but have managed to solve them all. This one we've had no luck at all and we'd really appreciate any insights :) We're using C++Builder 2010 (as part of RAD Studio actually, but with little Delphi code apart from components.)

    Read the article

  • CFStrings and storing them into models, related topics

    - by Jasconius
    I have a very frustrating issue that I believe involves CFStringRef and passing them along to custom model properties. The code is pretty messy right now as I am in a debug state, but I will try to describe the problem in words as best as I can. I have a custom model, User, which for irrelevant reasons, I am storing CF types derived from the Address Book API into. Examples include: Name, email as NSStrings. I am simply retrieving the CFStringRef value from the AddressBook API and casting as a string, whereupon I assign to the custom model instance and then CFRelease the string. These NSString properties are set as (nonatomic, retain). I then store this model into an NSArray, and I use this Array as a datasource for a UITableView When accessing the object in the cellForRowAtIndexPath, I get a memory access error. When I do a Debug, I see that the value for this datasource array appears at first glance to be corrupted. I've seen strange values assigned to it, including just plain strings, such as one that I fed to an NSLog function in earlier in the method. So, the thing that leads me to believe that this is Core Foundation related is that I am executing this exact same code, in the same class even, on non-Address Book data, in fact, just good old JSON parsed strings, which produce true Cocoa NSStrings, that I follow the same exact steps to create the datasource array. This code works fine. I have a feeling that my (retain) property declaration and/or my [stringVar release] in my custom model dealloc method may be causing memory problems (since it is my understanding that you shouldn't call a Cocoa retain or release on a CF object). Here is the code. I know some of this is super-roundabout but I was trying to make things as explicit as possible for the sake of debugging. NSMutableArray *friendUsers = [[NSMutableArray alloc] init]; int numberOfPeople = CFArrayGetCount(people); for (int i = 0; i < numberOfPeople; i++) { ABMutableMultiValueRef emails = ABRecordCopyValue(CFArrayGetValueAtIndex(people, i), kABPersonEmailProperty); if (ABMultiValueGetCount(emails) > 0) { User *addressContact = [[User alloc] init]; NSString *firstName = (NSString *)ABRecordCopyValue(CFArrayGetValueAtIndex(people, i), kABPersonFirstNameProperty); NSString *lastName = (NSString *)ABRecordCopyValue(CFArrayGetValueAtIndex(people, i), kABPersonLastNameProperty); NSLog(@"%@ and %@", firstName, lastName); NSString *fullName = [NSString stringWithFormat:@"%@ %@", firstName, lastName]; NSString *email = [NSString stringWithFormat:@"%@", (NSString *)ABMultiValueCopyValueAtIndex(emails, 0)]; NSLog(@"the email: %@", email); [addressContact setName:fullName]; [addressContact setEmail:email]; [friendUsers addObject:addressContact]; [firstName release]; [lastName release]; [email release]; [addressContact release]; } CFRelease(emails); } NSLog(@"friend count: %d", [friendUsers count]); abFriends = [NSArray arrayWithArray:friendUsers]; [friendUsers release]; All of that works, every logging statement returns as expected. But when I use abFriends as a datasource, poof. Dead. Is my approach all wrong? Any advice?

