Search Results

Search found 46104 results on 1845 pages for 'run dialog'.

Page 312/1845 | < Previous Page | 308 309 310 311 312 313 314 315 316 317 318 319  | Next Page >

  • SOCharts: Charts by Tags

    - by abhin4v
    Screenshot I created this small app as a weekend hack. It shows the reputations, upvotes, downvotes and accepted answers for a user against the tags for the answers. About I wanted to know how may upvotes I was away from getting the bronze badge for the clojure tag. But I could not find any straightforward way of doing that. So I wrote this app (in Clojure, of course). The SO API is used for the data and the charts are created using the Google Chart API. The charts are opened in the default browser. License Licensed under EPL 1.0. Download If you have Clojure and Leiningen installed, you can simply get the code from https://gist.github.com/725331, save it as socharts.clj and then run lein repl -e "(load \"socharts\")(refer 'socharts.socharts)(-main)" for launching the Swing UI If you don't have Clojure installed, but have Java then download the standalone jar from http://dl.dropbox.com/u/5247/socharts-1.0.0-standalone.jar and run it as javaw -jar socharts-1.0.0-standalone.jar Once the UI is launched, just type your user id in the input box and press <ENTER>. It will take some time to download the data from the SO API (the progress bar shows the download progress) and then it will open the charts in your default browser. You can also run it as a command line app by running lein repl -e "(load \"socharts\")(refer 'socharts.socharts)(-main <userid>)" or java -jar socharts-1.0.0-standalone.jar <userid> where you replace <userid> with your user id. Be warned that because of a missing feature in the SO API, it will fetch the data for each question you have answered. So the maximum limit is 10000 answers (the SO API call limit). Platform All platforms with Java 1.6. Contact You can reach me at abhinav [at] abhinavsarkar [dot] net. Please report bugs/comments/suggestions as answers to this post. Code Code was written in Clojure with the UI in Swing. It is available at https://gist.github.com/725331. It's a public gist so your can fork it if you like to do some changes.

    Read the article

  • How to Change and Manually Start and Stop Automatic Maintenance in Windows 8

    - by Lori Kaufman
    Windows 8 has a new feature that allows you to automatically run scheduled daily maintenance on your computer. These maintenance tasks run in the background and include security updating and scanning, Windows software updates, disk defragmentation, system diagnostics, among other tasks. We’ve previously shown you how to automate maintenance in Windows 7, Vista, and XP. Windows 8 maintenance is automatic by default and the performance and energy efficiency has been improved over Windows 7. The program for Windows 8 automatic maintenance is called MSchedExe.exe and it is located in the C:\Windows\System32 directory. We will show you how you can change the automatic maintenance settings in Windows 8 and how you can start and stop the maintenance manually. NOTE: It seems that you cannot turn off the automatic maintenance in Windows 8. You can only change the settings and start and stop it manually. Can Dust Actually Damage My Computer? What To Do If You Get a Virus on Your Computer Why Enabling “Do Not Track” Doesn’t Stop You From Being Tracked

    Read the article

  • SQL SERVER – Fundamentals of Columnstore Index

    - by pinaldave
    There are two kind of storage in database. Row Store and Column Store. Row store does exactly as the name suggests – stores rows of data on a page – and column store stores all the data in a column on the same page. These columns are much easier to search – instead of a query searching all the data in an entire row whether the data is relevant or not, column store queries need only to search much lesser number of the columns. This means major increases in search speed and hard drive use. Additionally, the column store indexes are heavily compressed, which translates to even greater memory and faster searches. I am sure this looks very exciting and it does not mean that you convert every single index from row store to column store index. One has to understand the proper places where to use row store or column store indexes. Let us understand in this article what is the difference in Columnstore type of index. Column store indexes are run by Microsoft’s VertiPaq technology. However, all you really need to know is that this method of storing data is columns on a single page is much faster and more efficient. Creating a column store index is very easy, and you don’t have to learn new syntax to create them. You just need to specify the keyword “COLUMNSTORE” and enter the data as you normally would. Keep in mind that once you add a column store to a table, though, you cannot delete, insert or update the data – it is READ ONLY. However, since column store will be mainly used for data warehousing, this should not be a big problem. You can always use partitioning to avoid rebuilding the index. A columnstore index stores each column in a separate set of disk pages, rather than storing multiple rows per page as data traditionally has been stored. The difference between column store and row store approaches is illustrated below: In case of the row store indexes multiple pages will contain multiple rows of the columns spanning across multiple pages. In case of column store indexes multiple pages will contain multiple single columns. This will lead only the columns needed to solve a query will be fetched from disk. Additionally there is good chance that there will be redundant data in a single column which will further help to compress the data, this will have positive effect on buffer hit rate as most of the data will be in memory and due to same it will not need to be retrieved. Let us see small example of how columnstore index improves the performance of the query on a large table. As a first step let us create databaseset which is large enough to show performance impact of columnstore index. The time taken to create sample database may vary on different computer based on the resources. USE AdventureWorks GO -- Create New Table CREATE TABLE [dbo].[MySalesOrderDetail]( [SalesOrderID] [int] NOT NULL, [SalesOrderDetailID] [int] NOT NULL, [CarrierTrackingNumber] [nvarchar](25) NULL, [OrderQty] [smallint] NOT NULL, [ProductID] [int] NOT NULL, [SpecialOfferID] [int] NOT NULL, [UnitPrice] [money] NOT NULL, [UnitPriceDiscount] [money] NOT NULL, [LineTotal] [numeric](38, 6) NOT NULL, [rowguid] [uniqueidentifier] NOT NULL, [ModifiedDate] [datetime] NOT NULL ) ON [PRIMARY] GO -- Create clustered index CREATE CLUSTERED INDEX [CL_MySalesOrderDetail] ON [dbo].[MySalesOrderDetail] ( [SalesOrderDetailID]) GO -- Create Sample Data Table -- WARNING: This Query may run upto 2-10 minutes based on your systems resources INSERT INTO [dbo].[MySalesOrderDetail] SELECT S1.* FROM Sales.SalesOrderDetail S1 GO 100 Now let us do quick performance test. I have kept STATISTICS IO ON for measuring how much IO following queries take. In my test first I will run query which will use regular index. We will note the IO usage of the query. After that we will create columnstore index and will measure the IO of the same. -- Performance Test -- Comparing Regular Index with ColumnStore Index USE AdventureWorks GO SET STATISTICS IO ON GO -- Select Table with regular Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO -- Table 'MySalesOrderDetail'. Scan count 1, logical reads 342261, physical reads 0, read-ahead reads 0. -- Create ColumnStore Index CREATE NONCLUSTERED COLUMNSTORE INDEX [IX_MySalesOrderDetail_ColumnStore] ON [MySalesOrderDetail] (UnitPrice, OrderQty, ProductID) GO -- Select Table with Columnstore Index SELECT ProductID, SUM(UnitPrice) SumUnitPrice, AVG(UnitPrice) AvgUnitPrice, SUM(OrderQty) SumOrderQty, AVG(OrderQty) AvgOrderQty FROM [dbo].[MySalesOrderDetail] GROUP BY ProductID ORDER BY ProductID GO It is very clear from the results that query is performance extremely fast after creating ColumnStore Index. The amount of the pages it has to read to run query is drastically reduced as the column which are needed in the query are stored in the same page and query does not have to go through every single page to read those columns. If we enable execution plan and compare we can see that column store index performance way better than regular index in this case. Let us clean up the database. -- Cleanup DROP INDEX [IX_MySalesOrderDetail_ColumnStore] ON [dbo].[MySalesOrderDetail] GO TRUNCATE TABLE dbo.MySalesOrderDetail GO DROP TABLE dbo.MySalesOrderDetail GO In future posts we will see cases where Columnstore index is not appropriate solution as well few other tricks and tips of the columnstore index. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Performance, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Subterranean IL: Filter exception handlers

    - by Simon Cooper
    Filter handlers are the second type of exception handler that aren't accessible from C#. Unlike the other handler types, which have defined conditions for when the handlers execute, filter lets you use custom logic to determine whether the handler should be run. However, similar to a catch block, the filter block does not get run if control flow exits the block without throwing an exception. Introducing filter blocks An example of a filter block in IL is the following: .try { // try block } filter { // filter block endfilter }{ // filter handler } or, in v1 syntax, TryStart: // try block TryEnd: FilterStart: // filter block HandlerStart: // filter handler HandlerEnd: .try TryStart to TryEnd filter FilterStart handler HandlerStart to HandlerEnd In the v1 syntax there is no end label specified for the filter block. This is because the filter block must come immediately before the filter handler; the end of the filter block is the start of the filter handler. The filter block indicates to the CLR whether the filter handler should be executed using a boolean value on the stack when the endfilter instruction is run; true/non-zero if it is to be executed, false/zero if it isn't. At the start of the filter block, and the corresponding filter handler, a reference to the exception thrown is pushed onto the stack as a raw object (you have to manually cast to System.Exception). The allowed IL inside a filter block is tightly controlled; you aren't allowed branches outside the block, rethrow instructions, and other exception handling clauses. You can, however, use call and callvirt instructions to call other methods. Filter block logic To demonstrate filter block logic, in this example I'm filtering on whether there's a particular key in the Data dictionary of the thrown exception: .try { // try block } filter { // Filter starts with exception object on stack // C# code: ((Exception)e).Data.Contains("MyExceptionDataKey") // only execute handler if Contains returns true castclass [mscorlib]System.Exception callvirt instance class [mscorlib]System.Collections.IDictionary [mscorlib]System.Exception::get_Data() ldstr "MyExceptionDataKey" callvirt instance bool [mscorlib]System.Collections.IDictionary::Contains(object) endfilter }{ // filter handler // Also starts off with exception object on stack callvirt instance string [mscorlib]System.Object::ToString() call void [mscorlib]System.Console::WriteLine(string) } Conclusion Filter exception handlers are another exception handler type that isn't accessible from C#, however, just like fault handlers, the behaviour can be replicated using a normal catch block: try { // try block } catch (Exception e) { if (!FilterLogic(e)) throw; // handler logic } So, it's not that great a loss, but it's still annoying that this functionality isn't directly accessible. Well, every feature starts off with minus 100 points, so it's understandable why something like this didn't make it into the C# compiler ahead of a different feature.

    Read the article

  • What is default password?

    - by Benjamin
    What is the difference between default and login? And what does Default Keyring mean? When I run some applications(Emphaty etc), Unlock Keyring window launched first, then it requires me password. Why? This is a screen-shot when I run Emphaty. Why does it require me a password? It's a just messenger. It makes me crazy. I was able to find this Window. I guess this Windows could give me a solution. Before trying something to fix it, I'd like know about what they are. Please explain them to me. P.S My login password is not equal to default password now.

    Read the article

  • How do I install Dan's Guardian on 12.04?

    - by Matt
    I'm trying to install Dans Guardian on a virtual machine. The instructions ask me to run the ./configure script and then execute the command make install. The configure script runs fine but the make install throws errors. Making all in src make[2]: Entering directory `/webmin/dansguardian-2.10/src' g++ -DHAVE_CONFIG_H -I. -I.. -D__CONFFILE='"/usr/local/etc/dansguardian/dansguardian.conf"' -D__LOGLOCATION='"/usr/local/var/log/dansguardian/"' -D__PIDDIR='"/usr/local/var/run"' -D__PROXYUSER='"nobody"' -D__PROXYGROUP='"nobody"' -D__CONFDIR='"/usr/local/etc/dansguardian"' -g -O2 -MT dansguardian-fancy.o -MD -MP -MF .deps/dansguardian-fancy.Tpo -c -o dansguardian-fancy.o `test -f 'downloadmanagers/fancy.cpp' || echo './'`downloadmanagers/fancy.cpp downloadmanagers/fancy.cpp: In member function âstd::string fancydm::timestring(int)â: downloadmanagers/fancy.cpp:507:72: error: âsnprintfâ was not declared in this scope make[2]: *** [dansguardian-fancy.o] Error 1 make[2]: Leaving directory `/webmin/dansguardian-2.10/src' make[1]: *** [all-recursive] Error 1 make[1]: Leaving directory `/webmin/dansguardian-2.10' make: *** [all] Error 2 I'm running 12.04 LTS server x64

    Read the article

  • Howto install google-mock on Ubuntu 12.10

    - by user1459339
    I am having hard time trying to install Google C++ Mocking Framework. I have successfully run sudo apt-get install google-mock. Then I tried to compile this sample file #include "gmock/gmock.h" int main(int argc, char** argv) { ::testing::InitGoogleMock(&argc, argv); return RUN_ALL_TESTS(); } with g++ -lgmock main.cpp and these errors have shown main.cpp:(.text+0x1e): undefined reference to `testing::InitGoogleMock(int*, char**)' main.cpp:(.text+0x23): undefined reference to `testing::UnitTest::GetInstance()' main.cpp:(.text+0x2b): undefined reference to `testing::UnitTest::Run()' collect2: error: ld returned 1 exit status I guess the linker can not find the library files. Does anybody know how to fix this?

    Read the article

  • Simplifying the process of compiling and running objective-c apps in GNUstep

    - by Matthew
    I just installed GNUstep (following this post: http://www.jaysonjc.com/programming/objective-c-programming-in-windows-gnustep-projectcenter.html) It says to run this code: gcc -o helloworld helloworld.m -I /GNUstep/System/Library/Headers -L /GNUstep/System/Library/Libraries -lobjc -lgnustep-base -fconstant-string-class=NSConstantString every time I want to compile. It works just fine for me. However as I'm learning and will be compiling/running apps way often (making little changes and trying again), I'd like a simpler way to do this. Is there an easier way to compile and then run the app? Or am I just being lazy?

    Read the article

  • WordPress not resizing images with Nginx + php-fpm and other issues

    - by Julian Fernandes
    Recently i setup a Ubuntu 12.04 VPS with 512mb/1ghz CPU, Nginx + php-fpm + Varnish + APC + Percona's MySQL server + CloudFlare Pro for our Ubuntu LoCo Team's WordPress blog. The blog get about 3~4k daily hits, use about 180MB and 8~20% CPU. Everything seems to be working insanely fast... page load is really good and is about 16x faster than any of our competitors... but there is one problem. When we upload a image, WordPress don't resize it, so all we can do it insert the full image in the post. If the imagem have, let's say, 30kb, it resize fine... but if the image have 100kb+, it won't... In nginx error logs i see this: upstream timed out (110: Connection timed out) while reading response header from upstream, client: 150.162.216.64, server: www.ubuntubrsc.com, request: "POST /wp-admin/async-upload.php HTTP/1.1", upstream: "fastcgi://unix:/var/run/php5-fpm.sock:", host: "www.ubuntubrsc.com", referrer: "http://www.ubuntubrsc.com/wp-admin/media-upload.php?post_id=2668&" It seems to be related with the issue, but i dunno. When that timeout happens, i started to get it when i'm trying to view a post too: upstream timed out (110: Connection timed out) while reading response header from upstream, client: 150.162.216.64, server: www.ubuntubrsc.com, request: "GET /tutoriais-gimp-6-adicionando-aplicando-novos-pinceis.html HTTP/1.1", upstream: "fastcgi://unix:/var/run/php5-fpm.sock:", host: "www.ubuntubrsc.com", referrer: "http://www.ubuntubrsc.com/" And only a restart of php5-fpm fix it. I tryed increasing some timeouts and stuffs but it did not worked, so i guess it's some kind of limitation i did not figured yet. Could someone help me with it, please? /etc/nginx/nginx.conf: user www-data; worker_processes 1; pid /var/run/nginx.pid; events { worker_connections 1024; use epoll; multi_accept on; } http { ## # Basic Settings ## sendfile on; tcp_nopush on; tcp_nodelay off; keepalive_timeout 15; keepalive_requests 2000; types_hash_max_size 2048; server_tokens off; server_name_in_redirect off; open_file_cache max=1000 inactive=300s; open_file_cache_valid 360s; open_file_cache_min_uses 2; open_file_cache_errors off; server_names_hash_bucket_size 64; # server_name_in_redirect off; client_body_buffer_size 128K; client_header_buffer_size 1k; client_max_body_size 2m; large_client_header_buffers 4 8k; client_body_timeout 10m; client_header_timeout 10m; send_timeout 10m; include /etc/nginx/mime.types; default_type application/octet-stream; ## # Logging Settings ## error_log /var/log/nginx/error.log; access_log off; ## # CloudFlare's IPs (uncomment when site goes live) ## set_real_ip_from 204.93.240.0/24; set_real_ip_from 204.93.177.0/24; set_real_ip_from 199.27.128.0/21; set_real_ip_from 173.245.48.0/20; set_real_ip_from 103.22.200.0/22; set_real_ip_from 141.101.64.0/18; set_real_ip_from 108.162.192.0/18; set_real_ip_from 190.93.240.0/20; real_ip_header CF-Connecting-IP; set_real_ip_from 127.0.0.1/32; ## # Gzip Settings ## gzip on; gzip_disable "msie6"; gzip_vary on; gzip_proxied any; gzip_comp_level 9; gzip_min_length 1000; gzip_proxied expired no-cache no-store private auth; gzip_buffers 32 8k; # gzip_http_version 1.1; gzip_types text/plain text/css application/json application/x-javascript text/xml application/xml application/xml+rss text/javascript; ## # nginx-naxsi config ## # Uncomment it if you installed nginx-naxsi ## #include /etc/nginx/naxsi_core.rules; ## # nginx-passenger config ## # Uncomment it if you installed nginx-passenger ## #passenger_root /usr; #passenger_ruby /usr/bin/ruby; ## # Virtual Host Configs ## include /etc/nginx/conf.d/*.conf; include /etc/nginx/sites-enabled/*; } /etc/nginx/fastcgi_params: fastcgi_param QUERY_STRING $query_string; fastcgi_param REQUEST_METHOD $request_method; fastcgi_param CONTENT_TYPE $content_type; fastcgi_param CONTENT_LENGTH $content_length; fastcgi_param SCRIPT_FILENAME $request_filename; fastcgi_param SCRIPT_NAME $fastcgi_script_name; fastcgi_param REQUEST_URI $request_uri; fastcgi_param DOCUMENT_URI $document_uri; fastcgi_param DOCUMENT_ROOT $document_root; fastcgi_param SERVER_PROTOCOL $server_protocol; fastcgi_param GATEWAY_INTERFACE CGI/1.1; fastcgi_param SERVER_SOFTWARE nginx/$nginx_version; fastcgi_param REMOTE_ADDR $remote_addr; fastcgi_param REMOTE_PORT $remote_port; fastcgi_param SERVER_ADDR $server_addr; fastcgi_param SERVER_PORT $server_port; fastcgi_param SERVER_NAME $server_name; fastcgi_param HTTPS $https; fastcgi_send_timeout 180; fastcgi_read_timeout 180; fastcgi_buffer_size 128k; fastcgi_buffers 256 4k; # PHP only, required if PHP was built with --enable-force-cgi-redirect fastcgi_param REDIRECT_STATUS 200; /etc/nginx/sites-avaiable/default: ## # DEFAULT HANDLER # ubuntubrsc.com ## server { listen 8080; # Make site available from main domain server_name www.ubuntubrsc.com; # Root directory root /var/www; index index.php index.html index.htm; include /var/www/nginx.conf; access_log off; location / { try_files $uri $uri/ /index.php?q=$uri&$args; } location = /favicon.ico { log_not_found off; access_log off; } location = /robots.txt { allow all; log_not_found off; access_log off; } location ~ /\. { deny all; access_log off; log_not_found off; } location ~* ^/wp-content/uploads/.*.php$ { deny all; access_log off; log_not_found off; } rewrite /wp-admin$ $scheme://$host$uri/ permanent; error_page 404 = @wordpress; log_not_found off; location @wordpress { include /etc/nginx/fastcgi_params; fastcgi_pass unix:/var/run/php5-fpm.sock; fastcgi_param SCRIPT_NAME /index.php; fastcgi_param SCRIPT_FILENAME $document_root/index.php; } location ~ \.php$ { try_files $uri =404; include /etc/nginx/fastcgi_params; fastcgi_index index.php; fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; if (-f $request_filename) { fastcgi_pass unix:/var/run/php5-fpm.sock; } } } server { listen 8080; server_name ubuntubrsc.* www.ubuntubrsc.net www.ubuntubrsc.org www.ubuntubrsc.com.br www.ubuntubrsc.info www.ubuntubrsc.in; return 301 $scheme://www.ubuntubrsc.com$request_uri; } /var/www/nginx.conf: # BEGIN W3TC Minify cache location ~ /wp-content/w3tc/min.*\.js$ { types {} default_type application/x-javascript; expires modified 31536000s; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; add_header Vary "Accept-Encoding"; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; } location ~ /wp-content/w3tc/min.*\.css$ { types {} default_type text/css; expires modified 31536000s; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; add_header Vary "Accept-Encoding"; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; } location ~ /wp-content/w3tc/min.*js\.gzip$ { gzip off; types {} default_type application/x-javascript; expires modified 31536000s; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; add_header Vary "Accept-Encoding"; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; add_header Content-Encoding gzip; } location ~ /wp-content/w3tc/min.*css\.gzip$ { gzip off; types {} default_type text/css; expires modified 31536000s; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; add_header Vary "Accept-Encoding"; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; add_header Content-Encoding gzip; } # END W3TC Minify cache # BEGIN W3TC Browser Cache gzip on; gzip_types text/css application/x-javascript text/x-component text/richtext image/svg+xml text/plain text/xsd text/xsl text/xml image/x-icon; location ~ \.(css|js|htc)$ { expires 31536000s; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; } location ~ \.(html|htm|rtf|rtx|svg|svgz|txt|xsd|xsl|xml)$ { expires 3600s; add_header Pragma "public"; add_header Cache-Control "max-age=3600, public, must-revalidate, proxy-revalidate"; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; try_files $uri $uri/ $uri.html /index.php?$args; } location ~ \.(asf|asx|wax|wmv|wmx|avi|bmp|class|divx|doc|docx|eot|exe|gif|gz|gzip|ico|jpg|jpeg|jpe|mdb|mid|midi|mov|qt|mp3|m4a|mp4|m4v|mpeg|mpg|mpe|mpp|otf|odb|odc|odf|odg|odp|ods|odt|ogg|pdf|png|pot|pps|ppt|pptx|ra|ram|svg|svgz|swf|tar|tif|tiff|ttf|ttc|wav|wma|wri|xla|xls|xlsx|xlt|xlw|zip)$ { expires 31536000s; add_header Pragma "public"; add_header Cache-Control "max-age=31536000, public, must-revalidate, proxy-revalidate"; add_header X-Powered-By "W3 Total Cache/0.9.2.5b"; } # END W3TC Browser Cache # BEGIN W3TC Minify core rewrite ^/wp-content/w3tc/min/w3tc_rewrite_test$ /wp-content/w3tc/min/index.php?w3tc_rewrite_test=1 last; set $w3tc_enc ""; if ($http_accept_encoding ~ gzip) { set $w3tc_enc .gzip; } if (-f $request_filename$w3tc_enc) { rewrite (.*) $1$w3tc_enc break; } rewrite ^/wp-content/w3tc/min/(.+\.(css|js))$ /wp-content/w3tc/min/index.php?file=$1 last; # END W3TC Minify core # BEGIN W3TC Skip 404 error handling by WordPress for static files if (-f $request_filename) { break; } if (-d $request_filename) { break; } if ($request_uri ~ "(robots\.txt|sitemap(_index)?\.xml(\.gz)?|[a-z0-9_\-]+-sitemap([0-9]+)?\.xml(\.gz)?)") { break; } if ($request_uri ~* \.(css|js|htc|htm|rtf|rtx|svg|svgz|txt|xsd|xsl|xml|asf|asx|wax|wmv|wmx|avi|bmp|class|divx|doc|docx|eot|exe|gif|gz|gzip|ico|jpg|jpeg|jpe|mdb|mid|midi|mov|qt|mp3|m4a|mp4|m4v|mpeg|mpg|mpe|mpp|otf|odb|odc|odf|odg|odp|ods|odt|ogg|pdf|png|pot|pps|ppt|pptx|ra|ram|svg|svgz|swf|tar|tif|tiff|ttf|ttc|wav|wma|wri|xla|xls|xlsx|xlt|xlw|zip)$) { return 404; } # END W3TC Skip 404 error handling by WordPress for static files # BEGIN Better WP Security location ~ /\.ht { deny all; } location ~ wp-config.php { deny all; } location ~ readme.html { deny all; } location ~ readme.txt { deny all; } location ~ /install.php { deny all; } set $susquery 0; set $rule_2 0; set $rule_3 0; rewrite ^wp-includes/(.*).php /not_found last; rewrite ^/wp-admin/includes(.*)$ /not_found last; if ($request_method ~* "^(TRACE|DELETE|TRACK)"){ return 403; } set $rule_0 0; if ($request_method ~ "POST"){ set $rule_0 1; } if ($uri ~ "^(.*)wp-comments-post.php*"){ set $rule_0 2$rule_0; } if ($http_user_agent ~ "^$"){ set $rule_0 4$rule_0; } if ($rule_0 = "421"){ return 403; } if ($args ~* "\.\./") { set $susquery 1; } if ($args ~* "boot.ini") { set $susquery 1; } if ($args ~* "tag=") { set $susquery 1; } if ($args ~* "ftp:") { set $susquery 1; } if ($args ~* "http:") { set $susquery 1; } if ($args ~* "https:") { set $susquery 1; } if ($args ~* "(<|%3C).*script.*(>|%3E)") { set $susquery 1; } if ($args ~* "mosConfig_[a-zA-Z_]{1,21}(=|%3D)") { set $susquery 1; } if ($args ~* "base64_encode") { set $susquery 1; } if ($args ~* "(%24&x)") { set $susquery 1; } if ($args ~* "(\[|\]|\(|\)|<|>|ê|\"|;|\?|\*|=$)"){ set $susquery 1; } if ($args ~* "(&#x22;|&#x27;|&#x3C;|&#x3E;|&#x5C;|&#x7B;|&#x7C;|%24&x)"){ set $susquery 1; } if ($args ~* "(%0|%A|%B|%C|%D|%E|%F|127.0)") { set $susquery 1; } if ($args ~* "(globals|encode|localhost|loopback)") { set $susquery 1; } if ($args ~* "(request|select|insert|concat|union|declare)") { set $susquery 1; } if ($http_cookie !~* "wordpress_logged_in_" ) { set $susquery "${susquery}2"; set $rule_2 1; set $rule_3 1; } if ($susquery = 12) { return 403; } # END Better WP Security /etc/php5/fpm/php-fpm.conf: pid = /var/run/php5-fpm.pid error_log = /var/log/php5-fpm.log emergency_restart_threshold = 3 emergency_restart_interval = 1m process_control_timeout = 10s events.mechanism = epoll /etc/php5/fpm/php.ini (only options i changed): open_basedir ="/var/www/" disable_functions = pcntl_alarm,pcntl_fork,pcntl_waitpid,pcntl_wait,pcntl_wifexited,pcntl_wifstopped,pcntl_wifsignaled,pcntl_wexitstatus,pcntl_wtermsig,pcntl_wstopsig,pcntl_signal,pcntl_signal_dispatch,pcntl_get_last_error,pcntl_strerror,pcntl_sigprocmask,pcntl_sigwaitinfo,pcntl_sigtimedwait,pcntl_exec,pcntl_getpriority,pcntl_setpriority,dl,system,shell_exec,fsockopen,parse_ini_file,passthru,popen,proc_open,proc_close,shell_exec,show_source,symlink,proc_close,proc_get_status,proc_nice,proc_open,proc_terminate,shell_exec ,highlight_file,escapeshellcmd,define_syslog_variables,posix_uname,posix_getpwuid,apache_child_terminate,posix_kill,posix_mkfifo,posix_setpgid,posix_setsid,posix_setuid,escapeshellarg,posix_uname,ftp_exec,ftp_connect,ftp_login,ftp_get,ftp_put,ftp_nb_fput,ftp_raw,ftp_rawlist,ini_alter,ini_restore,inject_code,syslog,openlog,define_syslog_variables,apache_setenv,mysql_pconnect,eval,phpAds_XmlRpc,phpA ds_remoteInfo,phpAds_xmlrpcEncode,phpAds_xmlrpcDecode,xmlrpc_entity_decode,fp,fput,virtual,show_source,pclose,readfile,wget expose_php = off max_execution_time = 30 max_input_time = 60 memory_limit = 128M display_errors = Off post_max_size = 2M allow_url_fopen = off default_socket_timeout = 60 APC settings: [APC] apc.enabled = 1 apc.shm_segments = 1 apc.shm_size = 64M apc.optimization = 0 apc.num_files_hint = 4096 apc.ttl = 60 apc.user_ttl = 7200 apc.gc_ttl = 0 apc.cache_by_default = 1 apc.filters = "" apc.mmap_file_mask = "/tmp/apc.XXXXXX" apc.slam_defense = 0 apc.file_update_protection = 2 apc.enable_cli = 0 apc.max_file_size = 10M apc.stat = 1 apc.write_lock = 1 apc.report_autofilter = 0 apc.include_once_override = 0 apc.localcache = 0 apc.localcache.size = 512 apc.coredump_unmap = 0 apc.stat_ctime = 0 /etc/php5/fpm/pool.d/www.conf user = www-data group = www-data listen = /var/run/php5-fpm.sock listen.owner = www-data listen.group = www-data listen.mode = 0666 pm = ondemand pm.max_children = 5 pm.process_idle_timeout = 3s; pm.max_requests = 50 I also started to get 404 errors in front page if i use W3 Total Cache's Page Cache (Disk Enhanced). It worked fine untill somedays ago, and then, out of nowhere, it started to happen. Tonight i will disable my mobile plugin and activate only W3 Total Cache to see if it's a conflict with them... And to finish all this, i have been getting this error: PHP Warning: apc_store(): Unable to allocate memory for pool. in /var/www/wp-content/plugins/w3-total-cache/lib/W3/Cache/Apc.php on line 41 I already modifed my APC settings, but no sucess. So... could anyone help me with those issuees, please? Ooohh... if it helps, i instaled PHP like this: sudo apt-get install php5-fpm php5-suhosin php-apc php5-gd php5-imagick php5-curl And Nginx from the official PPA. Sorry for my bad english and thanks for your time people! (:

    Read the article

  • Using Dependency Walker

    - by Valter Minute
    Dependency Walker is a very useful tool that can be used to find dependencies of a Portable Executable module. The PE format is used also on Windows CE and this means that Dependency Walker can be used to analyze also Windows CE/Windows Embedded Compact module. On Win32 it can be used also to monitor modules loaded by an application during runtime, this feature is not supported on CE. You can download dependency walker for free here: http://dependencywalker.com/. To analyze the dependencies of a Windows CE/Windows Embedded Compact 7 module you can just open it using Dependency Walker. If you want to check if a specific module can run on a Windows CE/Windows Compact 7 OS Image you can copy the executable in the same directory that contains your OS binaries (FLATRELEASEDIR). In this way Dependency Walker will highlight missing dlls or missing entry points inside existing dlls. Let’s do a quick sample. You need to check if myapp.exe (an application from a third party) can run on an image generated with your Test01 OSDesign. Copy Myapp.exe to the flat release directory of your OS Design. Launch depends.exe and use the File\Open option of its main menu to open the application executable file you just copied. You may receive an error if some of the modules required by your applications are missing. Before you analyze the module dependencies is important to configure Dependency Walker to check DLL in the same folder where your application file is stored. This is needed because some Windows CE DLLs have the same name of Win32 system DLLs but different entry points. To configure the DLL search path select “Options\Configure Module Search Order…” from Depenency Walker main menu. Select “The application directory” from the “Current Search Order” list, select it, and move it to the top of the list using the “Move Up” button. The system will ask to refresh the window contents to reflect your configuration change, click on “Yes” to proceed. Now you can inspect myapp.exe dependencies. Some DLLs are missing (XAMLRUNTIME.DLL and TILEENGINE.DLL) and OLE32.DLL exists but does not export the “CoInitialize” entry point that is required by myapp.exe. The bad news is that MyApp.exe will not run on your OS Image, the good news is that now you know what’s missing and you can add the required modules to your OS Design and fix the problem!

    Read the article

  • OSB/OSR/OER in One Domain - QName violates loader constraints

    - by John Graves
    For demos, testing and prototyping, I wanted a single domain which contained three servers:OSB - Oracle Service BusOSR - Oracle Service RegistryOER - Oracle Enterprise Repository These three can work together to help with service governance in an enterprise.  When building out the domain, I found errors in the OSR server due to some conflicting classes from the OSB.  This wouldn't be an issue if each server was given a unique classpath setting with the node manager, but I was having the node manager use the standard startup scripts. The domain's bin/setDomainEnv.sh script has a large set of extra libraries added for OSB which look like this: if [ "${POST_CLASSPATH}" != "" ] ; then POST_CLASSPATH="${COMMON_COMPONENTS_HOME}/modules/oracle.jrf_11.1.1/jrf.jar${CLASSPATHSEP}${POST_CLASSPATH}" export POST_CLASSPATH else POST_CLASSPATH="${COMMON_COMPONENTS_HOME}/modules/oracle.jrf_11.1.1/jrf.jar" export POST_CLASSPATH fi if [ "${PRE_CLASSPATH}" != "" ] ; then PRE_CLASSPATH="${COMMON_COMPONENTS_HOME}/modules/oracle.jdbc_11.1.1/ojdbc6dms.jar${CLASSPATHSEP}${PRE_CLASSPATH}" export PRE_CLASSPATH else PRE_CLASSPATH="${COMMON_COMPONENTS_HOME}/modules/oracle.jdbc_11.1.1/ojdbc6dms.jar" export PRE_CLASSPATH fi POST_CLASSPATH="${POST_CLASSPATH}${CLASSPATHSEP}/oracle/fmwhome/Oracle_OSB1/soa/modules/oracle.soa.common.adapters_11.1.1/oracle.soa.common.adapters.jar\ ${CLASSPATHSEP}${ALSB_HOME}/lib/version.jar\ ${CLASSPATHSEP}${ALSB_HOME}/lib/alsb.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/lib/j2ssh-ant.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/lib/j2ssh-common.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/lib/j2ssh-core.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/lib/j2ssh-dameon.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/classes${CLASSPATHSEP}\ ${ALSB_HOME}/lib/external/log4j_1.2.8.jar${CLASSPATHSEP}\ ${DOMAIN_HOME}/config/osb" I didn't take the time to sort out exactly which jar was causing the problem, but I simply surrounded this block with a conditional statement: if [ "${SERVER_NAME}" == "osr_server1" ] ; then POST_CLASSPATH=""else if [ "${POST_CLASSPATH}" != "" ] ; then POST_CLASSPATH="${COMMON_COMPONENTS_HOME}/modules/oracle.jrf_11.1.1/jrf.jar${CLASSPATHSEP}${POST_CLASSPATH}" export POST_CLASSPATH else POST_CLASSPATH="${COMMON_COMPONENTS_HOME}/modules/oracle.jrf_11.1.1/jrf.jar" export POST_CLASSPATH fi if [ "${PRE_CLASSPATH}" != "" ] ; then PRE_CLASSPATH="${COMMON_COMPONENTS_HOME}/modules/oracle.jdbc_11.1.1/ojdbc6dms.jar${CLASSPATHSEP}${PRE_CLASSPATH}" export PRE_CLASSPATH else PRE_CLASSPATH="${COMMON_COMPONENTS_HOME}/modules/oracle.jdbc_11.1.1/ojdbc6dms.jar" export PRE_CLASSPATH fi POST_CLASSPATH="${POST_CLASSPATH}${CLASSPATHSEP}/oracle/fmwhome/Oracle_OSB1/soa/modules/oracle.soa.common.adapters_11.1.1/oracle.soa.common.adapters.jar\ ${CLASSPATHSEP}${ALSB_HOME}/lib/version.jar\ ${CLASSPATHSEP}${ALSB_HOME}/lib/alsb.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/lib/j2ssh-ant.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/lib/j2ssh-common.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/lib/j2ssh-core.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/lib/j2ssh-dameon.jar\ ${CLASSPATHSEP}${ALSB_HOME}/3rdparty/classes${CLASSPATHSEP}\ ${ALSB_HOME}/lib/external/log4j_1.2.8.jar${CLASSPATHSEP}\ ${DOMAIN_HOME}/config/osb" fi I could have also just done an if [ ${SERVER_NAME} = "osb_server1" ], but I would have also had to include the AdminServer because they are needed there too.  Since the oer_server1 didn't mind, I did the negative case as shown above. To help others find this post, I'm including the error that was reported in the OSR server before I made this change. ####<Mar 30, 2012 4:20:28 PM EST> <Error> <HTTP> <localhost.localdomain> <osr_server1> <[ACTIVE] ExecuteThread: '0' for queue: 'weblogic.kernel.Default (self-tuning)'> <<WLS Kernel>> <> <11d1def534ea1be0:30e96542:13662023753:-8000-000000000000001c> <1333084828916> <BEA-101017> <[ServletContext@470316600[app:registry module:registry.war path:/registry spec-version:null]] Root cause of ServletException. java.lang.LinkageError: Class javax/xml/namespace/QName violates loader constraints at com.idoox.wsdl.extensions.PopulatedExtensionRegistry.<init>(PopulatedExtensionRegistry.java:84) at com.idoox.wsdl.factory.WSDLFactoryImpl.newDefinition(WSDLFactoryImpl.java:61) at com.idoox.wsdl.xml.WSDLReaderImpl.parseDefinitions(WSDLReaderImpl.java:419) at com.idoox.wsdl.xml.WSDLReaderImpl.readWSDL(WSDLReaderImpl.java:309) at com.idoox.wsdl.xml.WSDLReaderImpl.readWSDL(WSDLReaderImpl.java:272) at com.idoox.wsdl.xml.WSDLReaderImpl.readWSDL(WSDLReaderImpl.java:198) at com.idoox.wsdl.util.WSDLUtil.readWSDL(WSDLUtil.java:126) at com.systinet.wasp.admin.PackageRepositoryImpl.validateServicesNamespaceAndName(PackageRepositoryImpl.java:885) at com.systinet.wasp.admin.PackageRepositoryImpl.registerPackage(PackageRepositoryImpl.java:807) at com.systinet.wasp.admin.PackageRepositoryImpl.updateDir(PackageRepositoryImpl.java:611) at com.systinet.wasp.admin.PackageRepositoryImpl.updateDir(PackageRepositoryImpl.java:643) at com.systinet.wasp.admin.PackageRepositoryImpl.update(PackageRepositoryImpl.java:553) at com.systinet.wasp.admin.PackageRepositoryImpl.init(PackageRepositoryImpl.java:242) at com.idoox.wasp.ModuleRepository.loadModules(ModuleRepository.java:198) at com.systinet.wasp.WaspImpl.boot(WaspImpl.java:383) at org.systinet.wasp.Wasp.init(Wasp.java:151) at com.systinet.transport.servlet.server.Servlet.init(Unknown Source) at weblogic.servlet.internal.StubSecurityHelper$ServletInitAction.run(StubSecurityHelper.java:283) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:120) at weblogic.servlet.internal.StubSecurityHelper.createServlet(StubSecurityHelper.java:64) at weblogic.servlet.internal.StubLifecycleHelper.createOneInstance(StubLifecycleHelper.java:58) at weblogic.servlet.internal.StubLifecycleHelper.<init>(StubLifecycleHelper.java:48) at weblogic.servlet.internal.ServletStubImpl.prepareServlet(ServletStubImpl.java:539) at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:244) at weblogic.servlet.internal.ServletStubImpl.execute(ServletStubImpl.java:184) at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.wrapRun(WebAppServletContext.java:3732) at weblogic.servlet.internal.WebAppServletContext$ServletInvocationAction.run(WebAppServletContext.java:3696) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:321) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:120) at weblogic.servlet.internal.WebAppServletContext.securedExecute(WebAppServletContext.java:2273) at weblogic.servlet.internal.WebAppServletContext.execute(WebAppServletContext.java:2179) at weblogic.servlet.internal.ServletRequestImpl.run(ServletRequestImpl.java:1490) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:256) at weblogic.work.ExecuteThread.run(ExecuteThread.java:221)

    Read the article

  • Can't get TRIM test to work

    - by Matthew Marcus
    So I'm attempting to install TRIM using the walkthrough here: How to enable TRIM? But everytime I attempt to run the hdparm command, I get the following when I try to run it w/ sda: reading sector 5805056: FAILED: Input/output error and I get this when running it with sda1: /dev/sda1: Device /dev/sda1 has non-zero LBA starting offset of 2048. Please use an absolute LBA with the /dev/ entry for the full device, rather than a partition name. /dev/sda1 is probably a partition of /dev/sda (?) The absolute LBA of sector 5807104 from /dev/sda1 should be 5809152 Aborting. I'm running Natty in a VBox on Windows 7. Someone PLEASE help.. I keep getting this "consistency check" message on boot of my machine and I think it's because Ubuntu is writing to the same sectors on the VHD too much.. need to get trim working on this thing.. Thanks.

    Read the article

  • How can I troubleshoot flash player/hardware conflict?

    - by sparthikas
    OBJECTIVE: Have a web browser on my Ubuntu install that can play youtube and hulu videos. Also would like to understand problem so that I can fix it again if I change software. Workarounds welcome, technical understanding and solution preferable. SYMPTOMS: Flash does not run - cannot make the right-click menu appear, an empty box is where video should be, changes to black box when hovering over other links. The "The Adobe Flash plugin has crashed" message does not appear with its sad lego face. cannot activate proprietary graphics driver - causes system to reboot to a prompt. SOLUTIONS TRIED: Replaced OS (tried slackware 13.37, fedora 17, linuxmint 13 maya, gentoo, lubuntu, and even winXP. lubuntu confirmed to work, don't remember how much tweaking, if any, this required. Slack, fedora, mint, and gentoo all failed to run flash just like ubuntu) many reinstalls of flash player via different methods, including cleaning up old installs first, also tried gnash and lightspark. replaced graphics card (replaced HIS IceQ Radeon HD 4670 AGP with older GeForce 5700 LE no change in problem) flash does successfully work on winXP installation with Catalyst AGP hotfix driver applied, however I consider windows wholly unacceptable for web browsing due to lack of security. Lubuntu install also works, however I do not want to be tied down to just using Lubuntu on this computer. SYSINFO: Have latest versions of Ubuntu, Firefox, and Flash on fresh Ubuntu install. Using Gigabyte 7s748 motherboard with Athlon XP 2800+ and 3 GB of RAM with Radeon HD 4670 AGP card, also a Dell soundblaster live series sound card (due to malfunction of onboard sound on motherboard) Wired internet connection, Maxtor 6Y120L3 HDD, Sony DVD RW AW-Q170A, Dell M993s monitor. NOTES: I do not know if the graphics driver issue and the flash troubles are linked. Substitution of older graphics card having same flash troubles seems to suggest they aren't. My troubleshooting method is rather reductionist, consisting mainly of "replace things until you find out what was causing the error by process of elimination" only it seems that this must be a conflict which arises when software decides how to configure itself on my hardware. That is, I know the hardware can run Flash, and I know that on other systems the same software can too, but somehow the combination fails. Consequently I feel out of my depth. I will keep trying things off and on, but I have spent probably about 30 man-hours in the last 4 months working on this problem with no joy other than the lubuntu workaround. Any help will be appreciated, I will be checking back and posting updates. Any pertinent questions regarding me or my computer will be answered, outputs from config files can be accessed and posted (IDK which ones or what parts to post).

    Read the article

  • Solaris X86 64-bit Assembly Programming

    - by danx
    Solaris X86 64-bit Assembly Programming This is a simple example on writing, compiling, and debugging Solaris 64-bit x86 assembly language with a C program. This is also referred to as "AMD64" assembly. The term "AMD64" is used in an inclusive sense to refer to all X86 64-bit processors, whether AMD Opteron family or Intel 64 processor family. Both run Solaris x86. I'm keeping this example simple mainly to illustrate how everything comes together—compiler, assembler, linker, and debugger when using assembly language. The example I'm using here is a C program that calls an assembly language program passing a C string. The assembly language program takes the C string and calls printf() with it to print the string. AMD64 Register Usage But first let's review the use of AMD64 registers. AMD64 has several 64-bit registers, some special purpose (such as the stack pointer) and others general purpose. By convention, Solaris follows the AMD64 ABI in register usage, which is the same used by Linux, but different from Microsoft Windows in usage (such as which registers are used to pass parameters). This blog will only discuss conventions for Linux and Solaris. The following chart shows how AMD64 registers are used. The first six parameters to a function are passed through registers. If there's more than six parameters, parameter 7 and above are pushed on the stack before calling the function. The stack is also used to save temporary "stack" variables for use by a function. 64-bit Register Usage %rip Instruction Pointer points to the current instruction %rsp Stack Pointer %rbp Frame Pointer (saved stack pointer pointing to parameters on stack) %rdi Function Parameter 1 %rsi Function Parameter 2 %rdx Function Parameter 3 %rcx Function Parameter 4 %r8 Function Parameter 5 %r9 Function Parameter 6 %rax Function return value %r10, %r11 Temporary registers (need not be saved before used) %rbx, %r12, %r13, %r14, %r15 Temporary registers, but must be saved before use and restored before returning from the current function (usually with the push and pop instructions). 32-, 16-, and 8-bit registers To access the lower 32-, 16-, or 8-bits of a 64-bit register use the following: 64-bit register Least significant 32-bits Least significant 16-bits Least significant 8-bits %rax%eax%ax%al %rbx%ebx%bx%bl %rcx%ecx%cx%cl %rdx%edx%dx%dl %rsi%esi%si%sil %rdi%edi%di%axl %rbp%ebp%bp%bp %rsp%esp%sp%spl %r9%r9d%r9w%r9b %r10%r10d%r10w%r10b %r11%r11d%r11w%r11b %r12%r12d%r12w%r12b %r13%r13d%r13w%r13b %r14%r14d%r14w%r14b %r15%r15d%r15w%r15b %r16%r16d%r16w%r16b There's other registers present, such as the 64-bit %mm registers, 128-bit %xmm registers, 256-bit %ymm registers, and 512-bit %zmm registers. Except for %mm registers, these registers may not present on older AMD64 processors. Assembly Source The following is the source for a C program, helloas1.c, that calls an assembly function, hello_asm(). $ cat helloas1.c extern void hello_asm(char *s); int main(void) { hello_asm("Hello, World!"); } The assembly function called above, hello_asm(), is defined below. $ cat helloas2.s /* * helloas2.s * To build: * cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s * cc -m64 -c -o helloas2.o helloas2-cpp.s */ #if defined(lint) || defined(__lint) /* ARGSUSED */ void hello_asm(char *s) { } #else /* lint */ #include <sys/asm_linkage.h> .extern printf ENTRY_NP(hello_asm) // Setup printf parameters on stack mov %rdi, %rsi // P2 (%rsi) is string variable lea .printf_string, %rdi // P1 (%rdi) is printf format string call printf ret SET_SIZE(hello_asm) // Read-only data .text .align 16 .type .printf_string, @object .printf_string: .ascii "The string is: %s.\n\0" #endif /* lint || __lint */ In the assembly source above, the C skeleton code under "#if defined(lint)" is optionally used for lint to check the interfaces with your C program--very useful to catch nasty interface bugs. The "asm_linkage.h" file includes some handy macros useful for assembly, such as ENTRY_NP(), used to define a program entry point, and SET_SIZE(), used to set the function size in the symbol table. The function hello_asm calls C function printf() by passing two parameters, Parameter 1 (P1) is a printf format string, and P2 is a string variable. The function begins by moving %rdi, which contains Parameter 1 (P1) passed hello_asm, to printf()'s P2, %rsi. Then it sets printf's P1, the format string, by loading the address the address of the format string in %rdi, P1. Finally it calls printf. After returning from printf, the hello_asm function returns itself. Larger, more complex assembly functions usually do more setup than the example above. If a function is returning a value, it would set %rax to the return value. Also, it's typical for a function to save the %rbp and %rsp registers of the calling function and to restore these registers before returning. %rsp contains the stack pointer and %rbp contains the frame pointer. Here is the typical function setup and return sequence for a function: ENTRY_NP(sample_assembly_function) push %rbp // save frame pointer on stack mov %rsp, %rbp // save stack pointer in frame pointer xor %rax, %r4ax // set function return value to 0. mov %rbp, %rsp // restore stack pointer pop %rbp // restore frame pointer ret // return to calling function SET_SIZE(sample_assembly_function) Compiling and Running Assembly Use the Solaris cc command to compile both C and assembly source, and to pre-process assembly source. You can also use GNU gcc instead of cc to compile, if you prefer. The "-m64" option tells the compiler to compile in 64-bit address mode (instead of 32-bit). $ cc -m64 -o helloas2-cpp.s -D_ASM -E helloas2.s $ cc -m64 -c -o helloas2.o helloas2-cpp.s $ cc -m64 -c helloas1.c $ cc -m64 -o hello-asm helloas1.o helloas2.o $ file hello-asm helloas1.o helloas2.o hello-asm: ELF 64-bit LSB executable AMD64 Version 1 [SSE FXSR FPU], dynamically linked, not stripped helloas1.o: ELF 64-bit LSB relocatable AMD64 Version 1 helloas2.o: ELF 64-bit LSB relocatable AMD64 Version 1 $ hello-asm The string is: Hello, World!. Debugging Assembly with MDB MDB is the Solaris system debugger. It can also be used to debug user programs, including assembly and C. The following example runs the above program, hello-asm, under control of the debugger. In the example below I load the program, set a breakpoint at the assembly function hello_asm, display the registers and the first parameter, step through the assembly function, and continue execution. $ mdb hello-asm # Start the debugger > hello_asm:b # Set a breakpoint > ::run # Run the program under the debugger mdb: stop at hello_asm mdb: target stopped at: hello_asm: movq %rdi,%rsi > $C # display function stack ffff80ffbffff6e0 hello_asm() ffff80ffbffff6f0 0x400adc() > $r # display registers %rax = 0x0000000000000000 %r8 = 0x0000000000000000 %rbx = 0xffff80ffbf7f8e70 %r9 = 0x0000000000000000 %rcx = 0x0000000000000000 %r10 = 0x0000000000000000 %rdx = 0xffff80ffbffff718 %r11 = 0xffff80ffbf537db8 %rsi = 0xffff80ffbffff708 %r12 = 0x0000000000000000 %rdi = 0x0000000000400cf8 %r13 = 0x0000000000000000 %r14 = 0x0000000000000000 %r15 = 0x0000000000000000 %cs = 0x0053 %fs = 0x0000 %gs = 0x0000 %ds = 0x0000 %es = 0x0000 %ss = 0x004b %rip = 0x0000000000400c70 hello_asm %rbp = 0xffff80ffbffff6e0 %rsp = 0xffff80ffbffff6c8 %rflags = 0x00000282 id=0 vip=0 vif=0 ac=0 vm=0 rf=0 nt=0 iopl=0x0 status=<of,df,IF,tf,SF,zf,af,pf,cf> %gsbase = 0x0000000000000000 %fsbase = 0xffff80ffbf782a40 %trapno = 0x3 %err = 0x0 > ::dis # disassemble the current instructions hello_asm: movq %rdi,%rsi hello_asm+3: leaq 0x400c90,%rdi hello_asm+0xb: call -0x220 <PLT:printf> hello_asm+0x10: ret 0x400c81: nop 0x400c85: nop 0x400c88: nop 0x400c8c: nop 0x400c90: pushq %rsp 0x400c91: pushq $0x74732065 0x400c96: jb +0x69 <0x400d01> > 0x0000000000400cf8/S # %rdi contains Parameter 1 0x400cf8: Hello, World! > [ # Step and execute 1 instruction mdb: target stopped at: hello_asm+3: leaq 0x400c90,%rdi > [ mdb: target stopped at: hello_asm+0xb: call -0x220 <PLT:printf> > [ The string is: Hello, World!. mdb: target stopped at: hello_asm+0x10: ret > [ mdb: target stopped at: main+0x19: movl $0x0,-0x4(%rbp) > :c # continue program execution mdb: target has terminated > $q # quit the MDB debugger $ In the example above, at the start of function hello_asm(), I display the stack contents with "$C", display the registers contents with "$r", then disassemble the current function with "::dis". The first function parameter, which is a C string, is passed by reference with the string address in %rdi (see the register usage chart above). The address is 0x400cf8, so I print the value of the string with the "/S" MDB command: "0x0000000000400cf8/S". I can also print the contents at an address in several other formats. Here's a few popular formats. For more, see the mdb(1) man page for details. address/S C string address/C ASCII character (1 byte) address/E unsigned decimal (8 bytes) address/U unsigned decimal (4 bytes) address/D signed decimal (4 bytes) address/J hexadecimal (8 bytes) address/X hexadecimal (4 bytes) address/B hexadecimal (1 bytes) address/K pointer in hexadecimal (4 or 8 bytes) address/I disassembled instruction Finally, I step through each machine instruction with the "[" command, which steps over functions. If I wanted to enter a function, I would use the "]" command. Then I continue program execution with ":c", which continues until the program terminates. MDB Basic Cheat Sheet Here's a brief cheat sheet of some of the more common MDB commands useful for assembly debugging. There's an entire set of macros and more powerful commands, especially some for debugging the Solaris kernel, but that's beyond the scope of this example. $C Display function stack with pointers $c Display function stack $e Display external function names $v Display non-zero variables and registers $r Display registers ::fpregs Display floating point (or "media" registers). Includes %st, %xmm, and %ymm registers. ::status Display program status ::run Run the program (followed by optional command line parameters) $q Quit the debugger address:b Set a breakpoint address:d Delete a breakpoint $b Display breakpoints :c Continue program execution after a breakpoint [ Step 1 instruction, but step over function calls ] Step 1 instruction address::dis Disassemble instructions at an address ::events Display events Further Information "Assembly Language Techniques for Oracle Solaris on x86 Platforms" by Paul Lowik (2004). Good tutorial on Solaris x86 optimization with assembly. The Solaris Operating System on x86 Platforms An excellent, detailed tutorial on X86 architecture, with Solaris specifics. By an ex-Sun employee, Frank Hofmann (2005). "AMD64 ABI Features", Solaris 64-bit Developer's Guide contains rules on data types and register usage for Intel 64/AMD64-class processors. (available at docs.oracle.com) Solaris X86 Assembly Language Reference Manual (available at docs.oracle.com) SPARC Assembly Language Reference Manual (available at docs.oracle.com) System V Application Binary Interface (2003) defines the AMD64 ABI for UNIX-class operating systems, including Solaris, Linux, and BSD. Google for it—the original website is gone. cc(1), gcc(1), and mdb(1) man pages.

    Read the article

  • SQL SERVER – Installing SQL Server Data Tools and SSRS

    - by Pinal Dave
    This example is from the Beginning SSRS by Kathi Kellenberger. Supporting files are available with a free download from the www.Joes2Pros.com web site. If you have installed SQL Server, but are missing the Data Tools or Reporting Services Double-click the SQL Server 2012 installation media. Click the Installation link on the left to view the Installation options. Click the top link New SQL Server stand-alone installation or add features to an existing installation. Follow the SQL Server Setup wizard until you get to the Installation Type screen. At that screen, select Add features to an existing instance of SQL Server 2012. Click Next to move to the Feature Selection page. Select Reporting Services – Native and SQL Server Data Tools. If the Management Tools have not been installed, go ahead and choose them as well. Continue through the wizard and reboot the computer at the end of the installation if instructed to do so. Configure Reporting Services If you installed Reporting Services during the installation of the SQL Server instance, SSRS will be configured automatically for you. If you install SSRS later, then you will have to go back and configure it as a subsequent step. Click Start > All Programs > Microsoft SQL Server 2012 > Configuration Tools > Reporting Services Configuration Manager > Connect on the Reporting Services Configuration Connection dialog box. On the left-hand side of the Reporting Services Configuration Manager, click Database. Click the Change Database button on the right side of the screen. Select Create a new report server database and click Next. Click through the rest of the wizard accepting the defaults. This wizard creates two databases: ReportServer, used to store report definitions and security, and ReportServerTempDB which is used as scratch space when preparing reports for user requests. Now click Web Service URL on the left-hand side of the Reporting Services Configuration Manager. Click the Apply button to accept the defaults. If the Apply button has been grayed out, move on to the next step. This step sets up the SSRS web service. The web service is the program that runs in the background that communicates between the web page, which you will set up next, and the databases. The final configuration step is to select the Report Manager URL link on the left. Accept the default settings and click Apply. If the Apply button was already grayed out, this means the SSRS was already configured. This step sets up the Report Manager web site where you will publish reports. You may be wondering if you also must install a web server on your computer. SQL Server does not require that the Internet Information Server (IIS), the Microsoft web server, be installed to run Report Manager. Click Exit to dismiss the Reporting Services Configuration Manager dialog box. Tomorrow’s Post Tomorrow’s blog post will show how to create your first report using the Report Wizard. If you want to learn SSRS in easy to simple words – I strongly recommend you to get Beginning SSRS book from Joes 2 Pros. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Reporting Services, SSRS

    Read the article

  • SQL SERVER – Planned and Unplanned Availablity Group Failovers – Notes from the Field #031

    - by Pinal Dave
    [Note from Pinal]: This is a new episode of Notes from the Fields series. AlwaysOn is a very complex subject and not everyone knows many things about this. The matter of the fact is there is very little information available on this subject online and not everyone knows everything about this. This is why when a very common question related to AlwaysOn comes, people get confused. In this episode of the Notes from the Field series database expert John Sterrett (Group Principal at Linchpin People) explains a very common issue DBAs and Developer faces in their career and is related to Planned and Unplanned Availablity Group Failovers. Linchpin People are database coaches and wellness experts for a data driven world. Read the experience of John in his own words. Whenever a disaster occurs it will be a stressful scenario regardless of how small or big the disaster is. This gets multiplied when it is your first time working with newer technology or the first time you are going through a disaster without a proper run book. Today, were going to help you establish a run book for creating a planned failover with availability groups. To make today’s session simple were going to have two instances of SQL Server 2012 included in an availability group and walk through the steps of doing an unplanned failover.  We will focus on using the user interface and T-SQL to complete the failovers. We are going to use a two replica Availability Group where each replica is in another location. Therefore, we will be covering Asynchronous (non automatic failover) the following is a breakdown of our availability group utilized today. Seeing the following screen might be scary the first time you come across an unplanned failover.  It looks like our test database used in this Availability Group is not functional and it currently isn’t. The database status is not synchronizing which makes sense because the primary replica went down so it couldn’t synchronize. With that said, we can still failover and make it functional while we troubleshoot why we lost our primary replica. To start we are going to right click on the availability group that needs to be restarted and select failover. This will bring up the following wizard, which will walk you through several steps needed to complete the failover using the graphical user interface provided with SQL Server Management Studio (SSMS). You are going to see warning messages simply because we are in Asynchronous commit mode and can not guarantee ‘no data loss’ when we do failover. Just incase you missed it; you get another screen warning you about potential data loss because we are in Asynchronous mode. Next we get to connect to the specific replica we want to become the primary replica after the failover occurs. In our case, we only have two replicas so this is trivial. In order to failover, it’s required to connect to the replica that will become primary.  The following screen shows that the connection has been made successfully. Next, you will see the final summary screen. Once again, this reminds you that the failover action will cause data loss as were using Asynchronous commit mode due to the distance between instances used for disaster recovery. Finally, once the failover is completed you will see the following screen. If you followed along this long you might be wondering what T-SQL scripts are generated for clicking through all the sections of the wizard. If you have used Database Mirroring in the past you might be surprised.  It’s not too different, which makes sense because the data is being replicated via SQL Server endpoints just like the good old database mirroring. Now were going to take a look at how to do a failover with just T-SQL. First, were going to need to open a new query window and run our query in SQLCMD mode. Just incase you haven’t used SQLCMD mode before we will show you how to enable it below. Now you can run the following statement. Notice, we connect to the replica we want to become primary after failover and specify to force failover to allow data loss. We can use the following script to failback over when our primary instance comes back online. -- YOU MUST EXECUTE THE FOLLOWING SCRIPT IN SQLCMD MODE. :Connect SQL2012PROD1 ALTER AVAILABILITY GROUP [AGSQL2] FORCE_FAILOVER_ALLOW_DATA_LOSS; GO Are your servers running at optimal speed or are you facing any SQL Server Performance Problems? If you want to get started with the help of experts read more over here: Fix Your SQL Server. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: Notes from the Field, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Absent Code attribute in method that is not native or abstract

    - by kerry
    I got the following, quite puzzling error today when running a unit test: java.lang.ClassFormatError: Absent Code attribute in method that is not native or abstract in class file javax/servlet/http/Cookie A google search found this post, which explains that it is caused by having an interface in the classpath, and not an actual implementation. In this case it’s the java-ee interface. To fix this I added the jetty servlet api implementation to my pom: jetty javax.servlet test Piece of cake. I have run in to this before, so I figured I would capture the fix here in case I run in to it again.

    Read the article

  • ls -l freezes terminal locally and remotely

    - by Jakobud
    I've been reading other SF threads regarding ls not returning results or freezing and stalling terminal sessions and it appears they usually the fault of network problems. My problem however, occurs both over remote SSH sessions but also if I am physically at the server itself... I just installed CentOS 5.4 on one of our servers. I'm setting up some rdiff-backup scripts and when I downloaded librsync and untared it, thats when I started seeing some weird behavior with ls -l. wget http://sourceforge.net/projects/librsync/files/librsync/0.9.7/librsync-0.9.7.tar.gz/download /tmp cd /tmp tar -xzf librsync-0.9.7.tar.gz Simple enough. To view the files in this directory I did this: ls results: librsync-0.9.7 librsync-0.9.7.tar.gz Now, if I ls -l, my terminal freezes. I have to re-ssh in to keep going. After reading SF threads, I thought it was network related. So I was extremely surprised to go sit down at the server itself and see the exact same thing happen... So its obviously not a network issues. Even if I ls /tmp/librsync-0.9.7, my terminal freezes just the same... Next I did an strace and got this (warning: wall of text coming....): strace ls -l /tmp execve("/bin/ls", ["ls", "-l", "/tmp"], [/* 21 vars */]) = 0 brk(0) = 0x1c521000 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b8582cc0000 uname({sys="Linux", node="massive.answeron.com", ...}) = 0 access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or directory) open("/etc/ld.so.cache", O_RDONLY) = 3 fstat(3, {st_mode=S_IFREG|0644, st_size=71746, ...}) = 0 mmap(NULL, 71746, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2b8582cc1000 close(3) = 0 open("/lib64/librt.so.1", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0 \"\200\2730\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=53448, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b8582cd3000 mmap(0x30bb800000, 2132936, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x30bb800000 mprotect(0x30bb807000, 2097152, PROT_NONE) = 0 mmap(0x30bba07000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x7000) = 0x30bba07000 close(3) = 0 open("/lib64/libacl.so.1", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0\31@\2740\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=28008, ...}) = 0 mmap(0x30bc400000, 2120992, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x30bc400000 mprotect(0x30bc406000, 2093056, PROT_NONE) = 0 mmap(0x30bc605000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x5000) = 0x30bc605000 close(3) = 0 open("/lib64/libselinux.so.1", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0`E\300\2730\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=95464, ...}) = 0 mmap(0x30bbc00000, 2192784, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x30bbc00000 mprotect(0x30bbc15000, 2097152, PROT_NONE) = 0 mmap(0x30bbe15000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x15000) = 0x30bbe15000 mmap(0x30bbe17000, 1424, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x30bbe17000 close(3) = 0 open("/lib64/libc.so.6", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\220\332\201\2720\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=1717800, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b8582cd4000 mmap(0x30ba800000, 3498328, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x30ba800000 mprotect(0x30ba94d000, 2097152, PROT_NONE) = 0 mmap(0x30bab4d000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x14d000) = 0x30bab4d000 mmap(0x30bab52000, 16728, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x30bab52000 close(3) = 0 open("/lib64/libpthread.so.0", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\220W\0\2730\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=145824, ...}) = 0 mmap(0x30bb000000, 2204528, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x30bb000000 mprotect(0x30bb016000, 2093056, PROT_NONE) = 0 mmap(0x30bb215000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x15000) = 0x30bb215000 mmap(0x30bb217000, 13168, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x30bb217000 close(3) = 0 open("/lib64/libattr.so.1", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\320\17\300\2750\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=17888, ...}) = 0 mmap(0x30bdc00000, 2110728, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x30bdc00000 mprotect(0x30bdc04000, 2093056, PROT_NONE) = 0 mmap(0x30bde03000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x3000) = 0x30bde03000 close(3) = 0 open("/lib64/libdl.so.2", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\20\16\300\2720\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=23360, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b8582cd5000 mmap(0x30bac00000, 2109696, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x30bac00000 mprotect(0x30bac02000, 2097152, PROT_NONE) = 0 mmap(0x30bae02000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x2000) = 0x30bae02000 close(3) = 0 open("/lib64/libsepol.so.1", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\0=\0\2740\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=247496, ...}) = 0 mmap(0x30bc000000, 2383136, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x30bc000000 mprotect(0x30bc03b000, 2097152, PROT_NONE) = 0 mmap(0x30bc23b000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x3b000) = 0x30bc23b000 mmap(0x30bc23c000, 40224, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x30bc23c000 close(3) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b8582cd6000 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b8582cd7000 arch_prctl(ARCH_SET_FS, 0x2b8582cd6c50) = 0 mprotect(0x30bba07000, 4096, PROT_READ) = 0 mprotect(0x30bab4d000, 16384, PROT_READ) = 0 mprotect(0x30bb215000, 4096, PROT_READ) = 0 mprotect(0x30ba61b000, 4096, PROT_READ) = 0 mprotect(0x30bae02000, 4096, PROT_READ) = 0 munmap(0x2b8582cc1000, 71746) = 0 set_tid_address(0x2b8582cd6ce0) = 24102 set_robust_list(0x2b8582cd6cf0, 0x18) = 0 futex(0x7fff72d02d6c, FUTEX_WAKE_PRIVATE, 1) = 0 rt_sigaction(SIGRTMIN, {0x30bb005370, [], SA_RESTORER|SA_SIGINFO, 0x30bb00e7c0}, NULL, 8) = 0 rt_sigaction(SIGRT_1, {0x30bb0052b0, [], SA_RESTORER|SA_RESTART|SA_SIGINFO, 0x30bb00e7c0}, NULL, 8) = 0 rt_sigprocmask(SIG_UNBLOCK, [RTMIN RT_1], NULL, 8) = 0 getrlimit(RLIMIT_STACK, {rlim_cur=10240*1024, rlim_max=RLIM_INFINITY}) = 0 access("/etc/selinux/", F_OK) = 0 brk(0) = 0x1c521000 brk(0x1c542000) = 0x1c542000 open("/etc/selinux/config", O_RDONLY) = 3 fstat(3, {st_mode=S_IFREG|0644, st_size=448, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b8582cc1000 read(3, "# This file controls the state o"..., 4096) = 448 read(3, "", 4096) = 0 close(3) = 0 munmap(0x2b8582cc1000, 4096) = 0 open("/proc/mounts", O_RDONLY) = 3 fstat(3, {st_mode=S_IFREG|0444, st_size=0, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b8582cc1000 read(3, "rootfs / rootfs rw 0 0\n/dev/root"..., 4096) = 577 close(3) = 0 munmap(0x2b8582cc1000, 4096) = 0 open("/selinux/mls", O_RDONLY) = 3 read(3, "1", 19) = 1 close(3) = 0 socket(PF_FILE, SOCK_STREAM, 0) = 3 connect(3, {sa_family=AF_FILE, path="/var/run/setrans/.setrans-unix"...}, 110) = 0 sendmsg(3, {msg_name(0)=NULL, msg_iov(5)=[{"\1\0\0\0", 4}, {"\1\0\0\0", 4}, {"\1\0\0\0", 4}, {"\0", 1}, {"\0", 1}], msg_controllen=0, msg_flags=0}, MSG_NOSIGNAL) = 14 readv(3, [{"\1\0\0\0", 4}, {"\1\0\0\0", 4}, {"\0\0\0\0", 4}], 3) = 12 readv(3, [{"\0", 1}], 1) = 1 close(3) = 0 open("/usr/lib/locale/locale-archive", O_RDONLY) = 3 fstat(3, {st_mode=S_IFREG|0644, st_size=56413824, ...}) = 0 mmap(NULL, 56413824, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2b8582cd8000 close(3) = 0 ioctl(1, SNDCTL_TMR_TIMEBASE or TCGETS, {B38400 opost isig icanon echo ...}) = 0 ioctl(1, TIOCGWINSZ, {ws_row=65, ws_col=137, ws_xpixel=0, ws_ypixel=0}) = 0 open("/usr/share/locale/locale.alias", O_RDONLY) = 3 fstat(3, {st_mode=S_IFREG|0644, st_size=2528, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(3, "# Locale name alias data base.\n#"..., 4096) = 2528 read(3, "", 4096) = 0 close(3) = 0 munmap(0x2b85862a5000, 4096) = 0 open("/usr/share/locale/en_US.UTF-8/LC_TIME/coreutils.mo", O_RDONLY) = -1 ENOENT (No such file or directory) open("/usr/share/locale/en_US.utf8/LC_TIME/coreutils.mo", O_RDONLY) = -1 ENOENT (No such file or directory) open("/usr/share/locale/en_US/LC_TIME/coreutils.mo", O_RDONLY) = -1 ENOENT (No such file or directory) open("/usr/share/locale/en.UTF-8/LC_TIME/coreutils.mo", O_RDONLY) = -1 ENOENT (No such file or directory) open("/usr/share/locale/en.utf8/LC_TIME/coreutils.mo", O_RDONLY) = -1 ENOENT (No such file or directory) open("/usr/share/locale/en/LC_TIME/coreutils.mo", O_RDONLY) = -1 ENOENT (No such file or directory) lstat("/tmp", {st_mode=S_IFDIR|S_ISVTX|0777, st_size=4096, ...}) = 0 getxattr("/tmp", "system.posix_acl_access", 0x0, 0) = -1 ENODATA (No data available) getxattr("/tmp", "system.posix_acl_default", 0x0, 0) = -1 ENODATA (No data available) socket(PF_FILE, SOCK_STREAM, 0) = 3 fcntl(3, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(3, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(3) = 0 socket(PF_FILE, SOCK_STREAM, 0) = 3 fcntl(3, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(3, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(3) = 0 open("/etc/nsswitch.conf", O_RDONLY) = 3 fstat(3, {st_mode=S_IFREG|0644, st_size=1711, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(3, "#\n# /etc/nsswitch.conf\n#\n# An ex"..., 4096) = 1711 read(3, "", 4096) = 0 close(3) = 0 munmap(0x2b85862a5000, 4096) = 0 open("/etc/ld.so.cache", O_RDONLY) = 3 fstat(3, {st_mode=S_IFREG|0644, st_size=71746, ...}) = 0 mmap(NULL, 71746, PROT_READ, MAP_PRIVATE, 3, 0) = 0x2b85862a5000 close(3) = 0 open("/lib64/libnss_files.so.2", O_RDONLY) = 3 read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\340\37\0\0\0\0\0\0"..., 832) = 832 fstat(3, {st_mode=S_IFREG|0755, st_size=53880, ...}) = 0 mmap(NULL, 2139432, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = 0x2b85862b7000 mprotect(0x2b85862c1000, 2093056, PROT_NONE) = 0 mmap(0x2b85864c0000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x9000) = 0x2b85864c0000 close(3) = 0 mprotect(0x2b85864c0000, 4096, PROT_READ) = 0 munmap(0x2b85862a5000, 71746) = 0 open("/etc/passwd", O_RDONLY) = 3 fcntl(3, F_GETFD) = 0 fcntl(3, F_SETFD, FD_CLOEXEC) = 0 fstat(3, {st_mode=S_IFREG|0644, st_size=1823, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(3, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1823 close(3) = 0 munmap(0x2b85862a5000, 4096) = 0 socket(PF_FILE, SOCK_STREAM, 0) = 3 fcntl(3, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(3, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(3) = 0 socket(PF_FILE, SOCK_STREAM, 0) = 3 fcntl(3, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(3, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(3) = 0 open("/etc/group", O_RDONLY) = 3 fcntl(3, F_GETFD) = 0 fcntl(3, F_SETFD, FD_CLOEXEC) = 0 fstat(3, {st_mode=S_IFREG|0644, st_size=743, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(3, "root:x:0:root\nbin:x:1:root,bin,d"..., 4096) = 743 close(3) = 0 munmap(0x2b85862a5000, 4096) = 0 open("/tmp", O_RDONLY|O_NONBLOCK|O_DIRECTORY) = 3 fcntl(3, F_SETFD, FD_CLOEXEC) = 0 getdents(3, /* 8 entries */, 32768) = 264 lstat("/tmp/librsync-0.9.7.tar.gz", {st_mode=S_IFREG|0644, st_size=453802, ...}) = 0 getxattr("/tmp/librsync-0.9.7.tar.gz", "system.posix_acl_access", 0x0, 0) = -1 ENODATA (No data available) getxattr("/tmp/librsync-0.9.7.tar.gz", "system.posix_acl_default", 0x0, 0) = -1 ENODATA (No data available) lstat("/tmp/librsync-0.9.7", {st_mode=S_IFDIR|0777, st_size=4096, ...}) = 0 getxattr("/tmp/librsync-0.9.7", "system.posix_acl_access", 0x0, 0) = -1 ENODATA (No data available) getxattr("/tmp/librsync-0.9.7", "system.posix_acl_default", 0x0, 0) = -1 ENODATA (No data available) open("/etc/passwd", O_RDONLY) = 4 fcntl(4, F_GETFD) = 0 fcntl(4, F_SETFD, FD_CLOEXEC) = 0 fstat(4, {st_mode=S_IFREG|0644, st_size=1823, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(4, "root:x:0:0:root:/root:/bin/bash\n"..., 4096) = 1823 read(4, "", 4096) = 0 close(4) = 0 munmap(0x2b85862a5000, 4096) = 0 open("/etc/ld.so.cache", O_RDONLY) = 4 fstat(4, {st_mode=S_IFREG|0644, st_size=71746, ...}) = 0 mmap(NULL, 71746, PROT_READ, MAP_PRIVATE, 4, 0) = 0x2b85862a5000 close(4) = 0 open("/lib64/libnss_ldap.so.2", O_RDONLY) = 4 read(4, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\300r\4\0\0\0\0\0"..., 832) = 832 fstat(4, {st_mode=S_IFREG|0755, st_size=3169960, ...}) = 0 mmap(NULL, 5329912, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 4, 0) = 0x2b85864c2000 mprotect(0x2b858679e000, 2093056, PROT_NONE) = 0 mmap(0x2b858699d000, 176128, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 4, 0x2db000) = 0x2b858699d000 mmap(0x2b85869c8000, 62456, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x2b85869c8000 close(4) = 0 open("/lib64/libcom_err.so.2", O_RDONLY) = 4 read(4, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\320\n\300\2770\0\0\0"..., 832) = 832 fstat(4, {st_mode=S_IFREG|0755, st_size=10000, ...}) = 0 mmap(0x30bfc00000, 2103048, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 4, 0) = 0x30bfc00000 mprotect(0x30bfc02000, 2093056, PROT_NONE) = 0 mmap(0x30bfe01000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 4, 0x1000) = 0x30bfe01000 close(4) = 0 open("/lib64/libkeyutils.so.1", O_RDONLY) = 4 read(4, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0`\n@\2760\0\0\0"..., 832) = 832 fstat(4, {st_mode=S_IFREG|0755, st_size=9472, ...}) = 0 mmap(0x30be400000, 2102416, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 4, 0) = 0x30be400000 mprotect(0x30be402000, 2093056, PROT_NONE) = 0 mmap(0x30be601000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 4, 0x1000) = 0x30be601000 close(4) = 0 open("/lib64/libresolv.so.2", O_RDONLY) = 4 read(4, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\2402\0\2760\0\0\0"..., 832) = 832 fstat(4, {st_mode=S_IFREG|0755, st_size=92736, ...}) = 0 mmap(0x30be000000, 2181864, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 4, 0) = 0x30be000000 mprotect(0x30be011000, 2097152, PROT_NONE) = 0 mmap(0x30be211000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 4, 0x11000) = 0x30be211000 mmap(0x30be213000, 6888, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0x30be213000 close(4) = 0 mprotect(0x30be211000, 4096, PROT_READ) = 0 munmap(0x2b85862a5000, 71746) = 0 rt_sigaction(SIGPIPE, {0x1, [], SA_RESTORER, 0x30ba8302d0}, {SIG_DFL, [], 0}, 8) = 0 geteuid() = 0 futex(0x2b85869c7708, FUTEX_WAKE_PRIVATE, 2147483647) = 0 open("/etc/ldap.conf", O_RDONLY) = 4 fstat(4, {st_mode=S_IFREG|0644, st_size=9119, ...}) = 0 fstat(4, {st_mode=S_IFREG|0644, st_size=9119, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(4, "# @(#)$Id: ldap.conf,v 1.38 2006"..., 4096) = 4096 read(4, "Use the OpenLDAP password change"..., 4096) = 4096 read(4, " OpenLDAP 2.0 and earlier is \"no"..., 4096) = 927 read(4, "", 4096) = 0 close(4) = 0 munmap(0x2b85862a5000, 4096) = 0 uname({sys="Linux", node="massive.answeron.com", ...}) = 0 open("/etc/resolv.conf", O_RDONLY) = 4 fstat(4, {st_mode=S_IFREG|0644, st_size=107, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(4, "; generated by /sbin/dhclient-sc"..., 4096) = 107 read(4, "", 4096) = 0 close(4) = 0 munmap(0x2b85862a5000, 4096) = 0 socket(PF_FILE, SOCK_STREAM, 0) = 4 fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(4, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(4) = 0 socket(PF_FILE, SOCK_STREAM, 0) = 4 fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(4, {sa_family=AF_FILE, path="/var/run/nscd/socket"...}, 110) = -1 ENOENT (No such file or directory) close(4) = 0 open("/etc/host.conf", O_RDONLY) = 4 fstat(4, {st_mode=S_IFREG|0644, st_size=17, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(4, "order hosts,bind\n", 4096) = 17 read(4, "", 4096) = 0 close(4) = 0 munmap(0x2b85862a5000, 4096) = 0 futex(0x30bab54d44, FUTEX_WAKE_PRIVATE, 2147483647) = 0 open("/etc/hosts", O_RDONLY) = 4 fcntl(4, F_GETFD) = 0 fcntl(4, F_SETFD, FD_CLOEXEC) = 0 fstat(4, {st_mode=S_IFREG|0644, st_size=187, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(4, "# Do not remove the following li"..., 4096) = 187 read(4, "", 4096) = 0 close(4) = 0 munmap(0x2b85862a5000, 4096) = 0 open("/etc/ld.so.cache", O_RDONLY) = 4 fstat(4, {st_mode=S_IFREG|0644, st_size=71746, ...}) = 0 mmap(NULL, 71746, PROT_READ, MAP_PRIVATE, 4, 0) = 0x2b85862a5000 close(4) = 0 open("/lib64/libnss_dns.so.2", O_RDONLY) = 4 read(4, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\340\17\0\0\0\0\0\0"..., 832) = 832 fstat(4, {st_mode=S_IFREG|0755, st_size=23736, ...}) = 0 mmap(NULL, 2113792, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 4, 0) = 0x2b85869d8000 mprotect(0x2b85869dc000, 2093056, PROT_NONE) = 0 mmap(0x2b8586bdb000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 4, 0x3000) = 0x2b8586bdb000 close(4) = 0 mprotect(0x2b8586bdb000, 4096, PROT_READ) = 0 munmap(0x2b85862a5000, 71746) = 0 socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4 connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("192.168.10.20")}, 28) = 0 fcntl(4, F_GETFL) = 0x2 (flags O_RDWR) fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 gettimeofday({1276265920, 823870}, NULL) = 0 poll([{fd=4, events=POLLOUT}], 1, 0) = 1 ([{fd=4, revents=POLLOUT}]) sendto(4, "C\v\1\0\0\1\0\0\0\0\0\0\7massive\10answeron\3co"..., 38, MSG_NOSIGNAL, NULL, 0) = 38 poll([{fd=4, events=POLLIN}], 1, 5000) = 1 ([{fd=4, revents=POLLIN}]) ioctl(4, FIONREAD, [122]) = 0 recvfrom(4, "C\v\205\200\0\1\0\1\0\2\0\2\7massive\10answeron\3co"..., 1024, 0, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("192.168.10.20")}, [16]) = 122 close(4) = 0 open("/etc/openldap/ldap.conf", O_RDONLY) = 4 fstat(4, {st_mode=S_IFREG|0644, st_size=335, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(4, "#\n# LDAP Defaults\n#\n\n# See ldap."..., 4096) = 335 read(4, "", 4096) = 0 close(4) = 0 munmap(0x2b85862a5000, 4096) = 0 getuid() = 0 geteuid() = 0 getgid() = 0 getegid() = 0 open("/root/ldaprc", O_RDONLY) = -1 ENOENT (No such file or directory) open("/root/.ldaprc", O_RDONLY) = -1 ENOENT (No such file or directory) stat("/etc/ldap.conf", {st_mode=S_IFREG|0644, st_size=9119, ...}) = 0 geteuid() = 0 brk(0x1c566000) = 0x1c566000 open("/etc/hosts", O_RDONLY) = 4 fcntl(4, F_GETFD) = 0 fcntl(4, F_SETFD, FD_CLOEXEC) = 0 fstat(4, {st_mode=S_IFREG|0644, st_size=187, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(4, "# Do not remove the following li"..., 4096) = 187 read(4, "", 4096) = 0 close(4) = 0 munmap(0x2b85862a5000, 4096) = 0 open("/etc/hosts", O_RDONLY) = 4 fcntl(4, F_GETFD) = 0 fcntl(4, F_SETFD, FD_CLOEXEC) = 0 fstat(4, {st_mode=S_IFREG|0644, st_size=187, ...}) = 0 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = 0x2b85862a5000 read(4, "# Do not remove the following li"..., 4096) = 187 read(4, "", 4096) = 0 close(4) = 0 munmap(0x2b85862a5000, 4096) = 0 socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4 connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("192.168.10.20")}, 28) = 0 fcntl(4, F_GETFL) = 0x2 (flags O_RDWR) fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 gettimeofday({1276265920, 855948}, NULL) = 0 poll([{fd=4, events=POLLOUT}], 1, 0) = 1 ([{fd=4, revents=POLLOUT}]) sendto(4, "\32 \1\0\0\1\0\0\0\0\0\0\4ldap\10answeron\3com\0\0"..., 35, MSG_NOSIGNAL, NULL, 0) = 35 poll([{fd=4, events=POLLIN}], 1, 5000) = 1 ([{fd=4, revents=POLLIN}]) ioctl(4, FIONREAD, [104]) = 0 recvfrom(4, "\32 \205\200\0\1\0\1\0\1\0\0\4ldap\10answeron\3com\0\0"..., 1024, 0, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("192.168.10.20")}, [16]) = 104 close(4) = 0 socket(PF_INET, SOCK_DGRAM, IPPROTO_IP) = 4 connect(4, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("192.168.10.20")}, 28) = 0 fcntl(4, F_GETFL) = 0x2 (flags O_RDWR) fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 gettimeofday({1276265920, 858536}, NULL) = 0 poll([{fd=4, events=POLLOUT}], 1, 0) = 1 ([{fd=4, revents=POLLOUT}]) sendto(4, "I\375\1\0\0\1\0\0\0\0\0\0\4ldap\10answeron\3com\0\0"..., 35, MSG_NOSIGNAL, NULL, 0) = 35 poll([{fd=4, events=POLLIN}], 1, 5000) = 1 ([{fd=4, revents=POLLIN}]) ioctl(4, FIONREAD, [139]) = 0 recvfrom(4, "I\375\205\200\0\1\0\2\0\2\0\2\4ldap\10answeron\3com\0\0"..., 1024, 0, {sa_family=AF_INET, sin_port=htons(53), sin_addr=inet_addr("192.168.10.20")}, [16]) = 139 close(4) = 0 socket(PF_INET, SOCK_STREAM, IPPROTO_IP) = 4 fcntl(4, F_SETFD, FD_CLOEXEC) = 0 setsockopt(4, SOL_SOCKET, SO_KEEPALIVE, [1], 4) = 0 setsockopt(4, SOL_TCP, TCP_NODELAY, [1], 4) = 0 fcntl(4, F_GETFL) = 0x2 (flags O_RDWR) fcntl(4, F_SETFL, O_RDWR|O_NONBLOCK) = 0 connect(4, {sa_family=AF_INET, sin_port=htons(389), sin_addr=inet_addr("10.20.0.30")}, 16) = -1 EINPROGRESS (Operation now in progress) poll([{fd=4, events=POLLOUT|POLLERR|POLLHUP}], 1, 120000 And thats where it stops, right there after that last 120000.... Using strace, I can obviously CTRL+C to keep going. But like I said, normally the terminal completely freezes. Anyone have any clues?

    Read the article

  • "/etc/init.d/networking restart" with non-root user

    - by bonchen
    I have a thin client with 112mb RAM which boots ubuntu server 12.04.1 from a usb drive with openbox and it is to be used by students to communicate with cisco equipment. And because of this the students need to be able to reconfigure the network interface and then restart it without a reboot using the only user - cisco. This is what I have so far: adduser cisco usermod -a -G dialout cisco chown root:cisco /etc/network/interfaces chmod 664 /etc/network/interfaces chmod u+s /sbin/shutdown chmod u+s /sbin/reboot chmod u+s /sbin/poweroff chmod u+s /run/network/if* chmod u+s /sbin/ifdown chmod u+s /sbin/ifup And when I run /etc/init.d/networking restart as cisco I get: *Reconfiguring network interfaces... rm: cannot remove `eth0.dhclient': Permission denied Failed to send flush request: Operation not permitted RTNETLINK answers: Operation not permitted Any ideas on how to get this working? Thanks!

    Read the article

  • Transitioning from Oracle based CMS to MySQL based CMS

    - by KM01
    We're looking at a replacement for our CMS which runs on Oracle. The new CMSes that we've looked at can in theory run on Oracle, but most of the vendor's installs run off of MySQL vendor supports install of their CMS on MySQL, and a "theoretical" install on Oracle the vendor's dev shops use MySQL none of them develop/test against Oracle Our DBA team works exclusively with Oracle, and doesn't have the bandwidth to provide additional support for a highly available and performing MySQL setup. They could in theory go to training and get ramped up, but our time line is also short (surprise!). So ... I guess my question(s) are: If you've seen a situation like this, how have you dealt with it? What tipped the balance either way? What type of effort did it take? If you're to do it over, what would you do differently ... ? Thanks! KM

    Read the article

  • Do You Develop Your PL/SQL Directly in the Database?

    - by thatjeffsmith
    I know this sounds like a REALLY weird question for many of you. Let me make one thing clear right away though, I am NOT talking about creating and replacing PLSQL objects directly into a production environment. Do we really need to talk about developers in production again? No, what I am talking about is a developer doing their work from start to finish in a development database. These are generally available to a development team for building the next and greatest version of your databases and database applications. And of course you are using a third party source control system, right? Last week I was in Tampa, FL presenting at the monthly Suncoast Oracle User’s Group meeting. Had a wonderful time, great questions and back-and-forth. My favorite heckler was there, @oraclenered, AKA Chet Justice.  I was in the middle of talking about how it’s better to do your PLSQL work in the Procedure Editor when Chet pipes up - Don’t do it that way, that’s wrong Just press play to edit the PLSQL directly in the database Or something along those lines. I didn’t get what the heck he was talking about. I had been showing how the Procedure Editor gives you much better feedback and support when working with PLSQL. After a few back-and-forths I got to what Chet’s main objection was, and again I’m going to paraphrase: You should develop offline in your SQL worksheet. Don’t do anything in the database until it’s done. I didn’t understand. Were developers expected to be able to internalize and mentally model the PL/SQL engine, see where their errors were, etc in these offline scripts? No, please give Chet more credit than that. What is the ideal Oracle Development Environment? If I were back in the ‘real world’ of database development, I would do all of my development outside of the ‘dev’ instance. My development process looks a little something like this: Do I have a program that already does something like this – copy and paste Has some smart person already written something like this – copy and paste Start typing in the white-screen-of-panic and bungle along until I get something that half-works Tweek, debug, test until I have fooled my subconscious into thinking that it’s ‘good’ As you might understand, I don’t want my co-workers to see the evolution of my code. It would seriously freak them out and I probably wouldn’t have a job anymore (don’t remind me that I already worked myself out of development.) So here’s what I like to do: Run a Local Instance of Oracle on my Machine and Develop My Code Privately I take a copy of development – that’s what source control is for afterall – and run it where no one else can see it. I now get to be my own DBA. If I need a trace – no problem. If I want to run an ASH report, no worries. If I need to create a directory or run some DataPump jobs, that’s all on me. Now when I get my code ‘up to snuff,’ then I will check it into source control and compile it into the official development instance. So my teammates suddenly go from seeing no program, to a mostly complete program. Is this right? If not, it doesn’t seem wrong to me. And after talking to Chet in the car on the way to the local cigar bar, it seems that he’s of the same opinion. So what’s so wrong with coding directly into a development instance? I think ‘wrong’ is a bit strong here. But there are a few pitfalls that you might want to look out for. A few come to mind – and I’m sure Chet could add many more as my memory fails me at the moment. But here goes: Development instance isn’t properly backed up – would hate to lose that work Development is wiped once a week and copied over from Prod – don’t laugh Someone clobbers your code You accidentally on purpose clobber someone else’s code The more developers you have in a single fish pond, the greater chance something ‘bad’ will happen This Isn’t One of Those Posts Where I Tell You What You Should Be Doing I realize many shops won’t be open to allowing developers to stage their own local copies of Oracle. But I would at least be aware that many of your developers are probably doing this anyway – with or without your tacit approval. SQL Developer can do local file tracking, but you should be using Source Control too! I will say that I think it’s imperative that you control your source code outside the database, even if your development team is comprised of a single developer. Store your source code in a file, and control that file in something like Subversion. You would be shocked at the number of teams that do not use a source control system. I know I continue to be shocked no matter how many times I meet another team running by the seat-of-their-pants. I’d love to hear how your development process works. And of course I want to know how SQL Developer and the rest of our tools can better support your processes. And one last thing, if you want a fun and interactive presentation experience, be sure to have Chet in the room

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Odd Profiler Results with EF4

    - by AjarnMark
    I have been doing some testing of using the Microsoft Entity Framework 4 with stored procedures and ran across some really odd results in SQL Server Profiler. The application that is running which uses Entity Framework 4 is a simple Web Application written in C#, and the Entity Data Model is actually contained in a referenced class library of its own.  I’ll write more about my experiences with this later.  For now the question is, why does SQL Profiler think that the stored procedure is running in Master, and not in my application database? While analyzing the effects of using custom helper methods on my EDM classes to call the stored procedure, I decided to run Profiler while I stepped through the code so that I had a clear understanding of exactly when and what calls were made to the SQL Server.  I ran Profiler switching back and forth between the TSQL and TSQL_SP templates.  However, to reduce the amount of results rows I needed to wade through, I set a filter on DatabaseID to be equal to my application’s database.  Each time I ran this, the only thing that I saw was an Audit:Login to the database, but no procedure or T-SQL statements executed, yet I was definitely getting results back to my web page.  I tried other Profiler templates, still filtering on DatabaseID (tangent: I found, at least back in SQL 2000 Profiler, that filtering on DatabaseID was more reliable than filtering on DatabaseName.  Even though I’m now running SQL 2008, that habit sticks with me).  Still no results other than the Login.  Very weird! Finally, I decided to run Profiler with no filtering and discovered that that lines which represent my stored procedure and its T-SQL commands are all marked with DatabaseID = 1, which is Master.  Why in the world would that be?  My procedure is definitely in the application database, and not in Master, and there is nothing funny about the call to the procedure evident in Profiler (i.e. it is not called as MyAppDB.dbo.MyProcName, but rather just dbo.MyProcName).  There must be something funny with the way the Entity Framework is wrapping this call, and I don’t like it…I don’t like it one bit.  My primary PROD server contains 40+ databases on it, and when I need to profile something, I expect to be able to filter based on DatabaseID (for the record, I displayed DatabaseName in my results, too, and it also shows Master). I find the same pattern of everything except the Login showing up as being in Master when I run my version that uses standard LINQ to Entities instead of stored procedures, so that suggests it is not my code, but rather something funny with SQL Server 2008 Profiler or the Entity Framework. If you have any ideas about why this might be so, please comment below.

    Read the article

  • ca-certificates-java fails to install

    - by Jonas
    I use a VPS with Ubuntu Server 10.10. I want to use Jetty and run the command sudo apt-get install jetty but it fails because the installation encounted errors while processing ca-certificates-java. I have tried to install the failed package with: sudo apt-get install ca-certificates-java How can I solve this? I have run sudo apt-get update and sudo apt-get upgrade but I get the same errors after that. I have also installed Ubuntu Server x64 on a VirtualBox, but the two Ubuntu Server 10.10 has different kernel versions (2.6.35 on VirtualBox and 2.6.18 on my VPS). And on VirtualBox I can install Jetty without any problems.

    Read the article

  • How I Work: A Cloud Developer's Workstation

    - by BuckWoody
    I've written here a little about how I work during the day, including things like using a stand-up desk (still doing that, by the way). Inspired by a Twitter conversation yesterday, I thought I might explain how I set up my computing environment. First, a couple of important points. I work in Cloud Computing, specifically (but not limited to) Windows Azure. Windows Azure has features to run a Virtual Machine (IaaS), run code without having to control a Virtual Machine (PaaS) and use databases, video streaming, Hadoop and more (a kind of SaaS for tech pros). As such, my designs run the gamut of on-premises, VM's in the Cloud, and software that I write for a platform. I focus on data primarily, meaning that I design a lot of systems that use an RDBMS (like SQL Server or Windows Azure Databases) or a NoSQL approach (MongoDB on Azure or large-scale Key-Value Pairs in Table storage) and even Hadoop and R, and also Cloud Numerics in F#. All that being said, those things inform my choices below. Hardware I have a Lenovo X220 tablet/laptop which I really like a great deal - it's a light, tough, extremely fast system. When I travel, that's the system I take. It has 8GB of RAM, and an SSD drive. I sometimes use that to develop or work at a client's site, on the road, or in the living room when I'm not in my home office. My main system is a GateWay DX430017 - I've maxed it out on RAM, and I have two 1TB drives in it. It's not only my workstation for work; I leave it on all the time and it streams our videos, music and books. I have about 3400 e-books, and I've just started using Calibre to stream the library. I run Windows 8 on it so I can set up Hyper-V images, since Windows Azure allows me to move regular Hyper-V disks back and forth to the Cloud. That's where all my "servers" are, when I have to use an IaaS approach. The reason I use a desktop-style system rather than a laptop only approach is that a good part of my job is setting up architectures to solve really big, complex problems. That means I have to simulate entire networks on-premises, along with the Hybrid Cloud approach I use a lot. I need a lot of disk space and memory for that, and I use two huge monitors on my stand-up desk. I could probably use 10 monitors if I had the room for them. Also, since it's our home system as well, I leave it on all the time and it doesn't travel.   Software For the software for my systems, it's important to keep in mind that I not only write code, but I design databases, teach, present, and create Linux and other environments. Windows 8 - While the jury is out for me on the new interface, the context-sensitive search, integrated everything, and speed is just hands-down the right choice. I've evaluated a server OS, Linux, even an Apple, but I just am not as efficient on those as I am with Windows 8. Visual Studio Ultimate - I develop primarily in .NET (C# and F# mostly) and I use the Team Foundation Server in the cloud, and I'm asked to do everything from UI to Services, so I need everything. Windows Azure SDK, Windows Azure Training Kit - I need the first to set up my Azure PaaS coding, and the second has all the info I need for PaaS, IaaS and SaaS. This is primarily how I get paid. :) SQL Server Developer Edition - While I might install Oracle, MySQL and Postgres on my VM's, the "outside" environment is SQL Server for an RDBMS. I install the Developer Edition because it has the same features as Enterprise Edition, and comes with all the client tools and documentation. Microsoft Office -  Even if I didn't work here, this is what I would use. I've just grown too accustomed to doing business this way to change, so my advice is always "use what works", and this does. The parts I use are: OneNote (and a Math Add-in) - I do almost everything - and I mean everything in OneNote. I can code, do high-end math, present, design, collaborate and more. All my notebooks are on my Skydrive. I can use them from any system, anywhere. If you take the time to learn this program, you'll be hooked. Excel with PowerPivot - Don't make that face. Excel is the world's database, and every Data Scientist I know - even the ones where I teach at the University of Washington - know it, use it, and love it.  Outlook - Primary communications, CRM and contact tool. I have all of my social media hooked up to it, so when I get an e-mail from you, I see everything, see all the history we've had on e-mail, find you on a map and more. Lync - I was fine with LiveMeeting, although it has it's moments. For me, the Lync client is tres-awesome. I use this throughout my day, present on it, stay in contact with colleagues and the folks on the dev team (who wish I didn't have it) and more.  PowerPoint - Once again, don't make that face. Whenever I see someone complaining about PowerPoint, I have 100% of the time found they don't know how to use it. If you suck at presenting or creating content, don't blame PowerPoint. Works great on my machine. :) Zoomit - Magnifier - On Windows 7 (and 8 as well) there's a built-in magnifier, but I install Zoomit out of habit. It enlarges the screen. If you don't use one of these tools (or their equivalent on some other OS) then you're presenting/teaching wrong, and you should stop presenting/teaching until you get them and learn how to show people what you can see on your tiny, tiny monitor. :) Cygwin - Unix for Windows. OK, that's not true, but it's mostly that. I grew up on mainframes and Unix (IBM and HP, thank you) and I can't imagine life without  sed, awk, grep, vim, and bash. I also tend to take a lot of the "Science" and "Development" and "Database" packages in it as well. PuTTY - Speaking of Unix, when I need to connect to my Linux VM's in Windows Azure, I want to do it securely. This is the tool for that. Notepad++ - Somewhere between torturing myself in vim and luxuriating in OneNote is Notepad++. Everyone has a favorite text editor; this one is mine. Too many features to name, and it's free. Browsers - I install Chrome, Firefox and of course IE. I know it's in vogue to rant on IE, but I tend to think for myself a great deal, and I've had few (none) problems with it. The others I have for the haterz that make sites that won't run in IE. Visio - I've used a lot of design packages, but none have the extreme meta-data edit capabilities of Visio. I don't use this all the time - it can be rather heavy, but what it does it does really well. I also present this way when I'm not using PowerPoint. Yup, I just bring up Visio and diagram away as I'm chatting with clients. Depending on what we're covering, this can be the right tool for that. Tweetdeck - The AIR one, not that new disaster they came out with. I live on social media, since you, dear readers, are my cube-mates. When I get tired of you all, I close Tweetdeck. When I need help or someone needs help from me, or if I want to see a picture of a cat while I'm coding, I bring it up. It's up most all day and night. Windows Media Player - I listen to Trance or Classical when I code, and I find music managers overbearing and extra. I just use what comes in the box, and it works great for me. R - F# and Cloud Numerics now allows me to load in R libraries (yay!) and I use this for statistical work on big data loads. Microsoft Math - One of the most amazing, free, rich, amazing, awesome, amazing calculators out there. I get the 64-bit version for quick math conversions, plots and formula-checks. Python - I know, right? Who knew that the scientific community loved Python so much. But they do. I use 2.7; not as much runs with 3+. I also use IronPython in Visual Studio, or I edit in Notepad++ Camstudio recorder - Windows PSR - In much of my training, and all of my teaching at the UW, I need to show a process on a screen. Camstudio records screen and voice, and it's free. If I need to make static training, I use the Windows PSR tool that's built right in. It's ostensibly for problem duplication, but I use it to record for training.   OK - your turn. Post a link to your blog entry below, and tell me how you set your system up.  

    Read the article

< Previous Page | 308 309 310 311 312 313 314 315 316 317 318 319  | Next Page >