Search Results

Search found 65206 results on 2609 pages for 'real time'.

Page 31/2609 | < Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >

  • ScheduledThreadPoolExecutor executing a wrong time because of CPU time discrepancy

    - by richs
    I'm scheduling a task using a ScheduledThreadPoolExecutor object. I use the following method: public ScheduledFuture<?> schedule(Runnable command, long delay,TimeUnit unit) and set the delay to 30 seconds (delay = 30,000 and unit=TimeUnit.MILLISECONDS). Sometimes my task occurs immediately and other times it takes 70 seconds. I believe the ScheduledThreadPoolExecutor uses CPU specific clocks. When i run tests comparing System.currentTimeMillis(), System.nanoTime() [which is CPU specific] i see the following schedule: 1272637682651ms, 7858346157228410ns execute: 1272637682667ms, 7858386270968425ns difference is 16ms but 4011374001ns (or 40,113ms) so it looks like there is discrepancy between two CPU clocks of 40 seconds How do i resolve this issue in java code? Unfortunately this is a clients machine and i can't modify their system.

    Read the article

  • Migrating from Desktop PC to real Server

    - by tevlon84
    i am a student, working as a part-time Administrator at a startup. I never ever used a real Server ( only a Desktop Pc with apache ) The Company i am working for is growing and they want to switch to a real Server. My idea would be to use the Ubuntu build-in Backup function and use this Backup file as Base for the Rack-Server, but i don't know, which problems i would run into. Is it a good idea ? So basically my question is : *What is the easiest way to migrate from a Desktop PC to a real Rack-Server? ( on an Ubuntu Server) *

    Read the article

  • Accelerate your SOA with Data Integration - Live Webinar Tuesday!

    - by dain.hansen
    Need to put wind in your SOA sails? Organizations are turning more and more to Real-time data integration to complement their Service Oriented Architecture. The benefit? Lowering costs through consolidating legacy systems, reducing risk of bad data polluting their applications, and shortening the time to deliver new service offerings. Join us on Tuesday April 13th, 11AM PST for our live webinar on the value of combining SOA and Data Integration together. In this webcast you'll learn how to innovate across your applications swiftly and at a lower cost using Oracle Data Integration technologies: Oracle Data Integrator Enterprise Edition, Oracle GoldenGate, and Oracle Data Quality. You'll also hear: Best practices for building re-usable data services that are high performing and scalable across the enterprise How real-time data integration can maximize SOA returns while providing continuous availability for your mission critical applications Architectural approaches to speed service implementation and delivery times, with pre-integrations to CRM, ERP, BI, and other packaged applications Register now for this live webinar!

    Read the article

  • How to force a clock update using ntp?

    - by ysap
    I am running Ubuntu on an ARM based embedded system that lacks a battery backed RTC. The wake-up time is somewhere during 1970. Thus, I use the NTP service to update the time to the current time. I added the following line to /etc/rc.local file: sudo ntpdate -s time.nist.gov However, after startup, it still takes a couple of minutes until the time is updated, during which period I cannot work effectively with tar and make. How can I force a clock update at any given time? UPDATE 1: The following (thanks to Eric and Stephan) works fine from command line, but fails to update the clock when put in /etc/rc.local: $ date ; sudo service ntp stop ; sudo ntpdate -s time.nist.gov ; sudo service ntp start ; date Thu Jan 1 00:00:58 UTC 1970 * Stopping NTP server ntpd [ OK ] * Starting NTP server [ OK ] Thu Feb 14 18:52:21 UTC 2013 What am I doing wrong? UPDATE 2: I tried following the few suggestions that came in response to the 1st update, but nothing seems to actually do the job as required. Here's what I tried: Replace the server to us.pool.ntp.org Use explicit paths to the programs Remove the ntp service altogether and leave just sudo ntpdate ... in rc.local Remove the sudo from the above command in rc.local Using the above, the machine still starts at 1970. However, when doing this from command line once logged in (via ssh), the clock gets updated as soon as I invoke ntpdate. Last thing I did was to remove that from rc.local and place a call to ntpdate in my .bashrc file. This does update the clock as expected, and I get the true current time once the command prompt is available. However, this means that if the machine is turned on and no user is logged in, then the time never gets updates. I can, of course, reinstall the ntp service so at least the clock is updated within a few minutes from startup, but then we're back at square 1. So, is there a reason why placing the ntpdate command in rc.local does not perform the required task, while doing so in .bashrc works fine?

    Read the article

  • About to graduate from good school without any progamming skills

    - by newprint
    Not sure if it is good place to ask this question, but found this section to be suitable. I am about to graduate from a good school (in the US) with Computer Science degree, having good grades and high GPA. I have no freaking clue how to write a good program, how to properly test it... nada, zero. We were never been taught how to write software. Ye, sure the Comp. Architecture class is important, and I can tell you a lot about how MIPS processor works, and I can tell you about Binary Trees and Red-Black Trees and running time of operations in Big Oh, but it has nothing to do with programming in "real" life. For god sake, none of my classmates know how to use STLs or write templated code! To be honest, I found that many of my classes to be waste of time. What should I do ? How to step into real life and learn how to program ?

    Read the article

  • About to graduage from good school without any progamming skills

    - by newprint
    Not sure if it is good place to ask this question, but found this section to be suitable. I am about to graduate from good school (in the US) with Computer Science degree, having good grades and high GPA. I have no freaking clue how to write a good program, how to properly test it... nada, zero. We were never been tough how to write software. Ye, sure the Comp. Architecture class is important, and I can tell you a lot about how MIPS processor works, and I can tell you about Binary Trees and Red-Black Trees and running time of operations in Big Oh, but it has nothing to do with programming in "real" life. For god sake, none of my classmates know how to use STLs or write templated code !!! To be honest, I found that many of my classes to be waste of time. What should I do ? How to step into real life and learn how to program ?

    Read the article

  • What could be the reason for continuous Full GC's during application startup.

    - by Kumar225
    What could be the reason for continuous Full GC's during application (webapplication deployed on tomcat) startup? JDK 1.6 Memory settings -Xms1024M -Xmx1024M -XX:PermSize=200M -XX:MaxPermSize=512M -XX:+UseParallelOldGC jmap output is below Heap Configuration: MinHeapFreeRatio = 40 MaxHeapFreeRatio = 70 MaxHeapSize = 1073741824 (1024.0MB) NewSize = 2686976 (2.5625MB) MaxNewSize = 17592186044415 MB OldSize = 5439488 (5.1875MB) NewRatio = 2 SurvivorRatio = 8 PermSize = 209715200 (200.0MB) MaxPermSize = 536870912 (512.0MB) 0.194: [GC [PSYoungGen: 10489K->720K(305856K)] 10489K->720K(1004928K), 0.0061190 secs] [Times: user=0.01 sys=0.00, real=0.00 secs] 0.200: [Full GC (System) [PSYoungGen: 720K->0K(305856K)] [ParOldGen: 0K->594K(699072K)] 720K->594K(1004928K) [PSPermGen: 6645K->6641K(204800K)], 0.0516540 secs] [Times: user=0.10 sys=0.00, real=0.06 secs] 6.184: [GC [PSYoungGen: 262208K->14797K(305856K)] 262802K->15392K(1004928K), 0.0354510 secs] [Times: user=0.18 sys=0.04, real=0.03 secs] 9.549: [GC [PSYoungGen: 277005K->43625K(305856K)] 277600K->60736K(1004928K), 0.0781960 secs] [Times: user=0.56 sys=0.07, real=0.08 secs] 11.768: [GC [PSYoungGen: 305833K->43645K(305856K)] 322944K->67436K(1004928K), 0.0584750 secs] [Times: user=0.40 sys=0.05, real=0.06 secs] 15.037: [GC [PSYoungGen: 305853K->43619K(305856K)] 329644K->72932K(1004928K), 0.0688340 secs] [Times: user=0.42 sys=0.01, real=0.07 secs] 19.372: [GC [PSYoungGen: 273171K->43621K(305856K)] 302483K->76957K(1004928K), 0.0573890 secs] [Times: user=0.41 sys=0.01, real=0.06 secs] 19.430: [Full GC (System) [PSYoungGen: 43621K->0K(305856K)] [ParOldGen: 33336K->54668K(699072K)] 76957K->54668K(1004928K) [PSPermGen: 36356K->36296K(204800K)], 0.4569500 secs] [Times: user=1.77 sys=0.02, real=0.46 secs] 19.924: [GC [PSYoungGen: 4280K->128K(305856K)] 58949K->54796K(1004928K), 0.0041070 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 19.928: [Full GC (System) [PSYoungGen: 128K->0K(305856K)] [ParOldGen: 54668K->54532K(699072K)] 54796K->54532K(1004928K) [PSPermGen: 36300K->36300K(204800K)], 0.3531480 secs] [Times: user=1.19 sys=0.10, real=0.35 secs] 20.284: [GC [PSYoungGen: 4280K->64K(305856K)] 58813K->54596K(1004928K), 0.0040580 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 20.288: [Full GC (System) [PSYoungGen: 64K->0K(305856K)] [ParOldGen: 54532K->54532K(699072K)] 54596K->54532K(1004928K) [PSPermGen: 36300K->36300K(204800K)], 0.2360580 secs] [Times: user=1.01 sys=0.01, real=0.24 secs] 20.525: [GC [PSYoungGen: 4280K->96K(305856K)] 58813K->54628K(1004928K), 0.0030960 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 20.528: [Full GC (System) [PSYoungGen: 96K->0K(305856K)] [ParOldGen: 54532K->54533K(699072K)] 54628K->54533K(1004928K) [PSPermGen: 36300K->36300K(204800K)], 0.2311320 secs] [Times: user=0.88 sys=0.00, real=0.23 secs] 20.760: [GC [PSYoungGen: 4280K->96K(305856K)] 58814K->54629K(1004928K), 0.0034940 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 20.764: [Full GC (System) [PSYoungGen: 96K->0K(305856K)] [ParOldGen: 54533K->54533K(699072K)] 54629K->54533K(1004928K) [PSPermGen: 36300K->36300K(204800K)], 0.2381600 secs] [Times: user=0.85 sys=0.01, real=0.24 secs] 21.201: [GC [PSYoungGen: 5160K->354K(305856K)] 59694K->54888K(1004928K), 0.0019950 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 21.204: [Full GC (System) [PSYoungGen: 354K->0K(305856K)] [ParOldGen: 54533K->54792K(699072K)] 54888K->54792K(1004928K) [PSPermGen: 36300K->36300K(204800K)], 0.2358570 secs] [Times: user=0.98 sys=0.01, real=0.24 secs] 21.442: [GC [PSYoungGen: 4280K->64K(305856K)] 59073K->54856K(1004928K), 0.0022190 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 21.444: [Full GC (System) [PSYoungGen: 64K->0K(305856K)] [ParOldGen: 54792K->54792K(699072K)] 54856K->54792K(1004928K) [PSPermGen: 36300K->36300K(204800K)], 0.2475970 secs] [Times: user=0.95 sys=0.00, real=0.24 secs] 21.773: [GC [PSYoungGen: 11200K->741K(305856K)] 65993K->55534K(1004928K), 0.0030230 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 21.776: [Full GC (System) [PSYoungGen: 741K->0K(305856K)] [ParOldGen: 54792K->54376K(699072K)] 55534K->54376K(1004928K) [PSPermGen: 36538K->36537K(204800K)], 0.2550630 secs] [Times: user=1.05 sys=0.00, real=0.25 secs] 22.033: [GC [PSYoungGen: 4280K->96K(305856K)] 58657K->54472K(1004928K), 0.0032130 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 22.036: [Full GC (System) [PSYoungGen: 96K->0K(305856K)] [ParOldGen: 54376K->54376K(699072K)] 54472K->54376K(1004928K) [PSPermGen: 36537K->36537K(204800K)], 0.2507170 secs] [Times: user=1.01 sys=0.01, real=0.25 secs] 22.289: [GC [PSYoungGen: 4280K->96K(305856K)] 58657K->54472K(1004928K), 0.0038060 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 22.293: [Full GC (System) [PSYoungGen: 96K->0K(305856K)] [ParOldGen: 54376K->54376K(699072K)] 54472K->54376K(1004928K) [PSPermGen: 36537K->36537K(204800K)], 0.2640250 secs] [Times: user=1.07 sys=0.02, real=0.27 secs] 22.560: [GC [PSYoungGen: 4280K->128K(305856K)] 58657K->54504K(1004928K), 0.0036890 secs] [Times: user=0.01 sys=0.00, real=0.01 secs] 22.564: [Full GC (System) [PSYoungGen: 128K->0K(305856K)] [ParOldGen: 54376K->54377K(699072K)] 54504K->54377K(1004928K) [PSPermGen: 36537K->36536K(204800K)], 0.2585560 secs] [Times: user=1.08 sys=0.01, real=0.25 secs] 22.823: [GC [PSYoungGen: 4533K->96K(305856K)] 58910K->54473K(1004928K), 0.0020840 secs] [Times: user=0.00 sys=0.00, real=0.01 secs] 22.825: [Full GC (System) [PSYoungGen: 96K->0K(305856K)] [ParOldGen: 54377K->54377K(699072K)] 54473K->54377K(1004928K) [PSPermGen: 36536K->36536K(204800K)], 0.2505380 secs] [Times: user=0.99 sys=0.01, real=0.25 secs] 23.077: [GC [PSYoungGen: 4530K->32K(305856K)] 58908K->54409K(1004928K), 0.0016220 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 23.079: [Full GC (System) [PSYoungGen: 32K->0K(305856K)] [ParOldGen: 54377K->54378K(699072K)] 54409K->54378K(1004928K) [PSPermGen: 36536K->36536K(204800K)], 0.2320970 secs] [Times: user=0.95 sys=0.00, real=0.23 secs] 24.424: [GC [PSYoungGen: 87133K->800K(305856K)] 141512K->55179K(1004928K), 0.0038230 secs] [Times: user=0.01 sys=0.01, real=0.01 secs] 24.428: [Full GC (System) [PSYoungGen: 800K->0K(305856K)] [ParOldGen: 54378K->54950K(699072K)] 55179K->54950K(1004928K) [PSPermGen: 37714K->37712K(204800K)], 0.4105190 secs] [Times: user=1.25 sys=0.17, real=0.41 secs] 24.866: [GC [PSYoungGen: 4280K->256K(305856K)] 59231K->55206K(1004928K), 0.0041370 secs] [Times: user=0.01 sys=0.00, real=0.00 secs] 24.870: [Full GC (System) [PSYoungGen: 256K->0K(305856K)] [ParOldGen: 54950K->54789K(699072K)] 55206K->54789K(1004928K) [PSPermGen: 37720K->37719K(204800K)], 0.4160520 secs] [Times: user=1.12 sys=0.19, real=0.42 secs] 29.041: [GC [PSYoungGen: 262208K->12901K(275136K)] 316997K->67691K(974208K), 0.0170890 secs] [Times: user=0.11 sys=0.00, real=0.02 secs]

    Read the article

  • Best way to restore individual folders via Time Machine after clean Lion install?

    - by A4J
    I'm doing a clean erase and install of Lion, and am looking for the best way to restore individual folders into my home directory via Time Machine. I've done a dummy run, clean Lion install, then 'browse other disks' in Time Machine, navigate to my home folder and 'restore' what I need, such as pictures/music and folders inside the .library folder (such as Mail and Keychains). However this method seems to give you odd permissions, like this: http://i43.tinypic.com/15y82v4.png Hence I wondered if anyone knows what the best method is to restore files and folders after a clean install. N.b I do not want to use the migration assistant, or 'restore OS from Time Machine' - as I specifically want to do a clean install, and just copy over what I need (some folders will be moved onto a separate disk to the OS, and some will remain on the same disk). Thanks in advance.

    Read the article

  • Is it reasonable to use my Time Machine backup to migrate to a new primary hard drive?

    - by Michael Haren
    I'm planning to upgrade my MacBook's harddrive. I already use Time Machine to back up the system to an external drive. Is it reasonable to use Time Machine to restore my system to the new laptop drive, once I install it? I mean, a restore like this really ought to be fine, right? That's the point of it, after all! I know imaging the drive would be more appropriate but this plan seems a whole lot easier (albeit probably slower), with practically no risk since my original drive won't be involved. A second question would then be, are there any considerations to be made when doing a Time Machine restore?

    Read the article

  • How to reuse backup on Time Machine on Snow Leopard after a logic board change, after choosing wrong

    - by kmiffy
    After my logic board was replaced, I connected my laptop back to my network, and Time Machine gave me a popup, as shown on this thread: http://superuser.com/questions/78068/recycle-time-machine-for-new-machine/78264#78264 I misread the question and clicked on "Create New Backup" when I should have clicked on "Reuse Backup" to connect to my old backup file. How can I trigger that popup again? Turning Time Machine on and off does not work, and the instructions on forums to fix via terminal doesn't work because snow leopard is missing the fsaclctl command (and I'm also not familiar with terminal commands.) Thanks.

    Read the article

  • What is normal SCSI error handling process (scsi_eh_3) CPU time usage?

    - by Kris Jordan
    Last week I got setup with a new dedicated server that is running 4x SCSI drives in RAID 10 on CentOS. The machine is pretty lightly loaded at the moment and has been running for 8 days. The process 'scsi_eh_3' has a CPU time of 13:09.67 in top. This is 3x the next closest CPU time of 4:03.93 for mysqld. Is it normal for the scsi error handling process to use this much CPU time? (Seems like it goes to 0.3% usage ever 5 seconds.) Could this be an indicator that one or more of the drives is having issues?

    Read the article

  • Is there any software or hardware which lets you stop, slow down, speed up or even reverse time?

    - by tjrobinson
    Obviously I'm talking about time in terms of the PC clock rather than real time. We were testing an application we've developed at work by setting the clock forward and back to simulate different scenarios and I started thinking how useful it would be if you could adjust the rate(?) of the system clock with finer control. So you could make a minute pass in a second or a day pass in 30 seconds and watch how the program you're developing copes with changes in date and time. I'd be interested to hear if anyone knows of any software or hardware which can let you do some or all of the above.

    Read the article

  • Is it safe to change the time on hosting VM server?

    - by hydroparadise
    So, I noticed there's about a 10 minute drift on my VM hosting server from what time it's supposed to be. In traditional environments, I would just restart the system (and change the BIOS time if necassary). The hosting server is Ubuntu 12.04. Undertsanding that some process could be time sensitive (NTP?), I was wondering how this might affect the relation between the host and hosted system (currently hosting 4: 3 Ubuntu 12.04 servers with one being a web server, and 1 Windows Server 2008 file server). I am using Virtual Box 4 with it's headless option. Ultimately, I am trying to avoid from shutting down the host (which ultimately mean shutthing down the other hosted systems). Is this safe?

    Read the article

  • Monitoring the wall time of a process on windows?

    - by Sean Madden
    Windows Task Manager has the ability to show the current CPU time of any given running process on windows, is there any way (not necessarily through Task Manager) to get the current wall time of a process? An example, let's say I have a script that reliably runs for about 45 minutes. Without adding a progress bar to the script, is there any way to figure out for how long it has been running? The math behind this seems pretty straight forward; WallTime = CurrentWallTime - WallTimeProcessStarted. Likewise, since the math is so simple, is there anyway to get the time that a process was started at?

    Read the article

  • Is there a time machine equivalent for windows that can back up network files?

    - by Jim Thio
    This question is similar to Does an equivalent of Time Machine exist for Windows?, with one difference: The files I want to back up are on a network drive. The computer on that network drive is running Windows XP. I want to back up data on Windows 7. How would I do so? I'd like something similar to Mac OS X' time machine. So copy of data every hour, day, week. Then thinning out, data gets deleted automatically as time goes by. For example, the data for last day is kept as hourly snapshots. For last week, as daily snapshots every day. And for last month as weekly snapshots. How can I achieve this?

    Read the article

  • Cloud storage services offering one-time download links? [closed]

    - by TARehman
    Is anyone aware of consumer-targeted cloud storage services that allow users to generate a one-time download link for hosted files? Case in point: I have an encrypted container with some documents I need to send to a vendor. I would prefer to give them a one-time download link, so that I know when they have accessed the file, and then inform them of the passphrase by phone. I have heard that MediaFire offers 1-time links, but that they are buried in tons of advertising. At the moment, I'm not sure that I consider MediaFire fully legitimate; I'm more interested in solutions with Google Drive, Box.net, DropBox, etc.

    Read the article

  • Netty options for real-time distribution of small messages to a large number of clients?

    - by user439407
    I am designing a (near) real-time Netty server to distribute a large number of very small messages to a large number of clients across the internet. In internal, go as fast as you can testing, I found that I could do 10k clients no sweat, but now that we are trying to go across the internet, where the latency, bandwidth etc varies pretty wildly we are running into the dreaded outOfMemory issues, even with 2 gigs of RAM. I have tried various workarounds(setting the socket stack sizes smaller, setting high and low water marks, cancelling things that are too old), and they help a little, but they seem to only help a little bit. What would some good ways to optimize Netty for sending large #s of small messages without significant delays? Also, the bulk of the message only consists of one kind of message that I don't particularly care if it doesn't arrive. I would use UDP but because we don't control the client, thats not really a possibility. Is it possible to set a separate timeout solely for this kind of message without affecting the other messages? Any insight you could offer would be greatly appreciated.

    Read the article

  • SQL SERVER – Get Date and Time From Current DateTime – SQL in Sixty Seconds #025 – Video

    - by pinaldave
    This is 25th video of series SQL in Sixty Seconds we started a few months ago. Even though this is 25th video it seems like we have just started this few days ago. The best part of this SQL in Sixty Seconds is that one can learn something new in less than sixty seconds. There are many concepts which are not new for many but just we all have 60 seconds to refresh our memories. In this video I have touched a very simple question which I receive very frequently on this blog. Q1) How to get current date time? Q2) How to get Only Date from datetime? Q3) How to get Only Time from datetime? I have created a sixty second video on this subject and hopefully this will help many beginners in the SQL Server field. This sixty second video describes the same. Here is a similar script which I have used in the video. SELECT GETDATE() GO -- SQL Server 2000/2005 SELECT CONVERT(VARCHAR(8),GETDATE(),108) AS HourMinuteSecond, CONVERT(VARCHAR(8),GETDATE(),101) AS DateOnly; GO -- SQL Server 2008 Onwards SELECT CONVERT(TIME,GETDATE()) AS HourMinuteSeconds; SELECT CONVERT(DATE,GETDATE()) AS DateOnly; GO Related Tips in SQL in Sixty Seconds: Retrieve Current Date Time in SQL Server CURRENT_TIMESTAMP, GETDATE(), {fn NOW()} Get Time in Hour:Minute Format from a Datetime – Get Date Part Only from Datetime Get Current System Date Time Get Date Time in Any Format – UDF – User Defined Functions Date and Time Functions – EOMONTH() – A Quick Introduction DATE and TIME in SQL Server 2008 I encourage you to submit your ideas for SQL in Sixty Seconds. We will try to accommodate as many as we can. If we like your idea we promise to share with you educational material. Image Credit: Movie Gone in 60 Seconds Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video

    Read the article

  • Right-Time Retail Part 3

    - by David Dorf
    This is part three of the three-part series.  Read Part 1 and Part 2 first. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Marketing Real-time isn’t just about executing faster; it extends to interactions with customers as well. As an industry, we’ve spent many years analyzing all the data that’s been collected. Yes, that data has been invaluable in helping us make better decisions like where to open new stores, how to assort those stores, and how to price our products. But the recent advances in technology are now making it possible to analyze and deliver that data very quickly… fast enough to impact a potential sale in near real-time. Let me give you two examples. Salesmen in car dealerships get pretty good at sizing people up. When a potential customer walks in the door, it doesn’t take long for the salesman to figure out the revenue at stake. Is this person a real buyer, or just looking for a fun test drive? Will this person buy today or three months from now? Will this person opt for the expensive packages, or go bare bones? While the salesman certainly asks some leading questions, much of information is discerned through body language. But body language doesn’t translate very well over the web. Eloqua, which was acquired by Oracle earlier this year, reads internet body language. By tracking the behavior of the people visiting your web site, Eloqua categorizes visitors based on their propensity to buy. While Eloqua’s roots have been in B2B, we’ve been looking at leveraging the technology with ATG to target B2C. Knowing what sites were previously visited, how often the customer has been to your site recently, and how long they’ve spent searching can help understand where the customer is in their purchase journey. And knowing that bit of information may be enough to help close the deal with a real-time offer, follow-up email, or online customer service pop-up. This isn’t so different from the days gone by when the clerk behind the counter of the corner store noticed you were lingering in a particular aisle, so he walked over to help you compare two products and close the sale. You appreciated the personalized service, and he knew the value of the long-term relationship. Move that same concept into the digital world and you have Oracle’s CX Suite, a cloud-based offering of end-to-end customer experience tools, assembled primarily from acquisitions. Those tools are Oracle Marketing (Eloqua), Oracle Commerce (ATG, Endeca), Oracle Sales (Oracle CRM On Demand), Oracle Service (RightNow), Oracle Social (Collective Intellect, Vitrue, Involver), and Oracle Content (Fatwire). We are providing the glue that binds the CIO and CMO together to unleash synergies that drive the top-line higher, and by virtue of the cloud-approach, keep costs at bay. My second example of real-time marketing takes place in the store but leverages the concepts of Web marketing. In 1962 the decline of personalized service in retail began. Anyone know the significance of that year? That’s when Target, K-Mart, and Walmart each opened their first stores, and over the succeeding years the industry chose scale over personal service. No longer were you known as “Jane with the snotty kid so make sure we check her out fast,” but you suddenly became “time-starved female age 20-30 with kids.” I’m not saying that was a bad thing – it was the right thing for our industry at the time, and it enabled a huge amount of growth, cheaper prices, and more variety of products. But scale alone is no longer good enough. Today’s sophisticated consumer demands scale, experience, and personal attention. To some extent we’ve delivered that on websites via the magic of cookies, your willingness to log in, and sophisticated data analytics. What store manager wouldn’t love a report detailing all the visitors to his store, where they came from, and which products that examined? People trackers are getting more sophisticated, incorporating infrared, video analytics, and even face recognition. (Next time you walk in front on a mannequin, don’t be surprised if it’s looking back.) But the ultimate marketing conduit is the mobile phone. Since each mobile phone emits a unique number on WiFi networks, it becomes the cookie of the physical world. Assuming congress keeps privacy safeguards reasonable, we’ll have a win-win situation for both retailers and consumers. Retailers get to know more about the consumer’s purchase journey, and consumers get higher levels of service with the retailer. When I call my bank, a couple things happen before the call is connected. A reverse look-up on my phone number identifies me so my accounts can be retrieved from Siebel CRM. Then the system anticipates why I’m calling based on recent transactions. In this example, it sees that I was just charged a foreign currency fee, so it assumes that’s the reason I’m calling. It puts all the relevant information on the customer service rep’s screen as it connects the call. When I complain about the fee, the rep immediately sees I’m a great customer and I travel lots, so she suggests switching me to their traveler’s card that doesn’t have foreign transaction fees. That technology is powered by a product called Oracle Real-Time Decisions, a rules engine built to execute very quickly, basically in the time it takes the phone to ring once. So let’s combine the power of that product with our new-found mobile cookie and provide contextual customer interactions in real-time. Our first opportunity comes when a customer crosses a pre-defined geo-fence, typically a boundary around the store. Context is the key to our interaction: that’s the customer (known or anonymous), the time of day and day of week, and location. Thomas near the downtown store on a Wednesday at noon means he’s heading to lunch. If he were near the mall location on a Saturday morning, that’s a completely different context. But on his way to lunch, we’ll let Thomas know that we’ve got a new shipment of ASICS running shoes on display with a simple text message. We used the context to look-up Thomas’ past purchases and understood he was an avid runner. We used the fact that this was lunchtime to select the type of message, in this case an informational message instead of an offer. Thomas enters the store, phone in hand, and walks to the shoe department. He scans one of the new ASICS shoes using the convenient QR Codes we provided on the shelf-tags, but then he starts scanning low-end Nikes. Each scan is another opportunity to both learn from Thomas and potentially interact via another message. Since he historically buys low-end Nikes and keeps scanning them, he’s likely falling back into his old ways. Our marketing rules are currently set to move loyal customer to higher margin products. We could have set the dials to increase visit frequency, move overstocked items, increase basket size, or many other settings, but today we are trying to move Thomas to higher-margin products. We send Thomas another text message, this time it’s a personalized offer for 10% off ASICS good for 24 hours. Offering him a discount on Nikes would be throwing margin away since he buys those anyway. We are using our marketing dollars to change behavior that increases the long-term value of Thomas. He decides to buy the ASICS and scans the discount code on his phone at checkout. Checkout is yet another opportunity to interact with Thomas, so the transaction is sent back to Oracle RTD for evaluation. Since Thomas didn’t buy anything with the shoes, we’ll print a bounce-back coupon on the receipt offering 30% off ASICS socks if he returns within seven days. We have successfully started moving Thomas from low-margin to high-margin products. In both of these marketing scenarios, we are able to leverage data in near real-time to decide how best to interact with the customer and lead to an increase in the lifetime value of the customer. The key here is acting at the moment the customer shows interest using the context of the situation. We aren’t pushing random products at haphazard times. We are tailoring the marketing to be very specific to this customer, and it’s the technology that allows this to happen in near real-time. Conclusion As we enable more right-time integrations and interactions, retailers will begin to offer increased service to their customers. Localized and personalized service at scale will drive loyalty and lead to meaningful revenue growth for the retailers that execute well. Our industry needs to support Commerce Anywhere…and commerce anytime as well.

    Read the article

  • Advice for Storing and Displaying Dates and Times Across Different Time Zones

    A common question I receive from clients, colleagues, and 4Guys readers is for recommendations on how best to store and display dates and times in a data-driven web application. One of the challenges in storing and displaying dates in a web application is that it is quite likely that the visitors arriving at your site are not in the same time zone as your web server; moreover, it's very likely that your site attracts visitors from many different time zones from around the world. Consider an online messageboard site, like ASPMessageboard.com, where each of 1,000,000+ posts includes the date and time it was made. Imagine a user from New York leaves a post on April 7th at 4:30 PM and that the web server hosting the site is located in Dallas, Texas, which is one hour earlier than New York. When storing that post to the database do you record the post's date and time relative to the visitor (4:30 PM), the relative to the web server (3:30 PM), or some other value? And when displaying this post how do you show that date and time to a reader in San Francisco, which is three hours earlier than New York? Do you show the time relative to the person who made the post (4:30 PM), relative to the web server (3:30 PM), or relative to the user (1:30 PM)? And if you decide to store or display the date based on the poster's or visitor's time zone then how do you know their time zone and its offset? How do you account for daylight savings, and so on? This article provides guidance on how to store and display dates and times for visitors across different time zones and includes a demo that gives a working example of some of these techniques. Read on to learn more! Read More >

    Read the article

  • Right-Time Retail Part 1

    - by David Dorf
    This is the first in a three-part series. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Revolution Technology enables some amazing feats in retail. I can order flowers for my wife while flying 30,000 feet in the air. I can order my groceries in the subway and have them delivered later that day. I can even see how clothes look on me without setting foot in a store. Who knew that a TV, diamond necklace, or even a car would someday be as easy to purchase as a candy bar? Can technology make a mattress an impulse item? Wake-up and your back is hurting, so you rollover and grab your iPad, then a new mattress is delivered the next day. Behind the scenes the many processes are being choreographed to make the sale happen. This includes moving data between systems with the least amount for friction, which in some cases is near real-time. But real-time isn’t appropriate for all the integrations. Think about what a completely real-time retailer would look like. A consumer grabs toothpaste off the shelf, and all systems are immediately notified so that the backroom clerk comes running out and pushes the consumer aside so he can replace the toothpaste on the shelf. Such a system is not only cost prohibitive, but it’s also very inefficient and ineffectual. Retailers must balance the realities of people, processes, and systems to find the right speed of execution. That’ what “right-time retail” means. Retailers used to sell during the day and count the money and restock at night, but global expansion and the Web have complicated that simplistic viewpoint. Our 24hr society demands not only access but also speed, which constantly pushes the boundaries of our IT systems. In the last twenty years, there have been three major technology advancements that have moved us closer to real-time systems. Networking is the first technology that drove the real-time trend. As systems became connected, it became easier to move data between them. In retail we no longer had to mail the daily business report back to corporate each day as the dial-up modem could transfer the data. That was soon replaced with trickle-polling, when sale transactions were occasionally sent from stores to corporate throughout the day, often through VSAT. Then we got terrestrial networks like DSL and Ethernet that allowed the constant stream of data between stores and corporate. When corporate could see the sales transactions coming from stores, it could better plan for replenishment and promotions. That drove the need for speed into the supply chain and merchandising, but for many years those systems were stymied by the huge volumes of data. Nordstrom has 150 million SKU/Store combinations when planning (RPAS); The Gap generates 110 million price changes during end-of-season (RPM); Argos does 1.78 billion calculations executed each day for replenishment planning (AIP). These areas are now being alleviated by the second technology, storage. The typical laptop disk drive runs at 5,400rpm with PCs stepping up to 7,200rpm and servers hitting 15,000rpm. But the platters can only spin so fast, so to squeeze more performance we’ve had to rely on things like disk striping. Then solid state drives (SSDs) were introduced and prices continue to drop. (Augmenting your harddrive with a SSD is the single best PC upgrade these days.) RAM continues to be expensive, but compressing data in memory has allowed more efficient use. So a few years back, Oracle decided to build a box that incorporated all these advancements to move us closer to real-time. This family of products, often categorized as engineered systems, combines the hardware and software so that they work together to provide better performance. How much better? If Exadata powered a 747, you’d go from New York to Paris in 42 minutes, and it would carry 5,000 passengers. If Exadata powered baseball, games would last only 18 minutes and Boston’s Fenway would hold 370,000 fans. The Exa-family enables processing more data in less time. So with faster networks and storage, that brings us to the third and final ingredient. If we continue to process data in traditional ways, we won’t be able to take advantage of the faster networks and storage. Enter what Harvard calls “The Sexiest Job of the 21st Century” – the data scientist. New technologies like the Hadoop-powered Oracle Big Data Appliance, Oracle Advanced Analytics, and Oracle Endeca Information Discovery change the way in which we organize data. These technologies allow us to extract actionable information from raw data at incredible speeds, often ad-hoc. So the foundation to support the real-time enterprise exists, but how does a retailer begin to take advantage? The most visible way is through real-time marketing, but I’ll save that for part 3 and instead begin with improved integrations for the assets you already have in part 2.

    Read the article

  • Getting time in ubuntu

    - by user2578666
    include #include <stdio.h> int GetTime() { struct timespec tsp; clock_gettime(CLOCK_REALTIME, &tsp); //Call clock_gettime to fill tsp fprintf(stdout, "time=%d.%d\n", tsp.tv_sec, tsp.tv_nsec); fflush(stdout); } I am trying to compile the above code but it keeps throwing the error: time.c: In function ‘GetTime’: time.c:12:4: warning: implicit declaration of function ‘clock_gettime’ [-Wimplicit-function-declaration] time.c:12:18: error: ‘CLOCK_REALTIME’ undeclared (first use in this function) time.c:12:18: note: each undeclared identifier is reported only once for each function it appears in time.c:14:4: warning: format ‘%d’ expects argument of type ‘int’, but argument 3 has type ‘__time_t’ [-Wformat] time.c:14:4: warning: format ‘%d’ expects argument of type ‘int’, but argument 4 has type ‘long int’ [-Wformat] I have tried compiling with -lrt flag and -std=gnu99. Nothing works.

    Read the article

  • A lot of TCP: time wait bucket table overflow in CentOS 6

    - by divaka
    we have the following output from dmesg: __ratelimit: 33491 callbacks suppressed TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow TCP: time wait bucket table overflow Also we have the following setting: cat /proc/sys/net/ipv4/tcp_max_tw_buckets 524288 We are under some kind of attack, but we could not detect what cause this problem?

    Read the article

  • Real-time log parsing and reporting

    - by Alienfluid
    We have a small project we are working on part-time that runs on Nginx/MongoDB on Ubuntu 10.04 LTS Server. We'd like to be able to see reports on things like server load, requests/sec, response time, DB load, DB response time, etc. Is there an open source or free (as in beer) tool that can parse such logs and provide a real-time report? I looked into Splunk briefly, but I wanted to see if there are any others that are highly recommended.

    Read the article

  • Looking for real time collaborative diagram drawing tool

    - by taotree
    I have seen a number of diagram software packages but most don't support real time collaboration. Google docs Drawing does the real-time collaboration, but is severely limited on features--focused on drawing rather than diagrams. I want something that supports connectors and such. Mind maps would be also be nice but would be a secondary requirement.

    Read the article

< Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >