Search Results

Search found 33585 results on 1344 pages for 'sql execution plan'.

Page 310/1344 | < Previous Page | 306 307 308 309 310 311 312 313 314 315 316 317  | Next Page >

  • Adding the domain account to a security group on the SQL Server computer that has sufficient privileges to log on as a service

    - by Alberto
    After reading this article, http://www.red-gate.com/supportcenter/content/knowledgebase/SQL_Backup/KB200710000173 I have some problems configuring point 2) and 3): 2) Create a SQL Server login that has the ability to backup (and restore) databases (y) by adding it to the SYSADMIN server role. 3) Add the domain account (x) to a security group on the SQL Server computer that has sufficient privileges to log on as a service, etc. Where can I find detailed instructions on how to accomplish them? Thanks.

    Read the article

  • How do you enable Remote Connection with SQL Server 2008 w/o Installing Management Studio?

    - by danmine
    I'm having a rather tough time finding information on this since almost everything I read requires Management Studio installed in the server which I prefer not to do. Also, to connect to it using SQL Server Management Studio installed on the client, are these settings ok? ServerName: 10.232.234,1433\SQLEXPRESS Login: sa Password: password Yes, I want to specify the port number in the client side since I have to go through a few firewalls which I have poke holes through to get to the SQL Default port 1433.

    Read the article

  • When to use an MS SQL instance vs. different database on same instance

    - by BoxerBucks
    We have some MS SQL servers that are setup with different instances on the same server to separate applciation DB's as well as some servers that are setup with all DB's on the same instance, just separated with security settings. When is it advisable to create a new instance for SQL server and install your DB's in that instance as opposed to just creating a new DB on the same instance and putting security around the database itself? Is there more to the decision that just a security aspect?

    Read the article

  • SQL Server on VMWare - is transaction log corruption possible?

    - by demp
    Scenario: SQL Server 2005 or 2008, Windows 2008 OS. Running in a VM hosted on VMWare ESX server. Is there any known issue with VMWare when it caches pass-through write request and it never reaches the disk, while SQL Server "thinks" that write actually happened? This may lead to transaction log corruption in case of power failure or VM reboot. Just overheard the conversation but couldn't find it in relation to ESX.

    Read the article

  • Back out plan for a Web App

    - by nobody
    We need a back out plan for a web app whose first maintenance release is going to production soon. The issue we are facing is even if we back out new EAR and deploy old one , the data which was keyed in using new release would not support old business rules(current), since there is enormous changes in business rules. Can you suggest how do we tackle this issue?

    Read the article

  • Open plan office annoyance

    - by arturito
    Not a technical question, but related to IT. At the moment I work in the open plan office and the guy next to me is talking to himself while programming. It annoys my collegue and me so much that we are putting the earphones on with music volume set to max. Does anyone know good and polite solution to shut him up?

    Read the article

  • Microsoft Presss Free E-Book - 12/April/2012 - Introducing Microsoft® SQL Server® 2012

    - by TATWORTH
    At http://shop.oreilly.com/product/0790145342201.do, I have spotted a free e-book "Introducing Microsoft® SQL Server® 2012 ". There is no indication as to how long this will be available for free, so I suggest get it ASAP. It is available in a number of other electronic formats besides PDF."Introducing Microsoft® SQL Server® 2012 explores the exciting enhancements and new capabilities engineered into SQL Server, ranging from improvements in operation to those in reporting and management. This book is for anyone who has an interest in SQL Server 2012 and wants to understand its capabilities, including database administrators, application developers, and technical decision makers."

    Read the article

  • T-SQL Equivalents for Microsoft Access VBA Functions

    If you need to migrate your Access application to SQL Server, don't count on The SQL Server Upsize Wizard in Microsoft Access to automatically convert your VBA functions. If you want to push the complex query processing done by your Access queries to the back end, you'll have to rewrite them in T-SQL.

    Read the article

  • Inequality joins, Asynchronous transformations and Lookups : SSIS

    - by jamiet
    It is pretty much accepted by SQL Server Integration Services (SSIS) developers that synchronous transformations are generally quicker than asynchronous transformations (for a description of synchronous and asynchronous transformations go read Asynchronous and synchronous data flow components). Notice I said “generally” and not “always”; there are circumstances where using asynchronous transformations can be beneficial and in this blog post I’ll demonstrate such a scenario, one that is pretty common when building data warehouses. Imagine I have a [Customer] dimension table that manages information about all of my customers as a slowly-changing dimension. If that is a type 2 slowly changing dimension then you will likely have multiple rows per customer in that table. Furthermore you might also have datetime fields that indicate the effective time period of each member record. Here is such a table that contains data for four dimension members {Terry, Max, Henry, Horace}: Notice that we have multiple records per customer and that the [SCDStartDate] of a record is equivalent to the [SCDEndDate] of the record that preceded it (if there was one). (Note that I am on record as saying I am not a fan of this technique of storing an [SCDEndDate] but for the purposes of clarity I have included it here.) Anyway, the idea here is that we will have some incoming data containing [CustomerName] & [EffectiveDate] and we need to use those values to lookup [Customer].[CustomerId]. The logic will be: Lookup a [CustomerId] WHERE [CustomerName]=[CustomerName] AND [SCDStartDate] <= [EffectiveDate] AND [EffectiveDate] <= [SCDEndDate] The conventional approach to this would be to use a full cached lookup but that isn’t an option here because we are using inequality conditions. The obvious next step then is to use a non-cached lookup which enables us to change the SQL statement to use inequality operators: Let’s take a look at the dataflow: Notice these are all synchronous components. This approach works just fine however it does have the limitation that it has to issue a SQL statement against your lookup set for every row thus we can expect the execution time of our dataflow to increase linearly in line with the number of rows in our dataflow; that’s not good. OK, that’s the obvious method. Let’s now look at a different way of achieving this using an asynchronous Merge Join transform coupled with a Conditional Split. I’ve shown it post-execution so that I can include the row counts which help to illustrate what is going on here: Notice that there are more rows output from our Merge Join component than on the input. That is because we are joining on [CustomerName] and, as we know, we have multiple records per [CustomerName] in our lookup set. Notice also that there are two asynchronous components in here (the Sort and the Merge Join). I have embedded a video below that compares the execution times for each of these two methods. The video is just over 8minutes long. View on Vimeo  For those that can’t be bothered watching the video I’ll tell you the results here. The dataflow that used the Lookup transform took 36 seconds whereas the dataflow that used the Merge Join took less than two seconds. An illustration in case it is needed: Pretty conclusive proof that in some scenarios it may be quicker to use an asynchronous component than a synchronous one. Your mileage may of course vary. The scenario outlined here is analogous to performance tuning procedural SQL that uses cursors. It is common to eliminate cursors by converting them to set-based operations and that is effectively what we have done here. Our non-cached lookup is performing a discrete operation for every single row of data, exactly like a cursor does. By eliminating this cursor-in-disguise we have dramatically sped up our dataflow. I hope all of that proves useful. You can download the package that I demonstrated in the video from my SkyDrive at http://cid-550f681dad532637.skydrive.live.com/self.aspx/Public/BlogShare/20100514/20100514%20Lookups%20and%20Merge%20Joins.zip Comments are welcome as always. @Jamiet Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • LINQ to SQL Profiler

    In this article we will be taking a look at the new LINQ to SQL Profiler from HibernatingRhinos. This tool gives you a view into the goings on of LINQ to SQL. Not only does it allow you to see the SQL that is generated by your LINQ queries but it also shows you information about your connections, queries, as well as alerting you to all sorts of information that you might otherwise not know about.

    Read the article

  • Issuing Current Time Increments in StreamInsight (A Practical Example)

    The issuing of a Current Time Increment, Cti, in StreamInsight is very definitely one of the most important concepts to learn if you want your Streams to be responsive. A full discussion of how to issue Ctis is beyond the scope of this article but a very good explanation in addition to Books Online can be found in these three articles by a member of the StreamInsight team at Microsoft, Ciprian Gerea. Time in StreamInsight Series http://blogs.msdn.com/b/streaminsight/archive/2010/07/23/time-in-streaminsight-i.aspx http://blogs.msdn.com/b/streaminsight/archive/2010/07/30/time-in-streaminsight-ii.aspx http://blogs.msdn.com/b/streaminsight/archive/2010/08/03/time-in-streaminsight-iii.aspx A lot of the problems I see with unresponsive or stuck streams on the MSDN Forums are to do with how Ctis are enqueued or in a lot of cases not enqueued. If you enqueue events and never enqueue a Cti then StreamInsight will be perfectly happy. You, on the other hand, will never see data on the output as you have not told StreamInsight to flush the stream. This article deals with a specific implementation problem I had recently whilst working on a StreamInsight project. I look at some possible options and discuss why they would not work before showing the way I solved the problem. The stream of data I was dealing with on this project was very bursty that is to say when events were flowing they came through very quickly and in large numbers (1000 events/sec), but when the stream calmed down it could be a few seconds between each event. When enqueuing events into the StreamInsight engne it is best practice to do so with a StartTime that is given to you by the system producing the event . StreamInsight processes events and it doesn't matter whether those events are being pushed into the engine by a source system or the events are being read from something like a flat file in a directory somewhere. You can apply the same logic and temporal algebra to both situations. Reading from a file is an excellent example of where the time of the event on the source itself is very important. We could be reading that file a long time after it was written. Being able to read the StartTime from the events allows us to define windows that will hold the correct sets of events. I was able to do this with my stream but this is where my problems started. Below is a very simple script to create a SQL Server table and populate it with sample data that will show exactly the problem I had. CREATE TABLE [dbo].[t] ( [c1] [int] PRIMARY KEY, [c2] [datetime] NULL ) INSERT t VALUES (1,'20100810'),(2,'20100810'),(3,'20100810') Column c2 defines the StartTime of the event on the source and as you can see the values in all 3 rows of data is the same. If we read Ciprian’s articles we know that we can define how Ctis get injected into the stream in 3 different places The Stream Definition The Input Factory The Input Adapter I personally have always been a fan of enqueing Ctis through the factory. Below is code typical of what I would use to do this On the class itself I do some inheriting public class SimpleInputFactory : ITypedInputAdapterFactory<SimpleInputConfig>, ITypedDeclareAdvanceTimeProperties<SimpleInputConfig> And then I implement the following function public AdapterAdvanceTimeSettings DeclareAdvanceTimeProperties<TPayload>(SimpleInputConfig configInfo, EventShape eventShape) { return new AdapterAdvanceTimeSettings( new AdvanceTimeGenerationSettings(configInfo.CtiFrequency, TimeSpan.FromTicks(-1)), AdvanceTimePolicy.Adjust); } The configInfo .CtiFrequency property is a value I pass through to define after how many events I want a Cti to be injected and this in turn will flush through the stream of data. I usually pass a value of 1 for this setting. The second parameter determines the CTI timestamp in terms of a delay relative to the events. -1 ticks in the past results in 1 tick in the future, i.e., ahead of the event. The problem with this method though is that if consecutive events have the same StartTime then only one of those events will be enqueued. In this example I use the following to define how I assign the StartTime of my events currEvent.StartTime = (DateTimeOffset)dt.c2; If I go ahead and run my StreamInsight process with this configuration i can see on the output adapter that two events have been removed To see this in a little more depth I can use the StreamInsight Debugger and see what happens internally. What is happening here is that the first event arrives and a Cti is injected with a time of 1 tick after the StartTime of that event (Also the EndTime of the event). The second event arrives and it has a StartTime of before the Cti and even though we specified AdvanceTimePolicy.Adjust on the factory we know that a point event can never be adjusted like this and the event is dropped. The same happens for the third event as well (The second and third events get trumped by the Cti). For a more detailed discussion of why this happens look here http://www.sqlis.com/sqlis/post/AdvanceTimePolicy-and-Point-Event-Streams-In-StreamInsight.aspx We end up with a single event being pushed into the output adapter and our result now makes sense. The next way I tried to solve this problem by changing the value of the second parameter to TimeSpan.Zero Here is how my factory code now looks public AdapterAdvanceTimeSettings DeclareAdvanceTimeProperties<TPayload>(SimpleInputConfig configInfo, EventShape eventShape) { return new AdapterAdvanceTimeSettings( new AdvanceTimeGenerationSettings(configInfo.CtiFrequency, TimeSpan.Zero), AdvanceTimePolicy.Adjust); } What I am doing here is declaring a policy that says inject a Cti together with every event and stamp it with a StartTime that is equal to the start time of the event itself (TimeSpan.Zero). This method has plus points as well as a downside. The upside is that no events will be lost by having the same StartTime as previous events. The Downside is that because the Cti is declared with the StartTime of the event itself then it does not actually flush that particular event because in the StreamInsight algebra, a Cti commits only those events that occurred strictly before them. To flush the events we need a Cti to be enqueued with a greater StartTime than the events themselves. Here is what happened when I ran this configuration As you can see all we got through was the Cti and none of the events. The debugger output shows the stamps on the Cti and the events themselves. Because the Cti issued has the same timestamp (StartTime) as the events then none of the events get flushed. I was nearly there but not quite. Because my stream was bursty it was possible that the next event would not come along for a few seconds and this was far too long for an event to be enqueued and not be flushed to the output adapter. I needed another solution. Two possible solutions crossed my mind although only one of them made sense when I explored it some more. Where multiple events have the same StartTime I could add 1 tick to the first event, two to the second, three to third etc thereby giving them unique StartTime values. Add a timer to manually inject Ctis The problem with the first implementation is that I would be giving the events a new StartTime. This would cause me the following problems If I want to define windows over the stream then some events may not be captured in the right windows and therefore any calculations on those windows I did would be wrong What would happen if we had 10,000 events with the same StartTime? I would enqueue them with StartTime + n ticks. Along comes a genuine event with a StartTime of the very first event + 1 tick. It is now too far in the past as far as my stream is concerned and it would be dropped. Not what I would want to do at all. I decided then to look at the Timer based solution I created a timer on my input adapter that elapsed every 200ms. private Timer tmr; public SimpleInputAdapter(SimpleInputConfig configInfo) { ctx = new SimpleTimeExtractDataContext(configInfo.ConnectionString); this.configInfo = configInfo; tmr = new Timer(200); tmr.Elapsed += new ElapsedEventHandler(t_Elapsed); tmr.Enabled = true; } void t_Elapsed(object sender, ElapsedEventArgs e) { ts = DateTime.Now - dtCtiIssued; if (ts.TotalMilliseconds >= 200 && TimerIssuedCti == false) { EnqueueCtiEvent(System.DateTime.Now.AddTicks(-100)); TimerIssuedCti = true; } }   In the t_Elapsed event handler I find out the difference in time between now and when the last event was processed (dtCtiIssued). I then check to see if that is greater than or equal to 200ms and if the last issuing of a Cti was done by the timer or by a genuine event (TimerIssuedCti). If I didn’t do this check then I would enqueue a Cti every time the timer elapsed which is not something I wanted. If the difference between the two times is greater than or equal to 500ms and the last event enqueued was by a real event then I issue a Cti through the timer to flush the event Queue, otherwise I do nothing. When I enqueue the Ctis into my stream in my ProduceEvents method I also set the values of dtCtiIssued and TimerIssuedCti   currEvent = CreateInsertEvent(); currEvent.StartTime = (DateTimeOffset)dt.c2; TimerIssuedCti = false; dtCtiIssued = currEvent.StartTime; If I go ahead and run this configuration I see the following in my output. As we can see the first Cti gets enqueued as before but then another is enqueued by the timer and because this has a later timestamp it flushes the enqueued events through the engine. Conclusion Hopefully this has shown how the enqueuing of Ctis can have a dramatic effect on the responsiveness of your output in StreamInsight. Understanding the temporal nature of the product is for me one of the most important things you can learn. I have attached my solution for the demos. It is all in one project and testing each variation is a simple matter of commenting and un-commenting the parts in the code we have been dealing with here.

    Read the article

  • Converting Openfire IM datetime values in SQL Server to / from VARCHAR(15) and DATETIME data types

    - by Brian Biales
    A client is using Openfire IM for their users, and would like some custom queries to audit user conversations (which are stored by Openfire in tables in the SQL Server database). Because Openfire supports multiple database servers and multiple platforms, the designers chose to store all date/time stamps in the database as 15 character strings, which get converted to Java Date objects in their code (Openfire is written in Java).  I did some digging around, and, so I don't forget and in case someone else will find this useful, I will put the simple algorithms here for converting back and forth between SQL DATETIME and the Java string representation. The Java string representation is the number of milliseconds since 1/1/1970.  SQL Server's DATETIME is actually represented as a float, the value being the number of days since 1/1/1900, the portion after the decimal point representing the hours/minutes/seconds/milliseconds... as a fractional part of a day.  Try this and you will see this is true:     SELECT CAST(0 AS DATETIME) and you will see it returns the date 1/1/1900. The difference in days between SQL Server's 0 date of 1/1/1900 and the Java representation's 0 date of 1/1/1970 is found easily using the following SQL:   SELECT DATEDIFF(D, '1900-01-01', '1970-01-01') which returns 25567.  There are 25567 days between these dates. So to convert from the Java string to SQL Server's date time, we need to convert the number of milliseconds to a floating point representation of the number of days since 1/1/1970, then add the 25567 to change this to the number of days since 1/1/1900.  To convert to days, you need to divide the number by 1000 ms/s, then by  60 seconds/minute, then by 60 minutes/hour, then by 24 hours/day.  Or simply divide by 1000*60*60*24, or 86400000.   So, to summarize, we need to cast this string as a float, divide by 86400000 milliseconds/day, then add 25567 days, and cast the resulting value to a DateTime.  Here is an example:   DECLARE @tmp as VARCHAR(15)   SET @tmp = '1268231722123'   SELECT @tmp as JavaTime, CAST((CAST(@tmp AS FLOAT) / 86400000) + 25567 AS DATETIME) as SQLTime   To convert from SQL datetime back to the Java time format is not quite as simple, I found, because floats of that size do not convert nicely to strings, they end up in scientific notation using the CONVERT function or CAST function.  But I found a couple ways around that problem. You can convert a date to the number of  seconds since 1/1/1970 very easily using the DATEDIFF function, as this value fits in an Int.  If you don't need to worry about the milliseconds, simply cast this integer as a string, and then concatenate '000' at the end, essentially multiplying this number by 1000, and making it milliseconds since 1/1/1970.  If, however, you do care about the milliseconds, you will need to use DATEPART to get the milliseconds part of the date, cast this integer to a string, and then pad zeros on the left to make sure this is three digits, and concatenate these three digits to the number of seconds string above.  And finally, I discovered by casting to DECIMAL(15,0) then to VARCHAR(15), I avoid the scientific notation issue.  So here are all my examples, pick the one you like best... First, here is the simple approach if you don't care about the milliseconds:   DECLARE @tmp as VARCHAR(15)   DECLARE @dt as DATETIME   SET @dt = '2010-03-10 14:35:22.123'   SET @tmp = CAST(DATEDIFF(s, '1970-01-01 00:00:00' , @dt) AS VARCHAR(15)) + '000'   SELECT @tmp as JavaTime, @dt as SQLTime If you want to keep the milliseconds:   DECLARE @tmp as VARCHAR(15)   DECLARE @dt as DATETIME   DECLARE @ms as int   SET @dt = '2010-03-10 14:35:22.123'   SET @ms as DATEPART(ms, @dt)   SET @tmp = CAST(DATEDIFF(s, '1970-01-01 00:00:00' , @dt) AS VARCHAR(15))           + RIGHT('000' + CAST(@ms AS VARCHAR(3)), 3)   SELECT @tmp as JavaTime, @dt as SQLTime Or, in one fell swoop:   DECLARE @dt as DATETIME   SET @dt = '2010-03-10 14:35:22.123'   SELECT @dt as SQLTime     , CAST(DATEDIFF(s, '1970-01-01 00:00:00' , @dt) AS VARCHAR(15))           + RIGHT('000' + CAST( DATEPART(ms, @dt) AS VARCHAR(3)), 3) as JavaTime   And finally, a way to simply reverse the math used converting from Java date to SQL date. Note the parenthesis - watch out for operator precedence, you want to subtract, then multiply:   DECLARE @dt as DATETIME   SET @dt = '2010-03-10 14:35:22.123'   SELECT @dt as SQLTime     , CAST(CAST((CAST(@dt as Float) - 25567.0) * 86400000.0 as DECIMAL(15,0)) as VARCHAR(15)) as JavaTime Interestingly, I found that converting to SQL Date time can lose some accuracy, when I converted the time above to Java time then converted  that back to DateTime, the number of milliseconds is 120, not 123.  As I am not interested in the milliseconds, this is ok for me.  But you may want to look into using DateTime2 in SQL Server 2008 for more accuracy.

    Read the article

  • SYS2 Scripts Updated – Scripts to monitor database backup, database space usage and memory grants now available

    - by Davide Mauri
    I’ve just released three new scripts of my “sys2” script collection that can be found on CodePlex: Project Page: http://sys2dmvs.codeplex.com/ Source Code Download: http://sys2dmvs.codeplex.com/SourceControl/changeset/view/57732 The three new scripts are the following sys2.database_backup_info.sql sys2.query_memory_grants.sql sys2.stp_get_databases_space_used_info.sql Here’s some more details: database_backup_info This script has been made to quickly check if and when backup was done. It will report the last full, differential and log backup date and time for each database. Along with these information you’ll also get some additional metadata that shows if a database is a read-only database and its recovery model: By default it will check only the last seven days, but you can change this value just specifying how many days back you want to check. To analyze the last seven days, and list only the database with FULL recovery model without a log backup select * from sys2.databases_backup_info(default) where recovery_model = 3 and log_backup = 0 To analyze the last fifteen days, and list only the database with FULL recovery model with a differential backup select * from sys2.databases_backup_info(15) where recovery_model = 3 and diff_backup = 1 I just love this script, I use it every time I need to check that backups are not too old and that t-log backup are correctly scheduled. query_memory_grants This is just a wrapper around sys.dm_exec_query_memory_grants that enriches the default result set with the text of the query for which memory has been granted or is waiting for a memory grant and, optionally, its execution plan stp_get_databases_space_used_info This is a stored procedure that list all the available databases and for each one the overall size, the used space within that size, the maximum size it may reach and the auto grow options. This is another script I use every day in order to be able to monitor, track and forecast database space usage. As usual feedbacks and suggestions are more than welcome!

    Read the article

  • Fixing my SQL Directory NTFS ACLS

    - by Shawn Cicoria
    I run my development server by boot to VHD (Windows Server 2008 R2 x64).  In that instance, I also have an attached VHD (I attach via script at boot up time using Task Scheduler).  That VHD I have my SQL instances installed. So, the other day, acting hasty, I chmod my ACLS – wow, what a day after that. So, in order to fix it I created this set of BAT commands that resets it back to operational state – not 100% of all what you get, I also didn’t want to run a “repair” – but, all operational again. setlocal SET Inst100Path=H:\Program Files\Microsoft SQL Server\100 REM GOTO SQLE SET InstanceName=MSSQLSERVER SET InstIdPath=H:\Program Files\Microsoft SQL Server\MSSQL10.%InstanceName% SET Group=SQLServerMSSQLUser$SCICORIA-HV1$%InstanceName% SET AgentGroup=SQLServerSQLAgentUser$SCICORIA-HV1$%InstanceName% ICACLS "%InstIdPath%\MSSQL" /T /Q /grant "%Group%":(OI)(CI)FX ICACLS "%InstIdPath%\MSSQL\backup" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\data" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\FTdata" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\Jobs" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\binn" /T /Q /grant "%Group%":(OI)(CI)RX ICACLS "%InstIdPath%\MSSQL\Log" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%Inst100Path%" /T /Q /grant "%Group%":(OI)(CI)RX ICACLS "%Inst100Path%\shared\Errordumps" /T /Q /grant "%Group%":(OI)(CI)RXW ICACLS "%InstIdPath%\MSSQL" /T /Q /grant "%AgentGroup%":(OI)(CI)RX ICACLS "%InstIdPath%\MSSQL\binn" /T /Q /grant "%AgentGroup%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\Log" /T /Q /grant "%AgentGroup%":(OI)(CI)F ICACLS "%Inst100Path%" /T /Q /grant "%AgentGroup%":(OI)(CI)RX REM THIS IS THE SQL EXPRESS INSTANCE :SQLE SET InstanceName=SQLEXPRESS SET InstIdPath=H:\Program Files\Microsoft SQL Server\MSSQL10.%InstanceName% SET Group=SQLServerMSSQLUser$SCICORIA-HV1$%InstanceName% SET AgentGroup=SQLServerSQLAgentUser$SCICORIA-HV1$%InstanceName% ICACLS "%InstIdPath%\MSSQL" /T /Q /grant "%Group%":(OI)(CI)FX ICACLS "%InstIdPath%\MSSQL\backup" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\data" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\FTdata" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\Jobs" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\binn" /T /Q /grant "%Group%":(OI)(CI)RX ICACLS "%InstIdPath%\MSSQL\Log" /T /Q /grant "%Group%":(OI)(CI)F ICACLS "%Inst100Path%" /T /Q /grant "%Group%":(OI)(CI)RX ICACLS "%Inst100Path%\shared\Errordumps" /T /Q /grant "%Group%":(OI)(CI)RXW ICACLS "%InstIdPath%\MSSQL" /T /Q /grant "%AgentGroup%":(OI)(CI)RX ICACLS "%InstIdPath%\MSSQL\binn" /T /Q /grant "%AgentGroup%":(OI)(CI)F ICACLS "%InstIdPath%\MSSQL\Log" /T /Q /grant "%AgentGroup%":(OI)(CI)F ICACLS "%Inst100Path%" /T /Q /grant "%AgentGroup%":(OI)(CI)RX endlocal

    Read the article

  • July, the 31 Days of SQL Server DMO’s - Intro

    - by Tamarick Hill
    DMO’s burst onto the SQL Server scene in 2005 and when they did they unlocked a wealth of information. I’ve became a major fan of DMO’s as they tend to simplify my troubleshooting as well as provide me with valuable information about what is going on within the SQL Server engine. I would recommend that those of you who are not familiar with DMO’s, take the time to really learn more about them. For those of you who may not be familiar with DMO’s, for the month of July, I will be writing about one DMO per day. Don’t get me wrong, I’m no DMO expert or anything like that, but I’ve worked with them enough to feel that I can give you some good information about DMO’s to help you get started with using them. During these blog sessions, I will not be providing you with any complicated queries to solve all of your SQL Server problems that you may or may not have. I will be simply introducing you to various DMO’s and illustrating what type of information they provide. After you learn more about these individually, then you will be able to join whatever DMO’s you need to pull back the information you are seeking. I hope that you all benefit in some form or fashion from my next 31 DMO postings!!! Enjoy!

    Read the article

  • Using Table-Valued Parameters in SQL Server

    - by Jesse
    I work with stored procedures in SQL Server pretty frequently and have often found myself with a need to pass in a list of values at run-time. Quite often this list contains a set of ids on which the stored procedure needs to operate the size and contents of which are not known at design time. In the past I’ve taken the collection of ids (which are usually integers), converted them to a string representation where each value is separated by a comma and passed that string into a VARCHAR parameter of a stored procedure. The body of the stored procedure would then need to parse that string into a table variable which could be easily consumed with set-based logic within the rest of the stored procedure. This approach works pretty well but the VARCHAR variable has always felt like an un-wanted “middle man” in this scenario. Of course, I could use a BULK INSERT operation to load the list of ids into a temporary table that the stored procedure could use, but that approach seems heavy-handed in situations where the list of values is usually going to contain only a few dozen values. Fortunately SQL Server 2008 introduced the concept of table-valued parameters which effectively eliminates the need for the clumsy middle man VARCHAR parameter. Example: Customer Transaction Summary Report Let’s say we have a report that can summarize the the transactions that we’ve conducted with customers over a period of time. The report returns a pretty simple dataset containing one row per customer with some key metrics about how much business that customer has conducted over the date range for which the report is being run. Sometimes the report is run for a single customer, sometimes it’s run for all customers, and sometimes it’s run for a handful of customers (i.e. a salesman runs it for the customers that fall into his sales territory). This report can be invoked from a website on-demand, or it can be scheduled for periodic delivery to certain users via SQL Server Reporting Services. Because the report can be created from different places and the query to generate the report is complex it’s been packed into a stored procedure that accepts three parameters: @startDate – The beginning of the date range for which the report should be run. @endDate – The end of the date range for which the report should be run. @customerIds – The customer Ids for which the report should be run. Obviously, the @startDate and @endDate parameters are DATETIME variables. The @customerIds parameter, however, needs to contain a list of the identity values (primary key) from the Customers table representing the customers that were selected for this particular run of the report. In prior versions of SQL Server we might have made this parameter a VARCHAR variable, but with SQL Server 2008 we can make it into a table-valued parameter. Defining And Using The Table Type In order to use a table-valued parameter, we first need to tell SQL Server about what the table will look like. We do this by creating a user defined type. For the purposes of this stored procedure we need a very simple type to model a table variable with a single integer column. We can create a generic type called ‘IntegerListTableType’ like this: CREATE TYPE IntegerListTableType AS TABLE (Value INT NOT NULL) Once defined, we can use this new type to define the @customerIds parameter in the signature of our stored procedure. The parameter list for the stored procedure definition might look like: 1: CREATE PROCEDURE dbo.rpt_CustomerTransactionSummary 2: @starDate datetime, 3: @endDate datetime, 4: @customerIds IntegerListTableTableType READONLY   Note the ‘READONLY’ statement following the declaration of the @customerIds parameter. SQL Server requires any table-valued parameter be marked as ‘READONLY’ and no DML (INSERT/UPDATE/DELETE) statements can be performed on a table-valued parameter within the routine in which it’s used. Aside from the DML restriction, however, you can do pretty much anything with a table-valued parameter as you could with a normal TABLE variable. With the user defined type and stored procedure defined as above, we could invoke like this: 1: DECLARE @cusomterIdList IntegerListTableType 2: INSERT @customerIdList VALUES (1) 3: INSERT @customerIdList VALUES (2) 4: INSERT @customerIdList VALUES (3) 5:  6: EXEC dbo.rpt_CustomerTransationSummary 7: @startDate = '2012-05-01', 8: @endDate = '2012-06-01' 9: @customerIds = @customerIdList   Note that we can simply declare a variable of type ‘IntegerListTableType’ just like any other normal variable and insert values into it just like a TABLE variable. We could also populate the variable with a SELECT … INTO or INSERT … SELECT statement if desired. Using The Table-Valued Parameter With ADO .NET Invoking a stored procedure with a table-valued parameter from ADO .NET is as simple as building a DataTable and passing it in as the Value of a SqlParameter. Here’s some example code for how we would construct the SqlParameter for the @customerIds parameter in our stored procedure: 1: var customerIdsParameter = new SqlParameter(); 2: customerIdParameter.Direction = ParameterDirection.Input; 3: customerIdParameter.TypeName = "IntegerListTableType"; 4: customerIdParameter.Value = selectedCustomerIds.ToIntegerListDataTable("Value");   All we’re doing here is new’ing up an instance of SqlParameter, setting the pamameters direction, specifying the name of the User Defined Type that this parameter uses, and setting its value. We’re assuming here that we have an IEnumerable<int> variable called ‘selectedCustomerIds’ containing all of the customer Ids for which the report should be run. The ‘ToIntegerListDataTable’ method is an extension method of the IEnumerable<int> type that looks like this: 1: public static DataTable ToIntegerListDataTable(this IEnumerable<int> intValues, string columnName) 2: { 3: var intergerListDataTable = new DataTable(); 4: intergerListDataTable.Columns.Add(columnName); 5: foreach(var intValue in intValues) 6: { 7: var nextRow = intergerListDataTable.NewRow(); 8: nextRow[columnName] = intValue; 9: intergerListDataTable.Rows.Add(nextRow); 10: } 11:  12: return intergerListDataTable; 13: }   Since the ‘IntegerListTableType’ has a single int column called ‘Value’, we pass that in for the ‘columnName’ parameter to the extension method. The method creates a new single-columned DataTable using the provided column name then iterates over the items in the IEnumerable<int> instance adding one row for each value. We can then use this SqlParameter instance when invoking the stored procedure just like we would use any other parameter. Advanced Functionality Using passing a list of integers into a stored procedure is a very simple usage scenario for the table-valued parameters feature, but I’ve found that it covers the majority of situations where I’ve needed to pass a collection of data for use in a query at run-time. I should note that BULK INSERT feature still makes sense for passing large amounts of data to SQL Server for processing. MSDN seems to suggest that 1000 rows of data is the tipping point where the overhead of a BULK INSERT operation can pay dividends. I should also note here that table-valued parameters can be used to deal with more complex data structures than single-columned tables of integers. A User Defined Type that backs a table-valued parameter can use things like identities and computed columns. That said, using some of these more advanced features might require the use the SqlDataRecord and SqlMetaData classes instead of a simple DataTable. Erland Sommarskog has a great article on his website that describes when and how to use these classes for table-valued parameters. What About Reporting Services? Earlier in the post I referenced the fact that our example stored procedure would be called from both a web application and a SQL Server Reporting Services report. Unfortunately, using table-valued parameters from SSRS reports can be a bit tricky and warrants its own blog post which I’ll be putting together and posting sometime in the near future.

    Read the article

  • Creating XML in SQL Server

    XML has become a common form of representing and exchanging data in today's information age. SQL Server introduced XML-centric capabilities in SQL Server 2000. That functionality has been expanded in later releases. One aspect of working with XML is creating XML from relational data, which is accomplished utilizing the FOR XML clause in SQL Server.

    Read the article

< Previous Page | 306 307 308 309 310 311 312 313 314 315 316 317  | Next Page >