    Read the article

  • Using JSON.NET for dynamic JSON parsing

    - by Rick Strahl
    With the release of ASP.NET Web API as part of .NET 4.5 and MVC 4.0, JSON.NET has effectively pushed out the .NET native serializers to become the default serializer for Web API. JSON.NET is vastly more flexible than the built in DataContractJsonSerializer or the older JavaScript serializer. The DataContractSerializer in particular has been very problematic in the past because it can't deal with untyped objects for serialization - like values of type object, or anonymous types which are quite common these days. The JavaScript Serializer that came before it actually does support non-typed objects for serialization but it can't do anything with untyped data coming in from JavaScript and it's overall model of extensibility was pretty limited (JavaScript Serializer is what MVC uses for JSON responses). JSON.NET provides a robust JSON serializer that has both high level and low level components, supports binary JSON, JSON contracts, Xml to JSON conversion, LINQ to JSON and many, many more features than either of the built in serializers. ASP.NET Web API now uses JSON.NET as its default serializer and is now pulled in as a NuGet dependency into Web API projects, which is great. Dynamic JSON Parsing One of the features that I think is getting ever more important is the ability to serialize and deserialize arbitrary JSON content dynamically - that is without mapping the JSON captured directly into a .NET type as DataContractSerializer or the JavaScript Serializers do. Sometimes it isn't possible to map types due to the differences in languages (think collections, dictionaries etc), and other times you simply don't have the structures in place or don't want to create them to actually import the data. If this topic sounds familiar - you're right! I wrote about dynamic JSON parsing a few months back before JSON.NET was added to Web API and when Web API and the System.Net HttpClient libraries included the System.Json classes like JsonObject and JsonArray. With the inclusion of JSON.NET in Web API these classes are now obsolete and didn't ship with Web API or the client libraries. I re-linked my original post to this one. In this post I'll discus JToken, JObject and JArray which are the dynamic JSON objects that make it very easy to create and retrieve JSON content on the fly without underlying types. Why Dynamic JSON? So, why Dynamic JSON parsing rather than strongly typed parsing? Since applications are interacting more and more with third party services it becomes ever more important to have easy access to those services with easy JSON parsing. Sometimes it just makes lot of sense to pull just a small amount of data out of large JSON document received from a service, because the third party service isn't directly related to your application's logic most of the time - and it makes little sense to map the entire service structure in your application. For example, recently I worked with the Google Maps Places API to return information about businesses close to me (or rather the app's) location. The Google API returns a ton of information that my application had no interest in - all I needed was few values out of the data. Dynamic JSON parsing makes it possible to map this data, without having to map the entire API to a C# data structure. Instead I could pull out the three or four values I needed from the API and directly store it on my business entities that needed to receive the data - no need to map the entire Maps API structure. Getting JSON.NET The easiest way to use JSON.NET is to grab it via NuGet and add it as a reference to your project. You can add it to your project with: PM> Install-Package Newtonsoft.Json From the Package Manager Console or by using Manage NuGet Packages in your project References. As mentioned if you're using ASP.NET Web API or MVC 4 JSON.NET will be automatically added to your project. Alternately you can also go to the CodePlex site and download the latest version including source code: http://json.codeplex.com/ Creating JSON on the fly with JObject and JArray Let's start with creating some JSON on the fly. It's super easy to create a dynamic object structure with any of the JToken derived JSON.NET objects. The most common JToken derived classes you are likely to use are JObject and JArray. JToken implements IDynamicMetaProvider and so uses the dynamic  keyword extensively to make it intuitive to create object structures and turn them into JSON via dynamic object syntax. Here's an example of creating a music album structure with child songs using JObject for the base object and songs and JArray for the actual collection of songs:[TestMethod] public void JObjectOutputTest() { // strong typed instance var jsonObject = new JObject(); // you can explicitly add values here using class interface jsonObject.Add("Entered", DateTime.Now); // or cast to dynamic to dynamically add/read properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; album.Artist = "AC/DC"; album.YearReleased = 1976; album.Songs = new JArray() as dynamic; dynamic song = new JObject(); song.SongName = "Dirty Deeds Done Dirt Cheap"; song.SongLength = "4:11"; album.Songs.Add(song); song = new JObject(); song.SongName = "Love at First Feel"; song.SongLength = "3:10"; album.Songs.Add(song); Console.WriteLine(album.ToString()); } This produces a complete JSON structure: { "Entered": "2012-08-18T13:26:37.7137482-10:00", "AlbumName": "Dirty Deeds Done Dirt Cheap", "Artist": "AC/DC", "YearReleased": 1976, "Songs": [ { "SongName": "Dirty Deeds Done Dirt Cheap", "SongLength": "4:11" }, { "SongName": "Love at First Feel", "SongLength": "3:10" } ] } Notice that JSON.NET does a nice job formatting the JSON, so it's easy to read and paste into blog posts :-). JSON.NET includes a bunch of configuration options that control how JSON is generated. Typically the defaults are just fine, but you can override with the JsonSettings object for most operations. The important thing about this code is that there's no explicit type used for holding the values to serialize to JSON. Rather the JSON.NET objects are the containers that receive the data as I build up my JSON structure dynamically, simply by adding properties. This means this code can be entirely driven at runtime without compile time restraints of structure for the JSON output. Here I use JObject to create a album 'object' and immediately cast it to dynamic. JObject() is kind of similar in behavior to ExpandoObject in that it allows you to add properties by simply assigning to them. Internally, JObject values are stored in pseudo collections of key value pairs that are exposed as properties through the IDynamicMetaObject interface exposed in JSON.NET's JToken base class. For objects the syntax is very clean - you add simple typed values as properties. For objects and arrays you have to explicitly create new JObject or JArray, cast them to dynamic and then add properties and items to them. Always remember though these values are dynamic - which means no Intellisense and no compiler type checking. It's up to you to ensure that the names and values you create are accessed consistently and without typos in your code. Note that you can also access the JObject instance directly (not as dynamic) and get access to the underlying JObject type. This means you can assign properties by string, which can be useful for fully data driven JSON generation from other structures. Below you can see both styles of access next to each other:// strong type instance var jsonObject = new JObject(); // you can explicitly add values here jsonObject.Add("Entered", DateTime.Now); // expando style instance you can just 'use' properties dynamic album = jsonObject; album.AlbumName = "Dirty Deeds Done Dirt Cheap"; JContainer (the base class for JObject and JArray) is a collection so you can also iterate over the properties at runtime easily:foreach (var item in jsonObject) { Console.WriteLine(item.Key + " " + item.Value.ToString()); } The functionality of the JSON objects are very similar to .NET's ExpandObject and if you used it before, you're already familiar with how the dynamic interfaces to the JSON objects works. Importing JSON with JObject.Parse() and JArray.Parse() The JValue structure supports importing JSON via the Parse() and Load() methods which can read JSON data from a string or various streams respectively. Essentially JValue includes the core JSON parsing to turn a JSON string into a collection of JsonValue objects that can be then referenced using familiar dynamic object syntax. Here's a simple example:public void JValueParsingTest() { var jsonString = @"{""Name"":""Rick"",""Company"":""West Wind"", ""Entered"":""2012-03-16T00:03:33.245-10:00""}"; dynamic json = JValue.Parse(jsonString); // values require casting string name = json.Name; string company = json.Company; DateTime entered = json.Entered; Assert.AreEqual(name, "Rick"); Assert.AreEqual(company, "West Wind"); } The JSON string represents an object with three properties which is parsed into a JObject class and cast to dynamic. Once cast to dynamic I can then go ahead and access the object using familiar object syntax. Note that the actual values - json.Name, json.Company, json.Entered - are actually of type JToken and I have to cast them to their appropriate types first before I can do type comparisons as in the Asserts at the end of the test method. This is required because of the way that dynamic types work which can't determine the type based on the method signature of the Assert.AreEqual(object,object) method. I have to either assign the dynamic value to a variable as I did above, or explicitly cast ( (string) json.Name) in the actual method call. The JSON structure can be much more complex than this simple example. Here's another example of an array of albums serialized to JSON and then parsed through with JsonValue():[TestMethod] public void JsonArrayParsingTest() { var jsonString = @"[ { ""Id"": ""b3ec4e5c"", ""AlbumName"": ""Dirty Deeds Done Dirt Cheap"", ""Artist"": ""AC/DC"", ""YearReleased"": 1976, ""Entered"": ""2012-03-16T00:13:12.2810521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/61kTaH-uZBL._AA115_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/gp/product/…ASIN=B00008BXJ4"", ""Songs"": [ { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Dirty Deeds Done Dirt Cheap"", ""SongLength"": ""4:11"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Love at First Feel"", ""SongLength"": ""3:10"" }, { ""AlbumId"": ""b3ec4e5c"", ""SongName"": ""Big Balls"", ""SongLength"": ""2:38"" } ] }, { ""Id"": ""7b919432"", ""AlbumName"": ""End of the Silence"", ""Artist"": ""Henry Rollins Band"", ""YearReleased"": 1992, ""Entered"": ""2012-03-16T00:13:12.2800521-10:00"", ""AlbumImageUrl"": ""http://ecx.images-amazon.com/images/I/51FO3rb1tuL._SL160_AA160_.jpg"", ""AmazonUrl"": ""http://www.amazon.com/End-Silence-Rollins-Band/dp/B0000040OX/ref=sr_1_5?ie=UTF8&qid=1302232195&sr=8-5"", ""Songs"": [ { ""AlbumId"": ""7b919432"", ""SongName"": ""Low Self Opinion"", ""SongLength"": ""5:24"" }, { ""AlbumId"": ""7b919432"", ""SongName"": ""Grip"", ""SongLength"": ""4:51"" } ] } ]"; JArray jsonVal = JArray.Parse(jsonString) as JArray; dynamic albums = jsonVal; foreach (dynamic album in albums) { Console.WriteLine(album.AlbumName + " (" + album.YearReleased.ToString() + ")"); foreach (dynamic song in album.Songs) { Console.WriteLine("\t" + song.SongName); } } Console.WriteLine(albums[0].AlbumName); Console.WriteLine(albums[0].Songs[1].SongName); } JObject and JArray in ASP.NET Web API Of course these types also work in ASP.NET Web API controller methods. If you want you can accept parameters using these object or return them back to the server. The following contrived example receives dynamic JSON input, and then creates a new dynamic JSON object and returns it based on data from the first:[HttpPost] public JObject PostAlbumJObject(JObject jAlbum) { // dynamic input from inbound JSON dynamic album = jAlbum; // create a new JSON object to write out dynamic newAlbum = new JObject(); // Create properties on the new instance // with values from the first newAlbum.AlbumName = album.AlbumName + " New"; newAlbum.NewProperty = "something new"; newAlbum.Songs = new JArray(); foreach (dynamic song in album.Songs) { song.SongName = song.SongName + " New"; newAlbum.Songs.Add(song); } return newAlbum; } The raw POST request to the server looks something like this: POST http://localhost/aspnetwebapi/samples/PostAlbumJObject HTTP/1.1User-Agent: FiddlerContent-type: application/jsonHost: localhostContent-Length: 88 {AlbumName: "Dirty Deeds",Songs:[ { SongName: "Problem Child"},{ SongName: "Squealer"}]} and the output that comes back looks like this: {  "AlbumName": "Dirty Deeds New",  "NewProperty": "something new",  "Songs": [    {      "SongName": "Problem Child New"    },    {      "SongName": "Squealer New"    }  ]} The original values are echoed back with something extra appended to demonstrate that we're working with a new object. When you receive or return a JObject, JValue, JToken or JArray instance in a Web API method, Web API ignores normal content negotiation and assumes your content is going to be received and returned as JSON, so effectively the parameter and result type explicitly determines the input and output format which is nice. Dynamic to Strong Type Mapping You can also map JObject and JArray instances to a strongly typed object, so you can mix dynamic and static typing in the same piece of code. Using the 2 Album jsonString shown earlier, the code below takes an array of albums and picks out only a single album and casts that album to a static Album instance.[TestMethod] public void JsonParseToStrongTypeTest() { JArray albums = JArray.Parse(jsonString) as JArray; // pick out one album JObject jalbum = albums[0] as JObject; // Copy to a static Album instance Album album = jalbum.ToObject<Album>(); Assert.IsNotNull(album); Assert.AreEqual(album.AlbumName,jalbum.Value<string>("AlbumName")); Assert.IsTrue(album.Songs.Count > 0); } This is pretty damn useful for the scenario I mentioned earlier - you can read a large chunk of JSON and dynamically walk the property hierarchy down to the item you want to access, and then either access the specific item dynamically (as shown earlier) or map a part of the JSON to a strongly typed object. That's very powerful if you think about it - it leaves you in total control to decide what's dynamic and what's static. Strongly typed JSON Parsing With all this talk of dynamic let's not forget that JSON.NET of course also does strongly typed serialization which is drop dead easy. Here's a simple example on how to serialize and deserialize an object with JSON.NET:[TestMethod] public void StronglyTypedSerializationTest() { // Demonstrate deserialization from a raw string var album = new Album() { AlbumName = "Dirty Deeds Done Dirt Cheap", Artist = "AC/DC", Entered = DateTime.Now, YearReleased = 1976, Songs = new List<Song>() { new Song() { SongName = "Dirty Deeds Done Dirt Cheap", SongLength = "4:11" }, new Song() { SongName = "Love at First Feel", SongLength = "3:10" } } }; // serialize to string string json2 = JsonConvert.SerializeObject(album,Formatting.Indented); Console.WriteLine(json2); // make sure we can serialize back var album2 = JsonConvert.DeserializeObject<Album>(json2); Assert.IsNotNull(album2); Assert.IsTrue(album2.AlbumName == "Dirty Deeds Done Dirt Cheap"); Assert.IsTrue(album2.Songs.Count == 2); } JsonConvert is a high level static class that wraps lower level functionality, but you can also use the JsonSerializer class, which allows you to serialize/parse to and from streams. It's a little more work, but gives you a bit more control. The functionality available is easy to discover with Intellisense, and that's good because there's not a lot in the way of documentation that's actually useful. Summary JSON.NET is a pretty complete JSON implementation with lots of different choices for JSON parsing from dynamic parsing to static serialization, to complex querying of JSON objects using LINQ. It's good to see this open source library getting integrated into .NET, and pushing out the old and tired stock .NET parsers so that we finally have a bit more flexibility - and extensibility - in our JSON parsing. Good to go! Resources Sample Test Project http://json.codeplex.com/© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  Web Api  AJAX   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • C#/.NET Little Wonders: The Joy of Anonymous Types

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. In the .NET 3 Framework, Microsoft introduced the concept of anonymous types, which provide a way to create a quick, compiler-generated types at the point of instantiation.  These may seem trivial, but are very handy for concisely creating lightweight, strongly-typed objects containing only read-only properties that can be used within a given scope. Creating an Anonymous Type In short, an anonymous type is a reference type that derives directly from object and is defined by its set of properties base on their names, number, types, and order given at initialization.  In addition to just holding these properties, it is also given appropriate overridden implementations for Equals() and GetHashCode() that take into account all of the properties to correctly perform property comparisons and hashing.  Also overridden is an implementation of ToString() which makes it easy to display the contents of an anonymous type instance in a fairly concise manner. To construct an anonymous type instance, you use basically the same initialization syntax as with a regular type.  So, for example, if we wanted to create an anonymous type to represent a particular point, we could do this: 1: var point = new { X = 13, Y = 7 }; Note the similarity between anonymous type initialization and regular initialization.  The main difference is that the compiler generates the type name and the properties (as readonly) based on the names and order provided, and inferring their types from the expressions they are assigned to. It is key to remember that all of those factors (number, names, types, order of properties) determine the anonymous type.  This is important, because while these two instances share the same anonymous type: 1: // same names, types, and order 2: var point1 = new { X = 13, Y = 7 }; 3: var point2 = new { X = 5, Y = 0 }; These similar ones do not: 1: var point3 = new { Y = 3, X = 5 }; // different order 2: var point4 = new { X = 3, Y = 5.0 }; // different type for Y 3: var point5 = new {MyX = 3, MyY = 5 }; // different names 4: var point6 = new { X = 1, Y = 2, Z = 3 }; // different count Limitations on Property Initialization Expressions The expression for a property in an anonymous type initialization cannot be null (though it can evaluate to null) or an anonymous function.  For example, the following are illegal: 1: // Null can't be used directly. Null reference of what type? 2: var cantUseNull = new { Value = null }; 3:  4: // Anonymous methods cannot be used. 5: var cantUseAnonymousFxn = new { Value = () => Console.WriteLine(“Can’t.”) }; Note that the restriction on null is just that you can’t use it directly as the expression, because otherwise how would it be able to determine the type?  You can, however, use it indirectly assigning a null expression such as a typed variable with the value null, or by casting null to a specific type: 1: string str = null; 2: var fineIndirectly = new { Value = str }; 3: var fineCast = new { Value = (string)null }; All of the examples above name the properties explicitly, but you can also implicitly name properties if they are being set from a property, field, or variable.  In these cases, when a field, property, or variable is used alone, and you don’t specify a property name assigned to it, the new property will have the same name.  For example: 1: int variable = 42; 2:  3: // creates two properties named varriable and Now 4: var implicitProperties = new { variable, DateTime.Now }; Is the same type as: 1: var explicitProperties = new { variable = variable, Now = DateTime.Now }; But this only works if you are using an existing field, variable, or property directly as the expression.  If you use a more complex expression then the name cannot be inferred: 1: // can't infer the name variable from variable * 2, must name explicitly 2: var wontWork = new { variable * 2, DateTime.Now }; In the example above, since we typed variable * 2, it is no longer just a variable and thus we would have to assign the property a name explicitly. ToString() on Anonymous Types One of the more trivial overrides that an anonymous type provides you is a ToString() method that prints the value of the anonymous type instance in much the same format as it was initialized (except actual values instead of expressions as appropriate of course). For example, if you had: 1: var point = new { X = 13, Y = 42 }; And then print it out: 1: Console.WriteLine(point.ToString()); You will get: 1: { X = 13, Y = 42 } While this isn’t necessarily the most stunning feature of anonymous types, it can be handy for debugging or logging values in a fairly easy to read format. Comparing Anonymous Type Instances Because anonymous types automatically create appropriate overrides of Equals() and GetHashCode() based on the underlying properties, we can reliably compare two instances or get hash codes.  For example, if we had the following 3 points: 1: var point1 = new { X = 1, Y = 2 }; 2: var point2 = new { X = 1, Y = 2 }; 3: var point3 = new { Y = 2, X = 1 }; If we compare point1 and point2 we’ll see that Equals() returns true because they overridden version of Equals() sees that the types are the same (same number, names, types, and order of properties) and that the values are the same.   In addition, because all equal objects should have the same hash code, we’ll see that the hash codes evaluate to the same as well: 1: // true, same type, same values 2: Console.WriteLine(point1.Equals(point2)); 3:  4: // true, equal anonymous type instances always have same hash code 5: Console.WriteLine(point1.GetHashCode() == point2.GetHashCode()); However, if we compare point2 and point3 we get false.  Even though the names, types, and values of the properties are the same, the order is not, thus they are two different types and cannot be compared (and thus return false).  And, since they are not equal objects (even though they have the same value) there is a good chance their hash codes are different as well (though not guaranteed): 1: // false, different types 2: Console.WriteLine(point2.Equals(point3)); 3:  4: // quite possibly false (was false on my machine) 5: Console.WriteLine(point2.GetHashCode() == point3.GetHashCode()); Using Anonymous Types Now that we’ve created instances of anonymous types, let’s actually use them.  The property names (whether implicit or explicit) are used to access the individual properties of the anonymous type.  The main thing, once again, to keep in mind is that the properties are readonly, so you cannot assign the properties a new value (note: this does not mean that instances referred to by a property are immutable – for more information check out C#/.NET Fundamentals: Returning Data Immutably in a Mutable World). Thus, if we have the following anonymous type instance: 1: var point = new { X = 13, Y = 42 }; We can get the properties as you’d expect: 1: Console.WriteLine(“The point is: ({0},{1})”, point.X, point.Y); But we cannot alter the property values: 1: // compiler error, properties are readonly 2: point.X = 99; Further, since the anonymous type name is only known by the compiler, there is no easy way to pass anonymous type instances outside of a given scope.  The only real choices are to pass them as object or dynamic.  But really that is not the intention of using anonymous types.  If you find yourself needing to pass an anonymous type outside of a given scope, you should really consider making a POCO (Plain Old CLR Type – i.e. a class that contains just properties to hold data with little/no business logic) instead. Given that, why use them at all?  Couldn’t you always just create a POCO to represent every anonymous type you needed?  Sure you could, but then you might litter your solution with many small POCO classes that have very localized uses. It turns out this is the key to when to use anonymous types to your advantage: when you just need a lightweight type in a local context to store intermediate results, consider an anonymous type – but when that result is more long-lived and used outside of the current scope, consider a POCO instead. So what do we mean by intermediate results in a local context?  Well, a classic example would be filtering down results from a LINQ expression.  For example, let’s say we had a List<Transaction>, where Transaction is defined something like: 1: public class Transaction 2: { 3: public string UserId { get; set; } 4: public DateTime At { get; set; } 5: public decimal Amount { get; set; } 6: // … 7: } And let’s say we had this data in our List<Transaction>: 1: var transactions = new List<Transaction> 2: { 3: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = 2200.00m }, 4: new Transaction { UserId = "Jim", At = DateTime.Now, Amount = -1100.00m }, 5: new Transaction { UserId = "Jim", At = DateTime.Now.AddDays(-1), Amount = 900.00m }, 6: new Transaction { UserId = "John", At = DateTime.Now.AddDays(-2), Amount = 300.00m }, 7: new Transaction { UserId = "John", At = DateTime.Now, Amount = -10.00m }, 8: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = 200.00m }, 9: new Transaction { UserId = "Jane", At = DateTime.Now, Amount = -50.00m }, 10: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = -100.00m }, 11: new Transaction { UserId = "Jaime", At = DateTime.Now.AddDays(-3), Amount = 300.00m }, 12: }; So let’s say we wanted to get the transactions for each day for each user.  That is, for each day we’d want to see the transactions each user performed.  We could do this very simply with a nice LINQ expression, without the need of creating any POCOs: 1: // group the transactions based on an anonymous type with properties UserId and Date: 2: byUserAndDay = transactions 3: .GroupBy(tx => new { tx.UserId, tx.At.Date }) 4: .OrderBy(grp => grp.Key.Date) 5: .ThenBy(grp => grp.Key.UserId); Now, those of you who have attempted to use custom classes as a grouping type before (such as GroupBy(), Distinct(), etc.) may have discovered the hard way that LINQ gets a lot of its speed by utilizing not on Equals(), but also GetHashCode() on the type you are grouping by.  Thus, when you use custom types for these purposes, you generally end up having to write custom Equals() and GetHashCode() implementations or you won’t get the results you were expecting (the default implementations of Equals() and GetHashCode() are reference equality and reference identity based respectively). As we said before, it turns out that anonymous types already do these critical overrides for you.  This makes them even more convenient to use!  Instead of creating a small POCO to handle this grouping, and then having to implement a custom Equals() and GetHashCode() every time, we can just take advantage of the fact that anonymous types automatically override these methods with appropriate implementations that take into account the values of all of the properties. Now, we can look at our results: 1: foreach (var group in byUserAndDay) 2: { 3: // the group’s Key is an instance of our anonymous type 4: Console.WriteLine("{0} on {1:MM/dd/yyyy} did:", group.Key.UserId, group.Key.Date); 5:  6: // each grouping contains a sequence of the items. 7: foreach (var tx in group) 8: { 9: Console.WriteLine("\t{0}", tx.Amount); 10: } 11: } And see: 1: Jaime on 06/18/2012 did: 2: -100.00 3: 300.00 4:  5: John on 06/19/2012 did: 6: 300.00 7:  8: Jim on 06/20/2012 did: 9: 900.00 10:  11: Jane on 06/21/2012 did: 12: 200.00 13: -50.00 14:  15: Jim on 06/21/2012 did: 16: 2200.00 17: -1100.00 18:  19: John on 06/21/2012 did: 20: -10.00 Again, sure we could have just built a POCO to do this, given it an appropriate Equals() and GetHashCode() method, but that would have bloated our code with so many extra lines and been more difficult to maintain if the properties change.  Summary Anonymous types are one of those Little Wonders of the .NET language that are perfect at exactly that time when you need a temporary type to hold a set of properties together for an intermediate result.  While they are not very useful beyond the scope in which they are defined, they are excellent in LINQ expressions as a way to create and us intermediary values for further expressions and analysis. Anonymous types are defined by the compiler based on the number, type, names, and order of properties created, and they automatically implement appropriate Equals() and GetHashCode() overrides (as well as ToString()) which makes them ideal for LINQ expressions where you need to create a set of properties to group, evaluate, etc. Technorati Tags: C#,CSharp,.NET,Little Wonders,Anonymous Types,LINQ

    Read the article

  • CodePlex Daily Summary for Thursday, May 17, 2012

    CodePlex Daily Summary for Thursday, May 17, 2012Popular ReleasesWatchersNET.UrlShorty: WatchersNET.UrlShorty 01.03.03: changes Fixed Url & Error History when urls contain line breaksAspxCommerce: AspxCommerce1.1: AspxCommerce - 'Flexible and easy eCommerce platform' offers a complete e-Commerce solution that allows you to build and run your fully functional online store in minutes. You can create your storefront; manage the products through categories and subcategories, accept payments through credit cards and ship the ordered products to the customers. We have everything set up for you, so that you can only focus on building your own online store. Note: To login as a superuser, the username and pass...SiteMap Editor for Microsoft Dynamics CRM 2011: SiteMap Editor (1.1.1616.403): BUG FIX Hide save button when Titles or Descriptions element is selectedVisual C++ 2010 Directories Editor: Visual C++ 2010 Directories Editor (x32_x64): release v1.3MapWindow 6 Desktop GIS: MapWindow 6.1.2: Looking for a .Net GIS Map Application?MapWindow 6 Desktop GIS is an open source desktop GIS for Microsoft Windows that is built upon the DotSpatial Library. This release requires .Net 4 (Client Profile). Are you a software developer?Instead of downloading MapWindow for development purposes, get started with with the DotSpatial template. The extensions you create from the template can be loaded in MapWindow.DotSpatial: DotSpatial 1.2: This is a Minor Release. See the changes in the issue tracker. Minimal -- includes DotSpatial core and essential extensions Extended -- includes debugging symbols and additional extensions Tutorials are available. Just want to run the software? End user (non-programmer) version available branded as MapWindow Want to add your own feature? Develop a plugin, using the template and contribute to the extension feed (you can also write extensions that you distribute in other ways). Components ...Mugen Injection: Mugen Injection 2.2.1 (WinRT supported): Added ManagedScopeLifecycle. Increase performance. Added support for resolve 'params'.Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.52: Make preprocessor comment-statements nestable; add the ///#IFNDEF statement. (Discussion #355785) Don't throw an error for old-school JScript event handlers, and don't rename them if they aren't global functions.DotNetNuke® Events: 06.00.00: This is a serious release of Events. DNN 6 form pattern - We have take the full route towards DNN6: most notably the incorporation of the DNN6 form pattern with streamlined UX/UI. We have also tried to change all formatting to a div based structure. A daunting task, since the Events module contains a lot of forms. Roger has done a splendid job by going through all the forms in great detail, replacing all table style layouts into the new DNN6 div class="dnnForm XXX" type of layout with chang...LogicCircuit: LogicCircuit 2.12.5.15: Logic Circuit - is educational software for designing and simulating logic circuits. Intuitive graphical user interface, allows you to create unrestricted circuit hierarchy with multi bit buses, debug circuits behavior with oscilloscope, and navigate running circuits hierarchy. Changes of this versionThis release is fixing one but nasty bug. Two functions XOR and XNOR when used with 3 or more inputs were incorrectly evaluating their results. If you have a circuit that is using these functions...SharpCompress - a fully native C# library for RAR, 7Zip, Zip, Tar, GZip, BZip2: SharpCompress 0.8.1: Two fixes: Rar Decompression bug fixed. Error only occurred on some files Rar Decompression will throw an exception when another volume isn't found but one is expected.?????????? - ????????: All-In-One Code Framework ??? 2012-05-14: http://download.codeplex.com/Project/Download/FileDownload.aspx?ProjectName=1codechs&DownloadId=216140 ???OneCode??????,??????????6????Microsoft OneCode Sample,????2?Data Platform Sample?4?WPF Sample。???????????。 ????,?????。http://i3.codeplex.com/Project/Download/FileDownload.aspx?ProjectName=1code&DownloadId=128165 Data Platform Sample CSUseADO CppUseADO WPF Sample CSWPFMasterDetailBinding VBWPFMasterDetailBinding CSWPFThreading VBWPFThreading ....... ???????????blog: http://blog.csd...LINQ to Twitter: LINQ to Twitter Beta v2.0.25: Supports .NET 3.5, .NET 4.0, Silverlight 4.0, Windows Phone 7.1, Client Profile, and Windows 8. 100% Twitter API coverage. Also available via NuGet! Follow @JoeMayo.BlogEngine.NET: BlogEngine.NET 2.6: Get DotNetBlogEngine for 3 Months Free! Click Here for More Info BlogEngine.NET Hosting - 3 months free! Cheap ASP.NET Hosting - $4.95/Month - Click Here!! Click Here for More Info Cheap ASP.NET Hosting - $4.95/Month - Click Here! If you want to set up and start using BlogEngine.NET right away, you should download the Web project. If you want to extend or modify BlogEngine.NET, you should download the source code. If you are upgrading from a previous version of BlogEngine.NET, please take...BlackJumboDog: Ver5.6.2: 2012.05.07 Ver5.6.2 (1) Web???????、????????·????????? (2) Web???????、?????????? COMSPEC PATHEXT WINDIR SERVERADDR SERVERPORT DOCUMENTROOT SERVERADMIN REMOTE_PORT HTTPACCEPTCHRSET HTTPACCEPTLANGUAGE HTTPACCEPTEXCODINGGardens Point Parser Generator: Gardens Point Parser Generator version 1.5.0: ChangesVersion 1.5.0 contains a number of changes. Error messages are now MSBuild and VS-friendly. The default encoding of the *.y file is Unicode, with an automatic fallback to the previous raw-byte interpretation. The /report option has been improved, as has the automaton tracing facility. New facilities are included that allow multiple parsers to share a common token type. A complete change-log is available as a separate documentation file. The source project has been upgraded to Visual...Media Companion: Media Companion 3.502b: It has been a slow week, but this release addresses a couple of recent bugs: Movies Multi-part Movies - Existing .nfo files that differed in name from the first part, were missed and scraped again. Trailers - MC attempted to scrape info for existing trailers. TV Shows Show Scraping - shows available only in the non-default language would not show up in the main browser. The correct language can now be selected using the TV Show Selector for a single show. General Will no longer prompt for ...NewLife XCode ??????: XCode v8.5.2012.0508、XCoder v4.7.2012.0320: X????: 1,????For .Net 4.0?? XCoder????: 1,???????,????X????,?????? XCode????: 1,Insert/Update/Delete???????????????,???SQL???? 2,IEntityOperate?????? 3,????????IEntityTree 4,????????????????? 5,?????????? 6,??????????????Google Book Downloader: Google Books Downloader Lite 1.0: Google Books Downloader Lite 1.0Python Tools for Visual Studio: 1.5 Alpha: We’re pleased to announce the release of Python Tools for Visual Studio 1.5 Alpha. Python Tools for Visual Studio (PTVS) is an open-source plug-in for Visual Studio which supports programming with the Python language. PTVS supports a broad range of features including: • Supports Cpython, IronPython, Jython and Pypy • Python editor with advanced member, signature intellisense and refactoring • Code navigation: “Find all refs”, goto definition, and object browser • Local and remote debugging...New ProjectsAmlak: Amlak projectApparat: An Open Source Game/Simulation Engine made with C# and SlimDX.CarShop emulator: carshopDynaMaxx Server Backend: DynaMaxx Server BackendEntry-Level C# Password Generator: The Entry-Level C# Password Generator is a piece of software written for two purposes. To be kept as simple as possible for newcomers to the langauge to understand how to use the language and to help people make a new secure password for themselves.faccipractica: ESTA ES LA CAPA DE DATOSFACCIULEAM: ESTE ES UN PROYECTO DE PRACTICAFast C++ Math Expression Parser: The C++ Mathematical Expression Library (ExprTk) is a simple to use, easy to integrate and extremely efficient and fast mathematical expression parsing and evaluation engine. The parsing engine supports various kinds of functional and logic processing semantics and is very easily extendible.Font Data Catalog: A tool to store font dataGraffiti: Graffiti is a high-performance rendering engine built specifically for the Reach profile on top of XNA/Monogame with a very specific feature set * Support for the Reach profile * CPU/GPU vertex transformation (using SkinnedEffect) * Quake 3 shader style effects (Multi-pass) for anything Graffiti can render * Keyframed/procedural animation framework * Primitive rendering (antialiased, variable-sized points and lines) * Particle system using complex/primitive objects *Text rendering (w...homeland: A simple form Engine for Rails app.HTML5 for SharePoint 2010: HTML5 for SharePoint 2010 is a package of controls and webparts that allows using HTML5 controls in SharePoint. Image Cropper 4 Umbraco 5: Image cropper for Umbraco 5.IPickMovies: This is project for IPick Movies from Mezanmi Technologies.JFrame: jframeJustForTest: For Testkxcxw: This is a website project. Latence: projectLive: this is Live project.MASMYTEST: fdfMP3 player: Project for MUL.MSI Validation: MSI ValidationMyWp: wp applicationOpen Waves Activity Feed: Activity Feed component to be used in ASP.NET projects based on EPiServer CMS, SP, and other.pComboBox: Script ComboBox - Initial versions complete and functional ( current version is 1.54) program and documentation available on justcode.ca - http://www.justcode.ca/justwindowscode/ Source will be available at pcombobox.codeplex.com The basic functionality is shown in the below batch file to call this combobox was coded as follows pcombobox /p:one,"# two",three,4 /t:"title" echo %ERRORLEVEL% Basically you can call this combobox dialog window from a batch file or a vbscript an...Periodic.Net: Periodic.Net is a Periodic Table layout for Windows based on WPF and the .Net Framework 3.5 SP1, More info coming soon.Pob-Pong: A simple Pong game - the first Project of Elsor and Zakk.PodcastCasting: Podcast casting system for Podcasters that use voice talents in their storiesresolvendo.net: Projeto desenvolvido na 3 etapa do S2BSharepoint for TFS: Custom control to integrate files from Sharepoint to TFSShutdownAB: Windows service to shutdown computer after a backup.SSIS Restart Framework: A framework that provides restartability for SSIS 2012 projects. It is very much work in progress so at the current time, use at your own peril.Standalone Encrypted Sign In Library: The ECL library is a standalone connection library !stunserver: New version 1.1. This is the source code to STUNTMAN - an open source STUN server and client code by john selbie. Compliant with the latest RFCs including 5389, 5769, and 5780. Also includes backwards compatibility for RFC 3489. The stun server code is part of a larger personal project involving P2P file sharing and NAT traversal. Version 1.1 compiles on Linux, MacOS, BSD, and Solaris. Additional features are in development. www.stunprotocol.orgTask Scheduler Assistant: This is a very simple Windows service that watches folders/files and triggers an associated Scheduled Task accordingly. A simple * wildcard scheme is used for file triggers. Wildcards can only be in the filename and not in the path. This was initially built to be a Task Scheduler trigger from import processes from clients, providing the missing Trigger type from Window's Task Scheduler.Tech4WPF: Tech4WPF make it easier for developers to create technical applications. You will no longer have to create your own user controlls like knobs, gauges and simple charts. It's developed in C#/WPF. This project was inspirated by Qwt - Qt Widgets for Technical Applications http://qwt.sourceforge.net/. It's not port, but similar project, creating controls for technical aplications using .NET framework, WPF and all benefits of this platform like binding etc. Tech4WPF was created as a bachelo...TestProject_Git: git projectVS Templates for generating Duet Workspace sites: This project provides VS templates to easily create Duet Enterprise workspace sites.WinTest: This is a winform application. It need net framework 3.5 or higher version.WPF Progressive FizzBuzz Coding Assignment: Classic "FizzBuzz".YahalomProject: YahalomProject is for testing and using codeplex , tfs...Zorbo: Zorbo Server library was designed to add a unique twist to the Ares Galaxy P2P community. It features a large and detailed plugin architecture that allows developers to create rich chatroom experiences while being light-weight and fast.

    Read the article

  • Receiving broadcast packets using packet socket

    - by user314336
    Hello I try to send DHCP RENEW packets to the network and receive the responses. I broadcast the packet and I can see that it's successfully sent using Wireshark. But I have difficulties receiving the responses.I use packet sockets to catch the packets. I can see that there are responses to my RENEW packet using Wireshark, but my function 'packet_receive_renew' sometimes catch the packets but sometimes it can not catch the packets. I set the file descriptor using FDSET but the 'select' in my code can not realize that there are new packets for that file descriptor and timeout occurs. I couldn't make it clear that why it sometimes catches the packets and sometimes doesn't. Anybody have an idea? Thanks in advance. Here's the receive function. int packet_receive_renew(struct client_info* info) { int fd; struct sockaddr_ll sock, si_other; struct sockaddr_in si_me; fd_set rfds; struct timeval tv; time_t start, end; int bcast = 1; int ret = 0, try = 0; char buf[1500] = {'\0'}; uint8_t tmp[BUFLEN] = {'\0'}; struct dhcp_packet pkt; socklen_t slen = sizeof(si_other); struct dhcps* new_dhcps; memset((char *) &si_me, 0, sizeof(si_me)); memset((char *) &si_other, 0, sizeof(si_other)); memset(&pkt, 0, sizeof(struct dhcp_packet)); define SERVER_AND_CLIENT_PORTS ((67 << 16) + 68) static const struct sock_filter filter_instr[] = { /* check for udp */ BPF_STMT(BPF_LD|BPF_B|BPF_ABS, 9), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, IPPROTO_UDP, 0, 4), /* L5, L1, is UDP? */ /* skip IP header */ BPF_STMT(BPF_LDX|BPF_B|BPF_MSH, 0), /* L5: */ /* check udp source and destination ports */ BPF_STMT(BPF_LD|BPF_W|BPF_IND, 0), BPF_JUMP(BPF_JMP|BPF_JEQ|BPF_K, SERVER_AND_CLIENT_PORTS, 0, 1), /* L3, L4 */ /* returns */ BPF_STMT(BPF_RET|BPF_K, 0x0fffffff ), /* L3: pass */ BPF_STMT(BPF_RET|BPF_K, 0), /* L4: reject */ }; static const struct sock_fprog filter_prog = { .len = sizeof(filter_instr) / sizeof(filter_instr[0]), /* casting const away: */ .filter = (struct sock_filter *) filter_instr, }; printf("opening raw socket on ifindex %d\n", info->interf.if_index); if (-1==(fd = socket(PF_PACKET, SOCK_DGRAM, htons(ETH_P_IP)))) { perror("packet_receive_renew::socket"); return -1; } printf("got raw socket fd %d\n", fd); /* Use only if standard ports are in use */ /* Ignoring error (kernel may lack support for this) */ if (-1==setsockopt(fd, SOL_SOCKET, SO_ATTACH_FILTER, &filter_prog, sizeof(filter_prog))) perror("packet_receive_renew::setsockopt"); sock.sll_family = AF_PACKET; sock.sll_protocol = htons(ETH_P_IP); //sock.sll_pkttype = PACKET_BROADCAST; sock.sll_ifindex = info->interf.if_index; if (-1 == bind(fd, (struct sockaddr *) &sock, sizeof(sock))) { perror("packet_receive_renew::bind"); close(fd); return -3; } if (-1 == setsockopt(fd, SOL_SOCKET, SO_BROADCAST, &bcast, sizeof(bcast))) { perror("packet_receive_renew::setsockopt"); close(fd); return -1; } FD_ZERO(&rfds); FD_SET(fd, &rfds); tv.tv_sec = TIMEOUT; tv.tv_usec = 0; ret = time(&start); if (-1 == ret) { perror("packet_receive_renew::time"); close(fd); return -1; } while(1) { ret = select(fd + 1, &rfds, NULL, NULL, &tv); time(&end); if (TOTAL_PENDING <= (end - start)) { fprintf(stderr, "End receiving\n"); break; } if (-1 == ret) { perror("packet_receive_renew::select"); close(fd); return -4; } else if (ret) { new_dhcps = (struct dhcps*)calloc(1, sizeof(struct dhcps)); if (-1 == recvfrom(fd, buf, 1500, 0, (struct sockaddr*)&si_other, &slen)) { perror("packet_receive_renew::recvfrom"); close(fd); return -4; } deref_packet((unsigned char*)buf, &pkt, info); if (-1!=(ret=get_option_val(pkt.options, DHO_DHCP_SERVER_IDENTIFIER, tmp))) { sprintf((char*)tmp, "%d.%d.%d.%d", tmp[0],tmp[1],tmp[2],tmp[3]); fprintf(stderr, "Received renew from %s\n", tmp); } else { fprintf(stderr, "Couldnt get DHO_DHCP_SERVER_IDENTIFIER%s\n", tmp); close(fd); return -5; } new_dhcps->dhcps_addr = strdup((char*)tmp); //add to list if (info->dhcps_list) info->dhcps_list->next = new_dhcps; else info->dhcps_list = new_dhcps; new_dhcps->next = NULL; } else { try++; tv.tv_sec = TOTAL_PENDING - try * TIMEOUT; tv.tv_usec = 0; fprintf(stderr, "Timeout occured\n"); } } close(fd); printf("close fd:%d\n", fd); return 0; }

    Read the article

  • Multiple (variant) arguments overloading in Java: What's the purpose?

    - by fortran
    Browsing google's guava collect library code, I've found the following: // Casting to any type is safe because the list will never hold any elements. @SuppressWarnings("unchecked") public static <E> ImmutableList<E> of() { return (ImmutableList<E>) EmptyImmutableList.INSTANCE; } public static <E> ImmutableList<E> of(E element) { return new SingletonImmutableList<E>(element); } public static <E> ImmutableList<E> of(E e1, E e2) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2)); } public static <E> ImmutableList<E> of(E e1, E e2, E e3) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3)); } public static <E> ImmutableList<E> of(E e1, E e2, E e3, E e4) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4)); } public static <E> ImmutableList<E> of(E e1, E e2, E e3, E e4, E e5) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5)); } public static <E> ImmutableList<E> of(E e1, E e2, E e3, E e4, E e5, E e6) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5, e6)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5, e6, e7)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5, e6, e7, e8)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9) { return new RegularImmutableList<E>( ImmutableList.<E>nullCheckedList(e1, e2, e3, e4, e5, e6, e7, e8, e9)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9, E e10) { return new RegularImmutableList<E>(ImmutableList.<E>nullCheckedList( e1, e2, e3, e4, e5, e6, e7, e8, e9, e10)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9, E e10, E e11) { return new RegularImmutableList<E>(ImmutableList.<E>nullCheckedList( e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11)); } public static <E> ImmutableList<E> of( E e1, E e2, E e3, E e4, E e5, E e6, E e7, E e8, E e9, E e10, E e11, E e12, E... others) { final int paramCount = 12; Object[] array = new Object[paramCount + others.length]; arrayCopy(array, 0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12); arrayCopy(array, paramCount, others); return new RegularImmutableList<E>(ImmutableList.<E>nullCheckedList(array)); } And although it seems reasonable to have overloads for empty and single arguments (as they are going to use special instances), I cannot see the reason behind having all the others, when just the last one (with two fixed arguments plus the variable argument instead the dozen) seems to be enough. As I'm writing, one explanation that pops into my head is that the API pre-dates Java 1.5; and although the signatures would be source-level compatible, the binary interface would differ. Isn't it?

    Read the article

  • Sniffing out SQL Code Smells: Inconsistent use of Symbolic names and Datatypes

    - by Phil Factor
    It is an awkward feeling. You’ve just delivered a database application that seems to be working fine in production, and you just run a few checks on it. You discover that there is a potential bug that, out of sheer good chance, hasn’t kicked in to produce an error; but it lurks, like a smoking bomb. Worse, maybe you find that the bug has started its evil work of corrupting the data, but in ways that nobody has, so far detected. You investigate, and find the damage. You are somehow going to have to repair it. Yes, it still very occasionally happens to me. It is not a nice feeling, and I do anything I can to prevent it happening. That’s why I’m interested in SQL code smells. SQL Code Smells aren’t necessarily bad practices, but just show you where to focus your attention when checking an application. Sometimes with databases the bugs can be subtle. SQL is rather like HTML: the language does its best to try to carry out your wishes, rather than to be picky about your bugs. Most of the time, this is a great benefit, but not always. One particular place where this can be detrimental is where you have implicit conversion between different data types. Most of the time it is completely harmless but we’re  concerned about the occasional time it isn’t. Let’s give an example: String truncation. Let’s give another even more frightening one, rounding errors on assignment to a number of different precision. Each requires a blog-post to explain in detail and I’m not now going to try. Just remember that it is not always a good idea to assign data to variables, parameters or even columns when they aren’t the same datatype, especially if you are relying on implicit conversion to work its magic.For details of the problem and the consequences, see here:  SR0014: Data loss might occur when casting from {Type1} to {Type2} . For any experienced Database Developer, this is a more frightening read than a Vampire Story. This is why one of the SQL Code Smells that makes me edgy, in my own or other peoples’ code, is to see parameters, variables and columns that have the same names and different datatypes. Whereas quite a lot of this is perfectly normal and natural, you need to check in case one of two things have gone wrong. Either sloppy naming, or mixed datatypes. Sure it is hard to remember whether you decided that the length of a log entry was 80 or 100 characters long, or the precision of a number. That is why a little check like this I’m going to show you is excellent for tidying up your code before you check it back into source Control! 1/ Checking Parameters only If you were just going to check parameters, you might just do this. It simply groups all the parameters, either input or output, of all the routines (e.g. stored procedures or functions) by their name and checks to see, in the HAVING clause, whether their data types are all the same. If not, it lists all the examples and their origin (the routine) Even this little check can occasionally be scarily revealing. ;WITH userParameter AS  ( SELECT   c.NAME AS ParameterName,  OBJECT_SCHEMA_NAME(c.object_ID) + '.' + OBJECT_NAME(c.object_ID) AS ObjectName,  t.name + ' '     + CASE     --we may have to put in the length            WHEN t.name IN ('char', 'varchar', 'nchar', 'nvarchar')             THEN '('               + CASE WHEN c.max_length = -1 THEN 'MAX'                ELSE CONVERT(VARCHAR(4),                    CASE WHEN t.name IN ('nchar', 'nvarchar')                      THEN c.max_length / 2 ELSE c.max_length                    END)                END + ')'         WHEN t.name IN ('decimal', 'numeric')             THEN '(' + CONVERT(VARCHAR(4), c.precision)                   + ',' + CONVERT(VARCHAR(4), c.Scale) + ')'         ELSE ''      END  --we've done with putting in the length      + CASE WHEN XML_collection_ID <> 0         THEN --deal with object schema names             '(' + CASE WHEN is_XML_Document = 1                    THEN 'DOCUMENT '                    ELSE 'CONTENT '                   END              + COALESCE(               (SELECT QUOTENAME(ss.name) + '.' + QUOTENAME(sc.name)                FROM sys.xml_schema_collections sc                INNER JOIN Sys.Schemas ss ON sc.schema_ID = ss.schema_ID                WHERE sc.xml_collection_ID = c.XML_collection_ID),'NULL') + ')'          ELSE ''         END        AS [DataType]  FROM sys.parameters c  INNER JOIN sys.types t ON c.user_Type_ID = t.user_Type_ID  WHERE OBJECT_SCHEMA_NAME(c.object_ID) <> 'sys'   AND parameter_id>0)SELECT CONVERT(CHAR(80),objectName+'.'+ParameterName),DataType FROM UserParameterWHERE ParameterName IN   (SELECT ParameterName FROM UserParameter    GROUP BY ParameterName    HAVING MIN(Datatype)<>MAX(DataType))ORDER BY ParameterName   so, in a very small example here, we have a @ClosingDelimiter variable that is only CHAR(1) when, by the looks of it, it should be up to ten characters long, or even worse, a function that should be a char(1) and seems to let in a string of ten characters. Worth investigating. Then we have a @Comment variable that can't decide whether it is a VARCHAR(2000) or a VARCHAR(MAX) 2/ Columns and Parameters Actually, once we’ve cleared up the mess we’ve made of our parameter-naming in the database we’re inspecting, we’re going to be more interested in listing both columns and parameters. We can do this by modifying the routine to list columns as well as parameters. Because of the slight complexity of creating the string version of the datatypes, we will create a fake table of both columns and parameters so that they can both be processed the same way. After all, we want the datatypes to match Unfortunately, parameters do not expose all the attributes we are interested in, such as whether they are nullable (oh yes, subtle bugs happen if this isn’t consistent for a datatype). We’ll have to leave them out for this check. Voila! A slight modification of the first routine ;WITH userObject AS  ( SELECT   Name AS DataName,--the actual name of the parameter or column ('@' removed)  --and the qualified object name of the routine  OBJECT_SCHEMA_NAME(ObjectID) + '.' + OBJECT_NAME(ObjectID) AS ObjectName,  --now the harder bit: the definition of the datatype.  TypeName + ' '     + CASE     --we may have to put in the length. e.g. CHAR (10)           WHEN TypeName IN ('char', 'varchar', 'nchar', 'nvarchar')             THEN '('               + CASE WHEN MaxLength = -1 THEN 'MAX'                ELSE CONVERT(VARCHAR(4),                    CASE WHEN TypeName IN ('nchar', 'nvarchar')                      THEN MaxLength / 2 ELSE MaxLength                    END)                END + ')'         WHEN TypeName IN ('decimal', 'numeric')--a BCD number!             THEN '(' + CONVERT(VARCHAR(4), Precision)                   + ',' + CONVERT(VARCHAR(4), Scale) + ')'         ELSE ''      END  --we've done with putting in the length      + CASE WHEN XML_collection_ID <> 0 --tush tush. XML         THEN --deal with object schema names             '(' + CASE WHEN is_XML_Document = 1                    THEN 'DOCUMENT '                    ELSE 'CONTENT '                   END              + COALESCE(               (SELECT TOP 1 QUOTENAME(ss.name) + '.' + QUOTENAME(sc.Name)                FROM sys.xml_schema_collections sc                INNER JOIN Sys.Schemas ss ON sc.schema_ID = ss.schema_ID                WHERE sc.xml_collection_ID = XML_collection_ID),'NULL') + ')'          ELSE ''         END        AS [DataType],       DataObjectType  FROM   (Select t.name AS TypeName, REPLACE(c.name,'@','') AS Name,          c.max_length AS MaxLength, c.precision AS [Precision],           c.scale AS [Scale], c.[Object_id] AS ObjectID, XML_collection_ID,          is_XML_Document,'P' AS DataobjectType  FROM sys.parameters c  INNER JOIN sys.types t ON c.user_Type_ID = t.user_Type_ID  AND parameter_id>0  UNION all  Select t.name AS TypeName, c.name AS Name, c.max_length AS MaxLength,          c.precision AS [Precision], c.scale AS [Scale],          c.[Object_id] AS ObjectID, XML_collection_ID,is_XML_Document,          'C' AS DataobjectType            FROM sys.columns c  INNER JOIN sys.types t ON c.user_Type_ID = t.user_Type_ID   WHERE OBJECT_SCHEMA_NAME(c.object_ID) <> 'sys'  )f)SELECT CONVERT(CHAR(80),objectName+'.'   + CASE WHEN DataobjectType ='P' THEN '@' ELSE '' END + DataName),DataType FROM UserObjectWHERE DataName IN   (SELECT DataName FROM UserObject   GROUP BY DataName    HAVING MIN(Datatype)<>MAX(DataType))ORDER BY DataName     Hmm. I can tell you I found quite a few minor issues with the various tabases I tested this on, and found some potential bugs that really leap out at you from the results. Here is the start of the result for AdventureWorks. Yes, AccountNumber is, for some reason, a Varchar(10) in the Customer table. Hmm. odd. Why is a city fifty characters long in that view?  The idea of the description of a colour being 256 characters long seems over-ambitious. Go down the list and you'll spot other mistakes. There are no bugs, but just mess. We started out with a listing to examine parameters, then we mixed parameters and columns. Our last listing is for a slightly more in-depth look at table columns. You’ll notice that we’ve delibarately removed the indication of whether a column is persisted, or is an identity column because that gives us false positives for our code smells. If you just want to browse your metadata for other reasons (and it can quite help in some circumstances) then uncomment them! ;WITH userColumns AS  ( SELECT   c.NAME AS columnName,  OBJECT_SCHEMA_NAME(c.object_ID) + '.' + OBJECT_NAME(c.object_ID) AS ObjectName,  REPLACE(t.name + ' '   + CASE WHEN is_computed = 1 THEN ' AS ' + --do DDL for a computed column          (SELECT definition FROM sys.computed_columns cc           WHERE cc.object_id = c.object_id AND cc.column_ID = c.column_ID)     --we may have to put in the length            WHEN t.Name IN ('char', 'varchar', 'nchar', 'nvarchar')             THEN '('               + CASE WHEN c.Max_Length = -1 THEN 'MAX'                ELSE CONVERT(VARCHAR(4),                    CASE WHEN t.Name IN ('nchar', 'nvarchar')                      THEN c.Max_Length / 2 ELSE c.Max_Length                    END)                END + ')'       WHEN t.name IN ('decimal', 'numeric')       THEN '(' + CONVERT(VARCHAR(4), c.precision) + ',' + CONVERT(VARCHAR(4), c.Scale) + ')'       ELSE ''      END + CASE WHEN c.is_rowguidcol = 1          THEN ' ROWGUIDCOL'          ELSE ''         END + CASE WHEN XML_collection_ID <> 0            THEN --deal with object schema names             '(' + CASE WHEN is_XML_Document = 1                THEN 'DOCUMENT '                ELSE 'CONTENT '               END + COALESCE((SELECT                QUOTENAME(ss.name) + '.' + QUOTENAME(sc.name)                FROM                sys.xml_schema_collections sc                INNER JOIN Sys.Schemas ss ON sc.schema_ID = ss.schema_ID                WHERE                sc.xml_collection_ID = c.XML_collection_ID),                'NULL') + ')'            ELSE ''           END + CASE WHEN is_identity = 1             THEN CASE WHEN OBJECTPROPERTY(object_id,                'IsUserTable') = 1 AND COLUMNPROPERTY(object_id,                c.name,                'IsIDNotForRepl') = 0 AND OBJECTPROPERTY(object_id,                'IsMSShipped') = 0                THEN ''                ELSE ' NOT FOR REPLICATION '               END             ELSE ''            END + CASE WHEN c.is_nullable = 0               THEN ' NOT NULL'               ELSE ' NULL'              END + CASE                WHEN c.default_object_id <> 0                THEN ' DEFAULT ' + object_Definition(c.default_object_id)                ELSE ''               END + CASE                WHEN c.collation_name IS NULL                THEN ''                WHEN c.collation_name <> (SELECT                collation_name                FROM                sys.databases                WHERE                name = DB_NAME()) COLLATE Latin1_General_CI_AS                THEN COALESCE(' COLLATE ' + c.collation_name,                '')                ELSE ''                END,'  ',' ') AS [DataType]FROM sys.columns c  INNER JOIN sys.types t ON c.user_Type_ID = t.user_Type_ID  WHERE OBJECT_SCHEMA_NAME(c.object_ID) <> 'sys')SELECT CONVERT(CHAR(80),objectName+'.'+columnName),DataType FROM UserColumnsWHERE columnName IN (SELECT columnName FROM UserColumns  GROUP BY columnName  HAVING MIN(Datatype)<>MAX(DataType))ORDER BY columnName If you take a look down the results against Adventureworks, you'll see once again that there are things to investigate, mostly, in the illustration, discrepancies between null and non-null datatypes So I here you ask, what about temporary variables within routines? If ever there was a source of elusive bugs, you'll find it there. Sadly, these temporary variables are not stored in the metadata so we'll have to find a more subtle way of flushing these out, and that will, I'm afraid, have to wait!

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • Parsing concatenated, non-delimited XML messages from TCP-stream using C#

    - by thaller
    I am trying to parse XML messages which are send to my C# application over TCP. Unfortunately, the protocol can not be changed and the XML messages are not delimited and no length prefix is used. Moreover the character encoding is not fixed but each message starts with an XML declaration <?xml>. The question is, how can i read one XML message at a time, using C#. Up to now, I tried to read the data from the TCP stream into a byte array and use it through a MemoryStream. The problem is, the buffer might contain more than one XML messages or the first message may be incomplete. In these cases, I get an exception when trying to parse it with XmlReader.Read or XmlDocument.Load, but unfortunately the XmlException does not really allow me to distinguish the problem (except parsing the localized error string). I tried using XmlReader.Read and count the number of Element and EndElement nodes. That way I know when I am finished reading the first, entire XML message. However, there are several problems. If the buffer does not yet contain the entire message, how can I distinguish the XmlException from an actually invalid, non-well-formed message? In other words, if an exception is thrown before reading the first root EndElement, how can I decide whether to abort the connection with error, or to collect more bytes from the TCP stream? If no exception occurs, the XmlReader is positioned at the start of the root EndElement. Casting the XmlReader to IXmlLineInfo gives me the current LineNumber and LinePosition, however it is not straight forward to get the byte position where the EndElement really ends. In order to do that, I would have to convert the byte array into a string (with the encoding specified in the XML declaration), seek to LineNumber,LinePosition and convert that back to the byte offset. I try to do that with StreamReader.ReadLine, but the stream reader gives no public access to the current byte position. All this seams very inelegant and non robust. I wonder if you have ideas for a better solution. Thank you. EDIT: I looked around and think that the situation is as follows (I might be wrong, corrections are welcome): I found no method so that the XmlReader can continue parsing a second XML message (at least not, if the second message has an XmlDeclaration). XmlTextReader.ResetState could do something similar, but for that I would have to assume the same encoding for all messages. Therefor I could not connect the XmlReader directly to the TcpStream. After closing the XmlReader, the buffer is not positioned at the readers last position. So it is not possible to close the reader and use a new one to continue with the next message. I guess the reason for this is, that the reader could not successfully seek on every possible input stream. When XmlReader throws an exception it can not be determined whether it happened because of an premature EOF or because of a non-wellformed XML. XmlReader.EOF is not set in case of an exception. As workaround I derived my own MemoryBuffer, which returns the very last byte as a single byte. This way I know that the XmlReader was really interested in the last byte and the following exception is likely due to a truncated message (this is kinda sloppy, in that it might not detect every non-wellformed message. However, after appending more bytes to the buffer, sooner or later the error will be detected. I could cast my XmlReader to the IXmlLineInfo interface, which gives access to the LineNumber and the LinePosition of the current node. So after reading the first message I remember these positions and use it to truncate the buffer. Here comes the really sloppy part, because I have to use the character encoding to get the byte position. I am sure you could find test cases for the code below where it breaks (e.g. internal elements with mixed encoding). But up to now it worked for all my tests. The parser class follows here -- may it be useful (I know, its very far from perfect...) class XmlParser { private byte[] buffer = new byte[0]; public int Length { get { return buffer.Length; } } // Append new binary data to the internal data buffer... public XmlParser Append(byte[] buffer2) { if (buffer2 != null && buffer2.Length > 0) { // I know, its not an efficient way to do this. // The EofMemoryStream should handle a List<byte[]> ... byte[] new_buffer = new byte[buffer.Length + buffer2.Length]; buffer.CopyTo(new_buffer, 0); buffer2.CopyTo(new_buffer, buffer.Length); buffer = new_buffer; } return this; } // MemoryStream which returns the last byte of the buffer individually, // so that we know that the buffering XmlReader really locked at the last // byte of the stream. // Moreover there is an EOF marker. private class EofMemoryStream: Stream { public bool EOF { get; private set; } private MemoryStream mem_; public override bool CanSeek { get { return false; } } public override bool CanWrite { get { return false; } } public override bool CanRead { get { return true; } } public override long Length { get { return mem_.Length; } } public override long Position { get { return mem_.Position; } set { throw new NotSupportedException(); } } public override void Flush() { mem_.Flush(); } public override long Seek(long offset, SeekOrigin origin) { throw new NotSupportedException(); } public override void SetLength(long value) { throw new NotSupportedException(); } public override void Write(byte[] buffer, int offset, int count) { throw new NotSupportedException(); } public override int Read(byte[] buffer, int offset, int count) { count = Math.Min(count, Math.Max(1, (int)(Length - Position - 1))); int nread = mem_.Read(buffer, offset, count); if (nread == 0) { EOF = true; } return nread; } public EofMemoryStream(byte[] buffer) { mem_ = new MemoryStream(buffer, false); EOF = false; } protected override void Dispose(bool disposing) { mem_.Dispose(); } } // Parses the first xml message from the stream. // If the first message is not yet complete, it returns null. // If the buffer contains non-wellformed xml, it ~should~ throw an exception. // After reading an xml message, it pops the data from the byte array. public Message deserialize() { if (buffer.Length == 0) { return null; } Message message = null; Encoding encoding = Message.default_encoding; //string xml = encoding.GetString(buffer); using (EofMemoryStream sbuffer = new EofMemoryStream (buffer)) { XmlDocument xmlDocument = null; XmlReaderSettings settings = new XmlReaderSettings(); int LineNumber = -1; int LinePosition = -1; bool truncate_buffer = false; using (XmlReader xmlReader = XmlReader.Create(sbuffer, settings)) { try { // Read to the first node (skipping over some element-types. // Don't use MoveToContent here, because it would skip the // XmlDeclaration too... while (xmlReader.Read() && (xmlReader.NodeType==XmlNodeType.Whitespace || xmlReader.NodeType==XmlNodeType.Comment)) { }; // Check for XML declaration. // If the message has an XmlDeclaration, extract the encoding. switch (xmlReader.NodeType) { case XmlNodeType.XmlDeclaration: while (xmlReader.MoveToNextAttribute()) { if (xmlReader.Name == "encoding") { encoding = Encoding.GetEncoding(xmlReader.Value); } } xmlReader.MoveToContent(); xmlReader.Read(); break; } // Move to the first element. xmlReader.MoveToContent(); // Read the entire document. xmlDocument = new XmlDocument(); xmlDocument.Load(xmlReader.ReadSubtree()); } catch (XmlException e) { // The parsing of the xml failed. If the XmlReader did // not yet look at the last byte, it is assumed that the // XML is invalid and the exception is re-thrown. if (sbuffer.EOF) { return null; } throw e; } { // Try to serialize an internal data structure using XmlSerializer. Type type = null; try { type = Type.GetType("my.namespace." + xmlDocument.DocumentElement.Name); } catch (Exception e) { // No specialized data container for this class found... } if (type == null) { message = new Message(); } else { // TODO: reuse the serializer... System.Xml.Serialization.XmlSerializer ser = new System.Xml.Serialization.XmlSerializer(type); message = (Message)ser.Deserialize(new XmlNodeReader(xmlDocument)); } message.doc = xmlDocument; } // At this point, the first XML message was sucessfully parsed. // Remember the lineposition of the current end element. IXmlLineInfo xmlLineInfo = xmlReader as IXmlLineInfo; if (xmlLineInfo != null && xmlLineInfo.HasLineInfo()) { LineNumber = xmlLineInfo.LineNumber; LinePosition = xmlLineInfo.LinePosition; } // Try to read the rest of the buffer. // If an exception is thrown, another xml message appears. // This way the xml parser could tell us that the message is finished here. // This would be prefered as truncating the buffer using the line info is sloppy. try { while (xmlReader.Read()) { } } catch { // There comes a second message. Needs workaround for trunkating. truncate_buffer = true; } } if (truncate_buffer) { if (LineNumber < 0) { throw new Exception("LineNumber not given. Cannot truncate xml buffer"); } // Convert the buffer to a string using the encoding found before // (or the default encoding). string s = encoding.GetString(buffer); // Seek to the line. int char_index = 0; while (--LineNumber > 0) { // Recognize \r , \n , \r\n as newlines... char_index = s.IndexOfAny(new char[] {'\r', '\n'}, char_index); // char_index should not be -1 because LineNumber>0, otherwise an RangeException is // thrown, which is appropriate. char_index++; if (s[char_index-1]=='\r' && s.Length>char_index && s[char_index]=='\n') { char_index++; } } char_index += LinePosition - 1; var rgx = new System.Text.RegularExpressions.Regex(xmlDocument.DocumentElement.Name + "[ \r\n\t]*\\>"); System.Text.RegularExpressions.Match match = rgx.Match(s, char_index); if (!match.Success || match.Index != char_index) { throw new Exception("could not find EndElement to truncate the xml buffer."); } char_index += match.Value.Length; // Convert the character offset back to the byte offset (for the given encoding). int line1_boffset = encoding.GetByteCount(s.Substring(0, char_index)); // remove the bytes from the buffer. buffer = buffer.Skip(line1_boffset).ToArray(); } else { buffer = new byte[0]; } } return message; } }

    Read the article

< Previous Page | 27 28 29 30 31