Search Results

Search found 9426 results on 378 pages for 'monkey sort'.

Page 31/378 | < Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >

  • Visual Studio 2013 Preview sort avec .NET 4.5.1 et Team Foundation Server 2013, l'EDI apporte plus de 5 000 nouvelles API

    Visual Studio 2013 Preview sort avec .NET 4.5.1 et Team Foundation Server 2013 l'EDI apporte plus de 5 000 nouvelles APIAprès Windows 8.1 Preview, c'est au tour de l'environnement de développement de Microsoft Visual Studio 2013 de pointer son nez.La build a été l'occasion pour Microsoft de dévoiler la Preview de Visual Studio 2013, de Team Foundation Server 2013 et de .NET 4.5.1Visual Studio 2013 apporte de nouveaux outils de productivité pour le contrôle de version, de profiling, de tests, de collaboration, de contrôles de sources, de gestion du portfolio agile, de suivi du cycle de vie des applications (ALM) et près de 5 000 ...

    Read the article

  • Microsoft sort SQL Server 2014 CTP 2 et vante ses nouvelles capacités In-Memory permettant d'accélérer 30 fois les performances

    Microsoft sort SQL Server 2014 CTP 2 et vante ses nouvelles capacités In-Memory permettant d'accélérer 30 fois les performancesMicrosoft a profité de son salon Pass Summit 2013 dédié à SQL Server pour dévoiler la CTP 2 de sa plateforme de gestion de données moderne SQL Server 2014.SQL Server 2014 est conçu autour de trois objectifs majeurs : offrir un système de base de données « In-Memory », de nouvelles capacités Cloud pour simplifier l'adoption du Cloud Computing pour les bases de données SQL...

    Read the article

  • ARM sort un IDE gratuit pour le développement natif sous Android : d'édition communautaire d'ARM Development Studio 5

    ARM sort un IDE gratuit pour le développement natif sous Android L'édition communautaire d'ARM Development Studio 5 ARM ltd, développeur de l'architecture éponyme, vient d'annoncer la disponibilité de Development Studio 5 (DS-5) en édition communautaire (CE). Cette édition permettra de développer sans frais de licence, des applications Android natives en C/C++ allant jusqu'à quatre fois plus vite que le code Java. Ce toolkit est fondé sur Eclipse. Il vient compléter les SDK et NDK (Native Develope...

    Read the article

  • Microsoft sort Virtual Machine Converter, un outil gratuit pour convertir les machines virtuelles vSphere vers Hyper-V

    Microsoft lorgne les clients de VMware et sort Virtual Machine Converter un outil gratuit pour convertir les machines virtuelles vSphere vers Hyper-V Microsoft lorgne les clients de VMware, en facilitant le processus de migration des environnements de virtualisation de la société vers Hyper-V. La firme vient de publier un outil gratuit qui permet de convertir des machines virtuelles qui s'exécutent sur les produits VMware en un format pouvant s'exécuter dans son environnement de virtualisation Hyper-V. Microsoft Virtual Machine Converter (MVMC) convertit les machines virtuelles créées avec l'outil de virtualisation vSphere 4.1 et 5.0, qui peuvent s'exécuter sur Windows Serv...

    Read the article

  • Microsoft sort Kinect Common Bridge, un wrapper open source du SDK Kinect pour contrôler ses modèles 3D avec le corps comme dans Minority Report

    Microsoft sort Kinect Common Bridge un wrapper open source du SDK de Kinect pour contrôler ses modèles 3D avec le corps comme dans Minority ReportConçue au départ pour améliorer l'expérience de jeu des possesseurs de la xBox 360, les horizons de la caméra Kinect se sont élargis avec le temps. En effet, elle est également utilisée dans de nombreux projets qui n'ont rien à voir avec les jeux vidéo. C'est notamment le cas de son utilisation par une équipe chinoise pour transformer le langage des signes...

    Read the article

  • Facebook sort Presto, son moteur de requêtes open source pour le big data, qui serait dix fois plus performant que celui de Hadoop

    Facebook sort Presto, son moteur de requêtes open source pour le big data qui serait dix fois plus performant que celui de HadoopDe nombreuses entreprises comme Facebook dépendent du Big data. Dans le domaine, on compte la paire Hadoop/Hive parmi les références. Pour rappel, Hive c'est le moteur de requêtes populaire pour Hadoop. Cependant, il se pourrait que le MapReduce élément essentiel sur lequel repose Hive ne soit pas optimisé pour des situations ou la quantité de données excède un certain...

    Read the article

  • Chrome 32 bêta sort avec un indicateur d'onglets qui jouent un son, une vidéo, utilisent la webcam ou diffusent sur la TV

    Chrome 32 bêta sort avec un indicateur d'onglets qui jouent un son une vidéo, utilisent la webcam ou diffusent sur la TVFidèle à son rythme de sortie des nouvelles versions de Chrome, Google vient de dévoiler la bêta de la version 32 du navigateur pour Windows, Mac et Linux, avec comme nouveauté phare une fonctionnalité permettant d'identifier rapidement les onglets bruyants, ceux qui utilisent la webcam, ainsi que ceux en diffusion sur votre télévision.En gestation depuis fin février sur le canal...

    Read the article

  • Can I remove the original file while running "sort"?

    - by Spaceman
    I'm sorting a huge file, around 400 gigabytes. I'm running out of the disk space and I must do something quickly. Let's assume the original file is called original_file. So I execute (simplified) it as "sort original_file | gzip -c output_file" I use /home/tmp as a temporary dir. From what I see, there are a lot of intermediate files, like so: tmpA465 tmpB154 ... and so on. The smallest ones have size 12 megabytes. The largest have ~182 megabytes. So, it seems that the "sort" command have already split the original file into small pieces, and have sorted them, and now it is merging them into bigger parts (which will be, eventually, sorted as well). Please correct me if I'm wrong. Can I remove the original file right now without terminating the sort process? I've been waiting for a few days for that and it's important that the "sort" command will not fail and I will get the result file, finally. The OS is Ubuntu server 13.04, x64. Thanks!

    Read the article

  • Firefox 30 sort en version stable et désactive par défaut l'exécution des plugins, la version Android également disponible

    Firefox 30 sort en version stable et désactive par défaut l'exécution des plugins, la version Android également disponibleMozilla met à la disposition des utilisateurs, une nouvelle version de son navigateur Firefox. Contrairement à la version 29 qui était sortie avec un lot de nouveautés, notamment sa nouvelle interface utilisateur Australis, Firefox 30 représente une mise à jour mineure.Tout comme Google avec Chrome, Mozilla prend également des distances avec les plugins qui représentent (ceux...

    Read the article

  • Chrome 31 : paiement Web, exécution d'applications natives et améliorations de la sécurité, le navigateur sort en version stable

    Chrome 31 : paiement Web, exécution d'applications natives et améliorations de la sécurité le navigateur sort en version stableChrome 31 est disponible en version stable pour Windows, Mac et Linux.Cette nouvelle mouture du navigateur de Google vante essentiellement sa nouvelle fonctionnalité qui permet de remplier les formulaires en ligne avec le moins d'effort possible. Les développeurs peuvent désormais accéder de façon pragmatique aux données distantes stockées localement côté client, grâce...

    Read the article

  • Ubuntu 13.10 sort en version stable, Saucy Salamander améliore la fonction de recherche Dash et les performances de l'OS Linux

    Ubuntu 13.10 sort en version stable l'OS Linux améliore sa fonction de recherche Dash et ses performancesAlors que Microsoft dévoilait au grand public Windows 8.1, du côté de l'open source, les feux des projecteurs étaient braqués sur Ubuntu 13.10, alias Saucy Salamander.Canonical vient de mettre à la disposition des utilisateurs, la dernière version de la célèbre distribution Linux, qui apporte juste quelques nouvelles fonctionnalités. Selon Canonical, l'attention des développeurs était portée...

    Read the article

  • More CPU cores may not always lead to better performance – MAXDOP and query memory distribution in spotlight

    - by sqlworkshops
    More hardware normally delivers better performance, but there are exceptions where it can hinder performance. Understanding these exceptions and working around it is a major part of SQL Server performance tuning.   When a memory allocating query executes in parallel, SQL Server distributes memory to each task that is executing part of the query in parallel. In our example the sort operator that executes in parallel divides the memory across all tasks assuming even distribution of rows. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union.   In reality, how often are column values evenly distributed, think about an example; are employees working for your company distributed evenly across all the Zip codes or mainly concentrated in the headquarters? What happens when you sort result set based on Zip codes? Do all products in the catalog sell equally or are few products hot selling items?   One of my customers tested the below example on a 24 core server with various MAXDOP settings and here are the results:MAXDOP 1: CPU time = 1185 ms, elapsed time = 1188 msMAXDOP 4: CPU time = 1981 ms, elapsed time = 1568 msMAXDOP 8: CPU time = 1918 ms, elapsed time = 1619 msMAXDOP 12: CPU time = 2367 ms, elapsed time = 2258 msMAXDOP 16: CPU time = 2540 ms, elapsed time = 2579 msMAXDOP 20: CPU time = 2470 ms, elapsed time = 2534 msMAXDOP 0: CPU time = 2809 ms, elapsed time = 2721 ms - all 24 cores.In the above test, when the data was evenly distributed, the elapsed time of parallel query was always lower than serial query.   Why does the query get slower and slower with more CPU cores / higher MAXDOP? Maybe you can answer this question after reading the article; let me know: [email protected].   Well you get the point, let’s see an example.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go   Let’s create the temporary table #FireDrill with all possible Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip from Employees update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --First serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) goThe query took 1011 ms to complete.   The execution plan shows the 77816 KB of memory was granted while the estimated rows were 799624.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1912 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 799624.  The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead. Sort properties shows the rows are unevenly distributed over the 4 threads.   Sort Warnings in SQL Server Profiler.   Intermediate Summary: The reason for the higher duration with parallel plan was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001. Now let’s update the Employees table and distribute employees evenly across all Zip codes.   update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go   The query took 751 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.   Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 661 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 784707.  Sort properties shows the rows are evenly distributed over the 4 threads. No Sort Warnings in SQL Server Profiler.    Intermediate Summary: When employees were distributed unevenly, concentrated on 1 Zip code, parallel sort spilled while serial sort performed well without spilling to tempdb. When the employees were distributed evenly across all Zip codes, parallel sort and serial sort did not spill to tempdb. This shows uneven data distribution may affect the performance of some parallel queries negatively. For detailed discussion of memory allocation, refer to webcasts available at www.sqlworkshops.com/webcasts.     Some of you might conclude from the above execution times that parallel query is not faster even when there is no spill. Below you can see when we are joining limited amount of Zip codes, parallel query will be fasted since it can use Bitmap Filtering.   Let’s update the Employees table with 49 out of 50 employees located in Zip code 2001. update Employees set Zip = EmployeeID / 400 + 1 where EmployeeID % 50 = 1 update Employees set Zip = 2001 where EmployeeID % 50 != 1 go update statistics Employees with fullscan go  Let’s create the temporary table #FireDrill with limited Zip codes. drop table #FireDrill go create table #FireDrill (Zip int primary key) insert into #FireDrill select distinct Zip       from Employees where Zip between 1800 and 2001 update statistics #FireDrill with fullscan go  Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 989 ms to complete.  The execution plan shows the 77816 KB of memory was granted while the estimated rows were 785594. No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 1799 ms to complete.  The execution plan shows the 79360 KB of memory was granted while the estimated rows were 785594.  Sort Warnings in SQL Server Profiler.    The estimated number of rows between serial and parallel plan are the same. The parallel plan has slightly more memory granted due to additional overhead.  Intermediate Summary: The reason for the higher duration with parallel plan even with limited amount of Zip codes was sort spill. This is due to uneven distribution of employees over Zip codes, especially concentration of 49 out of 50 employees in Zip code 2001.   Now let’s update the Employees table and distribute employees evenly across all Zip codes. update Employees set Zip = EmployeeID / 400 + 1 go update statistics Employees with fullscan go Let’s execute the query serially with MAXDOP 1. --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --Serially with MAXDOP 1 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 1) go The query took 250  ms to complete.  The execution plan shows the 9016 KB of memory was granted while the estimated rows were 79973.8.  No Sort Warnings in SQL Server Profiler.  Now let’s execute the query in parallel with MAXDOP 0.  --Example provided by www.sqlworkshops.com --Execute query with uneven Zip code distribution --In parallel with MAXDOP 0 set statistics time on go declare @EmployeeID int, @EmployeeName varchar(48),@zip int select @EmployeeName = e.EmployeeName, @zip = e.Zip from Employees e       inner join #FireDrill fd on (e.Zip = fd.Zip)       order by e.Zip option (maxdop 0) go The query took 85 ms to complete.  The execution plan shows the 13152 KB of memory was granted while the estimated rows were 784707.  No Sort Warnings in SQL Server Profiler.    Here you see, parallel query is much faster than serial query since SQL Server is using Bitmap Filtering to eliminate rows before the hash join.   Parallel queries are very good for performance, but in some cases it can hinder performance. If one identifies the reason for these hindrances, then it is possible to get the best out of parallelism. I covered many aspects of monitoring and tuning parallel queries in webcasts (www.sqlworkshops.com/webcasts) and articles (www.sqlworkshops.com/articles). I suggest you to watch the webcasts and read the articles to better understand how to identify and tune parallel query performance issues.   Summary: One has to avoid sort spill over tempdb and the chances of spills are higher when a query executes in parallel with uneven data distribution. Parallel query brings its own advantage, reduced elapsed time and reduced work with Bitmap Filtering. So it is important to understand how to avoid spills over tempdb and when to execute a query in parallel.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan  

    Read the article

  • Can Excel sorts be saved and used again?

    - by Robert Kerr
    On an Excel 2007 worksheet, I have several tables, each sharing the same columns. For every table, I sort in several particular ways, depending on the task at hand. It gets tedious going to the Data tab, clicking Sort, unchecking the "my data has headers" checkbox, then add/removing the columns and ordering sort criteria. Is it possible to: * Save a given sort criteria (a named sort)? * Apply the sort against any selected range? * Create a button to execute each saved sort? In the end, I would create 4 or 5 named sorts and a button for each on the worksheet. Then would be able to select any range of rows, from any table, and click one of the sort buttons. The sort would execute.

    Read the article

  • Mail.app - What sets sort order when adding To addresses by typing Group name?

    - by Meltemi
    Using Mail.app in Mac OS X (10.6.3) I'm seeing apparently random sort order when sending a email to a group. Not a major issue but you'd think it be alphabetical?!? To reproduce: Compose New Message in Mail.app Type in a group name from your Address Book The addresses from that group will populate the To: field in apparently random fashion FYI- You'd think that choosing Edit Distribution List… in Address Book would let you sort the list...but nope! Anyone know what/how to set this sort order?

    Read the article

  • Google sort « Bali », un nouveau SDK pour le VP8 : le codec vidéo open-source gagne en vitesse d'encodage et en qualité

    Google sort « Bali », un nouveau SDK pour le VP8 Le codec vidéo open-source gagne en vitesse d'encodage et en qualité Mise à jour du 10/03/11 Google vient de mettre à jour son environnement de développement autour du VP8, le codec vidéo open-source derrière WebM. Selon Google, ce nouveau SDK permet d'encoder une fois et demi plus vite des vidéos qu'avec la précédente version (Aylesbury, lire ci-avant) sur les plate-formes x86. Autre nouveauté majeure de « Bali » (nom de code de cette version), l'amélioration du multithreading et de la prise en charge du multi-coeur. Ici aussi, l'objectif était d'augmenter les vitesses d'en...

    Read the article

  • Nokia sort sa carte « Here Maps » sur iOS et prévoit un SDK pour une version Android début 2013

    Nokia sort son application « Here Maps » pour iOS Et prévoit un SDK pour une version Android début 2013 Au cas où certains l'auraient oublié, la guerre des « Maps » ne se passe pas qu'entre Google et Apple. Un des acteurs majeurs du secteur s'appelle Nokia. Et depuis aujourd'hui, Nokia a lancé son application gratuite sur l'AppStore. « Here Maps » pour iOS propose la géolocalisation, la vue satellite, la possibilité d'enregistrer des extraits de cartes pour une consultation hors-ligne, le trafic en temps réel, le partage de points d'intérêts (je signale une chose intéressante sur la carte et les personnes avec qui je la partage la voient) sans oublier la navigation et le gu...

    Read the article

  • Nokia sort sa carte « Here Maps » pour iOS et prévoit un SDK pour une version Android début 2013

    Nokia sort son application « Here Maps » pour iOS Et prévoit un SDK pour une version Android début 2013 Au cas où certains l'auraient oublié, la guerre des « Maps » ne se passe pas qu'entre Google et Apple. Un des acteurs majeurs du secteur s'appelle Nokia. Et depuis aujourd'hui, Nokia a lancé son application gratuite sur l'AppStore. « Here Maps » pour iOS propose la géolocalisation, la vue satellite, la possibilité d'enregistrer des extraits de cartes pour une consultation hors-ligne, le trafic en temps réel, le partage de points d'intérêts (je signale une chose intéressante sur la carte et les personnes avec qui je la partage la voient) sans oublier la navigation et le gu...

    Read the article

  • Plan Caching and Query Memory Part I – When not to use stored procedure or other plan caching mechanisms like sp_executesql or prepared statement

    - by sqlworkshops
      The most common performance mistake SQL Server developers make: SQL Server estimates memory requirement for queries at compilation time. This mechanism is fine for dynamic queries that need memory, but not for queries that cache the plan. With dynamic queries the plan is not reused for different set of parameters values / predicates and hence different amount of memory can be estimated based on different set of parameter values / predicates. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Sort with examples. It is recommended to read Plan Caching and Query Memory Part II after this article which covers Hash Match operations.   When the plan is cached by using stored procedure or other plan caching mechanisms like sp_executesql or prepared statement, SQL Server estimates memory requirement based on first set of execution parameters. Later when the same stored procedure is called with different set of parameter values, the same amount of memory is used to execute the stored procedure. This might lead to underestimation / overestimation of memory on plan reuse, overestimation of memory might not be a noticeable issue for Sort operations, but underestimation of memory will lead to spill over tempdb resulting in poor performance.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a stored procedure does not change significantly based on predicates.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts   Enough theory, let’s see an example where we sort initially 1 month of data and then use the stored procedure to sort 6 months of data.   Let’s create a stored procedure that sorts customers by name within certain date range.   --Example provided by www.sqlworkshops.com create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1)       end go Let’s execute the stored procedure initially with 1 month date range.   set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 48 ms to complete.     The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.       The estimated number of rows, 43199.9 is similar to actual number of rows 43200 and hence the memory estimation should be ok.       There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 679 ms to complete.      The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.      The estimated number of rows, 43199.9 is way different from the actual number of rows 259200 because the estimation is based on the first set of parameter value supplied to the stored procedure which is 1 month in our case. This underestimation will lead to sort spill over tempdb, resulting in poor performance.      There was Sort Warnings in SQL Profiler.    To monitor the amount of data written and read from tempdb, one can execute select num_of_bytes_written, num_of_bytes_read from sys.dm_io_virtual_file_stats(2, NULL) before and after the stored procedure execution, for additional information refer to the webcast: www.sqlworkshops.com/webcasts.     Let’s recompile the stored procedure and then let’s first execute the stored procedure with 6 month date range.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts for further details.   exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go Now the stored procedure took only 294 ms instead of 679 ms.    The stored procedure was granted 26832 KB of memory.      The estimated number of rows, 259200 is similar to actual number of rows of 259200. Better performance of this stored procedure is due to better estimation of memory and avoiding sort spill over tempdb.      There was no Sort Warnings in SQL Profiler.       Now let’s execute the stored procedure with 1 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 49 ms to complete, similar to our very first stored procedure execution.     This stored procedure was granted more memory (26832 KB) than necessary memory (6656 KB) based on 6 months of data estimation (259200 rows) instead of 1 month of data estimation (43199.9 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is 6 months in this case. This overestimation did not affect performance, but it might affect performance of other concurrent queries requiring memory and hence overestimation is not recommended. This overestimation might affect performance Hash Match operations, refer to article Plan Caching and Query Memory Part II for further details.    Let’s recompile the stored procedure and then let’s first execute the stored procedure with 2 day date range. exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-02' go The stored procedure took 1 ms.      The stored procedure was granted 1024 KB based on 1440 rows being estimated.      There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go   The stored procedure took 955 ms to complete, way higher than 679 ms or 294ms we noticed before.      The stored procedure was granted 1024 KB based on 1440 rows being estimated. But we noticed in the past this stored procedure with 6 month date range needed 26832 KB of memory to execute optimally without spill over tempdb. This is clear underestimation of memory and the reason for the very poor performance.      There was Sort Warnings in SQL Profiler. Unlike before this was a Multiple pass sort instead of Single pass sort. This occurs when granted memory is too low.      Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined date range.   Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, recompile)       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.      The stored procedure with 1 month date range has good estimation like before.      The stored procedure with 6 month date range also has good estimation and memory grant like before because the query was recompiled with current set of parameter values.      The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.     Let’s recreate the stored procedure with optimize for hint of 6 month date range.   --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, optimize for (@CreationDateFrom = '2001-01-01', @CreationDateTo ='2001-06-30'))       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.    The stored procedure with 1 month date range has overestimation of rows and memory. This is because we provided hint to optimize for 6 months of data.      The stored procedure with 6 month date range has good estimation and memory grant because we provided hint to optimize for 6 months of data.       Let’s execute the stored procedure with 12 month date range using the currently cashed plan for 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-12-31' go The stored procedure took 1138 ms to complete.      2592000 rows were estimated based on optimize for hint value for 6 month date range. Actual number of rows is 524160 due to 12 month date range.      The stored procedure was granted enough memory to sort 6 month date range and not 12 month date range, so there will be spill over tempdb.      There was Sort Warnings in SQL Profiler.      As we see above, optimize for hint cannot guarantee enough memory and optimal performance compared to recompile hint.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case. I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.     Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.     Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • Google sort plusieurs outils pour faciliter le déploiement de Chrome en entreprise, son navigateur est "prêt" pour ces environnements

    Google sort plusieurs outils pour faciliter le déploiement de Chrome en entreprise, et déclare que son navigateur "est prêt pour les environnements professionnels" Chrome, le navigateur de Google, connaît un énorme succès auprès du grand public. Pourtant, il reste toujours boudé par les entreprises. Son éditeur aimerait pourtant le voir adopté par les professionnels, et vient de dévoiler des outils pour aller dans ce sens. En effet, des technologies qui sont des standards dans les services IT des plus grandes entreprises entrent en piste, pour aider les compagnies a déployer Chrome sur les machines de leurs employés. La première nouveauté est un installateur MSI "qui permet aux entrepris...

    Read the article

  • C/GCC - Is it possible to sort arrays using preprocessor?

    - by psihodelia
    I have a number of very long arrays. No run-time sort is possible. It is also time consuming to sort them manually. Moreover, new elements can be added in any order later, so I would like to sort them by value using C preprocessor or maybe there is any compilers flag (GCC)? For example: sometype S[] = { {somevals, "BOB", someothervals}, {somevals, "ALICE", someothervals}, {somevals, "TIM", someothervals}, } must be sorted so: sometype S[] = { {somevals, "ALICE", someothervals}, {somevals, "BOB", someothervals}, {somevals, "TIM", someothervals}, }

    Read the article

  • How can I sort just part of a list using vb .net?

    - by Eyal
    In VB .Net, the Generics Lists have a sort function that accepts IComparer or Comparison. I'd like to sort just part of list. Hopefully I can specify the start index, count of elements to sort, and a lambda function. It looks like you can only use lambda functions to do this if you're sorting the entire list. Is that right or did I miss something?

    Read the article

  • AMD sort un processeur 6 coeurs moins cher que celui d'Intel, le meilleur est-il le plus performant

    Mise à jour du 27.04.2010 par Katleen AMD sort un processeur 6 coeurs moins cher que celui d'Intel, le meilleur processeur est-il le plus performant ou le moins cher ? AMD a lancé la commercialisation de deux processeurs X6 de la gamme Phenom II. Dotées de six coeurs, ces puces se veulent être moins chères que les modèles équivalents vendus par Intel. Et le rabais est de taille : là où le i7-980XM d'Intel coûte 999 dollars, le Phenom II X6 1090 T (3.2Ghz) s'acquiert pour 295 dollars. Quant au 1055T (2.8Ghz), il est vendu 199$. Ciblant une clientèle de joueurs ou d'utilisateurs recherchant de très bonnes performances pour leur bureau, ces composants sont à ce jour ...

    Read the article

  • « ASP.NET et Web Tools 2012.2 » sort en RC, avec de nouvelles fonctionnalités pour WebForms, MVC, WebAPI et SignalR

    « ASP.NET et Web Tools 2012.2 » sort en RC avec de nouvelles fonctionnalités pour WebForms, MVC, WebAPI et SignalR Le Web évolue rapidement, et Microsoft est conscient de cela. L'éditeur a ainsi adopté un cycle de mise à jour pour ASP.NET plus rapide que celui de Visual Studio. La société compte donc publier une mise à jour pour sa plateforme de développement Web ASP.NET en début d'année prochaine. Les développeurs qui veulent commencer à « jouer » avec les nouvelles fonctionnalités de cette mise à jour peuvent déjà télécharger sa version Release Candidate (RC) qui vient d'être publiée par les équipes ASP.NET et Visual Web Developer de Microsoft.

    Read the article

  • What sort of security method is this called (if it has a name)?

    - by loosebruce
    I have thought of a way of securing access to an application interacting with another application. Using this method Application 1 - "What is the sum of 1+1?" Application 2 - "3" Application 1 - "Access granted" Is this method used a lot, does it have a classification in the programming world? The advantages for me of using this is that I do not have to spend more effort implementing security keys/certificates. Any unauthorized machine trying to interpret it would give the correct result and identify itself as untrusted. What sort of weaknesses are there to doing this?

    Read the article

  • Microsoft sort la version finale de son application Tag, qui permet aux smartphones de lire des code

    Microsoft sort la version finale de son application Tag, qui permet aux smartphones de lire des code-barres La technologie de Microsoft permettant de lire les codes-barres pour mobiles, vient d'en terminer avec la phase de bêta testing. Une version finale de Tag est désormais disponible au téléchargement, après 18 mois de développement. Son principe n'est pas nouveau : des code-barres présents à divers endroits (magazines, panneaux d'affichage, etc.) sont scannés par l'appareil photo d'un smartphone puis décodés grâce à un logiciel spécifique (gratuit et compatible avec Android, BlackBerry, iPhone, Symbian, PalmOS et, bien sur, Windows Mobile). Lorsque le Tag est déchiffré, la commande qu'il contient est lancée : lan...

    Read the article

< Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >