Search Results

Search found 8115 results on 325 pages for 'dynamic inheritance'.

Page 31/325 | < Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >

  • abstract data type list. . .

    - by aldrin
    A LIST is an ordered collection of items where items may be inserted anywhere in the list. Implement a LIST using an array as follows: struct list { int *items; // pointer to the array int size; // actual size of the array int count; // number of items in the array }; typedef struct list *List; // pointer to the structure Implement the following functions: a) List newList(int size); - will create a new List and return its pointer. Allocate space for the structure, allocate space for the array, then initialize size and count, return the pointer. b) void isEmpty(List list); c) void display(List list); d) int contains(List list, int item); e) void remove(List list, int i) ; f) void insertAfter(List list,int item, int i); g) void addEnd(List list,int item) - add item at the end of the list – simply store the data at position count, then increment count. If the array is full, allocate an array twice as big as the original. count = 5 size = 10 0 1 2 3 4 5 6 7 8 9 5 10 15 20 30 addEnd(list,40) will result to count = 6 size = 10 0 1 2 3 4 5 6 7 8 9 5 10 15 20 30 40 h) void addFront(List list,int item) - shift all elements to the right so that the item can be placed at position 0, then increment count. Bonus: if the array is full, allocate an array twice as big as the original. count = 5 size = 10 0 1 2 3 4 5 6 7 8 9 5 10 15 20 30 addFront(list,40) will result to count = 6 size = 10 0 1 2 3 4 5 6 7 8 9 40 5 10 15 20 30 i) void removeFront(List list) - shift all elements to the left and decrement count; count = 6 size = 10 0 1 2 3 4 5 6 7 8 9 40 5 10 15 20 30 removeFront(list) will result to count = 5 size = 10 0 1 2 3 4 5 6 7 8 9 5 10 15 20 30 j) void remove(List list,int item) - get the index of the item in the list and then shift all elements to the count = 6 size = 10 0 1 2 3 4 5 6 7 8 9 40 5 10 15 20 30 remove(list,10) will result to count = 5 size = 10 0 1 2 3 4 5 6 7 8 9 40 5 15 20 30

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Dependencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. This will change though depending on the size of objects serialized - the larger the object the more processing time is spent inside the actual dynamically activated components and the less difference there will be. Dynamic code is always slower, but how much it really affects your application primarily depends on how frequently the dynamic code is called in relation to the non-dynamic code executing. In most situations where dynamic code is used 'to get the process rolling' as I do here the overhead is small enough to not matter.All that being said though - I serialized 10,000 objects in 80ms vs. 45ms so this is hardly slouchy performance. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?Dynamic loading is not something you need to worry about but on occasion dynamic loading makes sense. But there's a price to be paid in added code  and a performance hit which depends on how frequently the dynamic code is accessed. But for some operations that are not pivotal to a component or application and are only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files adding dependencies and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems like a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful option in your toolset… © Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • How can I change the name of a dynamic assembly after it has been created?

    - by Samuel Jack
    Is there any way to change the name of a dynamic assembly after it has been created? I'm using a framework that uses dynamic methods, and it is creating a dynamic assembly with the same name as my main assembly (which causes problems with WPF when it tries to load resources). So I need to find a workaround, and I thought of trying to change the name of the dynamic assembly. I've tried using GetName() and then setting the Name property, but it appears that GetName returns a clone of the name because my change doesn't stick. What else can I try?

    Read the article

  • C++ Static array vs. Dynamic array?

    - by user69514
    What is the difference between a static array and a dynamic array in C++? I have to do an assignment for my class and it says not to use static arrays, only dynamic arrays. I've looked in the book and online, but I don't seem to understand. I thought static was created at compile time and dynamic at runtime, but I might be mistaken this with memory allocation. Can you explain to me the difference between static array and dynamic array in C++? Thnaks.

    Read the article

  • How to dynamically load aspx code from a database?

    - by labilbe
    I have content like this stored in a database <p>This a sample text. <%= Html.ActionLink("test", "myaction", "mycontroller") %></p> The content is part of my data repository, that is the reason I want to keep it inside the database. I would like to know how it is possible to render it and execute it at compile time. I am using it on an asp.net mvc project. Thank you.

    Read the article

  • Abstract Data Type: Any1 can help me this? thanks..

    - by Aga Hibaya
    Objectives: Implement the Abstract Data Type (ADT) List using dynamically allocated arrays and structures. Description A LIST is an ordered collection of items where items may be inserted anywhere in the list. Implement a LIST using an array as follows: struct list { int *items; // pointer to the array int size; // actual size of the array int count; // number of items in the array }; typedef struct list *List; // pointer to the structure Implement the following functions: a) List newList(int size); - will create a new List and return its pointer. Allocate space for the structure, allocate space for the array, then initialize size and count, return the pointer. b) void isEmpty(List list); c) void display(List list); d) int contains(List list, int item); e) void remove(List list, int i) ; f) void insertAfter(List list,int item, int i); g) void addEnd(List list,int item) - add item at the end of the list – simply store the data at position count, then increment count. If the array is full, allocate an array twice as big as the original. count = 5 size = 10 0 1 2 3 4 5 6 7 8 9 5 10 15 20 30 addEnd(list,40) will result to count = 6 size = 10 0 1 2 3 4 5 6 7 8 9 5 10 15 20 30 40 h) void addFront(List list,int item) - shift all elements to the right so that the item can be placed at position 0, then increment count. Bonus: if the array is full, allocate an array twice as big as the original. count = 5 size = 10 0 1 2 3 4 5 6 7 8 9 5 10 15 20 30 addFront(list,40) will result to count = 6 size = 10 0 1 2 3 4 5 6 7 8 9 40 5 10 15 20 30 i) void removeFront(List list) - shift all elements to the left and decrement count; count = 6 size = 10 0 1 2 3 4 5 6 7 8 9 40 5 10 15 20 30 removeFront(list) will result to count = 5 size = 10 0 1 2 3 4 5 6 7 8 9 5 10 15 20 30 j) void remove(List list,int item) - get the index of the item in the list and then shift all elements to the count = 6 size = 10 0 1 2 3 4 5 6 7 8 9 40 5 10 15 20 30 remove(list,10) will result to count = 5 size = 10 0 1 2 3 4 5 6 7 8 9 40 5 15 20 30 Remarks

    Read the article

  • Using the value of a variable as another variables name in Ruby

    - by hrickards
    Hi, I'm just starting out in learning Ruby and I've written a program that generates some numbers and assigns them to variables @one, @two, @three etc. The user can then specify a variable to change by inputting it's name (e.g one). I then need to do something like '@[valueofinout] = asd'. How would I do this, and is there a better way as the way I'm thinking of seems to be discouraged? I've found x = "myvar" myvar = "hi" eval(x) -> "hi" but I don't completely understand why the second line is needed. In my case would I use something like @one = "21" input = "one" input = "@" + input changeto = "22" eval(input) -> changeto Thanks

    Read the article

  • How to invoke static method in C#4.0 with dynamic type?

    - by Morgan Cheng
    In C#4.0, we have dynamic type, but how to invoke static method of dynamic type object? Below code will generate exception at run time. class Foo { public static int Sum(int x, int y) { return x + y; } } class Program { static void Main(string[] args) { dynamic d = new Foo(); Console.WriteLine(d.Sum(1, 3)); } } IMHO, dynamic is invented to bridge C# and other programming language. There is some other language (e.g. Java) allows to invoke static method through object instead of type. BTW, The introduction of C#4.0 is not so impressive compared to C#3.0.

    Read the article

  • C# Lack of Static Inheritance - What Should I Do?

    - by yellowblood
    Alright, so as you probably know, static inheritance is impossible in C#. I understand that, however I'm stuck with the development of my program. I will try to make it as simple as possible. Lets say our code needs to manage objects that are presenting aircrafts in some airport. The requirements are as follows: There are members and methods that are shared for all aircrafts There are many types of aircrafts, each type may have its own extra methods and members. There can be many instances for each aircraft type. Every aircraft type must have a friendly name for this type, and more details about this type. For example a class named F16 will have a static member FriendlyName with the value of "Lockheed Martin F-16 Fighting Falcon". Other programmers should be able to add more aircrafts, although they must be enforced to create the same static details about the types of the aircrafts. In some GUI, there should be a way to let the user see the list of available types (with the details such as FriendlyName) and add or remove instances of the aircrafts, saved, lets say, to some XML file. So, basically, if I could enforce inherited classes to implement static members and methods, I would enforce the aircraft types to have static members such as FriendlyName. Sadly I cannot do that. So, what would be the best design for this scenario?

    Read the article

  • How do you determine subtype of an entity using Inheritance with Entity Framework 4?

    - by KallDrexx
    I am just starting to use the Entity Framework 4 for the first time ever. So far I am liking it but I am a bit confused on how to correctly do inheritance. I am doing a model-first approach, and I have my Person entity with two subtype entities, Employee and Client. EF is correctly using the table per type approach, however I can't seem to figure out how to determine what type of a Person a specific object is. For example, if I do something like var people = from p in entities.Person select p; return people.ToList<Person>(); In my list that I form from this, all I care about is the Id field so i don't want to actually query all the subtype tables (this is a webpage list with links, so all I need is the name and the Id, all in the Persons table). However, I want to form different lists using this one query, one for each type of person (so one list for Clients and another for Employees). The issue is if I have a Person entity, I can't see any way to determine if that entity is a Client or an Employee without querying the Client or Employee tables directly. How can I easily determine the subtype of an entity without performing a bunch of additional database queries?

    Read the article

  • (Not So) Silly Objective-C inheritance problem when using property - GCC Bug?

    - by Ben Packard
    Update 2 - Many people are insisting I need to declare an iVar for the property. Some are saying not so, as I am using Modern Runtime (64 bit). I can confirm that I have been successfully using @property without iVars for months now. Therefore, I think the 'correct' answer is an explanation as to why on 64bit I suddenly have to explicitly declare the iVar when (and only when) i'm going to access it from a child class. The only one I've seen so far is a possible GCC bug (thanks Yuji). Not so simple after all... Update - I messed up one line of the original copy and paste - corrected. The @property call was missing (nonatomic, retain) but is a red herring - STILL NEED AN ANSWER! Thanks. I've been scratching my head with this for a couple of hours - I haven't used inheritance much. Here I have set up a simple Test B class that inherits from Test A, where an ivar is declared. But I get the compilation error that the variable is undeclared. This only happens when I add the property and synthesize declarations - works fine without them. TestA Header: #import <Cocoa/Cocoa.h> @interface TestA : NSObject { NSString *testString; } @end TestA Implementation is empty: #import "TestA.h" @implementation TestA @end TestB Header: #import <Cocoa/Cocoa.h> #import "TestA.h" @interface TestB : TestA { } @property (nonatomic, retain) NSString *testProp; @end TestB Implementation (Error - 'testString' is undeclared) #import "TestB.h" @implementation TestB @synthesize testProp; - (void)testing{ NSLog(@"test ivar is %@", testString); } @end

    Read the article

  • How can I use a single-table inheritance and single controller to make this more DRY?

    - by Angela
    I have three models, Calls, Emails, and Letters and those are basically templates of what gets sent to individuals, modeled as Contacts. When a Call is made, a row in model in ContactCalls gets created. If an Email is sent, an entry in ContactEmails is made. Each has its own controller: contact_calls_controller.rb and contact_emails_controller.rb. I would like to create a single table inheritance called ContactEvents which has types Calls, Emails, and Letters. But I'm not clear how I pass the type information or how to consolidate the controllers. Here's the two controllers I have, as you can see, there's alot of duplication, but some differences that needs to be preserved. In the case of letter and postcards (another Model), it's even more so. class ContactEmailsController < ApplicationController def new @contact_email = ContactEmail.new @contact_email.contact_id = params[:contact] @contact_email.email_id = params[:email] @contact = Contact.find(params[:contact]) @company = Company.find(@contact.company_id) contacts = @company.contacts.collect(&:full_name) contacts.each do |contact| @colleagues = contacts.reject{ |c| [email protected]_name } end @email = Email.find(@contact_email.email_id) @contact_email.subject = @email.subject @contact_email.body = @email.message @email.message.gsub!("{FirstName}", @contact.first_name) @email.message.gsub!("{Company}", @contact.company_name) @email.message.gsub!("{Colleagues}", @colleagues.to_sentence) @email.message.gsub!("{NextWeek}", (Date.today + 7.days).strftime("%A, %B %d")) @contact_email.status = "sent" end def create @contact_email = ContactEmail.new(params[:contact_email]) @contact = Contact.find_by_id(@contact_email.contact_id) @email = Email.find_by_id(@contact_email.email_id) if @contact_email.save flash[:notice] = "Successfully created contact email." # send email using class in outbound_mailer.rb OutboundMailer.deliver_campaign_email(@contact,@contact_email) redirect_to todo_url else render :action => 'new' end end AND: class ContactCallsController < ApplicationController def new @contact_call = ContactCall.new @contact_call.contact_id = params[:contact] @contact_call.call_id = params[:call] @contact_call.status = params[:status] @contact = Contact.find(params[:contact]) @company = Company.find(@contact.company_id) @contact = Contact.find(@contact_call.contact_id) @call = Call.find(@contact_call.call_id) @contact_call.title = @call.title contacts = @company.contacts.collect(&:full_name) contacts.each do |contact| @colleagues = contacts.reject{ |c| [email protected]_name } end @contact_call.script = @call.script @call.script.gsub!("{FirstName}", @contact.first_name) @call.script.gsub!("{Company}", @contact.company_name ) @call.script.gsub!("{Colleagues}", @colleagues.to_sentence) end def create @contact_call = ContactCall.new(params[:contact_call]) if @contact_call.save flash[:notice] = "Successfully created contact call." redirect_to contact_path(@contact_call.contact_id) else render :action => 'new' end end

    Read the article

  • How can I solve this CSS links inheritance problem?

    - by Craig Whitley
    It's stumped me an I've tried a couple of things - then again I'm not very experienced so I may just be going about it the wrong way. Basically I want to have different link styles for both the navigation and the pagination. The #navigation styling is overriding my .pagination styling though, and it doesn't appear to matter if the pagination is a class or an ID. I've also tried putting !important in the pagination styling, but this then makes the navigation inherit the pagination (been using firebug to check the inheritance). #navigation a:active, a:link, a:visited, a, a:focus { color: #ffde2f; font-family: Verdana, Geneva, Arial, Helvetica, sans-serif; font-size: 24px; text-decoration: none; } #navigation a:hover { color: #ffffff; font-family: Verdana, Geneva, Arial, Helvetica, sans-serif; font-size: 24px; text-decoration: none; } .pagination a:active, a:link, a:visited, a, a:focus { color: #fff; font-family: Verdana, Geneva, Arial, Helvetica, sans-serif; font-size: 14px; text-decoration: none; } .pagination { color: #fff; font-size: 14px; font-family: Verdana, Geneva, Arial, Helvetica, sans-serif; }

    Read the article

  • Javascript inheritance: call super-constructor or use prototype chain?

    - by Jeremy S.
    Hi folks, quite recently I read about javascript call usage in MDC https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Function/call one linke of the example shown below, I still don't understand. Why are they using inheritance here like this Prod_dept.prototype = new Product(); is this necessary? Because there is a call to the super-constructor in Prod_dept() anyway, like this Product.call is this just out of common behaviour? When is it better to use call for the super-constructor or use the prototype chain? function Product(name, value){ this.name = name; if(value >= 1000) this.value = 999; else this.value = value; } function Prod_dept(name, value, dept){ this.dept = dept; Product.call(this, name, value); } Prod_dept.prototype = new Product(); // since 5 is less than 1000, value is set cheese = new Prod_dept("feta", 5, "food"); // since 5000 is above 1000, value will be 999 car = new Prod_dept("honda", 5000, "auto"); Thanks for making things clearer

    Read the article

  • How can I achieve this kind of relationship (inheritance, composition, something else)?

    - by Tim
    I would like to set up a foundation of classes for an application, two of which are person and student. A person may or may not be a student and a student is always a person. The fact that a student “is a” person led me to try inheritance, but I can't see how to make it work in the case where I have a DAO that returns an instance of person and I then want to determine if that person is a student and call student related methods for it. class Person { private $_firstName; public function isStudent() { // figure out if this person is a student return true; // (or false) } } class Student extends Person { private $_gpa; public function getGpa() { // do something to retrieve this student's gpa return 4.0; // (or whatever it is) } } class SomeDaoThatReturnsPersonInstances { public function find() { return new Person(); } } $myPerson = SomeDaoThatReturnsPersonInstances::find(); if($myPerson->isStudent()) { echo 'My person\'s GPA is: ', $myPerson->getGpa(); } This obviously doesn't work, but what is the best way to achieve this effect? Composition doesn't sond right in my mind because a person does not “have a” student. I'm not looking for a solution necessarily but maybe just a term or phrase to search for. Since I'm not really sure what to call what I'm trying to do, I haven't had much luck. Thank you!

    Read the article

  • polymorphism, inheritance in c# - base class calling overridden method?

    - by Andrew Johns
    This code doesn't work, but hopefully you'll get what I'm trying to achieve here. I've got a Money class, which I've taken from http://www.noticeablydifferent.com/CodeSamples/Money.aspx, and extended it a little to include currency conversion. The implementation for the actual conversion rate could be different in each project, so I decided to move the actual method for retrieving a conversion rate (GetCurrencyConversionRate) into a derived class, but the ConvertTo method contains code that would work for any implementation assuming the derived class has overriden GetCurrencyConversionRate so it made sense to me to keep it in the parent class? So what I'm trying to do is get an instance of SubMoney, and be able to call the .ConvertTo() method, which would in turn use the overriden GetCurrencyConversionRate, and return a new instance of SubMoney. The problem is, I'm not really understanding some concepts of polymorphism and inheritance yet, so not quite sure what I'm trying to do is even possible in the way I think it is, as what is currently happening is that I end up with an Exception where it has used the base GetCurrencyConversionRate method instead of the derived one. Something tells me I need to move the ConvertTo method down to the derived class, but this seems like I'll be duplicating code in multiple implementations, so surely there's a better way? public class Money { public CurrencyConversionRate { get { return GetCurrencyConversionRate(_regionInfo.ISOCurrencySymbol); } } public static decimal GetCurrencyConversionRate(string isoCurrencySymbol) { throw new Exception("Must override this method if you wish to use it."); } public Money ConvertTo(string cultureName) { // convert to base USD first by dividing current amount by it's exchange rate. Money someMoney = this; decimal conversionRate = this.CurrencyConversionRate; decimal convertedUSDAmount = Money.Divide(someMoney, conversionRate).Amount; // now convert to new currency CultureInfo cultureInfo = new CultureInfo(cultureName); RegionInfo regionInfo = new RegionInfo(cultureInfo.LCID); conversionRate = GetCurrencyConversionRate(regionInfo.ISOCurrencySymbol); decimal convertedAmount = convertedUSDAmount * conversionRate; Money convertedMoney = new Money(convertedAmount, cultureName); return convertedMoney; } } public class SubMoney { public SubMoney(decimal amount, string cultureName) : base(amount, cultureName) {} public static new decimal GetCurrencyConversionRate(string isoCurrencySymbol) { // This would get the conversion rate from some web or database source decimal result = new Decimal(2); return result; } }

    Read the article

  • How to properly mix generics and inheritance to get the desired result?

    - by yamsha
    My question is not easy to explain using words, fortunately it's not too difficult to demonstrate. So, bear with me: public interface Command<R> { public R execute();//parameter R is the type of object that will be returned as the result of the execution of this command } public abstract class BasicCommand<R> { } public interface CommandProcessor<C extends Command<?>> { public <R> R process(C<R> command);//this is my question... it's illegal to do, but you understand the idea behind it, right? } //constrain BasicCommandProcessor to commands that subclass BasicCommand public class BasicCommandProcessor implements CommandProcessor<C extends BasicCommand<?>> { //here, only subclasses of BasicCommand should be allowed as arguments but these //BasicCommand object should be parameterized by R, like so: BasicCommand<R> //so the method signature should really be // public <R> R process(BasicCommand<R> command) //which would break the inheritance if the interface's method signature was instead: // public <R> R process(Command<R> command); //I really hope this fully illustrates my conundrum public <R> R process(C<R> command) { return command.execute(); } } public class CommandContext { public static void main(String... args) { BasicCommandProcessor bcp = new BasicCommandProcessor(); String textResult = bcp.execute(new BasicCommand<String>() { public String execute() { return "result"; } }); Long numericResult = bcp.execute(new BasicCommand<Long>() { public Long execute() { return 123L; } }); } } Basically, I want the generic "process" method to dictate the type of generic parameter of the Command object. The goal is to be able to restrict different implementations of CommandProcessor to certain classes that implement Command interface and at the same time to able to call the process method of any class that implements the CommandProcessor interface and have it return the object of type specified by the parametarized Command object. I'm not sure if my explanation is clear enough, so please let me know if further explanation is needed. I guess, the question is "Would this be possible to do, at all?" If the answer is "No" what would be the best work-around (I thought of a couple on my own, but I'd like some fresh ideas)

    Read the article

  • Shortcomings of using dynamic types in C#

    - by Karthik Sreenivasan
    I have been recently studying more on the dynamic types in C#. With some examples I understood once the code is compiled, it does not need to be recompiled again but can be executed directly. I feel the flexibility provided by the keyword to actually be able to change data type at will is a great advantage. Question, Are there any specific shortcomings apart from wrong dynamic method calls which throw run time exceptions which developers must know before starting the implementation.

    Read the article

  • Expando Object and dynamic property pattern

    - by Al.Net
    I have read about 'dynamic property pattern' of Martin Fowler in his site under the tag 1997 in which he used dictionary kind of stuff to achieve this pattern. And I have come across about Expando object in c# very recently. When I see its implementation, I am able to see IDictionary implemented. So Expando object uses dictionary to store dynamic properties and is it what, Martin Fowler already defined 15 years ago?

    Read the article

  • ASP.NET Querystring: Basic Dynamic URL Formations

    If you are a beginner to ASP.NET 3.5 you might ask How are dynamic URLs using queries generated in ASP.NET In developing dynamic websites those that strongly depend on using a database to present content it is of the utmost importance that you clearly understand how to work with query-based URLs. This article will show you how.... Reach Millions of Netbook Users Easily create and sell netbook apps with the Intel? Atom? Developer program

    Read the article

  • Dynamic Web Applications with ASP.NET Mono using MySQL and VB.NET

    This tutorial will provide an example of an actual dynamic web application project in ASP.NET Mono using MySQL and VB.NET. A dynamic web application as described in this tutorial refers to a web application that depends on the use of a database. You will need to know how to use MySQL in an ASP.NET Mono project to understand this tutorial.... Comcast? Business Class - Official Site Sign Up For Comcast Business Class, Make Your Business a Fast Business

    Read the article

  • Using Dynamic LINQ to get a filter for my Web API

    - by Espo
    We are considering using the Dynamic.CS linq-sample included in the "Samples" directory of visual studio 2008 for our WebAPI project to allow clients to query our data. The interface would be something like this (In addition to the normal GET-methods): public HttpResponseMessage List(string filter = null); The plan is to use the dynamic library to parse the "filter"-variable and then execute the query agains the DB. Any thoughts if this is a good idea? Is it a security problem?

    Read the article

< Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >