Search Results

Search found 2224 results on 89 pages for 'scientific computing'.

Page 31/89 | < Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >

  • Yammer, Berkeley DB, and the 3rd Platform

    - by Eric Jensen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Cambria","serif"; mso-ascii-font-family:Cambria; mso-ascii-theme-font:major-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:major-fareast; mso-hansi-font-family:Cambria; mso-hansi-theme-font:major-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:major-bidi; mso-bidi-language:EN-US;} If you read the news, you know that the latest high-profile social media acquisition was just confirmed. Microsoft has agreed to acquire Yammer for 1.2 billion. Personally, I believe that Yammer’s amazing success can be mainly attributed to their wise decision to use Berkeley DB Java Edition as their backend data store. :-) I’m only kidding, of course. However, as Ryan Kennedy points out in the video I recently blogged about, BDB JE did provide the right feature set that allowed them to reliably grow their business. Which in turn allowed them to focus on their core value add. As it turns out, their ‘add’ is quite valuable! This actually makes sense to me, a lot more sense than certain other recent social acquisitions, and here’s why. Last year, IDC declared that we are entering a new computing era, the era of the “3rd Platform.” In case you’re curious, the first 2 were terminal computing and client/server computing, IIRC. Anyway, this 3rd one is more complicated. This year, IDC refined the concept further. It now involves 4 distinct buzzwords: cloud, social, mobile, and big data. Yammer is a social media platform that runs in the cloud, designed to be used from mobile devices. Their approach, using Berkeley DB Java Edition with High Availability, qualifies as big data. This means that Yammer is sitting right smack in the center if IDC’s new computing era. Another way to put it is: the folks at Yammer were prescient enough to predict where things were headed, and get there first. They chose Berkeley DB to handle their data. Maybe you should too!

    Read the article

  • The Growing Importance of Network Virtualization

    - by user12608550
    The Growing Importance of Network Virtualization We often focus on server virtualization when we discuss cloud computing, but just as often we neglect to consider some of the critical implications of that technology. The ability to create virtual environments (or VEs [1]) means that we can create, destroy, activate and deactivate, and more importantly, MOVE them around within the cloud infrastructure. This elasticity and mobility has profound implications for how network services are defined, managed, and used to provide cloud services. It's not just servers that benefit from virtualization, it's the network as well. Network virtualization is becoming a hot topic, and not just for discussion but for companies like Oracle and others who have recently acquired net virtualization companies [2,3]. But even before this topic became so prominent, Solaris engineers were working on technologies in Solaris 11 to virtualize network services, known as Project Crossbow [4]. And why is network virtualization so important? Because old assumptions about network devices, topology, and management must be re-examined in light of the self-service, elasticity, and resource sharing requirements of cloud computing infrastructures. Static, hierarchical network designs, and inter-system traffic flows, need to be reconsidered and quite likely re-architected to take advantage of new features like virtual NICs and switches, bandwidth control, load balancing, and traffic isolation. For example, traditional multi-tier Web services (Web server, App server, DB server) that share net traffic over Ethernet wires can now be virtualized and hosted on shared-resource systems that communicate within a larger server at system bus speeds, increasing performance and reducing wired network traffic. And virtualized traffic flows can be monitored and adjusted as needed to optimize network performance for dynamically changing cloud workloads. Additionally, as VEs come and go and move around in the cloud, static network configuration methods cannot easily accommodate the routing and addressing flexibility that VE mobility implies; virtualizing the network itself is a requirement. Oracle Solaris 11 [5] includes key network virtualization technologies needed to implement cloud computing infrastructures. It includes features for the creation and management of virtual NICs and switches, and for the allocation and control of the traffic flows among VEs [6]. Additionally it allows for both sharing and dedication of hardware components to network tasks, such as allocating specific CPUs and vNICs to VEs, and even protocol-specific management of traffic. So, have a look at your current network topology and management practices in view of evolving cloud computing technologies. And don't simply duplicate the physical architecture of servers and connections in a virtualized environment…rethink the traffic flows among VEs and how they can be optimized using Oracle Solaris 11 and other Oracle products and services. [1] I use the term "virtual environment" or VE here instead of the more commonly used "virtual machine" or VM, because not all virtualized operating system environments are full OS kernels under the control of a hypervisor…in other words, not all VEs are VMs. In particular, VEs include Oracle Solaris zones, as well as SPARC VMs (previously called LDoms), and x86-based Solaris and Linux VMs running under hypervisors such as OEL, Xen, KVM, or VMware. [2] Oracle follows VMware into network virtualization space with Xsigo purchase; http://www.mercurynews.com/business/ci_21191001/oracle-follows-vmware-into-network-virtualization-space-xsigo [3] Oracle Buys Xsigo; http://www.oracle.com/us/corporate/press/1721421 [4] Oracle Solaris 11 Networking Virtualization Technology, http://www.oracle.com/technetwork/server-storage/solaris11/technologies/networkvirtualization-312278.html [5] Oracle Solaris 11; http://www.oracle.com/us/products/servers-storage/solaris/solaris11/overview/index.html [6] For example, the Solaris 11 'dladm' command can be used to limit the bandwidth of a virtual NIC, as follows: dladm create-vnic -l net0 -p maxbw=100M vnic0

    Read the article

  • Cloud Adoption Challenges

    - by Herve Roggero
    Originally posted on: http://geekswithblogs.net/hroggero/archive/2013/11/07/cloud-adoption-challenges.aspxWhile cloud computing makes sense for most organizations and countless projects, I have seen customers significantly struggle with cloud adoption challenges. This blog post is not an attempt to provide a generic assessment of cloud adoption; rather it is an account of personal experiences in the field, some of which may or may not apply to your organization. Cloud First, Burst? In the rush to cloud adoption some companies have made the decision to redesign their core system with a cloud first approach. However a cloud first approach means that the system may not work anymore on-premises after it has been redesigned, specifically if the system depends on Platform as a Service (PaaS) components (such as Azure Tables). While PaaS makes sense when your company is in a position to adopt the cloud exclusively, it can be difficult to leverage with systems that need to work in different clouds or on-premises. As a result, some companies are starting to rethink their cloud strategy by designing for on-premises first, and modify only the necessary components to burst when needed in the cloud. This generally means that the components need to work equally well in any environment, which requires leveraging Infrastructure as a Service (IaaS) or additional investments for PaaS applications, or both.  What’s the Problem? Although most companies can benefit from cloud computing, not all of them can clearly identify a business reason for doing so other than in very generic terms. I heard many companies claim “it’s cheaper”, or “it allows us to scale”, without any specific metric or clear strategy behind the adoption decision. Other companies have a very clear strategy behind cloud adoption and can precisely articulate business benefits, such as “we have a 500% increase in traffic twice a year, so we need to burst in the cloud to avoid doubling our network and server capacity”. Understanding the problem being solved through by adopting cloud computing can significantly help organizations determine the optimum path and timeline to adoption. Performance or Scalability? I stopped counting the number of times I heard “the cloud doesn’t scale; our database runs faster on a laptop”.  While performance and scalability are related concepts, they are nonetheless different in nature. Performance is a measure of response time under a given load (meaning with a specific number of users), while scalability is the performance curve over various loads. For example one system could see great performance with 100 users, but timeout with 1,000 users, in which case the system wouldn’t scale. However another system could have average performance with 100 users, but display the exact same performance with 1,000,000 users, in which case the system would scale. Understanding that cloud computing does not usually provide high performance, but instead provides the tools necessary to build a scalable system (usually using PaaS services such as queuing and data federation), is fundamental to proper cloud adoption. Uptime? Last but not least, you may want to read the Service Level Agreement of your cloud provider in detail if you haven’t done so. If you are expecting 99.99% uptime annually you may be in for a surprise. Depending on the component being used, there may be no associated SLA at all! Other components may be restarted at any time, or services may experience failover conditions weekly ( or more) based on current overall conditions of the cloud service provider, most of which are outside of your control. As a result, for PaaS cloud environments (and to a certain extent some IaaS systems), applications need to assume failure and gracefully retry to be successful in the cloud in order to provide service continuity to end users. About Herve Roggero Herve Roggero, Windows Azure MVP, is the founder of Blue Syntax Consulting (http://www.bluesyntax.net). Herve's experience includes software development, architecture, database administration and senior management with both global corporations and startup companies. Herve holds multiple certifications, including an MCDBA, MCSE, MCSD. He also holds a Master's degree in Business Administration from Indiana University. Herve is the co-author of "PRO SQL Azure" and “PRO SQL Server 2012 Practices” from Apress, a PluralSight author, and runs the Azure Florida Association.

    Read the article

  • generation of random numbers in java

    - by S.PRATHIBA
    Hi all, I want to create 30 tables which consists of the following fields.For example, Service_ID Service_Type consumer_feedback 75 Computing 1 35 Printer 0 33 Printer -1 3 rows in set (0.00 sec) mysql select * from consumer2; Service_ID Service_Type consumer_feedback 42 data 0 75 computing 0 mysql select * from consumer3; Service_ID Service_Type consumer_feedback 43 data -1 41 data 1 72 computing -1 As you can infer from the above tables, i am getting the feedback values.I have generated these consumer_feedback values,Service_ID,Service_Type using the concept of random numbers .I have used the funtion int min1=31;//printer int max1=35;//the values are generated if the Service_Type is printer. int provider1 = (int) (Math.random() * (max1 - min1 + 1) ) + min1; int min2=41;//data int max2 =45 int provider2 = (int) (Math.random() * (max2 - min2 + 1) ) + min2; int min3=71;//computing int max3=75; int provider3 = (int) (Math.random() * (max3 - min3 + 1) ) + min3; int min5 = -1;//feedback values int max5 =1; int feedback = (int) (Math.random() * (max5 - min5 + 1) ) + min5; I need the Service_Types to be distributed uniformly in all the 30 tables.Similarly I need feedback value of 1 to be generated many times other than 0 and -1.Please Help me.

    Read the article

  • 912 stream processor available in OpenCL

    - by tugrul büyükisik
    I am thinking of assembling this system: AMD CPU (A8-3870 APU which has Radeon HD 6550D inside: 400 stream processors:xxx GFLOPS) nearly 110$ AMD Graphics card: HD 7750 (512 stream processors:819 GFLOPS peak performance) nearly 170$ Appropriate ram (1600MHz bus) Mainboard What GFLOPS level can I reach as a stable mode with using OpenCL and similar programs? Can I use all 912 stream processors at the same time? I am not trying to do a VS question. I need to know what could be better for scientific computing (%75 of the time) and gaming (%25 of the time) because I have a low budget. With "scientific calculations" I mean fluid dynamics/solid state physics simulating; with games I mean those that need openCL and PhysX.

    Read the article

  • Ada and 'The Book'

    - by Phil Factor
    The long friendship between Charles Babbage and Ada Lovelace created one of the most exciting and mysterious of collaborations ever to have resulted in a technological breakthrough. The fireworks that created by the collision of two prodigious mathematical and creative talents resulted in an invention, the Analytical Engine, which went on to change society fundamentally. However, beyond that, we just don't know what the bulk of their collaborative work was about:;  it was done in strictest secrecy. Even the known outcome of their friendship, the first programmable computer, was shrouded in mystery. At the time, nobody, except close friends and family, had any idea of Ada Byron's contribution to the invention of the ‘Engine’, and how to program it. Her great insight was published in August 1843, under the initials AAL, standing for Ada Augusta Lovelace, her title then being the Countess of Lovelace. It was contained in a lengthy ‘note’ to her translation of a publication that remains the best description of Babbage's amazing Analytical Engine. The secret identity of the person behind those enigmatic initials was finally revealed by Prince de Polignac who, seventy years later, wrote to Ada's daughter to seek confirmation that her mother had, indeed, been the author of the brilliant sentences that described so accurately how Babbage's mechanical computer could be programmed with punch-cards. L.F. Menabrea's paper on the Analytical Engine first appeared in the 'Bibliotheque Universelle de Geneve' in October 1842, and Ada translated it anonymously for Taylor's 'Scientific Memoirs'. Charles Babbage was surprised that she had not written an original paper as she already knew a surprising amount about the way the machine worked. He persuaded her to at least write some explanatory notes. These notes ended up extending to four times the length of the original article and represented the first published account of how a machine could be programmed to perform any calculation. Her example of programming the Bernoulli sequence would have worked on the Analytical engine had the device’s construction been completed, and gave Ada an unassailable claim to have invented the art of programming. What was the reason for Ada's secrecy? She was the only legitimate child of Lord Byron, who was probably the best known celebrity of the age, so she was already famous. She was a senior aristocrat, with titles, a fortune in money and vast estates in the Midlands. She had political influence, and was the cousin of Lord Melbourne, who was the Prime Minister at that time. She was friendly with the young Queen Victoria. Her mathematical activities were a pastime, and not one that would be considered by others to be in keeping with her roles and responsibilities. You wouldn't dare to dream up a fictional heroine like Ada. She was dazzlingly beautiful and talented. She could speak several languages fluently, and play some musical instruments with professional skill. Contemporary accounts refer to her being 'accomplished in science, art and literature'. On top of that, she was a brilliant mathematician, a talent inherited from her mother, Annabella Milbanke. In her mother's circle of literary and scientific friends was Charles Babbage, and Ada's friendship with him dates from her teenage zest for Mathematics. She was one of the first people he'd ever met who understood what he had attempted to achieve with the 'Difference Engine', and with whom he could converse as intellectual equals. He arranged for her to have an education from the most talented academics in the country. Ada melted the heart of the cantankerous genius to the point that he became a faithful and loyal father-figure to her. She was one of the very few who could grasp the principles of the later, and very different, ‘Analytical Engine’ which was designed from the start to tackle a variety of tasks. Sadly, Ada Byron's life ended less than a decade after completing the work that assured her long-term fame, in November 1852. She was dying of cancer, her gambling habits had caused her to run up huge debts, she'd had more than one affairs, and she was being blackmailed. Her brilliant but unempathic mother was nursing her in her final illness, destroying her personal letters and records, and repaying her debts. Her husband was distraught but helpless. Charles Babbage, however, maintained his steadfast paternalistic friendship to the end. She appointed her loyal friend to be her executor. For years, she and Babbage had been working together on a secret project, known only as 'The Book'. We have a clue to what it was in a letter written by her nine years earlier, on 11th August 1843. It was a joint project by herself and Lord Lovelace, her husband, and was intended to involve Babbage's 'undivided energies'. It involved 'consulting your Engine' (it required Babbage’s computer). The letter gives no hint about the project except for the high-minded nature of its purpose, and its highly mathematical nature.  From then on, the surviving correspondence between the two gives only veiled references to 'The Book'. There isn't much, since Babbage later destroyed any letters that could have damaged her reputation within the Establishment. 'I cannot spare the book today, which I am very sorry for. At the moment I want it for constant reference, but I think you can have it tomorrow' (Oct 1844)  And 'I will send you the book directly, and you can say, when you receive it, how long you will want to keep it'. (Nov 1844)  The two of them were obviously intent on the work: She writes, four years later, 'I have an engagement for Wednesday which will prevent me from attending to your wishes about the book' (Dec 1848). This was something that they both needed to work on, but could not do in parallel: 'I will send the book on Tuesday, and it can be left with you till Friday' (11 Feb 1849). After six years work, it had been so well-handled that it was beginning to fall apart: 'Don't forget the new cover you promised for the book. The poor book is very shabby and wants one' (20 Sept 1849). So what was going on? The word 'book' was not a code-word: it was a real book, probably a 'printer's blank', plain paper, but properly bound so printers and publishers could show off how the published work might look. The hints from the correspondence are of advanced mathematics. It is obvious that the book was travelling between them, back and forth, each one working on it for less than a week before passing it back. Ada and her husband were certainly involved in gambling large sums of money on the horses, and so most biographers have concluded that the three of them were trying to calculate the mathematical odds on the horses. This theory has three large problems. Firstly, Ada's original letter proposing the project refers to its high-minded nature. Babbage was temperamentally opposed to gambling and would scarcely have given so much time to the project, even though he was devoted to Ada. Secondly, Babbage would have very soon have realized the hopelessness of trying to beat the bookies. This sort of betting never attracts his type of intellectual background. The third problem is that any work on calculating the odds on horses would not need a well-thumbed book to pass back and forth between them; they would have not had to work in series. The original project was instigated by Ada, along with her husband, William King-Noel, 1st Earl of Lovelace. Charles Babbage was invited to join the project after the couple had come up with the idea. What could William have contributed? One might assume that William was a Bertie Wooster character, addicted only to the joys of the turf, but this was far from the truth. He was a scientist, a Cambridge graduate who was later elected to be a Fellow of the Royal Society. After Eton, he went to Trinity College, Cambridge. On graduation, he entered the diplomatic service and acted as secretary under Lord Nugent, who was Lord Commissioner of the Ionian Islands. William was very friendly with Babbage too, able to discuss scientific matters on equal terms. He was a capable engineer who invented a process for bending large timbers by the application of steam heat. He delivered a paper to the Institution of Civil Engineers in 1849, and received praise from the great engineer, Isambard Kingdom Brunel. As well as being Lord Lieutenant of the County of Surrey for most of Victoria's reign, he had time for a string of scientific and engineering achievements. Whatever the project was, it is unlikely that William was a junior partner. After Ada's death, the project disappeared. Then, two years later, Babbage, through one of his occasional outbursts of temper, demonstrated that he was able to decrypt one of the most powerful of secret codes, Vigenère's autokey cipher.  All contemporary diplomatic and military messages used a variant of this cipher. Babbage had made three important discoveries, namely, the mathematical law of this cipher, the principle of the key periodicity, and the technique of the symmetry of position. The technique is now known as the Kasiski examination, also called the Kasiski test, but Babbage got there first. At one time, he listed amongst his future projects, the writing of a book 'The Philosophy of Decyphering', but it never came to anything. This discovery was going to change the course of history, since it was used to decipher the Russians’ military dispatches in the Crimean war. Babbage himself played a role during the Crimean War as a cryptographical adviser to his friend, Rear-Admiral Sir Francis Beaufort of the Admiralty. This is as much as we can be certain about in trying to make sense of the bulk of the time that Charles Babbage and Ada Lovelace worked together. Nine years of intensive work, involving the 'Engine' and a great deal of mathematics and research seems to have been lost: or has it? I've argued in the past http://www.simple-talk.com/community/blogs/philfactor/archive/2008/06/13/59614.aspx that the cracking of the Vigenère autokey cipher, was a fundamental motive behind the British Government's support and funding of the 'Difference Engine'. The Duke of Wellington, whose understanding of the military significance of being able to read enemy dispatches, was the most steadfast advocate of the project. If the three friends were actually doing the work of cracking codes by mathematical techniques that used the techniques of key periodicity, and symmetry of position (the use of a book being passed quickly to and fro is very suggestive), intending to then use the 'Engine' to do the routine cracking of each dispatch, then this is a rather different story. The project was Ada and William's idea. (William had served in the diplomatic service and would be familiar with the use of codes). This makes Ada Lovelace the initiator of a project which, by giving both Britain, and probably the USA, a diplomatic and military advantage in the second part of the Nineteenth century, changed world history. Ada would never have wanted any credit for cracking the cipher, and developing the method that rendered all contemporary military and diplomatic ciphering techniques nugatory; quite the reverse. And it is clear from the gaps in the record of the letters between the collaborators that the evidence was destroyed, probably on her request by her irascible but intensely honorable executor, Charles Babbage. Charles Babbage toyed with the idea of going public, but the Crimean war put an end to that. The British Government had a valuable secret, and intended to keep it that way. Ada and Charles had quite often discussed possible moneymaking projects that would fund the development of the Analytic Engine, the first programmable computer, but their secret work was never in the running as a potential cash cow. I suspect that the British Government was, even then, working on the concealment of a discovery whose value to the nation depended on it remaining so. The success of code-breaking in the Crimean war, and the American Civil war, led to the British and Americans  subsequently giving much more weight and funding to the science of decryption. Paradoxically, this makes Ada's contribution even closer to the creation of Colossus, the first digital computer, at Bletchley Park, specifically to crack the Nazi’s secret codes.

    Read the article

  • How to identify web development benchmarking questions? [closed]

    - by GenericJam
    I am in my final year of college and I have to put forward some sort of thesis for my final year project. The project is a web based attendance system that I am building for the college. I have it about 70% complete in Java. After completing it in Java, the plan is for me to rewrite the server bit in Erlang and then release the bitter rivals in a head to head cage match. The idea being that there is some sort of grounds for comparison. There are a few hurdles along the way, such as me learning Erlang. I understand that a performance comparison like this isn't strictly scientific as there are many factors such as the programmer (myself); the hardware it runs on; etc... but it is meant to be a reasonable comparison of the merits of using Java vs. Erlang for web development. I need help in identifying what the relevant questions are that my project could address. Even though the project scope is fixed, I am trying to shoehorn in some worthwhile scientific inquiries.

    Read the article

  • Scope of Mainframe Technologies Today?

    - by Vaibhav Bajpai
    I have been recently allocated to training in Mainframe Technologies at my company (where I am currently working as a Trainee). I am slated to learn DB2, JCL, CICS, and Cobol during the programme. I am from a C++ background, and curious how the community here feels of these technologies. I am also curious to know, how mainframe computers fit into today's computing scenario where distributed computing has taken over almost completely.

    Read the article

  • c++ thread running time

    - by chnet
    I want to know whether I can calculate the running time for each thread. I implement a multithread program in C++ using pthread. As we know, each thread will compete the CPU. Can I use clock() function to calculate the actual number of CPU clocks each thread consumes? my program looks like: Class Thread () { Start(); Run(); Computing(); }; Start() is to start multiple threads. Then each thread will run Computing function to do something. My question is how I can calculate the running time of each thread for Computing function

    Read the article

  • Consolidate Data in Private Clouds, But Consider Security and Regulatory Issues

    - by Troy Kitch
    The January 13 webcast Security and Compliance for Private Cloud Consolidation will provide attendees with an overview of private cloud computing based on Oracle's Maximum Availability Architecture and how security and regulatory compliance affects implementations. Many organizations are taking advantage of Oracle's Maximum Availability Architecture to drive down the cost of IT by deploying private cloud computing environments that can support downtime and utilization spikes without idle redundancy. With two-thirds of sensitive and regulated data in organizations' databases private cloud database consolidation means organizations must be more concerned than ever about protecting their information and addressing new regulatory challenges. Join us for this webcast to learn about greater risks and increased threats to private cloud data and how Oracle Database Security Solutions can assist in securely consolidating data and meet compliance requirements. Register Now.

    Read the article

  • JavaOne in Brazil

    - by janice.heiss(at)oracle.com
    JavaOne in Brazil, currently taking place in Sao Paolo, is one event I'd love to attend. I once heard "father of Java" James Gosling talk about Java developers throughout the world. He observed that there were good developers everywhere. It was not the case, he said, that that the really good developers are in one place and the not-so-good developers are in another. He encountered excellent developers everywhere. Then he paused and said that the craziest developers were definitely the Brazilians. As anyone who knows James would realize, this was meant as high praise. He said the Brazilians would work through the night on projects and were very enthusiastic and spontaneous - features that Brazilian culture is known for. Brazilian developers are responsible for creating one of the most impressive uses of Java ever - the applications that run the Brazilian health services. Starting from scratch they created a system that enables an expert doctor in Rio to look at an X-Ray of a patient near the Amazon and offer advice. One of the main architects of this was Java Champion Fabinane Nardon the distinguished Brazilian Java architect and open-source evangelist. As she writes in her blog:"In 2003, I was invited to assemble a team and architect a Public Healthcare Information System for the city of São Paulo, the largest in Latin America, with 14 million inhabitants. The resulting software had 2.5 million of lines of code and it was created, from specification to production, in only 10 months. At the time, the software was considered the largest J2EE application in the world and was featured in several articles, as this one. As a result, we won the Duke's Choice Award in 2005 during JavaOne, the largest development conference in the world. At the time, Sun Microsystems make a short documentary about our work." "In 2007, a lightning struck twice and I was again invited to assemble a new team and architect an even larger information system for healthcare. And thus I became CTO and one of the founders of Zilics Healthcare Information Systems. "In 2010, I started to research and work on Cloud Computing technology and became leader of the LSI-TEC Cloud Computing group. LSI-TEC is a research laboratory in the University of Sao Paulo, one of the best in Brazil. Thus, I became one of the ghost writers behind the popular Cloud Computing Twitter @the_cloud."You can see and hear Nardon in a 4 minute documentary on Java and the Brazilian health care system produced by Sun Microsystems. And you can listen to a September 2010 podcast with Nardon and her fellow Brazilian Java Champion Bruno Souza (known in Brazil as "Java Man") here at 11:10 minutes into the podcast.Next year, I'll hope to be reporting in Brazil at JavaOne!

    Read the article

  • A few things I learned regarding Azure billing policies

    - by Vincent Grondin
    An hour of small computing time: 0,12$ per hour A Gig of storage in the cloud: 0,15$ per hour 1 Gig of relational database using Azure SQL: 9,99$  per month A Visual Studio Professional with MSDN Premium account: 2500$ per year Winning an MSDN Professional account that comes preloaded with 750 free hours of Azure per month:  PRICELESS !!!      But was it really free???? Hmmm… Let’s see.....   Here's a few things I learned regarding Azure billing policies when I attended a promotional training at Microsoft last week...   1)  An instance deployed in the cloud really means whatever you upload in there... it doesn't matter if it's in STAGING OR PRODUCTION!!!!   Your MSDN account comes with 750 free hours of small computing time per month which should be enough hours per month for one instance of one application deployed in the cloud...  So we're cool, the application you run in the cloud doesn't cost you a penny....  BUT the one that's in staging is still consuming time!!!   So if you don’t want to end up having to pay 42$ at the end of the month on your credit card like this happened to a friend of mine, DELETE them staging applications once you’ve put them in production! This also applies to the instance count you can modify in the configuration file… So stop and think before you decide you want to spawn 50 of those hello world apps  .     2) If you have an MSDN account, then you have the promotional 750 hours of Azure credits per month and can use the Azure credits to explore the Cloud! But be aware, this promotion ends in 8 months (maybe more like 7 now) and then you will most likely go back to the standard 250 hours of Azure credits. If you do not delete your applications by then, you’ll get billed for the extra hours, believe me…   There is a switch that you can toggle and which will STOP your automatic enrollment after the promotion and prevent you from renewing the Azure Account automatically. Yes the default setting is to automatically renew your account and remember, you entered your credit card information in the registration process so, yes, you WILL be billed…  Go disable that ASAP    Log into your account, go to “Windows Azure Platform” then click the “Subscriptions” tab and on the right side, you’ll see a drop down with different “Actions” into it… Choose “Opt out of auto renew” and, NOW you’re safe…   Still, this is a great offer by Microsoft and I think everyone that has a chance should play a bit with Azure to get to know this technology a bit more...     Happy Cloud Computing All

    Read the article

  • Windows Azure Use Case: Fast Acquisitions

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many organizations absorb, take over or merge with other organizations. In these cases, one of the most difficult parts of the process is the merging or changing of the IT systems that the employees use to do their work, process payments, and even get paid. Normally this means that the two companies have disparate systems, and several approaches can be used to have the two organizations use technology between them. An organization may choose to retain both systems, and manage them separately. The advantage here is speed, and keeping the profit/loss sheets separate. Another choice is to slowly “sunset” or stop using one organization’s system, and cutting to the other system immediately or at a later date. Although a popular choice, one of the most difficult methods is to extract data and processes from one system and import it into the other. Employees at the transitioning system have to be trained on the new one, the data must be examined and cleansed, and there is inevitable disruption when this happens. Still another option is to integrate the systems. This may prove to be as much work as a transitional strategy, but may have less impact on the users or the balance sheet. Implementation: A distributed computing paradigm can be a good strategic solution to most of these strategies. Retaining both systems is made more simple by allowing the users at the second organization immediate access to the new system, because security accounts can be created quickly inside an application. There is no need to set up a VPN or any other connections than just to the Internet. Having the users stop using one system and start with the other is also simple in Windows Azure for the same reason. Extracting data to Azure holds the same limitations as an on-premise system, and may even be more problematic because of the large data transfers that might be required. In a distributed environment, you pay for the data transfer, so a mixed migration strategy is not recommended. However, if the data is slowly migrated over time with a defined cutover, this can be an effective strategy. If done properly, an integration strategy works very well for a distributed computing environment like Windows Azure. If the Azure code is architected as a series of services, then endpoints can expose the service into and out of not only the Azure platform, but internally as well. This is a form of the Hybrid Application use-case documented here. References: Designing for Cloud Optimized Architecture: http://blogs.msdn.com/b/dachou/archive/2011/01/23/designing-for-cloud-optimized-architecture.aspx 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0

    Read the article

  • How could RDBMSes be considered a fad?

    - by StuperUser
    Completing my Computing A-level in 2003 and getting a degree in Computing in 2007, and learning my trade in a company with a lot of SQL usage, I was brought up on the idea of Relational Databases being used for storage. So, despite being relatively new to development, I was taken-aback to read a comment (on Is LinqPad site quote "Tired of querying in antiquated SQL?" accurate? ) that said: [Some devs] despise [SQL] and think that it and RDBMS are a fad Obviously, a competent dev will use the right tool for the right job and won't create a relational database when e.g. flat file or another solution for storage is appropriate, but RDBMs are useful in a massive number of circumstances, so how could they be considered a fad?

    Read the article

  • Book Review (Book 10) - The Information: A History, a Theory, a Flood

    - by BuckWoody
    This is a continuation of the books I challenged myself to read to help my career - one a month, for year. You can read my first book review here, and the entire list is here. The book I chose for March 2012 was: The Information: A History, a Theory, a Flood by James Gleick. I was traveling at the end of last month so I’m a bit late posting this review here. Why I chose this book: My personal belief about computing is this: All computing technology is simply re-arranging data. We take data in, we manipulate it, and we send it back out. That’s computing. I had heard from some folks about this book and it’s treatment of data. I heard that it dealt with the basics of data - and the semantics of data, information and so on. It also deals with the earliest forms of history of information, which fascinates me. It’s similar I was told, to GEB which a favorite book of mine as well, so that was a bonus. Some folks I talked to liked it, some didn’t - so I thought I would check it out. What I learned: I liked the book. It was longer than I thought - took quite a while to read, even though I tend to read quickly. This is the kind of book you take your time with. It does in fact deal with the earliest forms of human interaction and the basics of data. I learned, for instance, that the genesis of the binary communication system is based in the invention of telegraph (far-writing) codes, and that the earliest forms of communication were expensive. In fact, many ciphers were invented not to hide military secrets, but to compress information. A sort of early “lol-speak” to keep the cost of transmitting data low! I think the comparison with GEB is a bit over-reaching. GEB is far more specific, fanciful and so on. In fact, this book felt more like something fro Richard Dawkins, and tended to wander around the subject quite a bit. I imagine the author doing his research and writing each chapter as a book that followed on from the last one. This is what possibly bothered those who tended not to like it, I think. Towards the middle of the book, I think the author tended to be a bit too fragmented even for me. He began to delve into memes, biology and more - I think he might have been better off breaking that off into another work. The existentialism just seemed jarring. All in all, I liked the book. I recommend it to any technical professional, specifically ones involved with data technology in specific. And isn’t that all of us? :)

    Read the article

  • Don Knuth and MMIXAL vs. Chuck Moore and Forth -- Algorithms and Ideal Machines -- was there cross-pollination / influence in their ideas / work?

    - by AKE
    Question: To what extent is it known (or believed) that Chuck Moore and Don Knuth had influence on each other's thoughts on ideal machines, or their work on algorithms? I'm interested in citations, interviews, articles, links, or any other sort of evidence. It could also be evidence of the form of A and B here suggest that Moore might have borrowed or influenced C and D from Knuth here, or vice versa. (Opinions are of course welcome, but references / links would be better!) Context: Until fairly recently, I have been primarily familiar with Knuth's work on algorithms and computing models, mostly through TAOCP but also through his interviews and other writings. However, the more I have been using Forth, the more I am struck by both the power of a stack-based machine model, and the way in which the spareness of the model makes fundamental algorithmic improvements more readily apparent. A lot of what Knuth has done in fundamental analysis of algorithms has, it seems to me, a very similar flavour, and I can easily imagine that in a parallel universe, Knuth might perhaps have chosen Forth as his computing model. That's the software / algorithms / programming side of things. When it comes to "ideal computing machines", Knuth in the 70s came up with the MIX computer model, and then, collaborating with designers of state-of-the-art RISC chips through the 90s, updated this with the modern MMIX model and its attendant assembly language MMIXAL. Meanwhile, Moore, having been using and refining Forth as a language, but using it on top of whatever processor happened to be in the computer he was programming, began to imagine a world in which the efficiency and value of stack-based programming were reflected in hardware. So he went on in the 80s to develop his own stack-based hardware chips, defining the term MISC (Minimal Instruction Set Computers) along the way, and ending up eventually with the first Forth chip, the MuP21. Both are brilliant men with keen insight into the art of programming and algorithms, and both work at the intersection between algorithms, programs, and bare metal hardware (i.e. hardware without the clutter of operating systems). Which leads me to the headlined question... Question:To what extent is it known (or believed) that Chuck Moore and Don Knuth had influence on each other's thoughts on ideal machines, or their work on algorithms?

    Read the article

  • Azure Blob storage defrag

    - by kaleidoscope
    The Blob Storage is really handy for storing temporary data structures during a scaled-out distributed processing. Yet, the lifespan of those data structures should not exceed the one of the underlying operation, otherwise clutter and dead data could potentially start filling up your Blob Storage Temporary data in cloud computing is very similar to memory collection in object oriented languages, when it's not done automatically by the framework, temp data tends to leak. In particular, in cloud computing,  it's pretty easy to end up with storage leaks due to: Collection omission. App crash. Service interruption. All those events cause garbage to accumulate into your Blob Storage. Then, it must be noted that for most cloud apps, I/O costs are usually predominant compared to pure storage costs. Enumerating through your whole Blob Storage to clean the garbage is likely to be an expensive solution. Lokesh, M

    Read the article

  • ArchBeat Link-o-Rama for 2012-08-28

    - by Bob Rhubart
    You may be tempted by IaaS, but you should PaaS on that or your database cloud journey will be a short one "The better option [to IaaS] is to rationalize the deployment stack so that VMs are needed only for exceptional cases," says B. R. Clouse. "By settling on a standard operating system and patch level, you create an infrastructure that potentially all of your databases can share. Now, the building block will be database instances or possibly schemas within databases. These components are the platforms on which you will deploy workloads, hence this is known as Platform as a Service (PaaS)." 'Shadow IT' can be the cloud's best friend | David Linthicum "I do not advocate that IT give up control and allow business units to adopt any old technology they want," says Infoworld cloud computing blogger David Linthicum. "However, IT needs to face reality: For the past three decades or so, corporate IT has been slow on the uptake around the use of productive new technologies." Do you agree? 9 ways cloud will impact IT employment | ZDNet ZDNet blogger Joe McKendrick condenses information from a recent report on how cloud computing will impact IT jobs. Number one on the list: New categories of jobs arising from cloud computing, which include "private cloud developers and administrators, departmental liaisons, integration specialists, cloud architects, and compliance specialists." Yeah, that's right, cloud architects. For more on cloud architects, including what you need to up your game to thrive in the cloud, check out "The Role of the Cloud Architect" on the OTN ArchBeat Podcast. Decisions, Decisions: The art, science, and politics of technology selection "When the time comes for a solution architect to make the final decision about the technologies, standards, and other elements that are to be incorporated into a particular project, what factors weigh most heavily on that decision? It comes as no surprise that among the architects I contacted, business needs top the list." Managing Oracle Exalogic Elastic Cloud with Oracle Enterprise Manager Ops Center Anand Akela's byline is on this post, but "Dr. Jürgen Fleischer, Oracle Enterprise Manager Ops Center Engineering" appears at the end of the post, so it's anybody's guess as to who wrote this thing. But the content includes a complete listing of the Exalogic 2.0.1 Tea Break Snippets series written by a member of the Exalogic team who goes by the name "The Old Toxophilist." So maybe the best thing to do here is ignore the names and focus on the very useful conent. Boost your infrastructure with Coherence into the Cloud | Nino Guarnacci Nino Guarnacci describes a use case that involved managing a variety of data caches that process complex queries and parallel computational operations, in order to maintain the caches in a consistent state on different server instances. Thought for the Day "No one hates software more than software developers." — Jeff Atwood Source: SoftwareQuotes

    Read the article

< Previous Page | 27 28 29 30 31 32 33 34 35 36 37 38  | Next Page >