Search Results

Search found 6079 results on 244 pages for 'define'.

Page 32/244 | < Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >

  • [C++] Multiple inclusion in multiple files

    - by Amumu
    Hi everyone, I am making a small game. In BattleRecord.h: #ifndef _CHARACTER_H_ #define _CHARACTER_H_ #include "Character.h" #endif class BattleRecord { public: Character Attacker; Character Defender; Status status; int DamageDealt; int GoldEarned; int ExpGained; }; In Character.h: #ifndef _EQUIPMENT_H_ #define _EQUIPMENT_H_ #include "Equipment.h" #endif class BattleRecord; class Character { BattleRecord AttackEnemy(Character &Enemy); } In BattleRecord.h: #ifndef _CHARACTER_H_ #define _CHARACTEr_H_ #include "Character.h" #endif #ifndef _BATLE_RECORD_H_ #define _BATLE_RECORD_H_ #include "BattleRecord.h" #endif class GUI { public: //GUI Methods, and two of these: void ViewStats(Character &Player); void Report(BattleRecord Record) } The problem here is, my Character.h and BattleRecord.h need to include each other, and this definitely will cause multiple redefinition problem. Therefore, I used forward declaration in Character.h by adding: class BattleRecord; The problem is sovled. But then, the GUI.h needs BattleRecord.h again for reporting the battle, so I have to include BattleRecord.h into the GUI.h. I also have to include the Character.h in order to pass into the ViewStat function. I got error and stuck with this up to this piont.

    Read the article

  • Who to access a UIButton using tag and button change image?

    - by ste
    I need to change the images on a matrix of UIButtons, and the only thing I know of to address the buttons, is the tag. But I can not find a way to actually us this identifier. The buttons are created programmatically during viewDidLoad. Here is the code for creating the buttons: #define N_ROWS 4 #define N_COLS 3 int N_IMG = 0; for (int a = 0; a < N_COLS; a++) { for (int j = 0; j < N_ROWS; j++) { UIButton *aButton = [UIButton buttonWithType:UIButtonTypeCustom]; aButton.frame = CGRectMake(a * 65.0 + 25, j * 65.0 + 15, 10.0, 10.0); aButton.tag = j + a * N_ROWS + 1; [aButton setBackgroundColor:[UIColor redColor]]; N_IMG = N_IMG++; [self.view addSubview:aButton]; number_sorted = 1; } } Here is the code for setting the image: - (IBAction)set_image:(id)sender { #define N_ROWS 4 #define N_COLS 3 int N_IMG = 0; for (int a = 0; a < N_COLS; a++) { for (int j = 0; j < N_ROWS; j++) { uibutton aButton.tag == (j + a * N_ROWS + 1) setImage:[UIImage imageNamed:[puzzles objectAtIndex:N_IMG]] forState:UIControlStateNormal]; N_IMG = N_IMG++; } } } This is the code where the truble starts: uibutton aButton.tag == (j + a * N_ROWS + 1) Who can I set this up to work?

    Read the article

  • How do I set up FirePHP version 1.0?

    - by jay
    I love FirePHP and I've been using it for a while, but they've put out this massive upgrade and I'm completely flummoxed trying to get it to work. I think I'm copying the "Quick Start" code (kind of guessing at whatever changes are necessary for my server configuration), but for some reason, FirePHP's "primary" function, FirePHP::to() isn't doing anything. Can anyone please help me figure out what I'm doing wrong? Thanks. <?php define('INSIGHT_IPS', '*'); define('INSIGHT_AUTHKEYS', '290AA9215205F24E5104F48D61B60FFC'); define('INSIGHT_PATHS', __DIR__); define('INSIGHT_SERVER_PATH', '/doc_root/hello_firephp2.php'); set_include_path(get_include_path . ":/home8/jayharri/php/FirePHP/lib"); // path to FirePHP library require_once('FirePHP/Init.php'); $inpector = FirePHP::to('page'); var_dump($inspector); $console = $inspector->console(); $console->log('hello firephp'); ?> Output: NULL Fatal error: Call to a member function console() on a non-object in /home8/jayharri/public_html/if/doc_root/hello_firephp2.php on line 14

    Read the article

  • Inheritance and choose constructor from base class

    - by myle
    My question is rather simple, but I am stuck. How can I choose the desired constructor from base class? // node.h #ifndef NODE_H #define NODE_H #include <vector> // definition of an exception-class class WrongBoundsException { }; class Node { public: ... Node(double, double, std::vector<double>&) throw (WrongBoundsException); ... }; #endif // InternalNode.h #ifndef INTERNALNODE_H #define INTERNALNODE_H #include <vector> #include "Node.h" class InternalNode : public Node { public: // the position of the leftmost child (child left) int left_child; // the position of the parent int parent; InternalNode(double, double, std::vector<double>&, int parent, int left_child) throw (WrongBoundsException); private: int abcd; }; #endif // InternalNode.cpp #include "InternalNode.h" #define UNDEFINED_CHILD -1 #define ROOT -1 // Here is the problem InternalNode::InternalNode(double a, double b, std::vector<double> &v, int par, int lc) throw (WrongBoundsException) : Node(a, b, v), parent(par), left_child(lc) { std::cout << par << std::endl; } I get: $ g++ InternalNode.cpp InternalNode.cpp:16: error: declaration of ‘InternalNode::InternalNode(double, double, std::vector &, int, int) throw (WrongBoundsException)’ throws different exceptions InternalNode.h:17: error: from previous declaration ‘InternalNode::InternalNode(double, double, std::vector &, int, int)’ UPDATE 0: Fixed missing : UPDATE 1: Fixed throw exception

    Read the article

  • Right way to return proxy model instance from a base model instance in Django ?

    - by sotangochips
    Say I have models: class Animal(models.Model): type = models.CharField(max_length=255) class Dog(Animal): def make_sound(self): print "Woof!" class Meta: proxy = True class Cat(Animal): def make_sound(self): print "Meow!" class Meta: proxy = True Let's say I want to do: animals = Animal.objects.all() for animal in animals: animal.make_sound() I want to get back a series of Woofs and Meows. Clearly, I could just define a make_sound in the original model that forks based on animal_type, but then every time I add a new animal type (imagine they're in different apps), I'd have to go in and edit that make_sound function. I'd rather just define proxy models and have them define the behavior themselves. From what I can tell, there's no way of returning mixed Cat or Dog instances, but I figured maybe I could define a "get_proxy_model" method on the main class that returns a cat or a dog model. Surely you could do this, and pass something like the primary key and then just do Cat.objects.get(pk = passed_in_primary_key). But that'd mean doing an extra query for data you already have which seems redundant. Is there any way to turn an animal into a cat or a dog instance in an efficient way? What's the right way to do what I want to achieve?

    Read the article

  • Getting ellipses function parameters without an initial argument

    - by Tox1k
    So I've been making a custom parser for a scripting language, and I wanted to be able to pass only ellipses arguments. I don't need or want an initial variable, however Microsoft and C seem to want something else. FYI, see bottom for info. I've looked at the va_* definitions #define _crt_va_start(ap,v) ( ap = (va_list)_ADDRESSOF(v) + _INTSIZEOF(v) ) #define _crt_va_arg(ap,t) ( *(t *)((ap += _INTSIZEOF(t)) - _INTSIZEOF(t)) ) #define _crt_va_end(ap) ( ap = (va_list)0 ) and the part I don't want is the v in va_start. As a little background I'm competent in goasm and I know how the stack works so I know what's happening here. I was wondering if there is a way to get the function stack base without having to use inline assembly. Ideas I've had: #define im_va_start(ap) (__asm { mov [ap], ebp }) and etc... but really I feel like that's messy and I'm doing it wrong. struct function_table { const char* fname; (void)(*fptr)(...); unsigned char maxArgs; }; function_table mytable[] = { { "MessageBox", &tMessageBoxA, 4 } }; ... some function that sorts through a const char* passed to it to find the matching function in mytable and calls tMessageBoxA with the params. Also, the maxArgs argument is just so I can check that a valid number of parameters is being sent. I have personal reasons for not wanting to send it in the function, but in the meantime we can just say it's because I'm curious. This is just an example; custom libraries are what I would be implementing so it wouldn't just be calling WinAPI stuff. void tMessageBoxA(...) { // stuff to load args passed MessageBoxA(arg1, arg2, arg3, arg4); } I'm using the __cdecl calling convention and I've looked up ways to reliably get a pointer to the base of the stack (not the top) but I can't seem to find any. Also, I'm not worried about function security or typechecking.

    Read the article

  • Not all symbols of an DLL-exported class is exported (VS9)

    - by mandrake
    I'm building a DLL from a group of static libraries and I'm having a problem where only parts of classes are exported. What I'm doing is declaring all symbols I want to export with a preprocessor definition like: #if defined(MYPROJ_BUILD_DLL) //Build as a DLL # define MY_API __declspec(dllexport) #elif defined(MYPROJ_USE_DLL) //Use as a DLL # define MY_API __declspec(dllimport) #else //Build or use as a static lib # define MY_API #endif For example: class MY_API Foo{ ... } I then build static library with MYPROJ_BUILD_DLL & MYPROJ_USE_DLL undefined causing a static library to be built. In another build I create a DLL from these static libraries. So I define MYPROJ_BUILD_DLL causing all symbols I want to export to be attributed with __declspec(dllexport) (this is done by including all static library headers in the DLL-project source file). Ok, so now to the problem. When I use this new DLL I get unresolved externals because not all symbols of a class is exported. For example in a class like this: class MY_API Foo{ public: Foo(char const* ); int bar(); private: Foo( char const*, char const* ); }; Only Foo::Foo( char const*, char const*); and int Foo::bar(); is exported. How can that be? I can understand if the entire class was missing, due to e.g. I forgot to include the header in the DLL-build. But it's only partial missing. Also, say if Foo::Foo( char const*) was not implemented; then the DLL build would have unresolved external errors. But the build is fine (I also double checked for declarations without implementation). Note: The combined size of the static libraries I'm combining is in the region of 30MB, and the resulting DLL is 1.2MB. I'm using Visual Studio 9.0 (2008) to build everything. And Depends to check for exported symbols.

    Read the article

  • How to solve linker error in matrix multiplication in c using lapack library?

    - by Malar
    I did Matrix multiplication using lapack library, I am getting an error like below. Can any one help me? "error LNK2019: unresolved external symbol "void __cdecl dgemm(char,char,int *,int *,int *,double *,double *,int *,double *,int *,double *,double *,int *)" (?dgemm@@YAXDDPAH00PAN1010110@Z) referenced in function _main" 1..\bin\matrixMultiplicationUsingLapack.exe : fatal error LNK1120: 1 unresolved externals I post my code below # define matARowSize 2 // -- Matrix 1 number of rows # define matAColSize 2 // -- Matrix 1 number of cols # define matBRowSize 2 // -- Matrix 2 number of rows # define matBColSize 2 // -- Matrix 2 number of cols using namespace std; void dgemm(char, char, int *, int *, int *, double *, double *, int *, double *, int *, double *, double *, int *); int main() { double iMatrixA[matARowSize*matAColSize]; // -- Input matrix 1 {m x n} double iMatrixB[matBRowSize*matBColSize]; // -- Input matrix 2 {n x k} double iMatrixC[matARowSize*matBColSize]; // -- Output matrix {m x n * n x k = m x k} double alpha = 1.0f; double beta = 0.0f; int n = 2; iMatrixA[0] = 1; iMatrixA[1] = 1; iMatrixA[2] = 1; iMatrixA[3] = 1; iMatrixB[0] = 1; iMatrixB[1] = 1; iMatrixB[2] = 1; iMatrixB[3] = 1; //dgemm('N','N',&n,&n,&n,&alpha,iMatrixA,&n,iMatrixB,&n,&beta,iMatrixC,&n); dgemm('N','N',&n,&n,&n,&alpha,iMatrixA,&n,iMatrixB,&n,&beta,iMatrixC,&n); std::cin.get(); return 0; }

    Read the article

  • C++: defining maximum/minimum limits for a class

    - by Luis
    Basically what the title says... I have created a class that models time slots in a variable-granularity daily schedule (where for example the first time slot is 30 minutes, but the second time slot can be 40 minutes); the first available slot starts at (a value comparable to) 1. What I want to do now is to define somehow the maximum and minimum allowable values that this class takes and I have two practical questions in order to do so: 1.- does it make sense to define absolute minimum and maximum in such a way for a custom class? Or better, does it suffice that a value always compares as lower-than any other possible value of the type, given the class's defined relational operators, to be defined the min? (and analogusly for the max) 2.- assuming the previous question has an answer modeled after "yes" (or "yes but ..."), how do I define such max/min? I know that there is std::numeric_limits<> but from what I read it is intended for "numeric types". Do I interpret that as meaning "represented as a number" or can I make a broader assumption like "represented with numbers" or "having a correspondence to integers"? After all, it would make sense to define the minimum and maximum for a date class, and maybe for a dictionary class, but numeric_limits may not be intended for those uses (I don't have much experience with it). Plus, numeric_limits has a lot of extra members and information that I don't know what to make with. If I don't use numeric_limits, what other well-known / widely-used mechanism does C++ offer to indicate the available range of values for a class?

    Read the article

  • How can data templates in generic.xaml get applied automatically?

    - by Thiado de Arruda
    I have a custom control that has a ContentPresenter that will have an arbitrary object set as it content. This object does not have any constraint on its type, so I want this control to display its content based on any data templates defined by application or by data templates defined in Generic.xaml. If in a application I define some data template(without a key because I want it to be applied automatically to objects of that type) and I use the custom control bound to an object of that type, the data template gets applied automatically. But I have some data templates defined for some types in the generic.xaml where I define the custom control style, and these templates are not getting applied automatically. Here is the generic.xaml : If I set an object of type 'PredefinedType' as the content in the contentpresenter, the data template does not get applied. However, If it works if I define the data template in the app.xaml for the application thats using the custom control. Does someone got a clue? I really cant assume that the user of the control will define this data template, so I need some way to tie it up with the custom control.

    Read the article

  • Scheme Function to reverse elements of list of 2-list

    - by sudhirc
    This is an exercise from EOPL. Procedure (invert lst) takes lst which is a list of 2-lists and returns a list with each 2-list reversed. (define invert (lambda (lst) (cond((null? lst ) '()) ((= 2 (rtn-len (car lst))) ( cons(swap-elem (car lst)) (invert (cdr lst)))) ("List is not a 2-List")))) ;; Auxiliry Procedure swap-elements of 2 element list (define swap-elem (lambda (lst) (cons (car (cdr lst)) (car lst)))) ;; returns lengh of the list by calling (define rtn-len (lambda (lst) (calc-len lst 0))) ;; calculate length of the list (define calc-len (lambda (lst n) (if (null? lst) n (calc-len (cdr lst) (+ n 1))))) This seems to work however looks very verbose. Can this be shortened or written in more elegant way ? How I can halt the processing in any of the individual element is not a 2-list? At the moment execution proceed to next member and replacing current member with "List is not a 2-List" if current member is not a 2-list.

    Read the article

  • C++, array declaration, templates, linker error

    - by justik
    There is a linker error in my SW. I am using the following structure based on h, hpp, cpp files. Some classes are templatized, some not, some have function templates. Declaration: test.h #ifndef TEST_H #define TEST_H class Test { public: template <typename T> void foo1(); void foo2 () }; #include "test.hpp" #endif Definition: test.hpp #ifndef TEST_HPP #define TEST_HPP template <typename T> void Test::foo1() {} inline void Test::foo2() {} //or in cpp file #endif CPP file: test.cpp #include "test.h" void Test::foo2() {} //or in hpp file as inline I have the following problem. The variable vars[] is declared in my h file test.h #ifndef TEST_H #define TEST_H char *vars[] = { "first", "second"...}; class Test { public: void foo(); }; #include "test.hpp" #endif and used as a local variable inside foo() method defined in hpp file as inline. test.hpp #ifndef TEST_HPP #define TEST_HPP inline void Test::foo() { char *var = vars[0]; //A Linker Error } #endif However, the following linker error occurs: Error 745 error LNK2005: "char * * vars" (?vars@@3PAPADA) already defined in test2.obj How and where to declare vars[] to avoid linker errors? After including #include "test.hpp" it is late to declare it...

    Read the article

  • Generating python wrapper for 3ed party c++ dll using swig with

    - by MuraliK
    I am new bee to swig. I have a third party c++ dll with the following functions export. I want to call these dll functions in python. So thought of using swig to generate the wrapper using swig. I am not sure what sort of wrapper i need to generate (do i need to generate .lib or .dll to use it in python?). In case i need to generate .dll how do i do that using visual studio 2010. There are some call back function like SetNotifyHandler(void (__stdcall * nf)(int wp, void *lp)) in the bellow list. How do define such function in interface file. can someone help me plese? enter code here #ifndef DLL_H #define DLL_H #ifdef DLL_BUILD #define DLLFUNC __declspec(dllexport) #else #define DLLFUNC __declspec(dllimport) #endif #pragma pack(push) #pragma pack(1) #pragma pack(pop) extern "C" { DLLFUNC int __stdcall StartServer(void); DLLFUNC int __stdcall GetConnectionInfo(int connIndex, Info *buf); DLLFUNC void __stdcall SetNotifyWindow(HWND nw); DLLFUNC void __stdcall SetNotifyHandler(void (__stdcall * nf)(int wp, void *lp)); DLLFUNC int __stdcall SendCommand(int connIndex, Command *cmd); };

    Read the article

  • C preprocessor problem in Microsoft Visual Studio 2010

    - by Remo.D
    I've encountered a problem with the new Visual C++ in VS 2010. I've got a header with the following defines: #define STC(y) #y #define STR(y) STC(\y) #define NUM(y) 0##y The intent is that you can have some constant around like #define TOKEN x5A and then you can have the token as a number or as a string: NUM(TOKEN) -> 0x5A STR(TOKEN) -> "\x5A" This is the expected behavior under the the substitution rules of macros arguments and so far it has worked well with gcc, open watcom, pellesC (lcc), Digital Mars C and Visual C++ in VS2008 Express. Today I recompiled the library with VS2010 Express only to discover that it doesn't work anymore! Using the new version I would get: NUM(TOKEN) -> 0x5A STR(TOKEN) -> "\y" It seems that the new preprocessor treats \y as an escape sequence even within a macro body which is a non-sense as escape sequences only have a meaning in literal strings. I suspect this is a gray area of the ANSI standard but even if the original behavior was mandated by the standard, MS VC++ is not exactly famous to be 100% ANSI C compliant so I guess I'll have to live with the new behavior of the MS compiler. Given that, does anybody have a suggestion on how to re-implement the original macros behavior with VS2010?

    Read the article

  • c++ code cons/pros

    - by VirusEcks
    below i have a code that runs in most of my simple programs .. . i want to know if it's good/bad ... and cons/pros . . win32 header file: win32.h #include <windows.h> #include <process.h> #include <stdarg.h> main header file: inc.h #include "win32.h" #ifndef INCS #define INCS #define DD #else #define DD extern #endif #ifndef VARS #define titlen L"my program" #endif DD wchar_t gtitle[512]; DD wchar_t gclass[512]; DD wchar_t gdir[32767]; #include "resources.h" #include "commonfunctions.h" then all files have something like this commonfunctions.h DD inline bool icmp( const char *String1, const char *String2 ) { if ( _stricmp( String1, String2 ) == 0 ) { return true; } return false; } DD inline bool scmp( const char *String1, const char *String2 ) { if ( strcmp( String1, String2 ) == 0 ) { return true; } return false; } all global variables have DD infront of them and all functions have DD too . is there a bad side of this ? . i came up with this idea and it wasn't problematic at all in small programs . but before i apply it in a large project will it be problematic ?. thanks in advance.

    Read the article

  • Pass Arguments to Included Module in Ruby?

    - by viatropos
    I'm hoping to implement something like all of the great plugins out there for ruby, so that you can do this: acts_as_commentable has_attached_file :avatar But I have one constraint: That helper method can only include a module; it can't define any variables or methods. The reason for this is because, I want the options hash to define something like type, and that could be converted into one of say 20 different 'workhorse' modules, all of which I could sum up in a line like this: def dynamic_method(options = {}) include ("My::Helpers::#{options[:type].to_s.camelize}").constantize(options) end Then those 'workhorses' would handle the options, doing things like: has_many "#{options[:something]}" Here's what the structure looks like, and I'm wondering if you know the missing piece in the puzzle: # 1 - The workhorse, encapsuling all dynamic variables module My::Module def self.included(base) base.extend ClassMethods base.class_eval do include InstanceMethods end end module InstanceMethods self.instance_eval %Q? def #{options[:my_method]} "world!" end ? end module ClassMethods end end # 2 - all this does is define that helper method module HelperModule def self.included(base) base.extend(ClassMethods) end module ClassMethods def dynamic_method(options = {}) # don't know how to get options through! include My::Module(options) end end end # 3 - send it to active_record ActiveRecord::Base.send(:include, HelperModule) # 4 - what it looks like class TestClass < ActiveRecord::Base dynamic_method :my_method => "hello" end puts TestClass.new.hello #=> "world!" That %Q? I'm not totally sure how to use, but I'm basically just wanting to somehow be able to pass the options hash from that helper method into the workhorse module. Is that possible? That way, the workhorse module could define all sorts of functionality, but I could name the variables whatever I wanted at runtime.

    Read the article

  • Singletons and constants

    - by devoured elysium
    I am making a program which makes use of a couple of constants. At first, each time I needed to use a constant, I'd define it as //C# private static readonly int MyConstant = xxx; //Java private static final int MyConstant = xxx; in the class where I'd need it. After some time, I started to realise that some constants would be needed in more than one class. At this time, I had 3 choises: To define them in the different classes that needed it. This leads to repetition. If by some reason later I need to change one of them, I'd have to check in all classes to replace them everywhere. To define a static class/singleton with all the constants as public. If I needed a constant X in ClassA, ClassB and ClassC, I could just define it in ClassA as public, and then have ClassB and ClassC refer to them. This solution doesn't seem that good to me as it introduces even more dependencies as the classes already have between them. I ended up implementing my code with the second option. Is that the best alternative? I feel I am probably missing some other better alternative. What worries me about using the singleton here is that it is nowhere clear to a user of the class that this class is using the singleton. Maybe I could create a ConstantsClass that held all the constants needed and then I'd pass it in the constructor to the classes that'd need it? Thanks

    Read the article

  • SQL SERVER – 5 Tips for Improving Your Data with expressor Studio

    - by pinaldave
    It’s no secret that bad data leads to bad decisions and poor results.  However, how do you prevent dirty data from taking up residency in your data store?  Some might argue that it’s the responsibility of the person sending you the data.  While that may be true, in practice that will rarely hold up.  It doesn’t matter how many times you ask, you will get the data however they decide to provide it. So now you have bad data.  What constitutes bad data?  There are quite a few valid answers, for example: Invalid date values Inappropriate characters Wrong data Values that exceed a pre-set threshold While it is certainly possible to write your own scripts and custom SQL to identify and deal with these data anomalies, that effort often takes too long and becomes difficult to maintain.  Instead, leveraging an ETL tool like expressor Studio makes the data cleansing process much easier and faster.  Below are some tips for leveraging expressor to get your data into tip-top shape. Tip 1:     Build reusable data objects with embedded cleansing rules One of the new features in expressor Studio 3.2 is the ability to define constraints at the metadata level.  Using expressor’s concept of Semantic Types, you can define reusable data objects that have embedded logic such as constraints for dealing with dirty data.  Once defined, they can be saved as a shared atomic type and then re-applied to other data attributes in other schemas. As you can see in the figure above, I’ve defined a constraint on zip code.  I can then save the constraint rules I defined for zip code as a shared atomic type called zip_type for example.   The next time I get a different data source with a schema that also contains a zip code field, I can simply apply the shared atomic type (shown below) and the previously defined constraints will be automatically applied. Tip 2:     Unlock the power of regular expressions in Semantic Types Another powerful feature introduced in expressor Studio 3.2 is the option to use regular expressions as a constraint.   A regular expression is used to identify patterns within data.   The patterns could be something as simple as a date format or something much more complex such as a street address.  For example, I could define that a valid IP address should be made up of 4 numbers, each 0 to 255, and separated by a period.  So 192.168.23.123 might be a valid IP address whereas 888.777.0.123 would not be.   How can I account for this using regular expressions? A very simple regular expression that would look for any 4 sets of 3 digits separated by a period would be:  ^[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}$ Alternatively, the following would be the exact check for truly valid IP addresses as we had defined above:  ^(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])\.(25[0-5]|2[0-4][0-9]|1[0-9]{2}|[1-9]?[0-9])$ .  In expressor, we would enter this regular expression as a constraint like this: Here we select the corrective action to be ‘Escalate’, meaning that the expressor Dataflow operator will decide what to do.  Some of the options include rejecting the offending record, skipping it, or aborting the dataflow. Tip 3:     Email pattern expressions that might come in handy In the example schema that I am using, there’s a field for email.  Email addresses are often entered incorrectly because people are trying to avoid spam.  While there are a lot of different ways to define what constitutes a valid email address, a quick search online yields a couple of really useful regular expressions for validating email addresses: This one is short and sweet:  \b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b (Source: http://www.regular-expressions.info/) This one is more specific about which characters are allowed:  ^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.)|(([a-zA-Z0-9\-]+\.)+))([a-zA-Z]{2,4}|[0-9]{1,3})(\]?)$ (Source: http://regexlib.com/REDetails.aspx?regexp_id=26 ) Tip 4:     Reject “dirty data” for analysis or further processing Yet another feature introduced in expressor Studio 3.2 is the ability to reject records based on constraint violations.  To capture reject records on input, simply specify Reject Record in the Error Handling setting for the Read File operator.  Then attach a Write File operator to the reject port of the Read File operator as such: Next, in the Write File operator, you can configure the expressor operator in a similar way to the Read File.  The key difference would be that the schema needs to be derived from the upstream operator as shown below: Once configured, expressor will output rejected records to the file you specified.  In addition to the rejected records, expressor also captures some diagnostic information that will be helpful towards identifying why the record was rejected.  This makes diagnosing errors much easier! Tip 5:    Use a Filter or Transform after the initial cleansing to finish the job Sometimes you may want to predicate the data cleansing on a more complex set of conditions.  For example, I may only be interested in processing data containing males over the age of 25 in certain zip codes.  Using an expressor Filter operator, you can define the conditional logic which isolates the records of importance away from the others. Alternatively, the expressor Transform operator can be used to alter the input value via a user defined algorithm or transformation.  It also supports the use of conditional logic and data can be rejected based on constraint violations. However, the best tip I can leave you with is to not constrain your solution design approach – expressor operators can be combined in many different ways to achieve the desired results.  For example, in the expressor Dataflow below, I can post-process the reject data from the Filter which did not meet my pre-defined criteria and, if successful, Funnel it back into the flow so that it gets written to the target table. I continue to be impressed that expressor offers all this functionality as part of their FREE expressor Studio desktop ETL tool, which you can download from here.  Their Studio ETL tool is absolutely free and they are very open about saying that if you want to deploy their software on a dedicated Windows Server, you need to purchase their server software, whose pricing is posted on their website. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Design for complex ATG applications

    - by Glen Borkowski
    Overview Needless to say, some ATG applications are more complex than others.  Some ATG applications support a single site, single language, single catalog, single currency, have a single development staff, single business team, and a relatively simple business model.  The real complex applications have to support multiple sites, multiple languages, multiple catalogs, multiple currencies, a couple different development teams, multiple business teams, and a highly complex business model (and processes to go along with it).  While it's still important to implement a proper design for simple applications, it's absolutely critical to do this for the complex applications.  Why?  It's all about time and money.  If you are unable to manage your complex applications in an efficient manner, the cost of managing it will increase dramatically as will the time to get things done (time to market).  On the positive side, your competition is most likely in the same situation, so you just need to be more efficient than they are. This article is intended to discuss a number of key areas to think about when designing complex applications on ATG.  Some of this can get fairly technical, so it may help to get some background first.  You can get enough of the required background information from this post.  After reading that, come back here and follow along. Application Design Of all the various types of ATG applications out there, the most complex tend to be the ones in the telecommunications industry - especially the ones which operate in multiple countries.  To get started, let's assume that we are talking about an application like that.  One that has these properties: Operates in multiple countries - must support multiple sites, catalogs, languages, and currencies The organization is fairly loosely-coupled - single brand, but different businesses across different countries There is some common functionality across all sites in all countries There is some common functionality across different sites within the same country Sites within a single country may have some unique functionality - relative to other sites in the same country Complex product catalog (mostly in terms of bundles, eligibility, and compatibility) At this point, I'll assume you have read through the required reading and have a decent understanding of how ATG modules work... Code / configuration - assemble into modules When it comes to defining your modules for a complex application, there are a number of goals: Divide functionality between the modules in a way that maps to your business Group common functionality 'further down in the stack of modules' Provide a good balance between shared resources and autonomy for countries / sites Now I'll describe a high level approach to how you could accomplish those goals...  Let's start from the bottom and work our way up.  At the very bottom, you have the modules that ship with ATG - the 'out of the box' stuff.  You want to make sure that you are leveraging all the modules that make sense in order to get the most value from ATG as possible - and less stuff you'll have to write yourself.  On top of the ATG modules, you should create what we'll refer to as the Corporate Foundation Module described as follows: Sits directly on top of ATG modules Used by all applications across all countries and sites - this is the foundation for everyone Contains everything that is common across all countries / all sites Once established and settled, will change less frequently than other 'higher' modules Encapsulates as many enterprise-wide integrations as possible Will provide means of code sharing therefore less development / testing - faster time to market Contains a 'reference' web application (described below) The next layer up could be multiple modules for each country (you could replace this with region if that makes more sense).  We'll define those modules as follows: Sits on top of the corporate foundation module Contains what is unique to all sites in a given country Responsible for managing any resource bundles for this country (to handle multiple languages) Overrides / replaces corporate integration points with any country-specific ones Finally, we will define what should be a fairly 'thin' (in terms of functionality) set of modules for each site as follows: Sits on top of the country it resides in module Contains what is unique for a given site within a given country Will mostly contain configuration, but could also define some unique functionality as well Contains one or more web applications The graphic below should help to indicate how these modules fit together: Web applications As described in the previous section, there are many opportunities for sharing (minimizing costs) as it relates to the code and configuration aspects of ATG modules.  Web applications are also contained within ATG modules, however, sharing web applications can be a bit more difficult because this is what the end customer actually sees, and since each site may have some degree of unique look & feel, sharing becomes more challenging.  One approach that can help is to define a 'reference' web application at the corporate foundation layer to act as a solid starting point for each site.  Here's a description of the 'reference' web application: Contains minimal / sample reference styling as this will mostly be addressed at the site level web app Focus on functionality - ensure that core functionality is revealed via this web application Each individual site can use this as a starting point There may be multiple types of web apps (i.e. B2C, B2B, etc) There are some techniques to share web application assets - i.e. multiple web applications, defined in the web.xml, and it's worth investigating, but is out of scope here. Reference infrastructure In this complex environment, it is assumed that there is not a single infrastructure for all countries and all sites.  It's more likely that different countries (or regions) could have their own solution for infrastructure.  In this case, it will be advantageous to define a reference infrastructure which contains all the hardware and software that make up the core environment.  Specifications and diagrams should be created to outline what this reference infrastructure looks like, as well as it's baseline cost and the incremental cost to scale up with volume.  Having some consistency in terms of infrastructure will save time and money as new countries / sites come online.  Here are some properties of the reference infrastructure: Standardized approach to setup of hardware Type and number of servers Defines application server, operating system, database, etc... - including vendor and specific versions Consistent naming conventions Provides a consistent base of terminology and understanding across environments Defines which ATG services run on which servers Production Staging BCC / Preview Each site can change as required to meet scale requirements Governance / organization It should be no surprise that the complex application we're talking about is backed by an equally complex organization.  One of the more challenging aspects of efficiently managing a series of complex applications is to ensure the proper level of governance and organization.  Here are some ideas and goals to work towards: Establish a committee to make enterprise-wide decisions that affect all sites Representation should be evenly distributed Should have a clear communication procedure Focus on high level business goals Evaluation of feature / function gaps and how that relates to ATG release schedule / roadmap Determine when to upgrade & ensure value will be realized Determine how to manage various levels of modules Who is responsible for maintaining corporate / country / site layers Determine a procedure for controlling what goes in the corporate foundation module Standardize on source code control, database, hardware, OS versions, J2EE app servers, development procedures, etc only use tested / proven versions - this is something that should be centralized so that every country / site does not have to worry about compatibility between versions Create a innovation team Quickly develop new features, perform proof of concepts All teams can benefit from their findings Summary At this point, it should be clear why the topics above (design, governance, organization, etc) are critical to being able to efficiently manage a complex application.  To summarize, it's all about competitive advantage...  You will need to reduce costs and improve time to market with the goal of providing a better experience for your end customers.  You can reduce cost by reducing development time, time allocated to testing (don't have to test the corporate foundation module over and over again - do it once), and optimizing operations.  With an efficient design, you can improve your time to market and your business will be more flexible  and agile.  Over time, you'll find that you're becoming more focused on offering functionality that is new to the market (creativity) and this will be rewarded - you're now a leader. In addition to the above, you'll realize soft benefits as well.  Your staff will be operating in a culture based on sharing.  You'll want to reward efforts to improve and enhance the foundation as this will benefit everyone.  This culture will inspire innovation, which can only lend itself to your competitive advantage.

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + <wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and youll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally. the magic. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and WSDL flattening.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Making WCF Output a single WSDL file for interop purposes.

    - by Glav
    By default, when WCF emits a WSDL definition for your services, it can often contain many links to others related schemas that need to be imported. For the most part, this is fine. WCF clients understand this type of schema without issue, and it conforms to the requisite standards as far as WSDL definitions go. However, some non Microsoft stacks will only work with a single WSDL file and require that all definitions for the service(s) (port types, messages, operation etc…) are contained within that single file. In other words, no external imports are supported. Some Java clients (to my working knowledge) have this limitation. This obviously presents a problem when trying to create services exposed for consumption and interop by these clients. Note: You can download the full source code for this sample from here To illustrate this point, lets say we have a simple service that looks like: Service Contract public interface IService1 { [OperationContract] [FaultContract(typeof(DataFault))] string GetData(DataModel1 model); [OperationContract] [FaultContract(typeof(DataFault))] string GetMoreData(DataModel2 model); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Service Implementation/Behaviour public class Service1 : IService1 { public string GetData(DataModel1 model) { return string.Format("Some Field was: {0} and another field was {1}", model.SomeField,model.AnotherField); } public string GetMoreData(DataModel2 model) { return string.Format("Name: {0}, age: {1}", model.Name, model.Age); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Configuration File <system.serviceModel> <services> <service name="SingleWSDL_WcfService.Service1" behaviorConfiguration="SingleWSDL_WcfService.Service1Behavior"> <!-- ...std/default data omitted for brevity..... --> <endpoint address ="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" > ....... </services> <behaviors> <serviceBehaviors> <behavior name="SingleWSDL_WcfService.Service1Behavior"> ........ </behavior> </serviceBehaviors> </behaviors> </system.serviceModel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When WCF is asked to produce a WSDL for this service, it will produce a file that looks something like this (note: some sections omitted for brevity): <?xml version="1.0" encoding="utf-8" ?> - <wsdl:definitions name="Service1" targetNamespace="http://tempuri.org/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" ...... namespace definitions omitted for brevity + &lt;wsp:Policy wsu:Id="WSHttpBinding_IService1_policy"> ... multiple policy items omitted for brevity </wsp:Policy> - <wsdl:types> - <xsd:schema targetNamespace="http://tempuri.org/Imports"> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd0" namespace="http://tempuri.org/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd3" namespace="Http://SingleWSDL/Fault" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd1" namespace="http://schemas.microsoft.com/2003/10/Serialization/" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd2" namespace="http://SingleWSDL/Model1" /> <xsd:import schemaLocation="http://localhost:2370/HostingSite/Service-default.svc?xsd=xsd4" namespace="http://SingleWSDL/Model2" /> </xsd:schema> </wsdl:types> + <wsdl:message name="IService1_GetData_InputMessage"> .... </wsdl:message> - <wsdl:operation name="GetData"> ..... </wsdl:operation> - <wsdl:service name="Service1"> ....... </wsdl:service> </wsdl:definitions> The above snippet from the WSDL shows the external links and references that are generated by WCF for a relatively simple service. Note the xsd:import statements that reference external XSD definitions which are also generated by WCF. In order to get WCF to produce a single WSDL file, we first need to follow some good practices when it comes to WCF service definitions. Step 1: Define a namespace for your service contract. [ServiceContract(Namespace="http://SingleWSDL/Service1")] public interface IService1 { ...... } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Normally you would not use a literal string and may instead define a constant to use in your own application for the namespace. When this is applied and we generate the WSDL, we get the following statement inserted into the document: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl=wsdl0" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } All the previous imports have gone. If we follow this link, we will see that the XSD imports are now in this external WSDL file. Not really any benefit for our purposes. Step 2: Define a namespace for your service behaviour [ServiceBehavior(Namespace = "http://SingleWSDL/Service1")] public class Service1 : IService1 { ...... } As you can see, the namespace of the service behaviour should be the same as the service contract interface to which it implements. Failure to do these tasks will cause WCF to emit its default http://tempuri.org namespace all over the place and cause WCF to still generate import statements. This is also true if the namespace of the contract and behaviour differ. If you define one and not the other, defaults kick in, and you’ll find extra imports generated. While each of the previous 2 steps wont cause any less import statements to be generated, you will notice that namespace definitions within the WSDL have identical, well defined names. Step 3: Define a binding namespace In the configuration file, modify the endpoint configuration line item to iunclude a bindingNamespace attribute which is the same as that defined on the service behaviour and service contract <endpoint address="" binding="wsHttpBinding" contract="SingleWSDL_WcfService.IService1" bindingNamespace="http://SingleWSDL/Service1"> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } However, this does not completely solve the issue. What this will do is remove the WSDL import statements like this one: <wsdl:import namespace="http://SingleWSDL/Service1" location="http://localhost:2370/HostingSite/Service-default.svc?wsdl" /> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } from the generated WSDL. Finally…. the magic…. Step 4: Use a custom endpoint behaviour to read in external imports and include in the main WSDL output. In order to force WCF to output a single WSDL with all the required definitions, we need to define a custom WSDL Export extension that can be applied to any endpoints. This requires implementing the IWsdlExportExtension and IEndpointBehavior interfaces and then reading in any imported schemas, and adding that output to the main, flattened WSDL to be output. Sounds like fun right…..? Hmmm well maybe not. This step sounds a little hairy, but its actually quite easy thanks to some kind individuals who have already done this for us. As far as I know, there are 2 available implementations that we can easily use to perform the import and “WSDL flattening”.  WCFExtras which is on codeplex and FlatWsdl by Thinktecture. Both implementations actually do exactly the same thing with the imports and provide an endpoint behaviour, however FlatWsdl does a little more work for us by providing a ServiceHostFactory that we can use which automatically attaches the requisite behaviour to our endpoints for us. To use this in an IIS hosted service, we can modify the .SVC file to specify this ne factory to use like so: <%@ ServiceHost Language="C#" Debug="true" Service="SingleWSDL_WcfService.Service1" Factory="Thinktecture.ServiceModel.Extensions.Description.FlatWsdlServiceHostFactory" %> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Within a service application or another form of executable such as a console app, we can simply create an instance of the custom service host and open it as we normally would as shown here: FlatWsdlServiceHost host = new FlatWsdlServiceHost(typeof(Service1)); host.Open(); And we are done. WCF will now generate one single WSDL file that contains all he WSDL imports and data/XSD imports. You can download the full source code for this sample from here Hope this has helped you. Note: Please note that I have not extensively tested this in a number of different scenarios so no guarantees there.

    Read the article

  • Coherence - How to develop a custom push replication publisher

    - by cosmin.tudor(at)oracle.com
    CoherencePushReplicationDB.zipIn the example bellow I'm describing a way of developing a custom push replication publisher that publishes data to a database via JDBC. This example can be easily changed to publish data to other receivers (JMS,...) by performing changes to step 2 and small changes to step 3, steps that are presented bellow. I've used Eclipse as the development tool. To develop a custom push replication publishers we will need to go through 6 steps: Step 1: Create a custom publisher scheme class Step 2: Create a custom publisher class that should define what the publisher is doing. Step 3: Create a class data is performing the actions (publish to JMS, DB, etc ) for the custom publisher. Step 4: Register the new publisher against a ContentHandler. Step 5: Add the new custom publisher in the cache configuration file. Step 6: Add the custom publisher scheme class to the POF configuration file. All these steps are detailed bellow. The coherence project is attached and conclusions are presented at the end. Step 1: In the Coherence Eclipse project create a class called CustomPublisherScheme that should implement com.oracle.coherence.patterns.pushreplication.publishers.AbstractPublisherScheme. In this class define the elements of the custom-publisher-scheme element. For instance for a CustomPublisherScheme that looks like that: <sync:publisher> <sync:publisher-name>Active2-JDBC-Publisher</sync:publisher-name> <sync:publisher-scheme> <sync:custom-publisher-scheme> <sync:jdbc-string>jdbc:oracle:thin:@machine-name:1521:XE</sync:jdbc-string> <sync:username>hr</sync:username> <sync:password>hr</sync:password> </sync:custom-publisher-scheme> </sync:publisher-scheme> </sync:publisher> the code is: package com.oracle.coherence; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import com.oracle.coherence.patterns.pushreplication.Publisher; import com.oracle.coherence.configuration.Configurable; import com.oracle.coherence.configuration.Mandatory; import com.oracle.coherence.configuration.Property; import com.oracle.coherence.configuration.parameters.ParameterScope; import com.oracle.coherence.environment.Environment; import com.tangosol.io.pof.PofReader; import com.tangosol.io.pof.PofWriter; import com.tangosol.util.ExternalizableHelper; @Configurable public class CustomPublisherScheme extends com.oracle.coherence.patterns.pushreplication.publishers.AbstractPublisherScheme { /** * */ private static final long serialVersionUID = 1L; private String jdbcString; private String username; private String password; public String getJdbcString() { return this.jdbcString; } @Property("jdbc-string") @Mandatory public void setJdbcString(String jdbcString) { this.jdbcString = jdbcString; } public String getUsername() { return username; } @Property("username") @Mandatory public void setUsername(String username) { this.username = username; } public String getPassword() { return password; } @Property("password") @Mandatory public void setPassword(String password) { this.password = password; } public Publisher realize(Environment environment, ClassLoader classLoader, ParameterScope parameterScope) { return new CustomPublisher(getJdbcString(), getUsername(), getPassword()); } public void readExternal(DataInput in) throws IOException { super.readExternal(in); this.jdbcString = ExternalizableHelper.readSafeUTF(in); this.username = ExternalizableHelper.readSafeUTF(in); this.password = ExternalizableHelper.readSafeUTF(in); } public void writeExternal(DataOutput out) throws IOException { super.writeExternal(out); ExternalizableHelper.writeSafeUTF(out, this.jdbcString); ExternalizableHelper.writeSafeUTF(out, this.username); ExternalizableHelper.writeSafeUTF(out, this.password); } public void readExternal(PofReader reader) throws IOException { super.readExternal(reader); this.jdbcString = reader.readString(100); this.username = reader.readString(101); this.password = reader.readString(102); } public void writeExternal(PofWriter writer) throws IOException { super.writeExternal(writer); writer.writeString(100, this.jdbcString); writer.writeString(101, this.username); writer.writeString(102, this.password); } } Step 2: Define what the CustomPublisher should basically do by creating a new java class called CustomPublisher that implements com.oracle.coherence.patterns.pushreplication.Publisher package com.oracle.coherence; import com.oracle.coherence.patterns.pushreplication.EntryOperation; import com.oracle.coherence.patterns.pushreplication.Publisher; import com.oracle.coherence.patterns.pushreplication.exceptions.PublisherNotReadyException; import java.io.BufferedWriter; import java.util.Iterator; public class CustomPublisher implements Publisher { private String jdbcString; private String username; private String password; private transient BufferedWriter bufferedWriter; public CustomPublisher() { } public CustomPublisher(String jdbcString, String username, String password) { this.jdbcString = jdbcString; this.username = username; this.password = password; this.bufferedWriter = null; } public String getJdbcString() { return this.jdbcString; } public String getUsername() { return username; } public String getPassword() { return password; } public void publishBatch(String cacheName, String publisherName, Iterator<EntryOperation> entryOperations) { DatabasePersistence databasePersistence = new DatabasePersistence( jdbcString, username, password); while (entryOperations.hasNext()) { EntryOperation entryOperation = (EntryOperation) entryOperations .next(); databasePersistence.databasePersist(entryOperation); } } public void start(String cacheName, String publisherName) throws PublisherNotReadyException { System.err .printf("Started: Custom JDBC Publisher for Cache %s with Publisher %s\n", new Object[] { cacheName, publisherName }); } public void stop(String cacheName, String publisherName) { System.err .printf("Stopped: Custom JDBC Publisher for Cache %s with Publisher %s\n", new Object[] { cacheName, publisherName }); } } In the publishBatch method from above we inform the publisher that he is supposed to persist data to a database: DatabasePersistence databasePersistence = new DatabasePersistence( jdbcString, username, password); while (entryOperations.hasNext()) { EntryOperation entryOperation = (EntryOperation) entryOperations .next(); databasePersistence.databasePersist(entryOperation); } Step 3: The class that deals with the persistence is a very basic one that uses JDBC to perform inserts/updates against a database. package com.oracle.coherence; import com.oracle.coherence.patterns.pushreplication.EntryOperation; import java.sql.*; import java.text.SimpleDateFormat; import com.oracle.coherence.Order; public class DatabasePersistence { public static String INSERT_OPERATION = "INSERT"; public static String UPDATE_OPERATION = "UPDATE"; public Connection dbConnection; public DatabasePersistence(String jdbcString, String username, String password) { this.dbConnection = createConnection(jdbcString, username, password); } public Connection createConnection(String jdbcString, String username, String password) { Connection connection = null; System.err.println("Connecting to: " + jdbcString + " Username: " + username + " Password: " + password); try { // Load the JDBC driver String driverName = "oracle.jdbc.driver.OracleDriver"; Class.forName(driverName); // Create a connection to the database connection = DriverManager.getConnection(jdbcString, username, password); System.err.println("Connected to:" + jdbcString + " Username: " + username + " Password: " + password); } catch (ClassNotFoundException e) { e.printStackTrace(); } // driver catch (SQLException e) { e.printStackTrace(); } return connection; } public void databasePersist(EntryOperation entryOperation) { if (entryOperation.getOperation().toString() .equalsIgnoreCase(INSERT_OPERATION)) { insert(((Order) entryOperation.getPublishableEntry().getValue())); } else if (entryOperation.getOperation().toString() .equalsIgnoreCase(UPDATE_OPERATION)) { update(((Order) entryOperation.getPublishableEntry().getValue())); } } public void update(Order order) { String update = "UPDATE Orders set QUANTITY= '" + order.getQuantity() + "', AMOUNT='" + order.getAmount() + "', ORD_DATE= '" + (new SimpleDateFormat("dd-MMM-yyyy")).format(order .getOrdDate()) + "' WHERE SYMBOL='" + order.getSymbol() + "'"; System.err.println("UPDATE = " + update); try { Statement stmt = getDbConnection().createStatement(); stmt.execute(update); stmt.close(); } catch (SQLException ex) { System.err.println("SQLException: " + ex.getMessage()); } } public void insert(Order order) { String insert = "insert into Orders values('" + order.getSymbol() + "'," + order.getQuantity() + "," + order.getAmount() + ",'" + (new SimpleDateFormat("dd-MMM-yyyy")).format(order .getOrdDate()) + "')"; System.err.println("INSERT = " + insert); try { Statement stmt = getDbConnection().createStatement(); stmt.execute(insert); stmt.close(); } catch (SQLException ex) { System.err.println("SQLException: " + ex.getMessage()); } } public Connection getDbConnection() { return dbConnection; } public void setDbConnection(Connection dbConnection) { this.dbConnection = dbConnection; } } Step 4: Now we need to register our publisher against a ContentHandler. In order to achieve that we need to create in our eclipse project a new class called CustomPushReplicationNamespaceContentHandler that should extend the com.oracle.coherence.patterns.pushreplication.configuration.PushReplicationNamespaceContentHandler. In the constructor of the new class we define a new handler for our custom publisher. package com.oracle.coherence; import com.oracle.coherence.configuration.Configurator; import com.oracle.coherence.environment.extensible.ConfigurationContext; import com.oracle.coherence.environment.extensible.ConfigurationException; import com.oracle.coherence.environment.extensible.ElementContentHandler; import com.oracle.coherence.patterns.pushreplication.PublisherScheme; import com.oracle.coherence.environment.extensible.QualifiedName; import com.oracle.coherence.patterns.pushreplication.configuration.PushReplicationNamespaceContentHandler; import com.tangosol.run.xml.XmlElement; public class CustomPushReplicationNamespaceContentHandler extends PushReplicationNamespaceContentHandler { public CustomPushReplicationNamespaceContentHandler() { super(); registerContentHandler("custom-publisher-scheme", new ElementContentHandler() { public Object onElement(ConfigurationContext context, QualifiedName qualifiedName, XmlElement xmlElement) throws ConfigurationException { PublisherScheme publisherScheme = new CustomPublisherScheme(); Configurator.configure(publisherScheme, context, qualifiedName, xmlElement); return publisherScheme; } }); } } Step 5: Now we should define our CustomPublisher in the cache configuration file according to the following documentation. <cache-config xmlns:sync="class:com.oracle.coherence.CustomPushReplicationNamespaceContentHandler" xmlns:cr="class:com.oracle.coherence.environment.extensible.namespaces.InstanceNamespaceContentHandler"> <caching-schemes> <sync:provider pof-enabled="false"> <sync:coherence-provider /> </sync:provider> <caching-scheme-mapping> <cache-mapping> <cache-name>publishing-cache</cache-name> <scheme-name>distributed-scheme-with-publishing-cachestore</scheme-name> <autostart>true</autostart> <sync:publisher> <sync:publisher-name>Active2 Publisher</sync:publisher-name> <sync:publisher-scheme> <sync:remote-cluster-publisher-scheme> <sync:remote-invocation-service-name>remote-site1</sync:remote-invocation-service-name> <sync:remote-publisher-scheme> <sync:local-cache-publisher-scheme> <sync:target-cache-name>publishing-cache</sync:target-cache-name> </sync:local-cache-publisher-scheme> </sync:remote-publisher-scheme> <sync:autostart>true</sync:autostart> </sync:remote-cluster-publisher-scheme> </sync:publisher-scheme> </sync:publisher> <sync:publisher> <sync:publisher-name>Active2-Output-Publisher</sync:publisher-name> <sync:publisher-scheme> <sync:stderr-publisher-scheme> <sync:autostart>true</sync:autostart> <sync:publish-original-value>true</sync:publish-original-value> </sync:stderr-publisher-scheme> </sync:publisher-scheme> </sync:publisher> <sync:publisher> <sync:publisher-name>Active2-JDBC-Publisher</sync:publisher-name> <sync:publisher-scheme> <sync:custom-publisher-scheme> <sync:jdbc-string>jdbc:oracle:thin:@machine_name:1521:XE</sync:jdbc-string> <sync:username>hr</sync:username> <sync:password>hr</sync:password> </sync:custom-publisher-scheme> </sync:publisher-scheme> </sync:publisher> </cache-mapping> </caching-scheme-mapping> <!-- The following scheme is required for each remote-site when using a RemoteInvocationPublisher --> <remote-invocation-scheme> <service-name>remote-site1</service-name> <initiator-config> <tcp-initiator> <remote-addresses> <socket-address> <address>localhost</address> <port>20001</port> </socket-address> </remote-addresses> <connect-timeout>2s</connect-timeout> </tcp-initiator> <outgoing-message-handler> <request-timeout>5s</request-timeout> </outgoing-message-handler> </initiator-config> </remote-invocation-scheme> <!-- END: com.oracle.coherence.patterns.pushreplication --> <proxy-scheme> <service-name>ExtendTcpProxyService</service-name> <acceptor-config> <tcp-acceptor> <local-address> <address>localhost</address> <port>20002</port> </local-address> </tcp-acceptor> </acceptor-config> <autostart>true</autostart> </proxy-scheme> </caching-schemes> </cache-config> As you can see in the red-marked text from above I've:       - set new Namespace Content Handler       - define the new custom publisher that should work together with other publishers like: stderr and remote publishers in our case. Step 6: Add the com.oracle.coherence.CustomPublisherScheme to your custom-pof-config file: <pof-config> <user-type-list> <!-- Built in types --> <include>coherence-pof-config.xml</include> <include>coherence-common-pof-config.xml</include> <include>coherence-messagingpattern-pof-config.xml</include> <include>coherence-pushreplicationpattern-pof-config.xml</include> <!-- Application types --> <user-type> <type-id>1901</type-id> <class-name>com.oracle.coherence.Order</class-name> <serializer> <class-name>com.oracle.coherence.OrderSerializer</class-name> </serializer> </user-type> <user-type> <type-id>1902</type-id> <class-name>com.oracle.coherence.CustomPublisherScheme</class-name> </user-type> </user-type-list> </pof-config> CONCLUSIONSThis approach allows for publishers to publish data to almost any other receiver (database, JMS, MQ, ...). The only thing that needs to be changed is the DatabasePersistence.java class that should be adapted to the chosen receiver. Only minor changes are needed for the rest of the code (to publishBatch method from CustomPublisher class).

    Read the article

  • Nagios only create warning for a http service

    - by MeinAccount
    I would like to also monitor non-crucial services with nagios like for example our GitLab-server or phpMyAdmin instance. Is there any way to just create warnings instead of circuital errors for some services? At the moment I'm using the following: define service { host_name localhost use generic-service service_description HTTP GitLab check_command check_www!git.example.com!'/users/sign_in' } define command { command_name check_www command_line /usr/lib/nagios/plugins/check_http -H '$ARG1$' -I '$HOSTADDRESS$' -e 'HTTP/1.1 200 OK' -u '$ARG2$' }

    Read the article

  • The Bizarre Hidden Powers of the Preprocessor? [closed]

    - by ApprenticeHacker
    The preprocessor in C and C++ deserves an entire essay on its own to explore its rich possibilities for obfuscation. It is true that the C++ (and C) preprocessor can be used for a lot of powerful stuff. #ifdefs and #defines are often used to determine platforms, compilers and backends. Manipulating the code likewise. However, can anyone list some of the most powerful and bizarre things you can do with the preprocessor? The most sinister use of the preprocessor I've found is this: #ifndef DONE #ifdef TWICE // put stuff here to declare 3rd time around void g(char* str); #define DONE #else // TWICE #ifdef ONCE // put stuff here to declare 2nd time around void g(void* str); #define TWICE #else // ONCE // put stuff here to declare 1st time around void g(std::string str); #define ONCE #endif // ONCE #endif // TWICE #endif // DONE This declares different things based on how many times the header is included. Are there any other bizarre unknown powers of the C++ preprocessor?

    Read the article

< Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >