Search Results

Search found 25175 results on 1007 pages for 'dispatch table'.

Page 318/1007 | < Previous Page | 314 315 316 317 318 319 320 321 322 323 324 325  | Next Page >

  • How to make cakePHP retreive the data represented by a foreign key?

    - by XL
    Greetings cake experts, I have a question that I think would really help a lot of people getting started with cakePHP. I have a feeling it will be easy for some of you, but it is quite challenging to me. I have a simple database with multiple tables. I can't figure out how to make cakePHP display the values associated with a foreign key in an index view. Or create a view where the fields of my choice (the ones that make sense to users like location name - not location_id can be updated or viewed on a single page). I have created an example at http://lovecats.cakeapp.com that illustrate the question. If you look at the page and click the "list cats", you will notice that it shows the location_id field from the locations table. You will also notice that when you click "add cats", you must choose a location_id from the locations table. This is the automagic way that cakePHP builds the app. I want this to be the field location_name. The database is setup so that the table cats has a foreign key called location_id that has a relationship to a table called locations. This is my problem: I want these pages to display the location_name instead of the location_id. If you want to login to the application, you can go to http://cakeapp.com/sqldesigners/sql/lovecats and the password 'password' to look at the db relationships, etc. How do I have a page that shows the fields that I want? And is it possible to create a page that updates fields from all of the tables at once? This is the slice of cake that I have been trying to figure out and this would REALLY get me over a hump. You can download the app and sql from the above url.

    Read the article

  • ajax form handling an array

    - by moata_u
    am trying to handle an array comes from php file after submitting the form data , the value of data after submitting the form is = ARRAY but i cant use this array in any way , any idea how can i handle this array !!!! Javascript : $('#file').live('change',function(){ $('#preview').html(''); $('#preview').html('<img src="loader.gif" />'); $('#data').ajaxForm(function(data){ $(data['toshow']).insertBefore('.pic_content').hide().fadeIn(1000); }).submit(); }); PHP : .... ....etc echo json_encode(array('toshow'=>somedata,'data'=>somedata)); data come from php file {"toshow":"\r\n\t\t\t\t\r\n\t\t<table class=\"out\">\r\n\t\t\t<tr ><td class=\"img\"><a title=\"2012-06-02 01-22-09\" rel=\"prettyPhoto\" href=\"img\/2012-06-02 01-22-09.284.jpg\"><img src=\"img\/thumb\/2012-06-02 01-22-09.284.jpg\"\/><\/a><\/td><\/tr>\r\n\t\t\t\r\n\t\t\t<td>\r\n\t\t\t\t<table cellSpacing=\"1\" cellPadding=\"0\">\r\n\t\t\t\t\t<tr><td class=\"data\"><span class=\"click\">2012-06-02 01-22-09<\/span><\/td><\/tr>\r\n\t\t\t\t\t<tr><td class=\"data\"><span class=\"click\">Download<\/span><\/td><\/tr>\r\n\t\t\t\t\t<tr><td class=\"data\"><a href=\"img\/2012-06-02 01-22-09.284.jpg\"><span class=\"click\">View<\/span><\/a><\/td><\/tr>\r\n\t\t\t\t<\/table>\r\n\t\t\t<\/td>\r\n\t\t\t<\/tr>\r\n\t\t<\/table>","span":"<span class='text'><img src='greencheck.png'\/>2012-06-02 01-22-09 Uploaded ,File Size =152Kb <\/span>"}

    Read the article

  • SQL - Query to display average as either "longer than" or "shorter than"

    - by user1840801
    Here are the tables I've created: CREATE TABLE Plane_new (Pnum char(3), Feature varchar2(20), Ptype varchar2(15), primary key (Pnum)); CREATE TABLE Employee_new (eid char(3), ename varchar(10), salary number(7,2), mid char(3), PRIMARY KEY (eid), FOREIGN KEY (mid) REFERENCES Employee_new); CREATE TABLE Pilot_new (eid char(3), Licence char(9), primary key (eid), foreign key (eid) references Employee_new on delete cascade); CREATE TABLE FlightI_new (Fnum char(4), Fdate date, Duration number(2), Pid char(3), Pnum char(3), primary key (Fnum), foreign key (Pid) references Pilot_new (eid), foreign key (Pnum) references Plane_new); And here is the query I must complete: For each flight, display its number, the name of the pilot who implemented the flight and the words ‘Longer than average’ if the flight duration was longer than average or the words ‘Shorter than average’ if the flight duration was shorter than or equal to the average. For the column holding the words ‘Longer than average’ or ‘Shorter than average’ make a header Length. Here is what I've come up with - with no luck! SELECT F.Fnum, E.ename, CASE Length WHEN F.Duration>(SELECT AVG(F.Duration) FROM FlightI_new F) THEN "Longer than average" WHEN F.Duration<=(SELECT AVG(F.Duration) FROM FlightI_new F) THEN 'Shorter than average' END FROM FlightI_new F LEFT OUTER JOIN Employee_new E ON F.Pid=E.eid GROUP BY F.Fnum, E.ename; Where am I going wrong?

    Read the article

  • LINQ Many to Many With In or Contains Clause (and a twist)

    - by Chris
    I have a many to many table structure called PropertyPets. It contains a dual primary key consisting of a PropertyID (from a Property table) and one or more PetIDs (from a Pet table). Next I have a search screen where people can multiple select pets from a jquery multiple select dropdown. Let's say somebody selects Dogs and Cats. Now, I want to be able to return all properties that contain BOTH dogs and cats in the many to many table, PropertyPets. I'm trying to do this with Linq to Sql. I've looked at the Contains clause, but it doesn't seem to work for my requirement: var result = properties.Where(p => search.PetType.Contains(p.PropertyPets)); Here, search.PetType is an int[] array of the Id's for Dog and Cat (which were selected in the multiple select drop down). The problem is first, Contains requires a string not an IEnumerable of type PropertyPet. And second, I need to find the properties that have BOTH dogs and cats and not just simply containing one or the other. Thank you for any pointers.

    Read the article

  • Session memory – who’s this guy named Max and what’s he doing with my memory?

    - by extended_events
    SQL Server MVP Jonathan Kehayias (blog) emailed me a question last week when he noticed that the total memory used by the buffers for an event session was larger than the value he specified for the MAX_MEMORY option in the CREATE EVENT SESSION DDL. The answer here seems like an excellent subject for me to kick-off my new “401 – Internals” tag that identifies posts where I pull back the curtains a bit and let you peek into what’s going on inside the extended events engine. In a previous post (Option Trading: Getting the most out of the event session options) I explained that we use a set of buffers to store the event data before  we write the event data to asynchronous targets. The MAX_MEMORY along with the MEMORY_PARTITION_MODE defines how big each buffer will be. Theoretically, that means that I can predict the size of each buffer using the following formula: max memory / # of buffers = buffer size If it was that simple I wouldn’t be writing this post. I’ll take “boundary” for 64K Alex For a number of reasons that are beyond the scope of this blog, we create event buffers in 64K chunks. The result of this is that the buffer size indicated by the formula above is rounded up to the next 64K boundary and that is the size used to create the buffers. If you think visually, this means that the graph of your max_memory option compared to the actual buffer size that results will look like a set of stairs rather than a smooth line. You can see this behavior by looking at the output of dm_xe_sessions, specifically the fields related to the buffer sizes, over a range of different memory inputs: Note: This test was run on a 2 core machine using per_cpu partitioning which results in 5 buffers. (Seem my previous post referenced above for the math behind buffer count.) input_memory_kb total_regular_buffers regular_buffer_size total_buffer_size 637 5 130867 654335 638 5 130867 654335 639 5 130867 654335 640 5 196403 982015 641 5 196403 982015 642 5 196403 982015 This is just a segment of the results that shows one of the “jumps” between the buffer boundary at 639 KB and 640 KB. You can verify the size boundary by doing the math on the regular_buffer_size field, which is returned in bytes: 196403 – 130867 = 65536 bytes 65536 / 1024 = 64 KB The relationship between the input for max_memory and when the regular_buffer_size is going to jump from one 64K boundary to the next is going to change based on the number of buffers being created. The number of buffers is dependent on the partition mode you choose. If you choose any partition mode other than NONE, the number of buffers will depend on your hardware configuration. (Again, see the earlier post referenced above.) With the default partition mode of none, you always get three buffers, regardless of machine configuration, so I generated a “range table” for max_memory settings between 1 KB and 4096 KB as an example. start_memory_range_kb end_memory_range_kb total_regular_buffers regular_buffer_size total_buffer_size 1 191 NULL NULL NULL 192 383 3 130867 392601 384 575 3 196403 589209 576 767 3 261939 785817 768 959 3 327475 982425 960 1151 3 393011 1179033 1152 1343 3 458547 1375641 1344 1535 3 524083 1572249 1536 1727 3 589619 1768857 1728 1919 3 655155 1965465 1920 2111 3 720691 2162073 2112 2303 3 786227 2358681 2304 2495 3 851763 2555289 2496 2687 3 917299 2751897 2688 2879 3 982835 2948505 2880 3071 3 1048371 3145113 3072 3263 3 1113907 3341721 3264 3455 3 1179443 3538329 3456 3647 3 1244979 3734937 3648 3839 3 1310515 3931545 3840 4031 3 1376051 4128153 4032 4096 3 1441587 4324761 As you can see, there are 21 “steps” within this range and max_memory values below 192 KB fall below the 64K per buffer limit so they generate an error when you attempt to specify them. Max approximates True as memory approaches 64K The upshot of this is that the max_memory option does not imply a contract for the maximum memory that will be used for the session buffers (Those of you who read Take it to the Max (and beyond) know that max_memory is really only referring to the event session buffer memory.) but is more of an estimate of total buffer size to the nearest higher multiple of 64K times the number of buffers you have. The maximum delta between your initial max_memory setting and the true total buffer size occurs right after you break through a 64K boundary, for example if you set max_memory = 576 KB (see the green line in the table), your actual buffer size will be closer to 767 KB in a non-partitioned event session. You get “stepped up” for every 191 KB block of initial max_memory which isn’t likely to cause a problem for most machines. Things get more interesting when you consider a partitioned event session on a computer that has a large number of logical CPUs or NUMA nodes. Since each buffer gets “stepped up” when you break a boundary, the delta can get much larger because it’s multiplied by the number of buffers. For example, a machine with 64 logical CPUs will have 160 buffers using per_cpu partitioning or if you have 8 NUMA nodes configured on that machine you would have 24 buffers when using per_node. If you’ve just broken through a 64K boundary and get “stepped up” to the next buffer size you’ll end up with total buffer size approximately 10240 KB and 1536 KB respectively (64K * # of buffers) larger than max_memory value you might think you’re getting. Using per_cpu partitioning on large machine has the most impact because of the large number of buffers created. If the amount of memory being used by your system within these ranges is important to you then this is something worth paying attention to and considering when you configure your event sessions. The DMV dm_xe_sessions is the tool to use to identify the exact buffer size for your sessions. In addition to the regular buffers (read: event session buffers) you’ll also see the details for large buffers if you have configured MAX_EVENT_SIZE. The “buffer steps” for any given hardware configuration should be static within each partition mode so if you want to have a handy reference available when you configure your event sessions you can use the following code to generate a range table similar to the one above that is applicable for your specific machine and chosen partition mode. DECLARE @buf_size_output table (input_memory_kb bigint, total_regular_buffers bigint, regular_buffer_size bigint, total_buffer_size bigint) DECLARE @buf_size int, @part_mode varchar(8) SET @buf_size = 1 -- Set to the begining of your max_memory range (KB) SET @part_mode = 'per_cpu' -- Set to the partition mode for the table you want to generate WHILE @buf_size <= 4096 -- Set to the end of your max_memory range (KB) BEGIN     BEGIN TRY         IF EXISTS (SELECT * from sys.server_event_sessions WHERE name = 'buffer_size_test')             DROP EVENT SESSION buffer_size_test ON SERVER         DECLARE @session nvarchar(max)         SET @session = 'create event session buffer_size_test on server                         add event sql_statement_completed                         add target ring_buffer                         with (max_memory = ' + CAST(@buf_size as nvarchar(4)) + ' KB, memory_partition_mode = ' + @part_mode + ')'         EXEC sp_executesql @session         SET @session = 'alter event session buffer_size_test on server                         state = start'         EXEC sp_executesql @session         INSERT @buf_size_output (input_memory_kb, total_regular_buffers, regular_buffer_size, total_buffer_size)             SELECT @buf_size, total_regular_buffers, regular_buffer_size, total_buffer_size FROM sys.dm_xe_sessions WHERE name = 'buffer_size_test'     END TRY     BEGIN CATCH         INSERT @buf_size_output (input_memory_kb)             SELECT @buf_size     END CATCH     SET @buf_size = @buf_size + 1 END DROP EVENT SESSION buffer_size_test ON SERVER SELECT MIN(input_memory_kb) start_memory_range_kb, MAX(input_memory_kb) end_memory_range_kb, total_regular_buffers, regular_buffer_size, total_buffer_size from @buf_size_output group by total_regular_buffers, regular_buffer_size, total_buffer_size Thanks to Jonathan for an interesting question and a chance to explore some of the details of Extended Event internals. - Mike

    Read the article

  • Thank You for a Great Welcome for Oracle GoldenGate 11g Release 2

    - by Irem Radzik
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:Calibri; mso-fareast-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Yesterday morning we had two launch webcasts for Oracle GoldenGate 11g Release 2. I had the pleasure to present, as well as moderate the Q&A panels in both of these webcasts. Both events had hundreds of live attendees, sending us over 150 questions. Even though we left 30 minutes for Q&A, it was not nearly enough time to address for all the insightful questions our audience sent. Our product management team and I really appreciate the interaction we had yesterday and we are starting to respond back with outstanding questions today. Oracle GoldenGate’s new release launch also had great welcome from the media. You can find the links for various articles on the new release below: ITBusinessEdge Oracle Embraces Cross-Platform Data Integration Information Week: Oracle Real-Time Advance Taps Compressed Data Integration Developer News, Oracle GoldenGate Adds Deeper Oracle Integration, Extends Real-Time Performance CIO, Oracle GoldenGate Buddies Up with Sibling Software DBTA, Real-Time Data Integration: Oracle GoldenGate 11g Release 2 Now Available CBR Oracle unveils GoldenGate 11g Release 2 real-time data integration application In this blog, I want to address some of the frequently asked questions that came up during the webcasts. You can find the top questions and their answers along with related resources below. We will continue to address frequently asked questions via future blogs. Q: Will the new Integrated Capture for Oracle Database replace the Classic Capture? If not, which one do I use when? A: No, Classic Capture will be around for long time. Core platform specific features, bug fixes, and patches will be available for both Capture processes.Oracle Database specific features will be only available in the Integrated Capture. The Integrated Capture for Oracle Database is an option for users that need to capture data from compressed tables or need support for XML data types, XA on RAC. Users who don’t leverage these features should continue to use our Classic Capture. For more information on Oracle GoldenGate 11g Release 2 I recommend to check out the White paper: Oracle GoldenGate 11gR2 New Features as well as other technical white papers we have on OTN.                                                         For those of you coming to OpenWorld, please attend the related session: Extracting Data in Oracle GoldenGate Integrated Capture Mode, Monday Oct 1st 1:45pm Moscone South – 102 to learn more about this new feature. Q: What is new in Conflict Detection and Resolution? And how does it work? A: There are now pre-built functions to identify the conditions under which an error occurs and how to handle the record when the condition occurs. Error conditions handled include inserts into a target table where the row already exists, updates or deletes to target table rows that exist, but the original source data (before columns) do not match the existing data in the target row, and updates or deletes where the row does not exist in the target database table.Foreach of these conditions a method to handle the error is specified.  Please check out our recent blog on this topic and the White paper: Oracle GoldenGate 11gR2 New Features white paper.  Also, for those attending OpenWorld please attend the session: Best Practices for Conflict Detection and Resolution in Oracle GoldenGate for Active/Active-  Wednesday Oct 3rd  3:30pm Mascone 3000 Q: Does Oracle GoldenGate Veridata and the Management Pack require additional licenses, or is it incorporated with the GoldenGate license? A: Oracle GoldenGate Veridata and Oracle Management Pack for Oracle GoldenGate are additional products and require separate licenses. Please check out Oracle's price list here. Q: Does GoldenGate - Oracle Enterprise Manager Plug-in require additional license? A: Oracle Enterprise Manager Plug-in is included in the Oracle Management Pack for Oracle GoldenGate license, which is separate from Oracle GoldenGate license. There is no separate license for the Enterprise Manager Plug-in by itself. Oracle GoldenGate Monitor, Oracle GoldenGate Director, and Enterprise Manager Plug-in are included in the Management Pack for Oracle GoldenGate license. Please check out Management Pack for Oracle GoldenGate data sheet for more info on this product bundle. Q: Is Oracle GoldenGate replacing Oracle Streams product? A: Oracle GoldenGate is the strategic data replication product. Therefore, Oracle Streams will continue to be supported, but will not be actively enhanced. Rather, the best elements of Oracle Streams will be added to Oracle GoldenGate. Conflict management is one of them and with the latest release Oracle GoldenGate has a more advanced conflict management offering. Current customers depending on Oracle Streams will continue to be fully supported. Q: How is Oracle GoldenGate different than Oracle Data Integrator? A: Oracle Data Integrator is designed for fast bulk data movement and transformation between heterogeneous systems, while GoldenGate is designed for real-time movement of transactions between heterogeneous systems. These two products are completely complementary where GoldenGate provides low-impact real-time change data capture and delivery to a staging area on the target. And Oracle Data Integrator transforms this data and loads the DW tables. In fact, Oracle Data Integrator integrates with GoldenGate to use GoldenGate’s Capture process as one option for its CDC mechanism. We have several customers that deployed GoldenGate and ODI together to feed real-time data to their data warehousing solutions. Please also check out Oracle Data Integrator Changed Data Capture with Oracle GoldenGate Data Sheet (PDF). Thank you again very much for welcoming Oracle GoldenGate 11g Release 2 and stay in touch with us for more exciting news, updates, and events.

    Read the article

  • GoldenGate 12c Trail Encryption and Credentials with Oracle Wallet

    - by hamsun
    I have been asked more than once whether the Oracle Wallet supports GoldenGate trail encryption. Although GoldenGate has supported encryption with the ENCKEYS file for years, Oracle GoldenGate 12c now also supports encryption using the Oracle Wallet. This helps improve security and makes it easier to administer. Two types of wallets can be configured in Oracle GoldenGate 12c: The wallet that holds the master keys, used with trail or TCP/IP encryption and decryption, stored in the new 12c dirwlt/cwallet.sso file.   The wallet that holds the Oracle Database user IDs and passwords stored in the ‘credential store’ stored in the new 12c dircrd/cwallet.sso file.   A wallet can be created using a ‘create wallet’  command.  Adding a master key to an existing wallet is easy using ‘open wallet’ and ‘add masterkey’ commands.   GGSCI (EDLVC3R27P0) 42> open wallet Opened wallet at location 'dirwlt'. GGSCI (EDLVC3R27P0) 43> add masterkey Master key 'OGG_DEFAULT_MASTERKEY' added to wallet at location 'dirwlt'.   Existing GUI Wallet utilities that come with other products such as the Oracle Database “Oracle Wallet Manager” do not work on this version of the wallet. The default Oracle Wallet can be changed.   GGSCI (EDLVC3R27P0) 44> sh ls -ltr ./dirwlt/* -rw-r----- 1 oracle oinstall 685 May 30 05:24 ./dirwlt/cwallet.sso GGSCI (EDLVC3R27P0) 45> info masterkey Masterkey Name:                 OGG_DEFAULT_MASTERKEY Creation Date:                  Fri May 30 05:24:04 2014 Version:        Creation Date:                  Status: 1               Fri May 30 05:24:04 2014        Current   The second wallet file is used for the credential used to connect to a database, without exposing the user id or password. Once it is configured, this file can be copied so that credentials are available to connect to the source or target database.   GGSCI (EDLVC3R27P0) 48> sh cp ./dircrd/cwallet.sso $GG_EURO_HOME/dircrd GGSCI (EDLVC3R27P0) 49> sh ls -ltr ./dircrd/* -rw-r----- 1 oracle oinstall 709 May 28 05:39 ./dircrd/cwallet.sso   The encryption wallet file can also be copied to the target machine so the replicat has access to the master key to decrypt records that are encrypted in the trail. Similar to the old ENCKEYS file, the master keys wallet created on the source host must either be stored in a centrally available disk or copied to all GoldenGate target hosts. The wallet is in a platform-independent format, although it is not certified for the iSeries, z/OS, and NonStop platforms.   GGSCI (EDLVC3R27P0) 50> sh cp ./dirwlt/cwallet.sso $GG_EURO_HOME/dirwlt   The new 12c UserIdAlias parameter is used to locate the credential in the wallet so the source user id and password does not need to be stored as a parameter as long as it is in the wallet.   GGSCI (EDLVC3R27P0) 52> view param extwest extract extwest exttrail ./dirdat/ew useridalias gguamer table west.*; The EncryptTrail parameter is used to encrypt the trail using the Advanced Encryption Standard and can be used with a primary extract or pump extract. GGSCI (EDLVC3R27P0) 54> view param pwest extract pwest encrypttrail AES256 rmthost easthost, mgrport 15001 rmttrail ./dirdat/pe passthru table west.*;   Once the extracts are running, records can be encrypted using the wallet.   GGSCI (EDLVC3R27P0) 60> info extract *west EXTRACT    EXTWEST   Last Started 2014-05-30 05:26   Status RUNNING Checkpoint Lag       00:00:17 (updated 00:00:01 ago) Process ID           24982 Log Read Checkpoint  Oracle Integrated Redo Logs                      2014-05-30 05:25:53                      SCN 0.0 (0) EXTRACT    PWEST     Last Started 2014-05-30 05:26   Status RUNNING Checkpoint Lag       24:02:32 (updated 00:00:05 ago) Process ID           24983 Log Read Checkpoint  File ./dirdat/ew000004                      2014-05-29 05:23:34.748949  RBA 1483   The ‘info masterkey’ command is used to confirm the wallet contains the key after copying it to the target machine. The key is needed to decrypt the data in the trail before the replicat applies the changes to the target database.   GGSCI (EDLVC3R27P0) 41> open wallet Opened wallet at location 'dirwlt'. GGSCI (EDLVC3R27P0) 42> info masterkey Masterkey Name:                 OGG_DEFAULT_MASTERKEY Creation Date:                  Fri May 30 05:24:04 2014 Version:        Creation Date:                  Status: 1               Fri May 30 05:24:04 2014        Current   Once the replicat is running, records can be decrypted using the wallet.   GGSCI (EDLVC3R27P0) 44> info reast REPLICAT   REAST     Last Started 2014-05-30 05:28   Status RUNNING INTEGRATED Checkpoint Lag       00:00:00 (updated 00:00:02 ago) Process ID           25057 Log Read Checkpoint  File ./dirdat/pe000004                      2014-05-30 05:28:16.000000  RBA 1546   There is no need for the DecryptTrail parameter when using the Oracle Wallet, unlike when using the ENCKEYS file.   GGSCI (EDLVC3R27P0) 45> view params reast replicat reast assumetargetdefs discardfile ./dirrpt/reast.dsc, purge useridalias ggueuro map west.*, target east.*;   Once a record is inserted into the source table and committed, the encryption can be verified using logdump and then querying the target table.   AMER_SQL>insert into west.branch values (50, 80071); 1 row created.   AMER_SQL>commit; Commit complete.   The following encrypted record can be found using logdump. Logdump 40 >n 2014/05/30 05:28:30.001.154 Insert               Len    28 RBA 1546 Name: WEST.BRANCH After  Image:                                             Partition 4   G  s    0a3e 1ba3 d924 5c02 eade db3f 61a9 164d 8b53 4331 | .>...$\....?a..M.SC1   554f e65a 5185 0257                               | UO.ZQ..W  Bad compressed block, found length of  7075 (x1ba3), RBA 1546   GGS tokens: TokenID x52 'R' ORAROWID         Info x00  Length   20  4141 4157 7649 4141 4741 4141 4144 7541 4170 0001 | AAAWvIAAGAAAADuAAp..  TokenID x4c 'L' LOGCSN           Info x00  Length    7  3231 3632 3934 33                                 | 2162943  TokenID x36 '6' TRANID           Info x00  Length   10  3130 2e31 372e 3135 3031                          | 10.17.1501  The replicat automatically decrypted this record from the trail and then inserted the row to the target table using the wallet. This select verifies the row was inserted into the target database and the data is not encrypted. EURO_SQL>select * from branch where branch_number=50; BRANCH_NUMBER                  BRANCH_ZIP -------------                                   ----------    50                                              80071   Book a seat in an upcoming Oracle GoldenGate 12c: Fundamentals for Oracle course now to learn more about GoldenGate 12c new features including how to use GoldenGate with the Oracle wallet, credentials, integrated extracts, integrated replicats, the Oracle Universal Installer, and other new features. Looking for another course? View all Oracle GoldenGate training.   Randy Richeson joined Oracle University as a Senior Principal Instructor in March 2005. He is an Oracle Certified Professional (10g-12c) and a GoldenGate Certified Implementation Specialist (10-11g). He has taught GoldenGate since 2010 and also has experience teaching other technical curriculums including GoldenGate Monitor, Veridata, JD Edwards, PeopleSoft, and the Oracle Application Server.

    Read the article

  • SQL SERVER – Weekly Series – Memory Lane – #035

    - by Pinal Dave
    Here is the list of selected articles of SQLAuthority.com across all these years. Instead of just listing all the articles I have selected a few of my most favorite articles and have listed them here with additional notes below it. Let me know which one of the following is your favorite article from memory lane. 2007 Row Overflow Data Explanation  In SQL Server 2005 one table row can contain more than one varchar(8000) fields. One more thing, the exclusions has exclusions also the limit of each individual column max width of 8000 bytes does not apply to varchar(max), nvarchar(max), varbinary(max), text, image or xml data type columns. Comparison Index Fragmentation, Index De-Fragmentation, Index Rebuild – SQL SERVER 2000 and SQL SERVER 2005 An old but like a gold article. Talks about lots of concepts related to Index and the difference from earlier version to the newer version. I strongly suggest that everyone should read this article just to understand how SQL Server has moved forward with the technology. Improvements in TempDB SQL Server 2005 had come up with quite a lots of improvements and this blog post describes them and explains the same. If you ask me what is my the most favorite article from early career. I must point out to this article as when I wrote this one I personally have learned a lot of new things. Recompile All The Stored Procedure on Specific TableI prefer to recompile all the stored procedure on the table, which has faced mass insert or update. sp_recompiles marks stored procedures to recompile when they execute next time. This blog post explains the same with the help of a script.  2008 SQLAuthority Download – SQL Server Cheatsheet You can download and print this cheat sheet and use it for your personal reference. If you have any suggestions, please let me know and I will see if I can update this SQL Server cheat sheet. Difference Between DBMS and RDBMS What is the difference between DBMS and RDBMS? DBMS – Data Base Management System RDBMS – Relational Data Base Management System or Relational DBMS High Availability – Hot Add Memory Hot Add CPU and Hot Add Memory are extremely interesting features of the SQL Server, however, personally I have not witness them heavily used. These features also have few restriction as well. I blogged about them in detail. 2009 Delete Duplicate Rows I have demonstrated in this blog post how one can identify and delete duplicate rows. Interesting Observation of Logon Trigger On All Servers – Solution The question I put forth in my previous article was – In single login why the trigger fires multiple times; it should be fired only once. I received numerous answers in thread as well as in my MVP private news group. Now, let us discuss the answer for the same. The answer is – It happens because multiple SQL Server services are running as well as intellisense is turned on. Blog post demonstrates how we can do the same with the help of SQL scripts. Management Studio New Features I have selected my favorite 5 features and blogged about it. IntelliSense for Query Editing Multi Server Query Query Editor Regions Object Explorer Enhancements Activity Monitors Maximum Number of Index per Table One of the questions I asked in my user group was – What is the maximum number of Index per table? I received lots of answers to this question but only two answers are correct. Let us now take a look at them in this blog post. 2010 Default Statistics on Column – Automatic Statistics on Column The truth is, Statistics can be in a table even though there is no Index in it. If you have the auto- create and/or auto-update Statistics feature turned on for SQL Server database, Statistics will be automatically created on the Column based on a few conditions. Please read my previously posted article, SQL SERVER – When are Statistics Updated – What triggers Statistics to Update, for the specific conditions when Statistics is updated. 2011 T-SQL Scripts to Find Maximum between Two Numbers In this blog post there are two different scripts listed which demonstrates way to find the maximum number between two numbers. I need your help, which one of the script do you think is the most accurate way to find maximum number? Find Details for Statistics of Whole Database – DMV – T-SQL Script I was recently asked is there a single script which can provide all the necessary details about statistics for any database. This question made me write following script. I was initially planning to use sp_helpstats command but I remembered that this is marked to be deprecated in future. 2012 Introduction to Function SIGN SIGN Function is very fundamental function. It will return the value 1, -1 or 0. If your value is negative it will return you negative -1 and if it is positive it will return you positive +1. Let us start with a simple small example. Template Browser – A Very Important and Useful Feature of SSMS Templates are like a quick cheat sheet or quick reference. Templates are available to create objects like databases, tables, views, indexes, stored procedures, triggers, statistics, and functions. Templates are also available for Analysis Services as well. The template scripts contain parameters to help you customize the code. You can Replace Template Parameters dialog box to insert values into the script. An invalid floating point operation occurred If you run any of the above functions they will give you an error related to invalid floating point. Honestly there is no workaround except passing the function appropriate values. SQRT of a negative number will give you result in real numbers which is not supported at this point of time as well LOG of a negative number is not possible (because logarithm is the inverse function of an exponential function and the exponential function is NEVER negative). Validating Spatial Object with IsValidDetailed Function SQL Server 2012 has introduced the new function IsValidDetailed(). This function has made my life very easy. In simple words, this function will check if the spatial object passed is valid or not. If it is valid it will give information that it is valid. If the spatial object is not valid it will return the answer that it is not valid and the reason for the same. This makes it very easy to debug the issue and make the necessary correction. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Memory Lane, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • The Shift: how Orchard painlessly shifted to document storage, and how it’ll affect you

    - by Bertrand Le Roy
    We’ve known it all along. The storage for Orchard content items would be much more efficient using a document database than a relational one. Orchard content items are composed of parts that serialize naturally into infoset kinds of documents. Storing them as relational data like we’ve done so far was unnatural and requires the data for a single item to span multiple tables, related through 1-1 relationships. This means lots of joins in queries, and a great potential for Select N+1 problems. Document databases, unfortunately, are still a tough sell in many places that prefer the more familiar relational model. Being able to x-copy Orchard to hosters has also been a basic constraint in the design of Orchard. Combine those with the necessity at the time to run in medium trust, and with license compatibility issues, and you’ll find yourself with very few reasonable choices. So we went, a little reluctantly, for relational SQL stores, with the dream of one day transitioning to document storage. We have played for a while with the idea of building our own document storage on top of SQL databases, and Sébastien implemented something more than decent along those lines, but we had a better way all along that we didn’t notice until recently… In Orchard, there are fields, which are named properties that you can add dynamically to a content part. Because they are so dynamic, we have been storing them as XML into a column on the main content item table. This infoset storage and its associated API are fairly generic, but were only used for fields. The breakthrough was when Sébastien realized how this existing storage could give us the advantages of document storage with minimal changes, while continuing to use relational databases as the substrate. public bool CommercialPrices { get { return this.Retrieve(p => p.CommercialPrices); } set { this.Store(p => p.CommercialPrices, value); } } This code is very compact and efficient because the API can infer from the expression what the type and name of the property are. It is then able to do the proper conversions for you. For this code to work in a content part, there is no need for a record at all. This is particularly nice for site settings: one query on one table and you get everything you need. This shows how the existing infoset solves the data storage problem, but you still need to query. Well, for those properties that need to be filtered and sorted on, you can still use the current record-based relational system. This of course continues to work. We do however provide APIs that make it trivial to store into both record properties and the infoset storage in one operation: public double Price { get { return Retrieve(r => r.Price); } set { Store(r => r.Price, value); } } This code looks strikingly similar to the non-record case above. The difference is that it will manage both the infoset and the record-based storages. The call to the Store method will send the data in both places, keeping them in sync. The call to the Retrieve method does something even cooler: if the property you’re looking for exists in the infoset, it will return it, but if it doesn’t, it will automatically look into the record for it. And if that wasn’t cool enough, it will take that value from the record and store it into the infoset for the next time it’s required. This means that your data will start automagically migrating to infoset storage just by virtue of using the code above instead of the usual: public double Price { get { return Record.Price; } set { Record.Price = value; } } As your users browse the site, it will get faster and faster as Select N+1 issues will optimize themselves away. If you preferred, you could still have explicit migration code, but it really shouldn’t be necessary most of the time. If you do already have code using QueryHints to mitigate Select N+1 issues, you might want to reconsider those, as with the new system, you’ll want to avoid joins that you don’t need for filtering or sorting, further optimizing your queries. There are some rare cases where the storage of the property must be handled differently. Check out this string[] property on SearchSettingsPart for example: public string[] SearchedFields { get { return (Retrieve<string>("SearchedFields") ?? "") .Split(new[] {',', ' '}, StringSplitOptions.RemoveEmptyEntries); } set { Store("SearchedFields", String.Join(", ", value)); } } The array of strings is transformed by the property accessors into and from a comma-separated list stored in a string. The Retrieve and Store overloads used in this case are lower-level versions that explicitly specify the type and name of the attribute to retrieve or store. You may be wondering what this means for code or operations that look directly at the database tables instead of going through the new infoset APIs. Even if there is a record, the infoset version of the property will win if it exists, so it is necessary to keep the infoset up-to-date. It’s not very complicated, but definitely something to keep in mind. Here is what a product record looks like in Nwazet.Commerce for example: And here is the same data in the infoset: The infoset is stored in Orchard_Framework_ContentItemRecord or Orchard_Framework_ContentItemVersionRecord, depending on whether the content type is versionable or not. A good way to find what you’re looking for is to inspect the record table first, as it’s usually easier to read, and then get the item record of the same id. Here is the detailed XML document for this product: <Data> <ProductPart Inventory="40" Price="18" Sku="pi-camera-box" OutOfStockMessage="" AllowBackOrder="false" Weight="0.2" Size="" ShippingCost="null" IsDigital="false" /> <ProductAttributesPart Attributes="" /> <AutoroutePart DisplayAlias="camera-box" /> <TitlePart Title="Nwazet Pi Camera Box" /> <BodyPart Text="[...]" /> <CommonPart CreatedUtc="2013-09-10T00:39:00Z" PublishedUtc="2013-09-14T01:07:47Z" /> </Data> The data is neatly organized under each part. It is easy to see how that document is all you need to know about that content item, all in one table. If you want to modify that data directly in the database, you should be careful to do it in both the record table and the infoset in the content item record. In this configuration, the record is now nothing more than an index, and will only be used for sorting and filtering. Of course, it’s perfectly fine to mix record-backed properties and record-less properties on the same part. It really depends what you think must be sorted and filtered on. In turn, this potentially simplifies migrations considerably. So here it is, the great shift of Orchard to document storage, something that Orchard has been designed for all along, and that we were able to implement with a satisfying and surprising economy of resources. Expect this code to make its way into the 1.8 version of Orchard when that’s available.

    Read the article

  • Big Data Matters with ODI12c

    - by Madhu Nair
    contributed by Mike Eisterer On October 17th, 2013, Oracle announced the release of Oracle Data Integrator 12c (ODI12c).  This release signifies improvements to Oracle’s Data Integration portfolio of solutions, particularly Big Data integration. Why Big Data = Big Business Organizations are gaining greater insights and actionability through increased storage, processing and analytical benefits offered by Big Data solutions.  New technologies and frameworks like HDFS, NoSQL, Hive and MapReduce support these benefits now. As further data is collected, analytical requirements increase and the complexity of managing transformations and aggregations of data compounds and organizations are in need for scalable Data Integration solutions. ODI12c provides enterprise solutions for the movement, translation and transformation of information and data heterogeneously and in Big Data Environments through: The ability for existing ODI and SQL developers to leverage new Big Data technologies. A metadata focused approach for cataloging, defining and reusing Big Data technologies, mappings and process executions. Integration between many heterogeneous environments and technologies such as HDFS and Hive. Generation of Hive Query Language. Working with Big Data using Knowledge Modules  ODI12c provides developers with the ability to define sources and targets and visually develop mappings to effect the movement and transformation of data.  As the mappings are created, ODI12c leverages a rich library of prebuilt integrations, known as Knowledge Modules (KMs).  These KMs are contextual to the technologies and platforms to be integrated.  Steps and actions needed to manage the data integration are pre-built and configured within the KMs.  The Oracle Data Integrator Application Adapter for Hadoop provides a series of KMs, specifically designed to integrate with Big Data Technologies.  The Big Data KMs include: Check Knowledge Module Reverse Engineer Knowledge Module Hive Transform Knowledge Module Hive Control Append Knowledge Module File to Hive (LOAD DATA) Knowledge Module File-Hive to Oracle (OLH-OSCH) Knowledge Module  Nothing to beat an Example: To demonstrate the use of the KMs which are part of the ODI Application Adapter for Hadoop, a mapping may be defined to move data between files and Hive targets.  The mapping is defined by dragging the source and target into the mapping, performing the attribute (column) mapping (see Figure 1) and then selecting the KM which will govern the process.  In this mapping example, movie data is being moved from an HDFS source into a Hive table.  Some of the attributes, such as “CUSTID to custid”, have been mapped over. Figure 1  Defining the Mapping Before the proper KM can be assigned to define the technology for the mapping, it needs to be added to the ODI project.  The Big Data KMs have been made available to the project through the KM import process.   Generally, this is done prior to defining the mapping. Figure 2  Importing the Big Data Knowledge Modules Following the import, the KMs are available in the Designer Navigator. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Figure 3  The Project View in Designer, Showing Installed IKMs Once the KM is imported, it may be assigned to the mapping target.  This is done by selecting the Physical View of the mapping and examining the Properties of the Target.  In this case MOVIAPP_LOG_STAGE is the target of our mapping. Figure 4  Physical View of the Mapping and Assigning the Big Data Knowledge Module to the Target Alternative KMs may have been selected as well, providing flexibility and abstracting the logical mapping from the physical implementation.  Our mapping may be applied to other technologies as well. The mapping is now complete and is ready to run.  We will see more in a future blog about running a mapping to load Hive. To complete the quick ODI for Big Data Overview, let us take a closer look at what the IKM File to Hive is doing for us.  ODI provides differentiated capabilities by defining the process and steps which normally would have to be manually developed, tested and implemented into the KM.  As shown in figure 5, the KM is preparing the Hive session, managing the Hive tables, performing the initial load from HDFS and then performing the insert into Hive.  HDFS and Hive options are selected graphically, as shown in the properties in Figure 4. Figure 5  Process and Steps Managed by the KM What’s Next Big Data being the shape shifting business challenge it is is fast evolving into the deciding factor between market leaders and others. Now that an introduction to ODI and Big Data has been provided, look for additional blogs coming soon using the Knowledge Modules which make up the Oracle Data Integrator Application Adapter for Hadoop: Importing Big Data Metadata into ODI, Testing Data Stores and Loading Hive Targets Generating Transformations using Hive Query language Loading Oracle from Hadoop Sources For more information now, please visit the Oracle Data Integrator Application Adapter for Hadoop web site, http://www.oracle.com/us/products/middleware/data-integration/hadoop/overview/index.html Do not forget to tune in to the ODI12c Executive Launch webcast on the 12th to hear more about ODI12c and GG12c. Normal 0 false false false EN-US ZH-TW X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";}

    Read the article

  • DBCC CHECKDB on VVLDB and latches (Or: My Pain is Your Gain)

    - by Argenis
      Does your CHECKDB hurt, Argenis? There is a classic blog series by Paul Randal [blog|twitter] called “CHECKDB From Every Angle” which is pretty much mandatory reading for anybody who’s even remotely considering going for the MCM certification, or its replacement (the Microsoft Certified Solutions Master: Data Platform – makes my fingers hurt just from typing it). Of particular interest is the post “Consistency Options for a VLDB” – on it, Paul provides solid, timeless advice (I use the word “timeless” because it was written in 2007, and it all applies today!) on how to perform checks on very large databases. Well, here I was trying to figure out how to make CHECKDB run faster on a restored copy of one of our databases, which happens to exceed 7TB in size. The whole thing was taking several days on multiple systems, regardless of the storage used – SAS, SATA or even SSD…and I actually didn’t pay much attention to how long it was taking, or even bothered to look at the reasons why - as long as it was finishing okay and found no consistency errors. Yes – I know. That was a huge mistake, as corruption found in a database several days after taking place could only allow for further spread of the corruption – and potentially large data loss. In the last two weeks I increased my attention towards this problem, as we noticed that CHECKDB was taking EVEN LONGER on brand new all-flash storage in the SAN! I couldn’t really explain it, and were almost ready to blame the storage vendor. The vendor told us that they could initially see the server driving decent I/O – around 450Mb/sec, and then it would settle at a very slow rate of 10Mb/sec or so. “Hum”, I thought – “CHECKDB is just not pushing the I/O subsystem hard enough”. Perfmon confirmed the vendor’s observations. Dreaded @BlobEater What was CHECKDB doing all the time while doing so little I/O? Eating Blobs. It turns out that CHECKDB was taking an extremely long time on one of our frankentables, which happens to be have 35 billion rows (yup, with a b) and sucks up several terabytes of space in the database. We do have a project ongoing to purge/split/partition this table, so it’s just a matter of time before we deal with it. But the reality today is that CHECKDB is coming to a screeching halt in performance when dealing with this particular table. Checking sys.dm_os_waiting_tasks and sys.dm_os_latch_stats showed that LATCH_EX (DBCC_OBJECT_METADATA) was by far the top wait type. I remembered hearing recently about that wait from another post that Paul Randal made, but that was related to computed-column indexes, and in fact, Paul himself reminded me of his article via twitter. But alas, our pathologic table had no non-clustered indexes on computed columns. I knew that latches are used by the database engine to do internal synchronization – but how could I help speed this up? After all, this is stuff that doesn’t have a lot of knobs to tweak. (There’s a fantastic level 500 talk by Bob Ward from Microsoft CSS [blog|twitter] called “Inside SQL Server Latches” given at PASS 2010 – and you can check it out here. DISCLAIMER: I assume no responsibility for any brain melting that might ensue from watching Bob’s talk!) Failed Hypotheses Earlier on this week I flew down to Palo Alto, CA, to visit our Headquarters – and after having a great time with my Monkey peers, I was relaxing on the plane back to Seattle watching a great talk by SQL Server MVP and fellow MCM Maciej Pilecki [twitter] called “Masterclass: A Day in the Life of a Database Transaction” where he discusses many different topics related to transaction management inside SQL Server. Very good stuff, and when I got home it was a little late – that slow DBCC CHECKDB that I had been dealing with was way in the back of my head. As I was looking at the problem at hand earlier on this week, I thought “How about I set the database to read-only?” I remembered one of the things Maciej had (jokingly) said in his talk: “if you don’t want locking and blocking, set the database to read-only” (or something to that effect, pardon my loose memory). I immediately killed the CHECKDB which had been running painfully for days, and set the database to read-only mode. Then I ran DBCC CHECKDB against it. It started going really fast (even a bit faster than before), and then throttled down again to around 10Mb/sec. All sorts of expletives went through my head at the time. Sure enough, the same latching scenario was present. Oh well. I even spent some time trying to figure out if NUMA was hurting performance. Folks on Twitter made suggestions in this regard (thanks, Lonny! [twitter]) …Eureka? This past Friday I was still scratching my head about the whole thing; I was ready to start profiling with XPERF to see if I could figure out which part of the engine was to blame and then get Microsoft to look at the evidence. After getting a bunch of good news I’ll blog about separately, I sat down for a figurative smack down with CHECKDB before the weekend. And then the light bulb went on. A sparse column. I thought that I couldn’t possibly be experiencing the same scenario that Paul blogged about back in March showing extreme latching with non-clustered indexes on computed columns. Did I even have a non-clustered index on my sparse column? As it turns out, I did. I had one filtered non-clustered index – with the sparse column as the index key (and only column). To prove that this was the problem, I went and setup a test. Yup, that'll do it The repro is very simple for this issue: I tested it on the latest public builds of SQL Server 2008 R2 SP2 (CU6) and SQL Server 2012 SP1 (CU4). First, create a test database and a test table, which only needs to contain a sparse column: CREATE DATABASE SparseColTest; GO USE SparseColTest; GO CREATE TABLE testTable (testCol smalldatetime SPARSE NULL); GO INSERT INTO testTable (testCol) VALUES (NULL); GO 1000000 That’s 1 million rows, and even though you’re inserting NULLs, that’s going to take a while. In my laptop, it took 3 minutes and 31 seconds. Next, we run DBCC CHECKDB against the database: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; This runs extremely fast, as least on my test rig – 198 milliseconds. Now let’s create a filtered non-clustered index on the sparse column: CREATE NONCLUSTERED INDEX [badBadIndex] ON testTable (testCol) WHERE testCol IS NOT NULL; With the index in place now, let’s run DBCC CHECKDB one more time: DBCC CHECKDB('SparseColTest') WITH NO_INFOMSGS, ALL_ERRORMSGS; In my test system this statement completed in 11433 milliseconds. 11.43 full seconds. Quite the jump from 198 milliseconds. I went ahead and dropped the filtered non-clustered indexes on the restored copy of our production database, and ran CHECKDB against that. We went down from 7+ days to 19 hours and 20 minutes. Cue the “Argenis is not impressed” meme, please, Mr. LaRock. My pain is your gain, folks. Go check to see if you have any of such indexes – they’re likely causing your consistency checks to run very, very slow. Happy CHECKDBing, -Argenis ps: I plan to file a Connect item for this issue – I consider it a pretty serious bug in the engine. After all, filtered indexes were invented BECAUSE of the sparse column feature – and it makes a lot of sense to use them together. Watch this space and my twitter timeline for a link.

    Read the article

  • Full-text Indexing Books Online

    - by Most Valuable Yak (Rob Volk)
    While preparing for a recent SQL Saturday presentation, I was struck by a crazy idea (shocking, I know): Could someone import the content of SQL Server Books Online into a database and apply full-text indexing to it?  The answer is yes, and it's really quite easy to do. The first step is finding the installed help files.  If you have SQL Server 2012, BOL is installed under the Microsoft Help Library.  You can find the install location by opening SQL Server Books Online and clicking the gear icon for the Help Library Manager.  When the new window pops up click the Settings link, you'll get the following: You'll see the path under Library Location. Once you navigate to that path you'll have to drill down a little further, to C:\ProgramData\Microsoft\HelpLibrary\content\Microsoft\store.  This is where the help file content is kept if you downloaded it for offline use. Depending on which products you've downloaded help for, you may see a few hundred files.  Fortunately they're named well and you can easily find the "SQL_Server_Denali_Books_Online_" files.  We are interested in the .MSHC files only, and can skip the Installation and Developer Reference files. Despite the .MHSC extension, these files are compressed with the standard Zip format, so your favorite archive utility (WinZip, 7Zip, WinRar, etc.) can open them.  When you do, you'll see a few thousand files in the archive.  We are only interested in the .htm files, but there's no harm in extracting all of them to a folder.  7zip provides a command-line utility and the following will extract to a D:\SQLHelp folder previously created: 7z e –oD:\SQLHelp "C:\ProgramData\Microsoft\HelpLibrary\content\Microsoft\store\SQL_Server_Denali_Books_Online_B780_SQL_110_en-us_1.2.mshc" *.htm Well that's great Rob, but how do I put all those files into a full-text index? I'll tell you in a second, but first we have to set up a few things on the database side.  I'll be using a database named Explore (you can certainly change that) and the following setup is a fragment of the script I used in my presentation: USE Explore; GO CREATE SCHEMA help AUTHORIZATION dbo; GO -- Create default fulltext catalog for later FT indexes CREATE FULLTEXT CATALOG FTC AS DEFAULT; GO CREATE TABLE help.files(file_id int not null IDENTITY(1,1) CONSTRAINT PK_help_files PRIMARY KEY, path varchar(256) not null CONSTRAINT UNQ_help_files_path UNIQUE, doc_type varchar(6) DEFAULT('.xml'), content varbinary(max) not null); CREATE FULLTEXT INDEX ON help.files(content TYPE COLUMN doc_type LANGUAGE 1033) KEY INDEX PK_help_files; This will give you a table, default full-text catalog, and full-text index on that table for the content you're going to insert.  I'll be using the command line again for this, it's the easiest method I know: for %a in (D:\SQLHelp\*.htm) do sqlcmd -S. -E -d Explore -Q"set nocount on;insert help.files(path,content) select '%a', cast(c as varbinary(max)) from openrowset(bulk '%a', SINGLE_CLOB) as c(c)" You'll need to copy and run that as one line in a command prompt.  I'll explain what this does while you run it and watch several thousand files get imported: The "for" command allows you to loop over a collection of items.  In this case we want all the .htm files in the D:\SQLHelp folder.  For each file it finds, it will assign the full path and file name to the %a variable.  In the "do" clause, we'll specify another command to be run for each iteration of the loop.  I make a call to "sqlcmd" in order to run a SQL statement.  I pass in the name of the server (-S.), where "." represents the local default instance. I specify -d Explore as the database, and -E for trusted connection.  I then use -Q to run a query that I enclose in double quotes. The query uses OPENROWSET(BULK…SINGLE_CLOB) to open the file as a data source, and to treat it as a single character large object.  In order for full-text indexing to work properly, I have to convert the text content to varbinary. I then INSERT these contents along with the full path of the file into the help.files table created earlier.  This process continues for each file in the folder, creating one new row in the table. And that's it! 5 SQL Statements and 2 command line statements to unzip and import SQL Server Books Online!  In case you're wondering why I didn't use FILESTREAM or FILETABLE, it's simply because I haven't learned them…yet. I may return to this blog after I figure that out and update it with the steps to do so.  I believe that will make it even easier. In the spirit of exploration, I'll leave you to work on some fulltext queries of this content.  I also recommend playing around with the sys.dm_fts_xxxx DMVs (I particularly like sys.dm_fts_index_keywords, it's pretty interesting).  There are additional example queries in the download material for my presentation linked above. Many thanks to Kevin Boles (t) for his advice on (re)checking the content of the help files.  Don't let that .htm extension fool you! The 2012 help files are actually XML, and you'd need to specify '.xml' in your document type column in order to extract the full-text keywords.  (You probably noticed this in the default definition for the doc_type column.)  You can query sys.fulltext_document_types to get a complete list of the types that can be full-text indexed. I also need to thank Hilary Cotter for giving me the original idea. I believe he used MSDN content in a full-text index for an article from waaaaaaaaaaay back, that I can't find now, and had forgotten about until just a few days ago.  He is also co-author of Pro Full-Text Search in SQL Server 2008, which I highly recommend.  He also has some FTS articles on Simple Talk: http://www.simple-talk.com/sql/learn-sql-server/sql-server-full-text-search-language-features/ http://www.simple-talk.com/sql/learn-sql-server/sql-server-full-text-search-language-features,-part-2/

    Read the article

  • Columnstore Case Study #2: Columnstore faster than SSAS Cube at DevCon Security

    - by aspiringgeek
    Preamble This is the second in a series of posts documenting big wins encountered using columnstore indexes in SQL Server 2012 & 2014.  Many of these can be found in my big deck along with details such as internals, best practices, caveats, etc.  The purpose of sharing the case studies in this context is to provide an easy-to-consume quick-reference alternative. See also Columnstore Case Study #1: MSIT SONAR Aggregations Why Columnstore? As stated previously, If we’re looking for a subset of columns from one or a few rows, given the right indexes, SQL Server can do a superlative job of providing an answer. If we’re asking a question which by design needs to hit lots of rows—DW, reporting, aggregations, grouping, scans, etc., SQL Server has never had a good mechanism—until columnstore. Columnstore indexes were introduced in SQL Server 2012. However, they're still largely unknown. Some adoption blockers existed; yet columnstore was nonetheless a game changer for many apps.  In SQL Server 2014, potential blockers have been largely removed & they're going to profoundly change the way we interact with our data.  The purpose of this series is to share the performance benefits of columnstore & documenting columnstore is a compelling reason to upgrade to SQL Server 2014. The Customer DevCon Security provides home & business security services & has been in business for 135 years. I met DevCon personnel while speaking to the Utah County SQL User Group on 20 February 2012. (Thanks to TJ Belt (b|@tjaybelt) & Ben Miller (b|@DBADuck) for the invitation which serendipitously coincided with the height of ski season.) The App: DevCon Security Reporting: Optimized & Ad Hoc Queries DevCon users interrogate a SQL Server 2012 Analysis Services cube via SSRS. In addition, the SQL Server 2012 relational back end is the target of ad hoc queries; this DW back end is refreshed nightly during a brief maintenance window via conventional table partition switching. SSRS, SSAS, & MDX Conventional relational structures were unable to provide adequate performance for user interaction for the SSRS reports. An SSAS solution was implemented requiring personnel to ramp up technically, including learning enough MDX to satisfy requirements. Ad Hoc Queries Even though the fact table is relatively small—only 22 million rows & 33GB—the table was a typical DW table in terms of its width: 137 columns, any of which could be the target of ad hoc interrogation. As is common in DW reporting scenarios such as this, it is often nearly to optimize for such queries using conventional indexing. DevCon DBAs & developers attended PASS 2012 & were introduced to the marvels of columnstore in a session presented by Klaus Aschenbrenner (b|@Aschenbrenner) The Details Classic vs. columnstore before-&-after metrics are impressive. Scenario   Conventional Structures   Columnstore   Δ SSRS via SSAS 10 - 12 seconds 1 second >10x Ad Hoc 5-7 minutes (300 - 420 seconds) 1 - 2 seconds >100x Here are two charts characterizing this data graphically.  The first is a linear representation of Report Duration (in seconds) for Conventional Structures vs. Columnstore Indexes.  As is so often the case when we chart such significant deltas, the linear scale doesn’t expose some the dramatically improved values corresponding to the columnstore metrics.  Just to make it fair here’s the same data represented logarithmically; yet even here the values corresponding to 1 –2 seconds aren’t visible.  The Wins Performance: Even prior to columnstore implementation, at 10 - 12 seconds canned report performance against the SSAS cube was tolerable. Yet the 1 second performance afterward is clearly better. As significant as that is, imagine the user experience re: ad hoc interrogation. The difference between several minutes vs. one or two seconds is a game changer, literally changing the way users interact with their data—no mental context switching, no wondering when the results will appear, no preoccupation with the spinning mind-numbing hurry-up-&-wait indicators.  As we’ve commonly found elsewhere, columnstore indexes here provided performance improvements of one, two, or more orders of magnitude. Simplified Infrastructure: Because in this case a nonclustered columnstore index on a conventional DW table was faster than an Analysis Services cube, the entire SSAS infrastructure was rendered superfluous & was retired. PASS Rocks: Once again, the value of attending PASS is proven out. The trip to Charlotte combined with eager & enquiring minds let directly to this success story. Find out more about the next PASS Summit here, hosted this year in Seattle on November 4 - 7, 2014. DevCon BI Team Lead Nathan Allan provided this unsolicited feedback: “What we found was pretty awesome. It has been a game changer for us in terms of the flexibility we can offer people that would like to get to the data in different ways.” Summary For DW, reports, & other BI workloads, columnstore often provides significant performance enhancements relative to conventional indexing.  I have documented here, the second in a series of reports on columnstore implementations, results from DevCon Security, a live customer production app for which performance increased by factors of from 10x to 100x for all report queries, including canned queries as well as reducing time for results for ad hoc queries from 5 - 7 minutes to 1 - 2 seconds. As a result of columnstore performance, the customer retired their SSAS infrastructure. I invite you to consider leveraging columnstore in your own environment. Let me know if you have any questions.

    Read the article

  • Securing an ADF Application using OES11g: Part 1

    - by user12587121
    Future releases of the Oracle stack should allow ADF applications to be secured natively with Oracle Entitlements Server (OES). In a sequence of postings here I explore one way to achive this with the current technology, namely OES 11.1.1.5 and ADF 11.1.1.6. ADF Security Basics ADF Bascis The Application Development Framework (ADF) is Oracle’s preferred technology for developing GUI based Java applications.  It can be used to develop a UI for Swing applications or, more typically in the Oracle stack, for Web and J2EE applications.  ADF is based on and extends the Java Server Faces (JSF) technology.  To get an idea, Oracle provides an online demo to showcase ADF components. ADF can be used to develop just the UI part of an application, where, for example, the data access layer is implemented using some custom Java beans or EJBs.  However ADF also has it’s own data access layer, ADF Business Components (ADF BC) that will allow rapid integration of data from data bases and Webservice interfaces to the ADF UI component.   In this way ADF helps implement the MVC  approach to building applications with UI and data components. The canonical tutorial for ADF is to open JDeveloper, define a connection to a database, drag and drop a table from the database view to a UI page, build and deploy.  One has an application up and running very quickly with the ability to quickly integrate changes to, for example, the DB schema. ADF allows web pages to be created graphically and components like tables, forms, text fields, graphs and so on to be easily added to a page.  On top of JSF Oracle have added drag and drop tooling with JDeveloper and declarative binding of the UI to the data layer, be it database, WebService or Java beans.  An important addition is the bounded task flow which is a reusable set of pages and transitions.   ADF adds some steps to the page lifecycle defined in JSF and adds extra widgets including powerful visualizations. It is worth pointing out that the Oracle Web Center product (portal, content management and so on) is based on and extends ADF. ADF Security ADF comes with it’s own security mechanism that is exposed by JDeveloper at development time and in the WLS Console and Enterprise Manager (EM) at run time. The security elements that need to be addressed in an ADF application are: authentication, authorization of access to web pages, task-flows, components within the pages and data being returned from the model layer. One  typically relies on WLS to handle authentication and because of this users and groups will also be handled by WLS.  Typically in a Dev environment, users and groups are stored in the WLS embedded LDAP server. One has a choice when enabling ADF security (Application->Secure->Configure ADF Security) about whether to turn on ADF authorization checking or not: In the case where authorization is enabled for ADF one defines a set of roles in which we place users and then we grant access to these roles to the different ADF elements (pages or task flows or elements in a page). An important notion here is the difference between Enterprise Roles and Application Roles. The idea behind an enterprise role is that is defined in terms of users and LDAP groups from the WLS identity store.  “Enterprise” in the sense that these are things available for use to all applications that use that store.  The other kind of role is an Application Role and the idea is that  a given application will make use of Enterprise roles and users to build up a set of roles for it’s own use.  These application roles will be available only to that application.   The general idea here is that the enterprise roles are relatively static (for example an Employees group in the LDAP directory) while application roles are more dynamic, possibly depending on time, location, accessed resource and so on.  One of the things that OES adds that is that we can define these dynamic membership conditions in Role Mapping Policies. To make this concrete, here is how, at design time in Jdeveloper, one assigns these rights in Jdeveloper, which puts them into a file called jazn-data.xml: When the ADF app is deployed to a WLS this JAZN security data is pushed to the system-jazn-data.xml file of the WLS deployment for the policies and application roles and to the WLS backing LDAP for the users and enterprise roles.  Note the difference here: after deploying the application we will see the users and enterprise roles show up in the WLS LDAP server.  But the policies and application roles are defined in the system-jazn-data.xml file.  Consult the embedded WLS LDAP server to manage users and enterprise roles by going to the domain console and then Security Realms->myrealm->Users and Groups: For production environments (or in future to share this data with OES) one would then perform the operation of “reassociating” this security policy and application role data to a DB schema (or an LDAP).  This is done in the EM console by reassociating the Security Provider.  This blog posting has more explanations and references on this reassociation process. If ADF Authentication and Authorization are enabled then the Security Policies for a deployed application can be managed in EM.  Our goal is to be able to manage security policies for the applicaiton rather via OES and it's console. Security Requirements for an ADF Application With this package tour of ADF security we can see that to secure an ADF application with we would expect to be able to take care of at least the following items: Authentication, including a user and user-group store Authorization for page access Authorization for bounded Task Flow access.  A bounded task flow has only one point of entry and so if we protect that entry point by calling to OES then all the pages in the flow are protected.  Authorization for viewing data coming from the data access layer In the next posting we will describe a sample ADF application and required security policies. References ADF Dev Guide: Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework: Enabling ADF Security in a Fusion Web Application Oracle tutorial on securing a sample ADF application, appears to require ADF 11.1.2 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

    Read the article

  • Create Auto Customization Criteria OAF Search Page

    - by PRajkumar
    1. Create a New Workspace and Project Right click Workspaces and click create new OAworkspace and name it as PRajkumarCustSearch. Automatically a new OA Project will also be created. Name the project as CustSearchDemo and package as prajkumar.oracle.apps.fnd.custsearchdemo   2. Create a New Application Module (AM) Right Click on CustSearchDemo > New > ADF Business Components > Application Module Name -- CustSearchAM Package -- prajkumar.oracle.apps.fnd.custsearchdemo.server   3. Enable Passivation for the Root UI Application Module (AM) Right Click on CustSearchAM > Edit SearchAM > Custom Properties > Name – RETENTION_LEVEL Value – MANAGE_STATE Click add > Apply > OK   4. Create Test Table and insert data some data in it (For Testing Purpose)   CREATE TABLE xx_custsearch_demo (   -- ---------------------     -- Data Columns     -- ---------------------     column1                  VARCHAR2(100),     column2                  VARCHAR2(100),     column3                  VARCHAR2(100),     column4                  VARCHAR2(100),     -- ---------------------     -- Who Columns     -- ---------------------     last_update_date    DATE         NOT NULL,     last_updated_by     NUMBER   NOT NULL,     creation_date          DATE         NOT NULL,     created_by               NUMBER   NOT NULL,     last_update_login   NUMBER  );   INSERT INTO xx_custsearch_demo VALUES('v1','v2','v3','v4',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v1','v3','v4','v5',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v2','v3','v4','v5',SYSDATE,0,SYSDATE,0,0); INSERT INTO xx_custsearch_demo VALUES('v3','v4','v5','v6',SYSDATE,0,SYSDATE,0,0); Now we have 4 records in our custom table   5. Create a New Entity Object (EO) Right click on SearchDemo > New > ADF Business Components > Entity Object Name – CustSearchEO Package -- prajkumar.oracle.apps.fnd.custsearchdemo.schema.server Database Objects -- XX_CUSTSEARCH_DEMO   Note – By default ROWID will be the primary key if we will not make any column to be primary key   Check the Accessors, Create Method, Validation Method and Remove Method   6. Create a New View Object (VO) Right click on CustSearchDemo > New > ADF Business Components > View Object Name -- CustSearchVO Package -- prajkumar.oracle.apps.fnd.custsearchdemo.server   In Step2 in Entity Page select CustSearchEO and shuttle them to selected list   In Step3 in Attributes Window select columns Column1, Column2, Column3, Column4, and shuttle them to selected list   In Java page deselect Generate Java file for View Object Class: CustSearchVOImpl and Select Generate Java File for View Row Class: CustSearchVORowImpl   7. Add Your View Object to Root UI Application Module Select Right click on CustSearchAM > Application Modules > Data Model Select CustSearchVO and shuttle to Data Model list   8. Create a New Page Right click on CustSearchDemo > New > Web Tier > OA Components > Page Name -- CustSearchPG Package -- prajkumar.oracle.apps.fnd.custsearchdemo.webui   9. Select the CustSearchPG and go to the strcuture pane where a default region has been created   10. Select region1 and set the following properties: ID -- PageLayoutRN Region Style -- PageLayout AM Definition -- prajkumar.oracle.apps.fnd.custsearchdemo.server.CustSearchAM Window Title – AutoCustomize Search Page Window Title – AutoCustomization Search Page Auto Footer -- True   11. Add a Query Bean to Your Page Right click on PageLayoutRN > New > Region Select new region region1 and set following properties ID – QueryRN Region Style – query Construction Mode – autoCustomizationCriteria Include Simple Panel – False Include Views Panel – False Include Advanced Panel – False   12. Create a New Region of style table Right Click on QueryRN > New > Region Using Wizard Application Module – prajkumar.oracle.apps.fnd.custsearchdemo.server.CustSearchAM Available View Usages – CustSearchVO1   In Step2 in Region Properties set following properties Region ID – CustSearchTable Region Style – Table   In Step3 in View Attributes shuttle all the items (Column1, Column2, Column3, Column4) available in “Available View Attributes” to Selected View Attributes: In Step4 in Region Items page set style to “messageStyledText” for all items   13. Select CustSearchTable in Structure Panel and set property Width to 100%   14. Include Simple Search Panel Right Click on QueryRN > New > simpleSearchPanel Automatically region2 (header Region) and region1 (MessageComponentLayout Region) created Set Following Properties for region2 Id – SimpleSearchHeader Text -- Simple Search   15. Now right click on message Component Layout Region (SimpleSearchMappings) and create two message text input beans and set the below properties to each   Message TextInputBean1 Id – SearchColumn1 Search Allowed – True Data Type – VARCHAR2 Maximum Length – CSS Class – OraFieldText Prompt – Column1   Message TextInputBean2 Id – SearchColumn2 Search Allowed -- True Data Type – VARCHAR2 Maximum Length – 100 CSS Class – OraFieldText Prompt – Column2   16. Now Right Click on query Components and create simple Search Mappings. Then automatically SimpleSearchMappings and QueryCriteriaMap1 created   17.  Now select the QueryCriteriaMap1 and set the below properties Id – SearchColumn1Map Search Item – SearchColumn1 Result Item – Column1   18. Now again right click on simpleSearchMappings -> New -> queryCriteriaMap, and then set the below properties Id – SearchColumn2Map Search Item – SearchColumn2 Result Item – Column2   19. Congratulation you have successfully finished Auto Customization Search page. Run Your CustSearchPG page and Test Your Work            

    Read the article

  • TSQL Conditionally Select Specific Value

    - by Dzejms
    This is a follow-up to #1644748 where I successfully answered my own question, but Quassnoi helped me to realize that it was the wrong question. He gave me a solution that worked for my sample data, but I couldn't plug it back into the parent stored procedure because I fail at SQL 2005 syntax. So here is an attempt to paint the broader picture and ask what I actually need. This is part of a stored procedure that returns a list of items in a bug tracking application I've inherited. There are are over 100 fields and 26 joins so I'm pulling out only the mostly relevant bits. SELECT tickets.ticketid, tickets.tickettype, tickets_tickettype_lu.tickettypedesc, tickets.stage, tickets.position, tickets.sponsor, tickets.dev, tickets.qa, DATEDIFF(DAY, ticket_history_assignment.savedate, GETDATE()) as 'daysinqueue' FROM dbo.tickets WITH (NOLOCK) LEFT OUTER JOIN dbo.tickets_tickettype_lu WITH (NOLOCK) ON tickets.tickettype = tickets_tickettype_lu.tickettypeid LEFT OUTER JOIN dbo.tickets_history_assignment WITH (NOLOCK) ON tickets_history_assignment.ticketid = tickets.ticketid AND tickets_history_assignment.historyid = ( SELECT MAX(historyid) FROM dbo.tickets_history_assignment WITH (NOLOCK) WHERE tickets_history_assignment.ticketid = tickets.ticketid GROUP BY tickets_history_assignment.ticketid ) WHERE tickets.sponsor = @sponsor The area of interest is the daysinqueue subquery mess. The tickets_history_assignment table looks roughly as follows declare @tickets_history_assignment table ( historyid int, ticketid int, sponsor int, dev int, qa int, savedate datetime ) insert into @tickets_history_assignment values (1521402, 92774,20,14, 20, '2009-10-27 09:17:59.527') insert into @tickets_history_assignment values (1521399, 92774,20,14, 42, '2009-08-31 12:07:52.917') insert into @tickets_history_assignment values (1521311, 92774,100,14, 42, '2008-12-08 16:15:49.887') insert into @tickets_history_assignment values (1521336, 92774,100,14, 42, '2009-01-16 14:27:43.577') Whenever a ticket is saved, the current values for sponsor, dev and qa are stored in the tickets_history_assignment table with the ticketid and a timestamp. So it is possible for someone to change the value for qa, but leave sponsor alone. What I want to know, based on all of these conditions, is the historyid of the record in the tickets_history_assignment table where the sponsor value was last changed so that I can calculate the value for daysinqueue. If a record is inserted into the history table, and only the qa value has changed, I don't want that record. So simply relying on MAX(historyid) won't work for me. Quassnoi came up with the following which seemed to work with my sample data, but I can't plug it into the larger query, SQL Manager bitches about the WITH statement. ;WITH rows AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY ticketid ORDER BY savedate DESC) AS rn FROM @Table ) SELECT rl.sponsor, ro.savedate FROM rows rl CROSS APPLY ( SELECT TOP 1 rc.savedate FROM rows rc JOIN rows rn ON rn.ticketid = rc.ticketid AND rn.rn = rc.rn + 1 AND rn.sponsor <> rc.sponsor WHERE rc.ticketid = rl.ticketid ORDER BY rc.rn ) ro WHERE rl.rn = 1 I played with it yesterday afternoon and got nowhere because I don't fundamentally understand what is going on here and how it should fit into the larger context. So, any takers? UPDATE Ok, here's the whole thing. I've been switching some of the table and column names in an attempt to simplify things so here's the full unedited mess. snip - old bad code Here are the errors: Msg 102, Level 15, State 1, Procedure usp_GetProjectRecordsByAssignment, Line 159 Incorrect syntax near ';'. Msg 102, Level 15, State 1, Procedure usp_GetProjectRecordsByAssignment, Line 179 Incorrect syntax near ')'. Line numbers are of course not correct but refer to ;WITH rows AS And the ')' char after the WHERE rl.rn = 1 ) Respectively Is there a tag for extra super long question? UPDATE #2 Here is the finished query for anyone who may need this: CREATE PROCEDURE [dbo].[usp_GetProjectRecordsByAssignment] ( @assigned numeric(18,0), @assignedtype numeric(18,0) ) AS SET NOCOUNT ON WITH rows AS ( SELECT *, ROW_NUMBER() OVER (PARTITION BY recordid ORDER BY savedate DESC) AS rn FROM projects_history_assignment ) SELECT projects_records.recordid, projects_records.recordtype, projects_recordtype_lu.recordtypedesc, projects_records.stage, projects_stage_lu.stagedesc, projects_records.position, projects_position_lu.positiondesc, CASE projects_records.clientrequested WHEN '1' THEN 'Yes' WHEN '0' THEN 'No' END AS clientrequested, projects_records.reportingmethod, projects_reportingmethod_lu.reportingmethoddesc, projects_records.clientaccess, projects_clientaccess_lu.clientaccessdesc, projects_records.clientnumber, projects_records.project, projects_lu.projectdesc, projects_records.version, projects_version_lu.versiondesc, projects_records.projectedversion, projects_version_lu_projected.versiondesc AS projectedversiondesc, projects_records.sitetype, projects_sitetype_lu.sitetypedesc, projects_records.title, projects_records.module, projects_module_lu.moduledesc, projects_records.component, projects_component_lu.componentdesc, projects_records.loginusername, projects_records.loginpassword, projects_records.assistedusername, projects_records.browsername, projects_browsername_lu.browsernamedesc, projects_records.browserversion, projects_records.osname, projects_osname_lu.osnamedesc, projects_records.osversion, projects_records.errortype, projects_errortype_lu.errortypedesc, projects_records.gsipriority, projects_gsipriority_lu.gsiprioritydesc, projects_records.clientpriority, projects_clientpriority_lu.clientprioritydesc, projects_records.scheduledstartdate, projects_records.scheduledcompletiondate, projects_records.projectedhours, projects_records.actualstartdate, projects_records.actualcompletiondate, projects_records.actualhours, CASE projects_records.billclient WHEN '1' THEN 'Yes' WHEN '0' THEN 'No' END AS billclient, projects_records.billamount, projects_records.status, projects_status_lu.statusdesc, CASE CAST(projects_records.assigned AS VARCHAR(5)) WHEN '0' THEN 'N/A' WHEN '10000' THEN 'Unassigned' WHEN '20000' THEN 'Client' WHEN '30000' THEN 'Tech Support' WHEN '40000' THEN 'LMI Tech Support' WHEN '50000' THEN 'Upload' WHEN '60000' THEN 'Spider' WHEN '70000' THEN 'DB Admin' ELSE rtrim(users_assigned.nickname) + ' ' + rtrim(users_assigned.lastname) END AS assigned, CASE CAST(projects_records.assigneddev AS VARCHAR(5)) WHEN '0' THEN 'N/A' WHEN '10000' THEN 'Unassigned' ELSE rtrim(users_assigneddev.nickname) + ' ' + rtrim(users_assigneddev.lastname) END AS assigneddev, CASE CAST(projects_records.assignedqa AS VARCHAR(5)) WHEN '0' THEN 'N/A' WHEN '10000' THEN 'Unassigned' ELSE rtrim(users_assignedqa.nickname) + ' ' + rtrim(users_assignedqa.lastname) END AS assignedqa, CASE CAST(projects_records.assignedsponsor AS VARCHAR(5)) WHEN '0' THEN 'N/A' WHEN '10000' THEN 'Unassigned' ELSE rtrim(users_assignedsponsor.nickname) + ' ' + rtrim(users_assignedsponsor.lastname) END AS assignedsponsor, projects_records.clientcreated, CASE projects_records.clientcreated WHEN '1' THEN 'Yes' WHEN '0' THEN 'No' END AS clientcreateddesc, CASE projects_records.clientcreated WHEN '1' THEN rtrim(clientusers_createuser.firstname) + ' ' + rtrim(clientusers_createuser.lastname) + ' (Client)' ELSE rtrim(users_createuser.nickname) + ' ' + rtrim(users_createuser.lastname) END AS createuser, projects_records.createdate, projects_records.savedate, projects_resolution.sitesaffected, projects_sitesaffected_lu.sitesaffecteddesc, DATEDIFF(DAY, projects_history_assignment.savedate, GETDATE()) as 'daysinqueue', projects_records.iOnHitList, projects_records.changetype FROM dbo.projects_records WITH (NOLOCK) LEFT OUTER JOIN dbo.projects_recordtype_lu WITH (NOLOCK) ON projects_records.recordtype = projects_recordtype_lu.recordtypeid LEFT OUTER JOIN dbo.projects_stage_lu WITH (NOLOCK) ON projects_records.stage = projects_stage_lu.stageid LEFT OUTER JOIN dbo.projects_position_lu WITH (NOLOCK) ON projects_records.position = projects_position_lu.positionid LEFT OUTER JOIN dbo.projects_reportingmethod_lu WITH (NOLOCK) ON projects_records.reportingmethod = projects_reportingmethod_lu.reportingmethodid LEFT OUTER JOIN dbo.projects_lu WITH (NOLOCK) ON projects_records.project = projects_lu.projectid LEFT OUTER JOIN dbo.projects_version_lu WITH (NOLOCK) ON projects_records.version = projects_version_lu.versionid LEFT OUTER JOIN dbo.projects_version_lu projects_version_lu_projected WITH (NOLOCK) ON projects_records.projectedversion = projects_version_lu_projected.versionid LEFT OUTER JOIN dbo.projects_sitetype_lu WITH (NOLOCK) ON projects_records.sitetype = projects_sitetype_lu.sitetypeid LEFT OUTER JOIN dbo.projects_module_lu WITH (NOLOCK) ON projects_records.module = projects_module_lu.moduleid LEFT OUTER JOIN dbo.projects_component_lu WITH (NOLOCK) ON projects_records.component = projects_component_lu.componentid LEFT OUTER JOIN dbo.projects_browsername_lu WITH (NOLOCK) ON projects_records.browsername = projects_browsername_lu.browsernameid LEFT OUTER JOIN dbo.projects_osname_lu WITH (NOLOCK) ON projects_records.osname = projects_osname_lu.osnameid LEFT OUTER JOIN dbo.projects_errortype_lu WITH (NOLOCK) ON projects_records.errortype = projects_errortype_lu.errortypeid LEFT OUTER JOIN dbo.projects_resolution WITH (NOLOCK) ON projects_records.recordid = projects_resolution.recordid LEFT OUTER JOIN dbo.projects_sitesaffected_lu WITH (NOLOCK) ON projects_resolution.sitesaffected = projects_sitesaffected_lu.sitesaffectedid LEFT OUTER JOIN dbo.projects_gsipriority_lu WITH (NOLOCK) ON projects_records.gsipriority = projects_gsipriority_lu.gsipriorityid LEFT OUTER JOIN dbo.projects_clientpriority_lu WITH (NOLOCK) ON projects_records.clientpriority = projects_clientpriority_lu.clientpriorityid LEFT OUTER JOIN dbo.projects_status_lu WITH (NOLOCK) ON projects_records.status = projects_status_lu.statusid LEFT OUTER JOIN dbo.projects_clientaccess_lu WITH (NOLOCK) ON projects_records.clientaccess = projects_clientaccess_lu.clientaccessid LEFT OUTER JOIN dbo.users users_assigned WITH (NOLOCK) ON projects_records.assigned = users_assigned.userid LEFT OUTER JOIN dbo.users users_assigneddev WITH (NOLOCK) ON projects_records.assigneddev = users_assigneddev.userid LEFT OUTER JOIN dbo.users users_assignedqa WITH (NOLOCK) ON projects_records.assignedqa = users_assignedqa.userid LEFT OUTER JOIN dbo.users users_assignedsponsor WITH (NOLOCK) ON projects_records.assignedsponsor = users_assignedsponsor.userid LEFT OUTER JOIN dbo.users users_createuser WITH (NOLOCK) ON projects_records.createuser = users_createuser.userid LEFT OUTER JOIN dbo.clientusers clientusers_createuser WITH (NOLOCK) ON projects_records.createuser = clientusers_createuser.userid LEFT OUTER JOIN dbo.projects_history_assignment WITH (NOLOCK) ON projects_history_assignment.recordid = projects_records.recordid AND projects_history_assignment.historyid = ( SELECT ro.historyid FROM rows rl CROSS APPLY ( SELECT TOP 1 rc.historyid FROM rows rc JOIN rows rn ON rn.recordid = rc.recordid AND rn.rn = rc.rn + 1 AND rn.assigned <> rc.assigned WHERE rc.recordid = rl.recordid ORDER BY rc.rn ) ro WHERE rl.rn = 1 AND rl.recordid = projects_records.recordid ) WHERE (@assignedtype='0' and projects_records.assigned = @assigned) OR (@assignedtype='1' and projects_records.assigneddev = @assigned) OR (@assignedtype='2' and projects_records.assignedqa = @assigned) OR (@assignedtype='3' and projects_records.assignedsponsor = @assigned) OR (@assignedtype='4' and projects_records.createuser = @assigned)

    Read the article

  • how to keep same header on starting of next page in pdf

    - by Santosh Singh
    Here is My Code. private void getActionItems(Document document, Chapter chapter, Section section, Paragraph pas) { List drbRefList = null; try { _actionService = new ActionItemImpl(); _aiBean = new ActionItemData(); if (_aiBean != null) { _actionList = new ArrayList(); LOG.info("business passed here is" + _business); _actionList = _actionService.getActionItemsForPDF(_userSSOID, _business, _reviewID, _connection); } LOG.info(" after calling getActionItemsForPDF"); LOG.info("_actionList" + _actionList); Table tablesh1 = new Table(1, 1); float[] widthsh1 = new float[1]; widthsh1[0] = ReviewConstants.MAGIC_DOTTWELVE; tablesh1.setTableFitsPage(true); tablesh1.setPadding(2); tablesh1.setSpacing(0); tablesh1.setWidth(ReviewConstants.MAGIC_ONEZEROZERO); tablesh1.setWidths(widthsh1); tablesh1.setBorderColor(Color.WHITE); Cell hcell = new Cell(new Paragraph(ReviewConstants.S_ACTIONHEADING, new Font(Font.HELVETICA, fontSize, Font.BOLD, Color.BLUE))); hcell.setHeader(true); tablesh1.addCell(hcell); section.add(tablesh1); Table actionTable = null; String businessUnit = reviewData.getBusinessUnit(); float[] widthac = null; //Updated for Nuclear Energy Engineering Business Unit Requirement by Naveen if(!"Nuclear Energy Engineering".equalsIgnoreCase(businessUnit)){ actionTable = new Table(ReviewConstants.NINE,ReviewConstants.THREE); widthac = new float[ReviewConstants.NINE]; widthac[0] = ReviewConstants.MAGIC_DOTONE; widthac[1] = ReviewConstants.MAGIC_DOTONEZERO; widthac[2] = ReviewConstants.MAGIC_DOTTWOZERO; widthac[ReviewConstants.THREE] = ReviewConstants.MAGIC_DOTTWOZERO; widthac[ReviewConstants.FOUR] = ReviewConstants.MAGIC_DOTONEZERO; widthac[ReviewConstants.FIVE] = ReviewConstants.MAGIC_DOTONEZERO; widthac[ReviewConstants.SIX] = ReviewConstants.MAGIC_DOTONEZERO; widthac[ReviewConstants.SEVEN] = ReviewConstants.MAGIC_DOTONEZERO; widthac[ReviewConstants.EIGHT] = ReviewConstants.MAGIC_DOTONEZERO; }else{ actionTable = new Table(ReviewConstants.SIX,ReviewConstants.THREE); widthac = new float[ReviewConstants.SIX]; widthac[0] = ReviewConstants.MAGIC_DOTONE; widthac[1] = ReviewConstants.MAGIC_THREEZERO; widthac[2] = ReviewConstants.MAGIC_THREEZERO; widthac[ReviewConstants.THREE] = ReviewConstants.MAGIC_THREEZERO; widthac[ReviewConstants.FOUR] = ReviewConstants.MAGIC_DOTONEZERO; widthac[ReviewConstants.FIVE] = ReviewConstants.MAGIC_DOTONEZERO; } actionTable.setTableFitsPage(true); actionTable.setPadding(2); actionTable.setSpacing(0); actionTable.setWidth(ReviewConstants.MAGIC_ONEZEROZERO); actionTable.setWidths(widthac); actionTable.setBorderWidth(1); Cell accell = new Cell(new Paragraph(ReviewConstants.S_ACTIONID, new Font(Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); if(!"Nuclear Energy Engineering".equalsIgnoreCase(businessUnit)){ accell = new Cell(new Paragraph(ReviewConstants.PDF_RT, new Font(Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); } accell = new Cell(new Paragraph(ReviewConstants.S_REQA, new Font(Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); accell = new Cell(new Paragraph(ReviewConstants.S_CLOSURE, new Font(Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); accell = new Cell(new Paragraph(ReviewConstants.S_DISPOSITION, new Font(Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); //added by santosh on 18 june actionTable.endHeaders(); document.add(actionTable); if(!"Nuclear Energy Engineering".equalsIgnoreCase(businessUnit)){ accell = new Cell(new Paragraph(ReviewConstants.S_DRB_REFERENCE, new Font( Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); accell = new Cell(new Paragraph(ReviewConstants.S_DEADLINE, new Font( Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); } accell = new Cell(new Paragraph(ReviewConstants.S_OWNER, new Font( Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); accell = new Cell(new Paragraph(ReviewConstants.S_STATE, new Font( Font.HELVETICA, fontSize, Font.BOLD))); accell.setHeader(true); actionTable.addCell(accell); int acSize = 0; if (_actionList != null) { acSize = _actionList.size(); } for (int i = 0; i < acSize; i++) { _aiBean = (ActionItemData) _actionList.get(i); Cell adCell = new Cell(new Paragraph(_aiBean.getActionID(), new Font( Font.HELVETICA, ReviewConstants.MAGIC_EIGHT))); adCell.setHeader(false); actionTable.addCell(adCell); if(!"Nuclear Energy Engineering".equalsIgnoreCase(businessUnit)){ if (_aiBean.getActionItemType().equals("0")) { adCell = new Cell(new Paragraph("Normal", new Font(Font.HELVETICA, fontSize))); } else { adCell = new Cell(new Paragraph("Critical", new Font(Font.HELVETICA, fontSize))); } adCell.setHeader(false); actionTable.addCell(adCell); } adCell = new Cell(new Paragraph(_aiBean.getRequiredAction(), new Font(Font.HELVETICA, fontSize))); adCell.setHeader(false); actionTable.addCell(adCell); adCell = new Cell(new Paragraph(_aiBean.getClosureCriteria(), new Font(Font.HELVETICA, fontSize))); adCell.setHeader(false); actionTable.addCell(adCell); String drbLink = ReviewConstants.EMPTY; drbRefList = new ArrayList(); if (!DRUtils.isEmpty(_aiBean.getState()) && ((_aiBean.getState() .equalsIgnoreCase(ReviewConstants.DRAFT_BEGUN_STATE)) || (_aiBean.getState() .equalsIgnoreCase(ReviewConstants.SCOPE_PROPOSED)) || (_aiBean .getState() .equalsIgnoreCase(ReviewConstants.RES_PROPOSED)))) { drbLink = ReviewConstants.EMPTY; _aiBean.setDisposition(ReviewConstants.EMPTY); } else { drbRefList = _actionService.getDrbRefForPDF(_aiBean.getActionSeqID(), _connection); int drbRefCnt = 0; if (drbRefList != null) { drbRefCnt = drbRefList.size(); int j = 0; for (j = 0; j < drbRefCnt; j++) { LOG.info("drbRefList.get(j)" + drbRefList.get(j).toString()); if (j < (drbRefCnt - 1)) { drbLink += drbRefList.get(j).toString() + ReviewConstants.COMMA_SPACE; } else { drbLink += drbRefList.get(j).toString(); } } } } LOG.info("drbLink" + drbLink); adCell = new Cell(new Paragraph(_aiBean.getDisposition(), new Font(Font.HELVETICA, fontSize))); adCell.setHeader(false); actionTable.addCell(adCell); //Updated for Nuclear Energy Engineering Business Unit Requirement by Naveen if(!"Nuclear Energy Engineering".equalsIgnoreCase(businessUnit)){ adCell = new Cell(new Paragraph(drbLink, new Font( Font.HELVETICA, fontSize))); adCell.setHeader(false); actionTable.addCell(adCell); adCell = new Cell(new Paragraph(_aiBean.getDeadline(), new Font(Font.HELVETICA, fontSize))); adCell.setHeader(false); actionTable.addCell(adCell); } adCell = new Cell(new Paragraph(_aiBean.getActionItemOwnerName(), new Font(Font.HELVETICA, fontSize))); adCell.setHeader(false); actionTable.addCell(adCell); adCell = new Cell(new Paragraph(_aiBean.getState(), new Font(Font.HELVETICA, fontSize))); adCell.setHeader(false); actionTable.addCell(adCell); //added by santosh actionTable.endHeaders(); document.add(actionTable); // added by santosh end } /*Phrase headerPhrase = new Phrase(); Table headTab = (Table)actionTable.getElement(0, 5); headerPhrase.add(headTab); HeaderFooter printHeader = new HeaderFooter(headerPhrase,false); System.out.println("addHeader"); document.setHeader(printHeader); actionTable.setLastHeaderRow(1); actionTable.endHeaders(); document.add(actionTable);*/ // added by santosh actionTable.endHeaders(); document.add(actionTable); // added by santosh end section.add(actionTable); } catch (Exception e) { LOG.error("General Exception occured", e); } }

    Read the article

  • error echo id when i want to echo id for edit

    - by Prasanta Baidya
    I have a entry and edit page of a branch, I want echo id, when I mouse over into edit link in edit button, its show error,: branchedit.php?id=Note:Undefined index:id in line 101, but it work properly in localhost. error picture page link : https://www.dropbox.com/s/i1vu62lz3pezia0/id%20error.JPG My code: <?php include 'include/config.php'; include 'include/opendb.php'; include 'loginheader.php'; ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Branch</title> <!--Requered Validation --> <link rel="stylesheet" type="text/css" media="screen" href="jqueryvalidation/demo/css/screen.css" /> <script src="jqueryvalidation/jquery.js" type="text/javascript"></script> <script src="jqueryvalidation/jquery.validate.js" type="text/javascript"></script> <script type="text/javascript"> $(document).ready(function() { $("#commentForm").validate(); }); </script> <!--End Requered Validation --> <style type="text/css"> <!-- body { background-color: #cccccc; } --> </style> <style type="text/css"> <!-- --> </style> <link href="css/usercss.css" rel="stylesheet" type="text/css" /> <style type="text/css"> <!-- .style7 { color: #000000; font-weight: bold; } .style8 {color: #FFFFFF} --> </style> </head> <body> <div id="container"> <table width="453" border="0" align="left" cellpadding="0" cellspacing="1"> <tr> <td width="451"><form name="cmxform" id="commentForm" method="post" action="insert_ac.php"> <table width="100%" border="0" cellspacing="1" cellpadding="3"> <tr> <td colspan="3" class="style2">Insert Branch into Database </td> </tr> <tr> <td width="100" height="46">Branch Code</td> <td width="18">:</td> <td width="309"><input name="branch_code" type="text" id="branch_code" minlength="3" class="required"></td> </tr> <tr> <td height="51">Branch Name</td> <td>:</td> <td><input name="branch_name" type="text" id="branch_name" class="required" ></td> </tr> <tr> <td height="47" colspan="3" align="center"> <div align="right"> <input name="Submit" type="submit" class="submit_button" value="Submit" /> &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </div></td> </tr> </table> </form></td> </tr> </table> <!--Branch List --> <?php $sql="SELECT * FROM dc_master"; $result=mysql_query($sql); ?> <table width="436" border="1" cellpadding="2" cellspacing="0" class="table" id="list"> <tr> <td colspan="4"><div align="center" class="style7">List of Branches </div></td> </tr> <tr class="style4" > <td width="87" align="center"><span class="style8">Branch Code</span></td> <td width="176" align="center" ><span class="style8">Branch Name</span></td> <td width="70" align="center" ><span class="style8">Edit</span></td> <td width="77" align="center" ><span class="style8">Delete</span></td> </tr> <?php while($rows=mysql_fetch_array($result)){ ?> <tr> <td height="28"><div align="center" class="style3"><?php echo $rows['branch_code']; ?></div></td> <td class="style3">&nbsp;&nbsp;&nbsp;<?php echo $rows['dc_name']; ?></td> <!--link to update.php and send value of id --> <td align="center"><a href="branchedit.php?id=<?php echo $rows['id']; ?>" class="style3 style5 style5">Edit</a></td> <td align="center"><a href="delete.php?id=<?php echo $rows['id']; ?>" class="style3 style5 style5" onclick="return confirm('Are you sure, you want to delete? (After delete you can not undo or get it again) <?php ?>')">Delete</a></td> </tr> <?php } ?> </table> <span class="footer">Programmer : Prasanta Baidya / Mobile : 09830980840 / Email id : [email protected]</span></div> <?php mysql_close(); ?> </body> </html>

    Read the article

  • Facebook like button not going back side on the fixed div

    - by Lahiru Chathuranga
    I added a Facebook like button to my website.My website has a fixed div on top of the page(blue color div in the image). The like button is below that(in a div which can scroll) My problem is when the page is scroll down the like button comes on top of the fixed div(blue color).I want to scroll it from the backside of the div.How can I do that? There are couple of screenshots I added Before Scroll After Scroll Here is my code of the fixed div <script type="text/javascript"> function got_to_signup(){ window.location.href = "view/policy"; } </script> <div id="fb-root"></div> <script>(function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_GB/all.js#xfbml=1&appId=368003049941951"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk'));</script> <div style="width:100%;background-color:#0094d6;" > <div id="dd" style="background-color:#0094d6; width:100%; height:75px;position:fixed; " class="center "><div id="a" style="width:1010px; height:75px; background-color:#000000;background:url(xx.png); background-repeat:no-repeat; font-family:Arial, Helvetica, sans-serif; font-size:11px; color:#003; " class="inner div_border"> <table width="1010" border="0" > <tr > <td width="15%" rowspan="2"><a href="" style="cursor:pointer; cursor:hand;"><div style="width:200px; height:50px;background-color:none;"></div></a></td> <td width="22%" height="14">&nbsp;</td> <td width="5%">&nbsp;</td> <td width="5%">&nbsp;</td> <td width="28%">&nbsp;</td> <td width="2%">&nbsp;</td> <td width="23%">&nbsp;</td> </tr> <tr> <td colspan="4"> </td> <td colspan="2"><span style="float: right; " ><div style="background-color:#006d9e;border-radius:3px; width:250px; height:34px; display: table; vertical-align: middle; color:#FFF; "> <table width="100%" border="0" > <tr > <td width="43%" style="text-align:center"> Start to bump !</td> <td width="29%"><div id='basic-modal'><span style="float: right; " ><input name="login_btn" type="button" class="login_button basic" id="login_btn" value="Sign in" /></span></div></td> <td width="28%"><span style="float: right; " ><form id="form_reg" method="post"><input name="register_btn" type="button" class="register_button" id="register_btn" value="Sign up" onclick="got_to_signup()"/></form></span></td> </tr> </table> </div></span></td> </tr> <tr> <td>&nbsp;</td> <td>&nbsp;</td> <td>&nbsp;</td> <td>&nbsp;</td> <td>&nbsp;</td> <td>&nbsp;</td> <td style="color:#FFF; font:Arial, Helvetica, sans-serif; font-size:9px; text-align:right;"> Beta Version </td> </tr> </table> </div></div></div> here is my facebook like button code </script> <div id="fb-root"></div> <script>(function(d, s, id) { var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_GB/all.js#xfbml=1&appId=368003049941951"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk'));</script> <td height="21" colspan="2"> <table width="187" style="margin-left:3px;font-size:1px;background-image:url(share_back.png);background-repeat:no-repeat;border-radius:3px;" > <!--tweeter button--> <tr><td width="71"><a href="https://twitter.com/bump_lk" class="twitter-follow-button" data-show-count="false" style="float:right;">Follow @bump_lk</a> <script>!function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs");</script></td> <!--facebook like button--> <td width="48"><div class="fb-like" data-href="https://www.facebook.com/Bump.lk" data-send="false" data-layout="button_count" data-width="10" data-show-faces="false" style="position:relative;"></div> </td></tr></table></td> <td>&nbsp;</td> <td>&nbsp;</td> <td >

    Read the article

  • ASP.NET MVC Validations

    - by Pinu
    I need to validate the Advanced search form , but it has data to be sent to 2 different table people and documents so i am unable to use data annotations. I need to validate the Name to be characters only, account number & amount to be a number.How can i validate these fields? <asp:Content ID="indexContent" ContentPlaceHolderID="MainContent" runat="server"> <center> <img src="../../Content/images/DocuVault_Logo.png" alt="DocuVault" /> <%= Html.ValidationSummary() %> <% using (Html.BeginForm("QuickSearch", "Search")) { %> <div id="div_QuickSearch"> <table> <tr> <td colspan="2"> <%= Html.TextBox("search", "", new { style = "width: 300px" })%> <input type="submit" value="Search" /> </td> </tr> <tr> <td colspan="2"> <%= Html.ValidationMessage("search") %> </td> </tr> <tr> <td><a href="#" id="link_advanced">Advanced Search</a></td> </tr> </table> <br /> </div> <% } %> <ul> </ul> </div> <% using (Html.BeginForm("AdvancedSearch", "Search")) { %> <div id="div_AdvancedSearch" style="display: none; width: 420px; padding: 10px;"> People <table style="border: solid 1px black; padding: 5px; width: 400px;"> <tr> <td>Name:</td> <td align="right"> <%= Html.TextBox("searchName") %> <%= Html.ValidationMessage("searchName")%> </td> </tr> <tr> <td>Address:</td> <td align="right"> <%= Html.TextBox("searchAddress") %> <%= Html.ValidationMessage("searchAddress")%> </td> </tr> <tr> <td>Account Number:</td> <td align="right"> <%= Html.TextBox("searchAccountNumber") %> <%= Html.ValidationMessage("searchAccountNumber")%> </td> </tr> </table> <br /> Documents <table style="border: solid 1px black; padding: 5px; width: 400px;"> <tr> <td>Invoice:</td> <td align="right"> <%= Html.TextBox("searchInvoice") %> <%= Html.ValidationMessage("searchInvoice")%> </td> </tr> <tr> <td>Amount:</td> <td align="right"> <%= Html.TextBox("searchAmount") %> <%= Html.ValidationMessage("searchAmount")%> </td> </tr> <tr> <td>Job:</td> <td align="right"> <%= Html.TextBox("searchJob") %> <%= Html.ValidationMessage("searchJob")%> </td> </tr> <tr> <td>SDI:</td> <td align="right"> <%= Html.TextBox("searchSDI") %> <%= Html.ValidationMessage("searchSDI")%> </td> </tr> <tr> <td>Date:</td> <td align="right"> <%= Html.TextBox("searchDateBegin", "", new { style = "width: 88px" })%> to <%= Html.TextBox("searchDateEnd", "", new { style = "width: 88px" })%> <%= Html.ValidationMessage("searchDate")%> </td> </tr> </table> <br /> <div style="width: 100%;"> <span style="float: left; margin-left: 10px;"><a href="#" id="link_quick">QuickSearch</a></span> <span style="float: right; margin-right: 10px;"><input type="submit" value="Advanced Search" /></span> </div> </div> <% } %> </center> </asp:Content>

    Read the article

  • Many to Many delete in NHibernate two parents with common association

    - by Joshua Grippo
    I have 3 top level entities in my app: Circuit, Issue, Document Circuits can contain Documents and Issues can contain Documents. When I delete a Circuit, I want it to delete the documents associated with it, unless it is used by something else. I would like this same behavior with Issues. I have it working when the only association is in the same table in the db, but if it is in another table, then it fails due to foreign key constraints. ex 1(This will cascade properly, because there is only a foreign constraint from Circuit to Document) Document1 exists. Circuit1 exists and contains a reference to Document1. If I delete Circuit1 then it deletes Document1 with it. ex 2(This will cascade properly, because there is only a foreign constraint from Circuit to Document.) Document1 exists. Circuit1 exists and contains a reference to Document1. Circuit2 exists and contains a reference to Document1. If I delete Circuit1 then it is deleted, but Document1 is not deleted because Circuit2 exists. If I then delete Circuit2, then Document1 is deleted. ex 3(This will throw an error, because when it deletes the Circuit it sees that there are no other circuits that reference the document so it tries to delete the document. However it should not, because there is an Issue that has a foreign constraint to the document.) Document 1 exists. Circuit1 exists and contains a reference to Document1. Issue1 exists and contains a reference to Document1. If I delete Circuit1, then it fails, because it tries to delete Document1, but Issues1 still has a reference. DB: This think won't let upload an image, so here is the ERD to the DB: http://lh3.ggpht.com/_jZWhe7NXay8/TROJhOd7qlI/AAAAAAAAAGU/rkni3oEANvc/CircuitIssues.gif Model: public class Circuit { public virtual int CircuitID { get; set; } public virtual string CJON { get; set; } public virtual IList<Document> Documents { get; set; } } public class Issue { public virtual int IssueID { get; set; } public virtual string Summary { get; set; } public virtual IList<Model.Document> Documents { get; set; } } public class Document { public virtual int DocumentID { get; set; } public virtual string Data { get; set; } } Mapping Files: <?xml version="1.0" encoding="utf-8"?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" namespace="Model" assembly="Model"> <class name="Circuit" table="Circuit"> <id name="CircuitID"> <column name="CircuitID" not-null="true"/> <generator class="identity" /> </id> <property name="CJON" column="CJON" type="string" not-null="true"/> <bag name="Documents" table="CircuitDocument" cascade="save-update,delete-orphan"> <key column="CircuitID"/> <many-to-many class="Document"> <column name="DocumentID" not-null="true"/> </many-to-many> </bag> </class> </hibernate-mapping> <?xml version="1.0" encoding="utf-8"?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" namespace="Model" assembly="Model"> <class name="Issue" table="Issue"> <id name="IssueID"> <column name="IssueID" not-null="true"/> <generator class="identity" /> </id> <property name="Summary" column="Summary" type="string" not-null="true"/> <bag name="Documents" table="IssueDocument" cascade="save-update,delete-orphan"> <key column="IssueID"/> <many-to-many class="Document"> <column name="DocumentID" not-null="true"/> </many-to-many> </bag> </class> </hibernate-mapping> <?xml version="1.0" encoding="utf-8"?> <hibernate-mapping xmlns="urn:nhibernate-mapping-2.2" namespace="Model" assembly="Model"> <class name="Document" table="Document"> <id name="DocumentID"> <column name="DocumentID" not-null="true"/> <generator class="identity" /> </id> <property name="Data" column="Data" type="string" not-null="true"/> </class> </hibernate-mapping> Code: using (ISession session = sessionFactory.OpenSession()) { var doc = new Model.Document() { Data = "Doc" }; var circuit = new Model.Circuit() { CJON = "circ" }; circuit.Documents = new List<Model.Document>(new Model.Document[] { doc }); var issue = new Model.Issue() { Summary = "iss" }; issue.Documents = new List<Model.Document>(new Model.Document[] { doc }); session.Save(circuit); session.Save(issue); session.Flush(); } using (ISession session = sessionFactory.OpenSession()) { foreach (var item in session.CreateCriteria<Model.Circuit>().List<Model.Circuit>()) { session.Delete(item); } //this flush fails, because there is a reference to a child document from issue session.Flush(); foreach (var item in session.CreateCriteria<Model.Issue>().List<Model.Issue>()) { session.Delete(item); } session.Flush(); }

    Read the article

  • AngularJS on top of ASP.NET: Moving the MVC framework out to the browser

    - by Varun Chatterji
    Heavily drawing inspiration from Ruby on Rails, MVC4’s convention over configuration model of development soon became the Holy Grail of .NET web development. The MVC model brought with it the goodness of proper separation of concerns between business logic, data, and the presentation logic. However, the MVC paradigm, was still one in which server side .NET code could be mixed with presentation code. The Razor templating engine, though cleaner than its predecessors, still encouraged and allowed you to mix .NET server side code with presentation logic. Thus, for example, if the developer required a certain <div> tag to be shown if a particular variable ShowDiv was true in the View’s model, the code could look like the following: Fig 1: To show a div or not. Server side .NET code is used in the View Mixing .NET code with HTML in views can soon get very messy. Wouldn’t it be nice if the presentation layer (HTML) could be pure HTML? Also, in the ASP.NET MVC model, some of the business logic invariably resides in the controller. It is tempting to use an anti­pattern like the one shown above to control whether a div should be shown or not. However, best practice would indicate that the Controller should not be aware of the div. The ShowDiv variable in the model should not exist. A controller should ideally, only be used to do the plumbing of getting the data populated in the model and nothing else. The view (ideally pure HTML) should render the presentation layer based on the model. In this article we will see how Angular JS, a new JavaScript framework by Google can be used effectively to build web applications where: 1. Views are pure HTML 2. Controllers (in the server sense) are pure REST based API calls 3. The presentation layer is loaded as needed from partial HTML only files. What is MVVM? MVVM short for Model View View Model is a new paradigm in web development. In this paradigm, the Model and View stuff exists on the client side through javascript instead of being processed on the server through postbacks. These frameworks are JavaScript frameworks that facilitate the clear separation of the “frontend” or the data rendering logic from the “backend” which is typically just a REST based API that loads and processes data through a resource model. The frameworks are called MVVM as a change to the Model (through javascript) gets reflected in the view immediately i.e. Model > View. Also, a change on the view (through manual input) gets reflected in the model immediately i.e. View > Model. The following figure shows this conceptually (comments are shown in red): Fig 2: Demonstration of MVVM in action In Fig 2, two text boxes are bound to the same variable model.myInt. Thus, changing the view manually (changing one text box through keyboard input) also changes the other textbox in real time demonstrating V > M property of a MVVM framework. Furthermore, clicking the button adds 1 to the value of model.myInt thus changing the model through JavaScript. This immediately updates the view (the value in the two textboxes) thus demonstrating the M > V property of a MVVM framework. Thus we see that the model in a MVVM JavaScript framework can be regarded as “the single source of truth“. This is an important concept. Angular is one such MVVM framework. We shall use it to build a simple app that sends SMS messages to a particular number. Application, Routes, Views, Controllers, Scope and Models Angular can be used in many ways to construct web applications. For this article, we shall only focus on building Single Page Applications (SPAs). Many of the approaches we will follow in this article have alternatives. It is beyond the scope of this article to explain every nuance in detail but we shall try to touch upon the basic concepts and end up with a working application that can be used to send SMS messages using Sent.ly Plus (a service that is itself built using Angular). Before you read on, we would like to urge you to forget what you know about Models, Views, Controllers and Routes in the ASP.NET MVC4 framework. All these words have different meanings in the Angular world. Whenever these words are used in this article, they will refer to Angular concepts and not ASP.NET MVC4 concepts. The following figure shows the skeleton of the root page of an SPA: Fig 3: The skeleton of a SPA The skeleton of the application is based on the Bootstrap starter template which can be found at: http://getbootstrap.com/examples/starter­template/ Apart from loading the Angular, jQuery and Bootstrap JavaScript libraries, it also loads our custom scripts /app/js/controllers.js /app/js/app.js These scripts define the routes, views and controllers which we shall come to in a moment. Application Notice that the body tag (Fig. 3) has an extra attribute: ng­app=”smsApp” Providing this tag “bootstraps” our single page application. It tells Angular to load a “module” called smsApp. This “module” is defined /app/js/app.js angular.module('smsApp', ['smsApp.controllers', function () {}]) Fig 4: The definition of our application module The line shows above, declares a module called smsApp. It also declares that this module “depends” on another module called “smsApp.controllers”. The smsApp.controllers module will contain all the controllers for our SPA. Routing and Views Notice that in the Navbar (in Fig 3) we have included two hyperlinks to: “#/app” “#/help” This is how Angular handles routing. Since the URLs start with “#”, they are actually just bookmarks (and not server side resources). However, our route definition (in /app/js/app.js) gives these URLs a special meaning within the Angular framework. angular.module('smsApp', ['smsApp.controllers', function () { }]) //Configure the routes .config(['$routeProvider', function ($routeProvider) { $routeProvider.when('/binding', { templateUrl: '/app/partials/bindingexample.html', controller: 'BindingController' }); }]); Fig 5: The definition of a route with an associated partial view and controller As we can see from the previous code sample, we are using the $routeProvider object in the configuration of our smsApp module. Notice how the code “asks for” the $routeProvider object by specifying it as a dependency in the [] braces and then defining a function that accepts it as a parameter. This is known as dependency injection. Please refer to the following link if you want to delve into this topic: http://docs.angularjs.org/guide/di What the above code snippet is doing is that it is telling Angular that when the URL is “#/binding”, then it should load the HTML snippet (“partial view”) found at /app/partials/bindingexample.html. Also, for this URL, Angular should load the controller called “BindingController”. We have also marked the div with the class “container” (in Fig 3) with the ng­view attribute. This attribute tells Angular that views (partial HTML pages) defined in the routes will be loaded within this div. You can see that the Angular JavaScript framework, unlike many other frameworks, works purely by extending HTML tags and attributes. It also allows you to extend HTML with your own tags and attributes (through directives) if you so desire, you can find out more about directives at the following URL: http://www.codeproject.com/Articles/607873/Extending­HTML­with­AngularJS­Directives Controllers and Models We have seen how we define what views and controllers should be loaded for a particular route. Let us now consider how controllers are defined. Our controllers are defined in the file /app/js/controllers.js. The following snippet shows the definition of the “BindingController” which is loaded when we hit the URL http://localhost:port/index.html#/binding (as we have defined in the route earlier as shown in Fig 5). Remember that we had defined that our application module “smsApp” depends on the “smsApp.controllers” module (see Fig 4). The code snippet below shows how the “BindingController” defined in the route shown in Fig 5 is defined in the module smsApp.controllers: angular.module('smsApp.controllers', [function () { }]) .controller('BindingController', ['$scope', function ($scope) { $scope.model = {}; $scope.model.myInt = 6; $scope.addOne = function () { $scope.model.myInt++; } }]); Fig 6: The definition of a controller in the “smsApp.controllers” module. The pieces are falling in place! Remember Fig.2? That was the code of a partial view that was loaded within the container div of the skeleton SPA shown in Fig 3. The route definition shown in Fig 5 also defined that the controller called “BindingController” (shown in Fig 6.) was loaded when we loaded the URL: http://localhost:22544/index.html#/binding The button in Fig 2 was marked with the attribute ng­click=”addOne()” which added 1 to the value of model.myInt. In Fig 6, we can see that this function is actually defined in the “BindingController”. Scope We can see from Fig 6, that in the definition of “BindingController”, we defined a dependency on $scope and then, as usual, defined a function which “asks for” $scope as per the dependency injection pattern. So what is $scope? Any guesses? As you might have guessed a scope is a particular “address space” where variables and functions may be defined. This has a similar meaning to scope in a programming language like C#. Model: The Scope is not the Model It is tempting to assign variables in the scope directly. For example, we could have defined myInt as $scope.myInt = 6 in Fig 6 instead of $scope.model.myInt = 6. The reason why this is a bad idea is that scope in hierarchical in Angular. Thus if we were to define a controller which was defined within the another controller (nested controllers), then the inner controller would inherit the scope of the parent controller. This inheritance would follow JavaScript prototypal inheritance. Let’s say the parent controller defined a variable through $scope.myInt = 6. The child controller would inherit the scope through java prototypical inheritance. This basically means that the child scope has a variable myInt that points to the parent scopes myInt variable. Now if we assigned the value of myInt in the parent, the child scope would be updated with the same value as the child scope’s myInt variable points to the parent scope’s myInt variable. However, if we were to assign the value of the myInt variable in the child scope, then the link of that variable to the parent scope would be broken as the variable myInt in the child scope now points to the value 6 and not to the parent scope’s myInt variable. But, if we defined a variable model in the parent scope, then the child scope will also have a variable model that points to the model variable in the parent scope. Updating the value of $scope.model.myInt in the parent scope would change the model variable in the child scope too as the variable is pointed to the model variable in the parent scope. Now changing the value of $scope.model.myInt in the child scope would ALSO change the value in the parent scope. This is because the model reference in the child scope is pointed to the scope variable in the parent. We did no new assignment to the model variable in the child scope. We only changed an attribute of the model variable. Since the model variable (in the child scope) points to the model variable in the parent scope, we have successfully changed the value of myInt in the parent scope. Thus the value of $scope.model.myInt in the parent scope becomes the “single source of truth“. This is a tricky concept, thus it is considered good practice to NOT use scope inheritance. More info on prototypal inheritance in Angular can be found in the “JavaScript Prototypal Inheritance” section at the following URL: https://github.com/angular/angular.js/wiki/Understanding­Scopes. Building It: An Angular JS application using a .NET Web API Backend Now that we have a perspective on the basic components of an MVVM application built using Angular, let’s build something useful. We will build an application that can be used to send out SMS messages to a given phone number. The following diagram describes the architecture of the application we are going to build: Fig 7: Broad application architecture We are going to add an HTML Partial to our project. This partial will contain the form fields that will accept the phone number and message that needs to be sent as an SMS. It will also display all the messages that have previously been sent. All the executable code that is run on the occurrence of events (button clicks etc.) in the view resides in the controller. The controller interacts with the ASP.NET WebAPI to get a history of SMS messages, add a message etc. through a REST based API. For the purposes of simplicity, we will use an in memory data structure for the purposes of creating this application. Thus, the tasks ahead of us are: Creating the REST WebApi with GET, PUT, POST, DELETE methods. Creating the SmsView.html partial Creating the SmsController controller with methods that are called from the SmsView.html partial Add a new route that loads the controller and the partial. 1. Creating the REST WebAPI This is a simple task that should be quite straightforward to any .NET developer. The following listing shows our ApiController: public class SmsMessage { public string to { get; set; } public string message { get; set; } } public class SmsResource : SmsMessage { public int smsId { get; set; } } public class SmsResourceController : ApiController { public static Dictionary<int, SmsResource> messages = new Dictionary<int, SmsResource>(); public static int currentId = 0; // GET api/<controller> public List<SmsResource> Get() { List<SmsResource> result = new List<SmsResource>(); foreach (int key in messages.Keys) { result.Add(messages[key]); } return result; } // GET api/<controller>/5 public SmsResource Get(int id) { if (messages.ContainsKey(id)) return messages[id]; return null; } // POST api/<controller> public List<SmsResource> Post([FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { SmsResource res = (SmsResource) value; res.smsId = currentId++; messages.Add(res.smsId, res); //SentlyPlusSmsSender.SendMessage(value.to, value.message); return Get(); } } // PUT api/<controller>/5 public List<SmsResource> Put(int id, [FromBody] SmsMessage value) { //Synchronize on messages so we don't have id collisions lock (messages) { if (messages.ContainsKey(id)) { //Update the message messages[id].message = value.message; messages[id].to = value.message; } return Get(); } } // DELETE api/<controller>/5 public List<SmsResource> Delete(int id) { if (messages.ContainsKey(id)) { messages.Remove(id); } return Get(); } } Once this class is defined, we should be able to access the WebAPI by a simple GET request using the browser: http://localhost:port/api/SmsResource Notice the commented line: //SentlyPlusSmsSender.SendMessage The SentlyPlusSmsSender class is defined in the attached solution. We have shown this line as commented as we want to explain the core Angular concepts. If you load the attached solution, this line is uncommented in the source and an actual SMS will be sent! By default, the API returns XML. For consumption of the API in Angular, we would like it to return JSON. To change the default to JSON, we make the following change to WebApiConfig.cs file located in the App_Start folder. public static class WebApiConfig { public static void Register(HttpConfiguration config) { config.Routes.MapHttpRoute( name: "DefaultApi", routeTemplate: "api/{controller}/{id}", defaults: new { id = RouteParameter.Optional } ); var appXmlType = config.Formatters.XmlFormatter. SupportedMediaTypes. FirstOrDefault( t => t.MediaType == "application/xml"); config.Formatters.XmlFormatter.SupportedMediaTypes.Remove(appXmlType); } } We now have our backend REST Api which we can consume from Angular! 2. Creating the SmsView.html partial This simple partial will define two fields: the destination phone number (international format starting with a +) and the message. These fields will be bound to model.phoneNumber and model.message. We will also add a button that we shall hook up to sendMessage() in the controller. A list of all previously sent messages (bound to model.allMessages) will also be displayed below the form input. The following code shows the code for the partial: <!--­­ If model.errorMessage is defined, then render the error div -­­> <div class="alert alert-­danger alert-­dismissable" style="margin­-top: 30px;" ng­-show="model.errorMessage != undefined"> <button type="button" class="close" data­dismiss="alert" aria­hidden="true">&times;</button> <strong>Error!</strong> <br /> {{ model.errorMessage }} </div> <!--­­ The input fields bound to the model --­­> <div class="well" style="margin-­top: 30px;"> <table style="width: 100%;"> <tr> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Phone number (eg; +44 7778 609466)" ng­-model="model.phoneNumber" class="form-­control" style="width: 90%" onkeypress="return checkPhoneInput();" /> </td> <td style="width: 45%; text-­align: center;"> <input type="text" placeholder="Message" ng­-model="model.message" class="form-­control" style="width: 90%" /> </td> <td style="text-­align: center;"> <button class="btn btn-­danger" ng-­click="sendMessage();" ng-­disabled="model.isAjaxInProgress" style="margin­right: 5px;">Send</button> <img src="/Content/ajax-­loader.gif" ng­-show="model.isAjaxInProgress" /> </td> </tr> </table> </div> <!--­­ The past messages ­­--> <div style="margin-­top: 30px;"> <!­­-- The following div is shown if there are no past messages --­­> <div ng­-show="model.allMessages.length == 0"> No messages have been sent yet! </div> <!--­­ The following div is shown if there are some past messages --­­> <div ng-­show="model.allMessages.length == 0"> <table style="width: 100%;" class="table table-­striped"> <tr> <td>Phone Number</td> <td>Message</td> <td></td> </tr> <!--­­ The ng-­repeat directive is line the repeater control in .NET, but as you can see this partial is pure HTML which is much cleaner --> <tr ng-­repeat="message in model.allMessages"> <td>{{ message.to }}</td> <td>{{ message.message }}</td> <td> <button class="btn btn-­danger" ng-­click="delete(message.smsId);" ng­-disabled="model.isAjaxInProgress">Delete</button> </td> </tr> </table> </div> </div> The above code is commented and should be self explanatory. Conditional rendering is achieved through using the ng-­show=”condition” attribute on various div tags. Input fields are bound to the model and the send button is bound to the sendMessage() function in the controller as through the ng­click=”sendMessage()” attribute defined on the button tag. While AJAX calls are taking place, the controller sets model.isAjaxInProgress to true. Based on this variable, buttons are disabled through the ng-­disabled directive which is added as an attribute to the buttons. The ng-­repeat directive added as an attribute to the tr tag causes the table row to be rendered multiple times much like an ASP.NET repeater. 3. Creating the SmsController controller The penultimate piece of our application is the controller which responds to events from our view and interacts with our MVC4 REST WebAPI. The following listing shows the code we need to add to /app/js/controllers.js. Note that controller definitions can be chained. Also note that this controller “asks for” the $http service. The $http service is a simple way in Angular to do AJAX. So far we have only encountered modules, controllers, views and directives in Angular. The $http is new entity in Angular called a service. More information on Angular services can be found at the following URL: http://docs.angularjs.org/guide/dev_guide.services.understanding_services. .controller('SmsController', ['$scope', '$http', function ($scope, $http) { //We define the model $scope.model = {}; //We define the allMessages array in the model //that will contain all the messages sent so far $scope.model.allMessages = []; //The error if any $scope.model.errorMessage = undefined; //We initially load data so set the isAjaxInProgress = true; $scope.model.isAjaxInProgress = true; //Load all the messages $http({ url: '/api/smsresource', method: "GET" }). success(function (data, status, headers, config) { this callback will be called asynchronously //when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { //called asynchronously if an error occurs //or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); $scope.delete = function (id) { //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource/' + id, method: "DELETE" }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } $scope.sendMessage = function () { $scope.model.errorMessage = undefined; var message = ''; if($scope.model.message != undefined) message = $scope.model.message.trim(); if ($scope.model.phoneNumber == undefined || $scope.model.phoneNumber == '' || $scope.model.phoneNumber.length < 10 || $scope.model.phoneNumber[0] != '+') { $scope.model.errorMessage = "You must enter a valid phone number in international format. Eg: +44 7778 609466"; return; } if (message.length == 0) { $scope.model.errorMessage = "You must specify a message!"; return; } //We are making an ajax call so we set this to true $scope.model.isAjaxInProgress = true; $http({ url: '/api/smsresource', method: "POST", data: { to: $scope.model.phoneNumber, message: $scope.model.message } }). success(function (data, status, headers, config) { // this callback will be called asynchronously // when the response is available $scope.model.allMessages = data; //We are done with AJAX loading $scope.model.isAjaxInProgress = false; }). error(function (data, status, headers, config) { // called asynchronously if an error occurs // or server returns response with an error status. $scope.model.errorMessage = "Error occurred status:" + status // We are done with AJAX loading $scope.model.isAjaxInProgress = false; }); } }]); We can see from the previous listing how the functions that are called from the view are defined in the controller. It should also be evident how easy it is to make AJAX calls to consume our MVC4 REST WebAPI. Now we are left with the final piece. We need to define a route that associates a particular path with the view we have defined and the controller we have defined. 4. Add a new route that loads the controller and the partial This is the easiest part of the puzzle. We simply define another route in the /app/js/app.js file: $routeProvider.when('/sms', { templateUrl: '/app/partials/smsview.html', controller: 'SmsController' }); Conclusion In this article we have seen how much of the server side functionality in the MVC4 framework can be moved to the browser thus delivering a snappy and fast user interface. We have seen how we can build client side HTML only views that avoid the messy syntax offered by server side Razor views. We have built a functioning app from the ground up. The significant advantage of this approach to building web apps is that the front end can be completely platform independent. Even though we used ASP.NET to create our REST API, we could just easily have used any other language such as Node.js, Ruby etc without changing a single line of our front end code. Angular is a rich framework and we have only touched on basic functionality required to create a SPA. For readers who wish to delve further into the Angular framework, we would recommend the following URL as a starting point: http://docs.angularjs.org/misc/started. To get started with the code for this project: Sign up for an account at http://plus.sent.ly (free) Add your phone number Go to the “My Identies Page” Note Down your Sender ID, Consumer Key and Consumer Secret Download the code for this article at: https://docs.google.com/file/d/0BzjEWqSE31yoZjZlV0d0R2Y3eW8/edit?usp=sharing Change the values of Sender Id, Consumer Key and Consumer Secret in the web.config file Run the project through Visual Studio!

    Read the article

  • Plan Caching and Query Memory Part II (Hash Match) – When not to use stored procedure - Most common performance mistake SQL Server developers make.

    - by sqlworkshops
    SQL Server estimates Memory requirement at compile time, when stored procedure or other plan caching mechanisms like sp_executesql or prepared statement are used, the memory requirement is estimated based on first set of execution parameters. This is a common reason for spill over tempdb and hence poor performance. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Hash Match operations with examples. It is recommended to read Plan Caching and Query Memory Part I before this article which covers an introduction and Query memory for Sort. In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a query does not change significantly based on predicates.   This article covers underestimation / overestimation of memory for Hash Match operation. Plan Caching and Query Memory Part I covers underestimation / overestimation for Sort. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts  Let’s create a Customer’s State table that has 99% of customers in NY and the rest 1% in WA.Customers table used in Part I of this article is also used here.To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'. --Example provided by www.sqlworkshops.com drop table CustomersState go create table CustomersState (CustomerID int primary key, Address char(200), State char(2)) go insert into CustomersState (CustomerID, Address) select CustomerID, 'Address' from Customers update CustomersState set State = 'NY' where CustomerID % 100 != 1 update CustomersState set State = 'WA' where CustomerID % 100 = 1 go update statistics CustomersState with fullscan go   Let’s create a stored procedure that joins customers with CustomersState table with a predicate on State. --Example provided by www.sqlworkshops.com create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1) end go  Let’s execute the stored procedure first with parameter value ‘WA’ – which will select 1% of data. set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' goThe stored procedure took 294 ms to complete.  The stored procedure was granted 6704 KB based on 8000 rows being estimated.  The estimated number of rows, 8000 is similar to actual number of rows 8000 and hence the memory estimation should be ok.  There was no Hash Warning in SQL Profiler. To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'.   Now let’s execute the stored procedure with parameter value ‘NY’ – which will select 99% of data. -Example provided by www.sqlworkshops.com exec CustomersByState 'NY' go  The stored procedure took 2922 ms to complete.   The stored procedure was granted 6704 KB based on 8000 rows being estimated.    The estimated number of rows, 8000 is way different from the actual number of rows 792000 because the estimation is based on the first set of parameter value supplied to the stored procedure which is ‘WA’ in our case. This underestimation will lead to spill over tempdb, resulting in poor performance.   There was Hash Warning (Recursion) in SQL Profiler. To observe Hash Warning, enable 'Hash Warning' in SQL Profiler under Events 'Errors and Warnings'.   Let’s recompile the stored procedure and then let’s first execute the stored procedure with parameter value ‘NY’.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts, www.sqlworkshops.com/webcasts for further details.   exec sp_recompile CustomersByState go --Example provided by www.sqlworkshops.com exec CustomersByState 'NY' go  Now the stored procedure took only 1046 ms instead of 2922 ms.   The stored procedure was granted 146752 KB of memory. The estimated number of rows, 792000 is similar to actual number of rows of 792000. Better performance of this stored procedure execution is due to better estimation of memory and avoiding spill over tempdb.   There was no Hash Warning in SQL Profiler.   Now let’s execute the stored procedure with parameter value ‘WA’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go  The stored procedure took 351 ms to complete, higher than the previous execution time of 294 ms.    This stored procedure was granted more memory (146752 KB) than necessary (6704 KB) based on parameter value ‘NY’ for estimation (792000 rows) instead of parameter value ‘WA’ for estimation (8000 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is ‘NY’ in this case. This overestimation leads to poor performance of this Hash Match operation, it might also affect the performance of other concurrently executing queries requiring memory and hence overestimation is not recommended.     The estimated number of rows, 792000 is much more than the actual number of rows of 8000.  Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined data range.Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByState go create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1, recompile) end go  Let’s execute the stored procedure initially with parameter value ‘WA’ and then with parameter value ‘NY’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go exec CustomersByState 'NY' go  The stored procedure took 297 ms and 1102 ms in line with previous optimal execution times.   The stored procedure with parameter value ‘WA’ has good estimation like before.   Estimated number of rows of 8000 is similar to actual number of rows of 8000.   The stored procedure with parameter value ‘NY’ also has good estimation and memory grant like before because the stored procedure was recompiled with current set of parameter values.  Estimated number of rows of 792000 is similar to actual number of rows of 792000.    The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.   There was no Hash Warning in SQL Profiler.   Let’s recreate the stored procedure with optimize for hint of ‘NY’. --Example provided by www.sqlworkshops.com drop proc CustomersByState go create proc CustomersByState @State char(2) as begin declare @CustomerID int select @CustomerID = e.CustomerID from Customers e inner join CustomersState es on (e.CustomerID = es.CustomerID) where es.State = @State option (maxdop 1, optimize for (@State = 'NY')) end go  Let’s execute the stored procedure initially with parameter value ‘WA’ and then with parameter value ‘NY’. --Example provided by www.sqlworkshops.com exec CustomersByState 'WA' go exec CustomersByState 'NY' go  The stored procedure took 353 ms with parameter value ‘WA’, this is much slower than the optimal execution time of 294 ms we observed previously. This is because of overestimation of memory. The stored procedure with parameter value ‘NY’ has optimal execution time like before.   The stored procedure with parameter value ‘WA’ has overestimation of rows because of optimize for hint value of ‘NY’.   Unlike before, more memory was estimated to this stored procedure based on optimize for hint value ‘NY’.    The stored procedure with parameter value ‘NY’ has good estimation because of optimize for hint value of ‘NY’. Estimated number of rows of 792000 is similar to actual number of rows of 792000.   Optimal amount memory was estimated to this stored procedure based on optimize for hint value ‘NY’.   There was no Hash Warning in SQL Profiler.   This article covers underestimation / overestimation of memory for Hash Match operation. Plan Caching and Query Memory Part I covers underestimation / overestimation for Sort. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case.   I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.  Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.   Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Converting Encrypted Values

    - by Johnm
    Your database has been protecting sensitive data at rest using the cell-level encryption features of SQL Server for quite sometime. The employees in the auditing department have been inviting you to their after-work gatherings and buying you drinks. Thousands of customers implicitly include you in their prayers of thanks giving as their identities remain safe in your company's database. The cipher text resting snuggly in a column of the varbinary data type is great for security; but it can create some interesting challenges when interacting with other data types such as the XML data type. The XML data type is one that is often used as a message type for the Service Broker feature of SQL Server. It also can be an interesting data type to capture for auditing or integrating with external systems. The challenge that cipher text presents is that the need for decryption remains even after it has experienced its XML metamorphosis. Quite an interesting challenge nonetheless; but fear not. There is a solution. To simulate this scenario, we first will want to create a plain text value for us to encrypt. We will do this by creating a variable to store our plain text value: -- set plain text value DECLARE @PlainText NVARCHAR(255); SET @PlainText = 'This is plain text to encrypt'; The next step will be to create a variable that will store the cipher text that is generated from the encryption process. We will populate this variable by using a pre-defined symmetric key and certificate combination: -- encrypt plain text value DECLARE @CipherText VARBINARY(MAX); OPEN SYMMETRIC KEY SymKey     DECRYPTION BY CERTIFICATE SymCert     WITH PASSWORD='mypassword2010';     SET @CipherText = EncryptByKey                          (                            Key_GUID('SymKey'),                            @PlainText                           ); CLOSE ALL SYMMETRIC KEYS; The value of our newly generated cipher text is 0x006E12933CBFB0469F79ABCC79A583--. This will be important as we reference our cipher text later in this post. Our final step in preparing our scenario is to create a table variable to simulate the existence of a table that contains a column used to hold encrypted values. Once this table variable has been created, populate the table variable with the newly generated cipher text: -- capture value in table variable DECLARE @tbl TABLE (EncVal varbinary(MAX)); INSERT INTO @tbl (EncVal) VALUES (@CipherText); We are now ready to experience the challenge of capturing our encrypted column in an XML data type using the FOR XML clause: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT               EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); If you add the SELECT @XML statement at the end of this portion of the code you will see the contents of the XML data in its raw format: <root>   <MYTABLE EncVal="AG4Skzy/sEafeavMeaWDBwEAAACE--" /> </root> Strangely, the value that is captured appears nothing like the value that was created through the encryption process. The result being that when this XML is converted into a readable data set the encrypted value will not be able to be decrypted, even with access to the symmetric key and certificate used to perform the decryption. An immediate thought might be to convert the varbinary data type to either a varchar or nvarchar before creating the XML data. This approach makes good sense. The code for this might look something like the following: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT              CONVERT(NVARCHAR(MAX),EncVal) AS EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); However, this results in the following error: Msg 9420, Level 16, State 1, Line 26 XML parsing: line 1, character 37, illegal xml character A quick query that returns CONVERT(NVARCHAR(MAX),EncVal) reveals that the value that is causing the error looks like something off of a genuine Chinese menu. While this situation does present us with one of those spine-tingling, expletive-generating challenges, rest assured that this approach is on the right track. With the addition of the "style" argument to the CONVERT method, our solution is at hand. When dealing with converting varbinary data types we have three styles available to us: - The first is to not include the style parameter, or use the value of "0". As we see, this style will not work for us. - The second option is to use the value of "1" will keep our varbinary value including the "0x" prefix. In our case, the value will be 0x006E12933CBFB0469F79ABCC79A583-- - The third option is to use the value of "2" which will chop the "0x" prefix off of our varbinary value. In our case, the value will be 006E12933CBFB0469F79ABCC79A583-- Since we will want to convert this back to varbinary when reading this value from the XML data we will want the "0x" prefix, so we will want to change our code as follows: -- capture set in xml DECLARE @xml XML; SET @xml = (SELECT              CONVERT(NVARCHAR(MAX),EncVal,1) AS EncVal             FROM @tbl AS MYTABLE             FOR XML AUTO, BINARY BASE64, ROOT('root')); Once again, with the inclusion of the SELECT @XML statement at the end of this portion of the code you will see the contents of the XML data in its raw format: <root>   <MYTABLE EncVal="0x006E12933CBFB0469F79ABCC79A583--" /> </root> Nice! We are now cooking with gas. To continue our scenario, we will want to parse the XML data into a data set so that we can glean our freshly captured cipher text. Once we have our cipher text snagged we will capture it into a variable so that it can be used during decryption: -- read back xml DECLARE @hdoc INT; DECLARE @EncVal NVARCHAR(MAX); EXEC sp_xml_preparedocument @hDoc OUTPUT, @xml; SELECT @EncVal = EncVal FROM OPENXML (@hdoc, '/root/MYTABLE') WITH ([EncVal] VARBINARY(MAX) '@EncVal'); EXEC sp_xml_removedocument @hDoc; Finally, the decryption of our cipher text using the DECRYPTBYKEYAUTOCERT method and the certificate utilized to perform the encryption earlier in our exercise: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                            CERT_ID('AuditLogCert'),                            N'mypassword2010',                            @EncVal                           )                     ) EncVal; Ah yes, another hurdle presents itself! The decryption produced the value of NULL which in cryptography means that either you don't have permissions to decrypt the cipher text or something went wrong during the decryption process (ok, sometimes the value is actually NULL; but not in this case). As we see, the @EncVal variable is an nvarchar data type. The third parameter of the DECRYPTBYKEYAUTOCERT method requires a varbinary value. Therefore we will need to utilize our handy-dandy CONVERT method: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                             CERT_ID('AuditLogCert'),                             N'mypassword2010',                             CONVERT(VARBINARY(MAX),@EncVal)                           )                     ) EncVal; Oh, almost. The result remains NULL despite our conversion to the varbinary data type. This is due to the creation of an varbinary value that does not reflect the actual value of our @EncVal variable; but rather a varbinary conversion of the variable itself. In this case, something like 0x3000780030003000360045003--. Considering the "style" parameter got us past XML challenge, we will want to consider its power for this challenge as well. Knowing that the value of "1" will provide us with the actual value including the "0x", we will opt to utilize that value in this case: SELECT     CONVERT(NVARCHAR(MAX),                     DecryptByKeyAutoCert                          (                            CERT_ID('SymCert'),                            N'mypassword2010',                            CONVERT(VARBINARY(MAX),@EncVal,1)                           )                     ) EncVal; Bingo, we have success! We have discovered what happens with varbinary data when captured as XML data. We have figured out how to make this data useful post-XML-ification. Best of all we now have a choice in after-work parties now that our very happy client who depends on our XML based interface invites us for dinner in celebration. All thanks to the effective use of the style parameter.

    Read the article

< Previous Page | 314 315 316 317 318 319 320 321 322 323 324 325  | Next Page >