Search Results

Search found 18220 results on 729 pages for 'generic programming'.

Page 32/729 | < Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >

  • How to create reactive tasks for programming competitions?

    - by directx
    A reactive task is sometimes seen in the IOI programming competition. Unlike batch tasks, reactive solutions take input from another program as well as outputting it. The program typically 'query' the judge program a certain number of times, then output a final answer. An example The client program accepts lines one by one, and simply echoes it back. When it encountered a line with "done", it exists immediately. The client program in Java looks like this: import java.util.*; class Main{ public static void main (String[] args){ Scanner in = new Scanner(System.in); String s; while (!(s=in.nextLine()).equals("done")) System.out.println(s); } } The judge program gives the input and processes output from the client program. In this example, it feeds it a predefined input and checks if the client program has echoed it back correctly. A session might go like this: Judge Client ------------------ Hello Hello World World done I'm having trouble writing the judge program and having it judge the client program. I'd appreciate if someone could write a judge program for my example.

    Read the article

  • Advice on improving programming skills, learning capabilities?

    - by anonymous-coward1234
    Hi all, After 2,5 years of professional Java programing, I still have problems that make my job difficult and, more importantly - more times that I would like to admit - not enjoyable. I would like to ask for advice by more experienced people on ways that would help me overcome them. These are the problems I have: I do not absorb new knowledge easily. Even when I understand something, after a couple of days I easily forget even basic stuff. Other co-workers, even with the same working experience, when reading new technologies put things easily into "context", and are able to compare in "real time| similar technologies they already have used. I always try to address all the issues to whatever I am doing at one go, which results in me trying to resolve too many problems at the same time, losing completely control. I find it difficult to make my mind on a single problem that I should address first, and even when I do, and find myself throwing away code that I wrote because I started addressing the wrong issue first. As far as architecture and data modeling is concerned, I have difficulty making decisions on what objects must be created, with what hierarchy, interfaces, abstraction etc. I imagine that - to a certain degree - these things come with experience. But after 2,5 years of Java programming, I would expect myself to have come much farther that I have come, both in terms of absorption and experience. Is there a way to improve my learning speed? Any books, methods, advice is welcome.

    Read the article

  • Handling incremental Data Modeling Changes in Functional Programming

    - by Adam Gent
    Most of the problems I have to solve in my job as a developer have to do with data modeling. For example in a OOP Web Application world I often have to change the data properties that are in a object to meet new requirements. If I'm lucky I don't even need to programmatically add new "behavior" code (functions,methods). Instead I can declarative add validation and even UI options by annotating the property (Java). In Functional Programming it seems that adding new data properties requires lots of code changes because of pattern matching and data constructors (Haskell, ML). How do I minimize this problem? This seems to be a recognized problem as Xavier Leroy states nicely on page 24 of "Objects and Classes vs. Modules" - To summarize for those that don't have a PostScript viewer it basically says FP languages are better than OOP languages for adding new behavior over data objects but OOP languages are better for adding new data objects/properties. Are there any design pattern used in FP languages to help mitigate this problem? I have read Phillip Wadler's recommendation of using Monads to help this modularity problem but I'm not sure I understand how?

    Read the article

  • Which linear programming package should I use for high numbers of constraints and "warm starts"

    - by davidsd
    I have a "continuous" linear programming problem that involves maximizing a linear function over a curved convex space. In typical LP problems, the convex space is a polytope, but in this case the convex space is piecewise curved -- that is, it has faces, edges, and vertices, but the edges aren't straight and the faces aren't flat. Instead of being specified by a finite number of linear inequalities, I have a continuously infinite number. I'm currently dealing with this by approximating the surface by a polytope, which means discretizing the continuously infinite constraints into a very large finite number of constraints. I'm also in the situation where I'd like to know how the answer changes under small perturbations to the underlying problem. Thus, I'd like to be able to supply an initial condition to the solver based on a nearby solution. I believe this capability is called a "warm start." Can someone help me distinguish between the various LP packages out there? I'm not so concerned with user-friendliness as speed (for large numbers of constraints), high-precision arithmetic, and warm starts. Thanks!

    Read the article

  • Are functional programming languages good for practical tasks?

    - by Clueless
    It seems to me from my experimenting with Haskell, Erlang and Scheme that functional programming languages are a fantastic way to answer scientific questions. For example, taking a small set of data and performing some extensive analysis on it to return a significant answer. It's great for working through some tough Project Euler questions or trying out the Google Code Jam in an original way. At the same time it seems that by their very nature, they are more suited to finding analytical solutions than actually performing practical tasks. I noticed this most strongly in Haskell, where everything is evaluated lazily and your whole program boils down to one giant analytical solution for some given data that you either hard-code into the program or tack on messily through Haskell's limited IO capabilities. Basically, the tasks I would call 'practical' such as Aceept a request, find and process requested data, and return it formatted as needed seem to translate much more directly into procedural languages. The most luck I have had finding a functional language that works like this is Factor, which I would liken to a reverse-polish-notation version of Python. So I am just curious whether I have missed something in these languages or I am just way off the ball in how I ask this question. Does anyone have examples of functional languages that are great at performing practical tasks or practical tasks that are best performed by functional languages?

    Read the article

  • Programming style question on how to code functions

    - by shawnjan
    Hey all! So, I was just coding a bit today, and I realized that I don't have much consistency when it comes to a coding style when programming functions. One of my main concerns is whether or not its proper to code it so that you check that the input of the user is valid OUTSIDE of the function, or just throw the values passed by the user into the function and check if the values are valid in there. Let me sketch an example: I have a function that lists hosts based on an environment, and I want to be able to split the environment into chunks of hosts. So an example of the usage is this: listhosts -e testenv -s 2 1 This will get all the hosts from the "testenv", split it up into two parts, and it is displaying part one. In my code, I have a function that you pass it in a list, and it returns a list of lists based on you parameters for splitting. BUT, before I pass it a list, I first verify the parameters in my MAIN during the getops process, so in the main I check to make sure there are no negatives passed by the user, I make sure the user didnt request to split into say, 4 parts, but asking to display part 5 (which would not be valid), etc. tl;dr: Would you check the validity of a users input the flow of you're MAIN class, or would you do a check in your function itself, and either return a valid response in the case of valid input, or return NULL in the case of invalid input? Obviously both methods work, I'm just interested to hear from experts as to which approach is better :) Thanks for any comments and suggestions you guys have!

    Read the article

  • Flowcharting functional programming languages

    - by Sadface
    Flowcharting. This ancient old practice that's been in use for over 1000 years now, being forced upon us poor students, without any usefulness (or so do I think). It might work well with imperative, sequentially running languages, but what about my beloved functional programming? Sadly, I'm forced to create a flow chart for my programm (that is written in Haskell). I imagine it being easy for something like this: main :: IO () main = do someInput <- getLine let upped = map toUpper someInput putStrLn upped Which is just 3 sequenced steps, fetching data, uppercasing it, outputting it. Things look worse this time: main :: IO () main = do someInput <- fmap toUpper getLine putStrLn someInput Or like this: main :: IO () main = interact (map toUpper) Okay, that was IO, you can handle that like an imperative language. What about pure functions? An actual example: onlyMatching :: String -> [FilePath] -> [FilePath] onlyMatching ext = filter f where f name = lower ('.' : ext) == (lower . takeExtension $ name) lower = map toLower How would you flowchart that last one?

    Read the article

  • Dynamic programming Approach- Knapsack Puzzle

    - by idalsin
    I'm trying to solve the Knapsack problem with the dynamical programming(DP) approach, with Python 3.x. My TA pointed us towards this code for a head start. I've tried to implement it, as below: def take_input(infile): f_open = open(infile, 'r') lines = [] for line in f_open: lines.append(line.strip()) f_open.close() return lines def create_list(jewel_lines): #turns the jewels into a list of lists jewels_list = [] for x in jewel_lines: weight = x.split()[0] value = x.split()[1] jewels_list.append((int(value), int(weight))) jewels_list = sorted(jewels_list, key = lambda x : (-x[0], x[1])) return jewels_list def dynamic_grab(items, max_weight): table = [[0 for weight in range(max_weight+1)] for j in range(len(items)+1)] for j in range(1,len(items)+1): val= items[j-1][0] wt= items[j-1][1] for weight in range(1, max_weight+1): if wt > weight: table[j][weight] = table[j-1][weight] else: table[j][weight] = max(table[j-1][weight],table[j-1][weight-wt] + val) result = [] weight = max_weight for j in range(len(items),0,-1): was_added = table[j][weight] != table[j-1][weight] if was_added: val = items[j-1][0] wt = items[j-1][1] result.append(items[j-1]) weight -= wt return result def totalvalue(comb): #total of a combo of items totwt = totval = 0 for val, wt in comb: totwt += wt totval += val return (totval, -totwt) if totwt <= max_weight else (0,0) #required setup of variables infile = "JT_test1.txt" given_input = take_input(infile) max_weight = int(given_input[0]) given_input.pop(0) jewels_list = create_list(given_input) #test lines print(jewels_list) print(greedy_grab(jewels_list, max_weight)) bagged = dynamic_grab(jewels_list, max_weight) print(totalvalue(bagged)) The sample case is below. It is in the format line[0] = bag_max, line[1:] is in form(weight, value): 575 125 3000 50 100 500 6000 25 30 I'm confused as to the logic of this code in that it returns me a tuple and I'm not sure what the output tuple represents. I've been looking at this for a while and just don't understand what the code is pointing me at. Any help would be appreciated.

    Read the article

  • What .Net Namespace contains Entity for use in a generic repository?

    - by Sara
    I have a question that I'm ashamed to ask, but I'm going to have a go at it anyway. I am creating a generic repository in asp.net mvc. I came across an example on this website which I find to be exactly what I was looking for, but there is one problem. It references an object - Entity - and I don't know what namespace it is in. I typically create my repositories and use Entity Framework but I decided to use a generic repository because I am using the same code in multiple projects over and over again. Here is the code: public interface IRepository { void Save(ENTITY entity) where ENTITY : Entity; void Delete<ENTITY>(ENTITY entity) where ENTITY : Entity; ENTITY Load<ENTITY>(int id) where ENTITY : Entity; IQueryable<ENTITY> Query<ENTITY>() where ENTITY : Entity; IList<ENTITY> GetAll<ENTITY>() where ENTITY : Entity; IQueryable<ENTITY> Query<ENTITY>(IDomainQuery<ENTITY> whereQuery) where ENTITY : Entity; ENTITY Get<ENTITY>(int id) where ENTITY : Entity; IList<ENTITY> GetObjectsForIds<ENTITY>(string ids) where ENTITY : Entity; void Flush(); } Can someone please tell me what namespace Entity is in? As you can tell, a constraint is placed on the code so that it must be an Entity type. I know that there is an Entity in System.Data.Entity, but that isn't what I need. I have had instances before where I was looking for some namespace that took me forever to find, but I have searched and I'm unable to find the appropriate namespace to cast my generic items correctly. I could cast it as a class and be done with it, but it is bugging me that I can't find Entity anywhere. Can someone help me....please..... :-) Here is a link to the original post. http://stackoverflow.com/questions/1472719/asp-net-mvc-how-many-repositories

    Read the article

  • Why can't we have a single programming Language ? [closed]

    - by Kiran
    I am no expert in Programming Languages. But whenever I change the project, I am faced with Herculean challenge of learning the new programming language which takes weeks to master if not months.. With the previous experience of programming in different languages, I believe it takes few months of continuous programming to understand the amazing features the prog.language has to offer and to exploit. It makes me wonder, why cannot we have a single programming language which boasts all the amazing features from the existing programming language and make it mandatory for all the programmers to learn it.

    Read the article

  • Book Review: Programming Windows Identity Foundation

    - by DigiMortal
    Programming Windows Identity Foundation by Vittorio Bertocci is right now the only serious book about Windows Identity Foundation available. I started using Windows Identity Foundation when I made my first experiments on Windows Azure AppFabric Access Control Service. I wanted to generalize the way how people authenticate theirselves to my systems and AppFabric ACS seemed to me like good point where to start. My first steps trying to get things work opened the door to whole new authentication world for me. As I went through different blog postings and articles to get more information I discovered that the thing I am trying to use is the one I am looking for. As best security API for .NET was found I wanted to know more about it and this is how I found Programming Windows Identity Foundation. What’s inside? Programming WIF focuses on architecture, design and implementation of WIF. I think Vittorio is very good at teaching people because you find no too complex topics from the book. You learn more and more as you read and as a good thing you will find that you can also try out your new knowledge on WIF immediately. After giving good overview about WIF author moves on and introduces how to use WIF in ASP.NET applications. You will get complete picture how WIF integrates to ASP.NET request processing pipeline and how you can control the process by yourself. There are two chapters about ASP.NET. First one is more like introduction and the second one goes deeper and deeper until you have very good idea about how to use ASP.NET and WIF together, what issues you may face and how you can configure and extend WIF. Other two chapters cover using WIF with Windows Communication Foundation (WCF) band   Windows Azure. WCF chapter expects that you know WCF very well. This is not introductory chapter for beginners, this is heavy reading if you are not familiar with WCF. The chapter about Windows Azure describes how to use WIF in cloud applications. Last chapter talks about some future developments of WIF and describer some problems and their solutions. Most interesting part of this chapter is section about Silverlight. Who should read this book? Programming WIF is targeted to developers. It does not matter if you are beginner or old bullet-proof professional – every developer should be able to be read this book with no difficulties. I don’t recommend this book to administrators and project managers because they find almost nothing that is related to their work. I strongly recommend this book to all developers who are interested in modern authentication methods on Microsoft platform. The book is written so well that I almost forgot all things around me when I was reading the book. All additional tools you need are free. There is also Azure AppFabric ACS test version available and you can try it out for free. Table of contents Foreword Acknowledgments Introduction Part I Windows Identity Foundation for Everybody 1 Claims-Based Identity 2 Core ASP.NET Programming Part II Windows Identity Foundation for Identity Developers 3 WIF Processing Pipeline in ASP.NET 4 Advanced ASP.NET Programming 5 WIF and WCF 6 WIF and Windows Azure 7 The Road Ahead Index

    Read the article

  • Build-Essentials installation failing

    - by Brickman
    I am having trouble accessing the several critical header files that show to be a part of the build process. The "Ubuntu Software Center" shows "Build Essentials" as installed: Next I did the following two commands, which did not improve the problem: ~$ sudo apt-get install build-essential [sudo] password for: Reading package lists... Done Building dependency tree Reading state information... Done build-essential is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. :~$ sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. :~$ Dump of headers after installation attempts. > /usr/include/boost/interprocess/detail/atomic.hpp > /usr/include/boost/interprocess/smart_ptr/detail/sp_counted_base_atomic.hpp > /usr/include/qt4/Qt/qatomic.h /usr/include/qt4/Qt/qbasicatomic.h > /usr/include/qt4/QtCore/qatomic.h > /usr/include/qt4/QtCore/qbasicatomic.h > /usr/share/doc/git-annex/html/bugs/git_annex_unlock_is_not_atomic.html > /usr/src/linux-headers-3.11.0-15/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-15/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-15-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-17/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-17-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-18/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-18-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-19/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-19-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-20/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-20-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-22/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-22-generic/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.14.4-031404/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404-generic/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404-lowlatency/include/linux/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/alpha/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arm/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arm64/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/avr32/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/blackfin/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/frv/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/h8300/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/hexagon/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/ia64/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/m32r/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/m68k/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/metag/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/microblaze/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/mips/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/mn10300/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/parisc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/powerpc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/s390/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/score/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/sh/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/sparc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/tile/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/x86/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/xtensa/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/linux/atomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng/lib/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng/wrapper/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng-modules/lib/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng-modules/wrapper/ringbuffer/vatomic.h Yes, I know there are multiple headers of the same type here, but they are different versions. Version "linux-headers-3.14.4-031404" shows to be the latest. Ubuntu shows "Nothing needed to be installed." However, the following C/C++ headers files show to be missing for Eclipse and QT4. #include <linux/version.h> #include <linux/module.h> #include <linux/socket.h> #include <linux/miscdevice.h> #include <linux/list.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include <linux/init.h> #include <asm/uaccess.h> #include <asm/atomic.h> #include <linux/delay.h> #include <linux/usb.h> This problem appears on my 32-bit version of Ubuntu and on both of my 64-bit versions. What I am doing wrong?

    Read the article

  • NServiceBus Generic Host and mqsvc.exe high CPU

    - by Michael Stephenson
    We have been doing some work with NServiceBus recently and observed some unusual behaviour which was caused by our mistake and seemed worthy of a small post.   The Scenario In our solution we were doing some standard NServiceBus stuff by pushing a message to a queue using NServiceBus.  We had a direct send/receive scenario rather than a publish/subscribe one.   The background process which was meant to collect the message and then process it was a normal NServiceBus message handler.  We would run the NServiceBus.Host.exe which would find the handler and then do the usual NServiceBus magic.   The Problem In this solution we were creating some automated tests around this module of the integration process to ensure that it would work well.  We had two tests.   Test 1 This test would start NServiceBus.Host.exe using the Process object, then seed a message to the queue via our web service façade sitting above the queue which wrapped NServiceBus.  The background process would then process the message and the test would check the message had been processed fine.   If all was well then the NServiceBus.Host.exe process was stopped.   Test 2 In test 2 we would do a very similar thing except that instead of starting the process the test would install NServiceBus.Host.exe as a windows service and then start the service before the test and once the test was executed it would stop the test.   The Results of the Tests Test 1 worked really well, however in test 2 we found that it didn’t really work at all, instead of doing the background process we were finding that between mqsvc.exe and NServiceBus.Host.exe the CPU on the machine was maxed and nothing was really happening.   The Solution After trying a few things we found it was the permissions on the queue were not set correctly.  Once this was resolved it all worked fine and CPU was not excessive and ran just like the console application.   I think the couple of take aways from this are:   Make sure you set the windows service for NserviceBus Generic Host to the right credentials When you install the generic host as a windows service then by default it will use the default windows credentials.  For any production like scenario you should be using a domain account to run the process as via the windows service. Make sure you have the queue set with the right permissions For the credentials you have used to configure the generic host as a windows service you should ensure that this user has the appropriate permissions for any queues it will interact with. Make sure you turn on the right logging configuration in NServiceBus When this wasnt working correctly we didnt know there was an issue, we were just experiencing the high CPU condition.  I am a little surprised that there wasnt something logged and that the process didnt crash.  I guess this could be by design bearing in mind that the process could be monitoring many queues.  In this point Im just saying that originally we didnt have all of the log4net logging which is available from NServiceBus turned on.  Its probably a good idea to have this turned on and configured until you are happy your solution is working fine.   Thanks to Ahmed Hashmi on my team who got this working in the end.

    Read the article

  • Embedded Prolog Interpreter/Compiler for Java

    - by Sami
    I'm working on an application in Java, that needs to do some complex logic rule deductions as part of its functionality. I'd like to code my logic deductions in Prolog or some other logic/constraint programming language, instead of Java, as I believe the resulting code will be significantly simpler and more maintainable. I Googled for embedded Java implementations on Prolog, and found number of them, each with very little documentation. My (modest) selection criteria are: should be embeddable in Java (e.g. can be bundled up with my java package instead of requiring any native installations on external programs) simple interface to use from Java (for initiating deductions, inspecting results, and adding rules) come with at least a few examples on how to use it doesn't necessarely have to be Prolog, but other logic/constraint programming languages with the above criteria would suit my needs, too. What choices do I have and what are their advantages and disadvantages?

    Read the article

  • Which useful alternative control structures do you know?

    - by bigown
    Similar question was closed on SO. Sometimes when we're programming, we find that some particular control structure would be very useful to us, but is not directly available in our programming language. What alternative control structures do you think are a useful way of organizing computation? The goal here is to get new ways of thinking about structuring code, in order to improve chunking and reasoning. You can create a wishful syntax/semantic not available now or cite a less known control structure on an existent programming language. Answers should give ideas for a new programming language or enhancing an actual language. Think of this as brainstorming, so post something you think is a crazy idea but it can be viable in some scenario. It's about imperative programming.

    Read the article

  • How do I make Geany my default editor on Ubuntu?

    - by Programming Noob
    I actually want to change the default text editor on my Ubuntu 12.04 from nano to Geany. When I used this code: update-alternatives --config editor .. I don't see Geany in the list. So to add Geany, this is supposed to work right? update-alternatives --install /usr/bin/geany geany /usr/bin/geany 10 Also, on a side note, can you tell me if you would personally suggest me to change the default editor from nano to Geany, and why?

    Read the article

  • Which programming language to get into?

    - by user602479
    I'm ending my third term in a few weeks so I have some spare time coming up. I'd like to spend it seriously digging into programming. My problem: I'm not sure which language to begin with. Just to be clear, I don't want to start a language-y-compared-to-language-z discussion. There are a some other issues that play a major role. In my 5th term I'm going to be participating in a major practical course which will include either Java or C programming. It will take a lot of time and energy, as I found out while talking to a few students who passed the final exams (only 15% pass on their first try). Which practical course I will take is randomly decided. My skills so far are the absolute basics of Java and C programming. I know the different data types and how to handle them, objects, pointers, thread programming, etc. All of that is on a very low level, though. My question now is, what language should I start seriously practicing? Java: I did my first GUIs with this language. I'm familiar with Eclipse but I need a project to work on (which I don't have) to really keep me pushing. Besides that, I don't think it would help me if I have to do C in a year. C: As with Java, I can't think of a personal project to keep me working and keep me interested in programming. If I get assigned to Java in a year, this wouldn't give me any advantages either, would it? (No objects, etc.) Objective-C: I recently came up with this idea. I have a Mac; I'm not really familiar with Xcode but I have one or two personal projects I'd like to work on. Further, I would be working with objects (as in Java) and C language constructs which would both be great for this practical course in a year. What do you think I should begin with? Should I just stick to Java and hope for the best, force myself through C or start (nearly) completely from the beginning with Objective C? Maybe you folks could give me some good advice that would stop me from switching from one language to the next?

    Read the article

  • Imperative vs. component based programming [closed]

    - by AlexW
    I've been thinking about how programming and more specifically the teaching of programming is advocated amongst the community (online). Often I've heard that Ruby and RoR is an ideal platform for learning to program. I completely disagree... RoR and Ruby are based on the application of the component based paradigm, which means they are ideal for rapid application development. This is much like the MVC model in PHP and ASP.NET But, learning a proper imperative language like Java or C/C++ (or even Perl and PHP) is the only way for a new programmer to explore logic itself, and not get too bogged down in architectural concerns like the need for separation of concerns, and the preference for components. Maybe it's a personal preference thing. I rather think that the most interesting aspects to programming are the procedural bits of code I write that actually do stuff rather than the project planning, and modelling that comes about from fully object oriented engineering or simply using the MVC model. I know this may sound confused to some of you. I feel strongly though that the best way for programming to be taught is through imperative and procedural methods. Architectural (component) methods come later, if at all. After all, none of the amazing algorithms that exist were based on OOP practice! It's all procedural code when it comes to the 'magic'. OOP is useful in creating products and utilities. Algorithms are what makes things happen, and move data around, and so imperative (and/or procedural) code are what matters most. When I see programmers recommending Ruby on Rails to newbie developers, I think it's just so wrong. Just because you write less code with Ruby does not make it easier to do! It's the opposite... you have to know loads more to appreciate its succinct nature. New coders who really want to understand the nuts and bolts of coding need to go away and figure out writing methods/functions (i.e. imperative programming) and working in procedural style, in order to grasp the fundamentals, first, before looking into architectural ways of working. So, my question is: should Ruby ever be recommended as a first language? I think no (obviously)... what arguments are there for it?

    Read the article

  • Nice Generic Example that implements an interface.

    - by mbcrump
    I created this quick generic example after noticing that several people were asking questions about it. If you have any questions then let me know. using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Globalization; namespace ConsoleApplication4 { //New class where Type implements IConvertible interface (interface = contract) class Calculate<T> where T : IConvertible { //Setup fields public T X; NumberFormatInfo fmt = NumberFormatInfo.CurrentInfo; //Constructor 1 public Calculate() { X = default(T); } //Constructor 2 public Calculate (T x) { X = x; } //Method that we know will return a double public double DistanceTo (Calculate<T> cal) { //Remove the.ToDouble if you want to see the methods available for IConvertible return (X.ToDouble(fmt) - cal.X.ToDouble(fmt)); } } class Program { static void Main(string[] args) { //Pass value type and call DistanceTo with an Int. Calculate<int> cal = new Calculate<int>(); Calculate<int> cal2 = new Calculate<int>(10); Console.WriteLine("Int : " + cal.DistanceTo(cal2)); //Pass value type and call DistanceTo with an Double. Calculate<double> cal3 = new Calculate<double>(); Calculate<double> cal4 = new Calculate<double>(10.6); Console.WriteLine("Double : " + cal3.DistanceTo(cal4)); //Pass reference type and call DistanceTo with an String. Calculate<string> cal5 = new Calculate<string>("0"); Calculate<string> cal6 = new Calculate<string>("345"); Console.WriteLine("String : " + cal5.DistanceTo(cal6)); } } }

    Read the article

  • Why does DataContractJsonSerializer not include generic like JavaScriptSerializer?

    - by Patrick Magee
    So the JavaScriptSerializer was deprecated in favor of the DataContractJsonSerializer. var client = new WebClient(); var json = await client.DownloadStringTaskAsync(url); // http://example.com/api/people/1 // Deprecated, but clean looking and generally fits in nicely with // other code in my app domain that makes use of generics var serializer = new JavaScriptSerializer(); Person p = serializer.Deserialize<Person>(json); // Now have to make use of ugly typeof to get the Type when I // already know the Type at compile type. Why no Generic type T? var serializer = new DataContractJsonSerializer(typeof(Person)); Person p = serializer.ReadObject(json) as Person; The JavaScriptSerializer is nice and allows you to deserialize using a type of T generic in the function name. Understandably, it's been deprecated for good reason, with the DataContractJsonSerializer, you can decorate your Type to be deserialized with various things so it isn't so brittle like the JavaScriptSerializer, for example [DataMember(name = "personName")] public string Name { get; set; } Is there a particular reason why they decided to only allow users to pass in the Type? Type type = typeof(Person); var serializer = new DataContractJsonSerializer(type); Person p = serializer.ReadObject(json) as Person; Why not this? var serializer = new DataContractJsonSerializer(); Person p = serializer.ReadObject<Person>(json); They can still use reflection with the DataContract decorated attributes based on the T that I've specified on the .ReadObject<T>(json)

    Read the article

  • Generic software code style enforcer

    - by FuzziBear
    It seems to me to be a fairly common thing to do, where you have some code that you'd like to automatically run through a code style tool to catch when people break your coding style guide(s). Particularly if you're working on code that has multiple languages (which is becoming more common with web-language-x and javascript), you generally want to apply similar code style guides to both and have them enforced. I've done a bit of research, but I've only been able to find tools to enforce code style guidelines (not necessarily applying the code style, just telling you when you break code style guidelines) for a particular language. It would seem to me a reasonably trivial thing to do by just using current IDE rules for syntax highlighting (so that you don't check style guide rules inside quotes or strings, etc) and a whole lot of regexes to enforce some really generic things. Examples: if ( rather than if( checking lines with only whitespace Are there any tools that do this kind of really generic style checking? I'd prefer it to be easily configurable for different languages (because like it or not, some things would just not work cross language) and to add new "rules" to check new things.

    Read the article

  • Programming languages with a Lisp-like syntax extension mechanism

    - by Giorgio
    I have only a limited knowledge of Lisp (trying to learn a bit in my free time) but as far as I understand Lisp macros allow to introduce new language constructs and syntax by describing them in Lisp itself. This means that a new construct can be added as a library, without changing the Lisp compiler / interpreter. This approach is very different from that of other programming languages. E.g., if I wanted to extend Pascal with a new kind of loop or some particular idiom I would have to extend the syntax and semantics of the language and then implement that new feature in the compiler. Are there other programming languages outside the Lisp family (i.e. apart from Common Lisp, Scheme, Clojure (?), Racket (?), etc) that offer a similar possibility to extend the language within the language itself? EDIT Please, avoid extended discussion and be specific in your answers. Instead of a long list of programming languages that can be extended in some way or another, I would like to understand from a conceptual point of view what is specific to Lisp macros as an extension mechanism, and which non-Lisp programming languages offer some concept that is close to them.

    Read the article

  • Webservice Return Generic Result Type or Purposed Result Type

    - by hanzolo
    I'm building a webservice which returns JSON / XML / SOAP at the moment.. and I'm not entirely sure which approach for returning results is best. Which would be a better return value? A generic "transfer" type structure, which carries Generic properties or a purposed type with distinct properties: class GenericTransferObject{ public string returnVal; public string returnType; } VS class PurposedTransferObject_1{ public string Property1; } //and then building additional "types" for additional values class PurposedTransferObject_2 { public string PropertyA; public string PropertyB; } Now, this would be the serialized and returned from a web service call via some client technology, JQuery in this example. SO if I called: /GetDaysInWeek/ I would either get back: {"returnType": "DaysInWeek", "returnVal": "365" } OR {"DaysInWeek": "365"} And then it would go from there. On the one hand there's flexibilty with the 1st example. I can add "returnTypes" without needing to adjust the client other than referencing an additional "index".. but if I had to add a property, now i'm changing a structure definition.. Is there an obvious choice in this situation?

    Read the article

< Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >