Search Results

Search found 2180 results on 88 pages for 'projection matrix'.

Page 32/88 | < Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >

  • World orientation in OpenGLES clarification

    - by Dev2rights
    I have a 3d tile map made up of individual billboards in OpenGLES. Each is a 2 triangles mesh and has a 3D Vector to determine its position and another defining its rotation from the origin at (0,0,0). Im trying to work out how to rotate the entire tile map around a point be that the origin or some arbitrary point in space. Im guessing i need to set up a Model Matrix instead for each tile. Then set up a world matrix for the world. Then on updating i would translate the world matrix and change the orientation and multiply it with each model matrix before rendering. Is this correct ?

    Read the article

  • Efficient Multiple Linear Regression in C# / .Net

    - by mrnye
    Does anyone know of an efficient way to do multiple linear regression in C#, where the number of simultaneous equations may be in the 1000's (with 3 or 4 different inputs). After reading this article on multiple linear regression I tried implementing it with a matrix equation: Matrix y = new Matrix( new double[,]{{745}, {895}, {442}, {440}, {1598}}); Matrix x = new Matrix( new double[,]{{1, 36, 66}, {1, 37, 68}, {1, 47, 64}, {1, 32, 53}, {1, 1, 101}}); Matrix b = (x.Transpose() * x).Inverse() * x.Transpose() * y; for (int i = 0; i < b.Rows; i++) { Trace.WriteLine("INFO: " + b[i, 0].ToDouble()); } However it does not scale well to the scale of 1000's of equations due to the matrix inversion operation. I can call the R language and use that, however I was hoping there would be a pure .Net solution which will scale to these large sets. Any suggestions? EDIT #1: I have settled using R for the time being. By using statconn (downloaded here) I have found it to be both fast & relatively easy to use this method. I.e. here is a small code snippet, it really isn't much code at all to use the R statconn library (note: this is not all the code!). _StatConn.EvaluateNoReturn(string.Format("output <- lm({0})", equation)); object intercept = _StatConn.Evaluate("coefficients(output)['(Intercept)']"); parameters[0] = (double)intercept; for (int i = 0; i < xColCount; i++) { object parameter = _StatConn.Evaluate(string.Format("coefficients(output)['x{0}']", i)); parameters[i + 1] = (double)parameter; }

    Read the article

  • how to export bind and keyframe bone poses from blender to use in OpenGL

    - by SaldaVonSchwartz
    EDIT: I decided to reformulate the question in much simpler terms to see if someone can give me a hand with this. Basically, I'm exporting meshes, skeletons and actions from blender into an engine of sorts that I'm working on. But I'm getting the animations wrong. I can tell the basic motion paths are being followed but there's always an axis of translation or rotation which is wrong. I think the problem is most likely not in my engine code (OpenGL-based) but rather in either my misunderstanding of some part of the theory behind skeletal animation / skinning or the way I am exporting the appropriate joint matrices from blender in my exporter script. I'll explain the theory, the engine animation system and my blender export script, hoping someone might catch the error in either or all of these. The theory: (I'm using column-major ordering since that's what I use in the engine cause it's OpenGL-based) Assume I have a mesh made up of a single vertex v, along with a transformation matrix M which takes the vertex v from the mesh's local space to world space. That is, if I was to render the mesh without a skeleton, the final position would be gl_Position = ProjectionMatrix * M * v. Now assume I have a skeleton with a single joint j in bind / rest pose. j is actually another matrix. A transform from j's local space to its parent space which I'll denote Bj. if j was part of a joint hierarchy in the skeleton, Bj would take from j space to j-1 space (that is to its parent space). However, in this example j is the only joint, so Bj takes from j space to world space, like M does for v. Now further assume I have a a set of frames, each with a second transform Cj, which works the same as Bj only that for a different, arbitrary spatial configuration of join j. Cj still takes vertices from j space to world space but j is rotated and/or translated and/or scaled. Given the above, in order to skin vertex v at keyframe n. I need to: take v from world space to joint j space modify j (while v stays fixed in j space and is thus taken along in the transformation) take v back from the modified j space to world space So the mathematical implementation of the above would be: v' = Cj * Bj^-1 * v. Actually, I have one doubt here.. I said the mesh to which v belongs has a transform M which takes from model space to world space. And I've also read in a couple textbooks that it needs to be transformed from model space to joint space. But I also said in 1 that v needs to be transformed from world to joint space. So basically I'm not sure if I need to do v' = Cj * Bj^-1 * v or v' = Cj * Bj^-1 * M * v. Right now my implementation multiples v' by M and not v. But I've tried changing this and it just screws things up in a different way cause there's something else wrong. Finally, If we wanted to skin a vertex to a joint j1 which in turn is a child of a joint j0, Bj1 would be Bj0 * Bj1 and Cj1 would be Cj0 * Cj1. But Since skinning is defined as v' = Cj * Bj^-1 * v , Bj1^-1 would be the reverse concatenation of the inverses making up the original product. That is, v' = Cj0 * Cj1 * Bj1^-1 * Bj0^-1 * v Now on to the implementation (Blender side): Assume the following mesh made up of 1 cube, whose vertices are bound to a single joint in a single-joint skeleton: Assume also there's a 60-frame, 3-keyframe animation at 60 fps. The animation essentially is: keyframe 0: the joint is in bind / rest pose (the way you see it in the image). keyframe 30: the joint translates up (+z in blender) some amount and at the same time rotates pi/4 rad clockwise. keyframe 59: the joint goes back to the same configuration it was in keyframe 0. My first source of confusion on the blender side is its coordinate system (as opposed to OpenGL's default) and the different matrices accessible through the python api. Right now, this is what my export script does about translating blender's coordinate system to OpenGL's standard system: # World transform: Blender -> OpenGL worldTransform = Matrix().Identity(4) worldTransform *= Matrix.Scale(-1, 4, (0,0,1)) worldTransform *= Matrix.Rotation(radians(90), 4, "X") # Mesh (local) transform matrix file.write('Mesh Transform:\n') localTransform = mesh.matrix_local.copy() localTransform = worldTransform * localTransform for col in localTransform.col: file.write('{:9f} {:9f} {:9f} {:9f}\n'.format(col[0], col[1], col[2], col[3])) file.write('\n') So if you will, my "world" matrix is basically the act of changing blenders coordinate system to the default GL one with +y up, +x right and -z into the viewing volume. Then I also premultiply (in the sense that it's done by the time we reach the engine, not in the sense of post or pre in terms of matrix multiplication order) the mesh matrix M so that I don't need to multiply it again once per draw call in the engine. About the possible matrices to extract from Blender joints (bones in Blender parlance), I'm doing the following: For joint bind poses: def DFSJointTraversal(file, skeleton, jointList): for joint in jointList: bindPoseJoint = skeleton.data.bones[joint.name] bindPoseTransform = bindPoseJoint.matrix_local.inverted() file.write('Joint ' + joint.name + ' Transform {\n') translationV = bindPoseTransform.to_translation() rotationQ = bindPoseTransform.to_3x3().to_quaternion() scaleV = bindPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) DFSJointTraversal(file, skeleton, joint.children) file.write('}\n') Note that I'm actually grabbing the inverse of what I think is the bind pose transform Bj. This is so I don't need to invert it in the engine. Also note I went for matrix_local, assuming this is Bj. The other option is plain "matrix", which as far as I can tell is the same only that not homogeneous. For joint current / keyframe poses: for kfIndex in keyframes: bpy.context.scene.frame_set(kfIndex) file.write('keyframe: {:d}\n'.format(int(kfIndex))) for i in range(0, len(skeleton.data.bones)): file.write('joint: {:d}\n'.format(i)) currentPoseJoint = skeleton.pose.bones[i] currentPoseTransform = currentPoseJoint.matrix translationV = currentPoseTransform.to_translation() rotationQ = currentPoseTransform.to_3x3().to_quaternion() scaleV = currentPoseTransform.to_scale() file.write('T {:9f} {:9f} {:9f}\n'.format(translationV[0], translationV[1], translationV[2])) file.write('Q {:9f} {:9f} {:9f} {:9f}\n'.format(rotationQ[1], rotationQ[2], rotationQ[3], rotationQ[0])) file.write('S {:9f} {:9f} {:9f}\n'.format(scaleV[0], scaleV[1], scaleV[2])) file.write('\n') Note that here I go for skeleton.pose.bones instead of data.bones and that I have a choice of 3 matrices: matrix, matrix_basis and matrix_channel. From the descriptions in the python API docs I'm not super clear which one I should choose, though I think it's the plain matrix. Also note I do not invert the matrix in this case. The implementation (Engine / OpenGL side): My animation subsystem does the following on each update (I'm omitting parts of the update loop where it's figured out which objects need update and time is hardcoded here for simplicity): static double time = 0; time = fmod((time + elapsedTime),1.); uint16_t LERPKeyframeNumber = 60 * time; uint16_t lkeyframeNumber = 0; uint16_t lkeyframeIndex = 0; uint16_t rkeyframeNumber = 0; uint16_t rkeyframeIndex = 0; for (int i = 0; i < aClip.keyframesCount; i++) { uint16_t keyframeNumber = aClip.keyframes[i].number; if (keyframeNumber <= LERPKeyframeNumber) { lkeyframeIndex = i; lkeyframeNumber = keyframeNumber; } else { rkeyframeIndex = i; rkeyframeNumber = keyframeNumber; break; } } double lTime = lkeyframeNumber / 60.; double rTime = rkeyframeNumber / 60.; double blendFactor = (time - lTime) / (rTime - lTime); GLKMatrix4 bindPosePalette[aSkeleton.jointsCount]; GLKMatrix4 currentPosePalette[aSkeleton.jointsCount]; for (int i = 0; i < aSkeleton.jointsCount; i++) { F3DETQSType& lPose = aClip.keyframes[lkeyframeIndex].skeletonPose.joints[i]; F3DETQSType& rPose = aClip.keyframes[rkeyframeIndex].skeletonPose.joints[i]; GLKVector3 LERPTranslation = GLKVector3Lerp(lPose.t, rPose.t, blendFactor); GLKQuaternion SLERPRotation = GLKQuaternionSlerp(lPose.q, rPose.q, blendFactor); GLKVector3 LERPScaling = GLKVector3Lerp(lPose.s, rPose.s, blendFactor); GLKMatrix4 currentTransform = GLKMatrix4MakeWithQuaternion(SLERPRotation); currentTransform = GLKMatrix4TranslateWithVector3(currentTransform, LERPTranslation); currentTransform = GLKMatrix4ScaleWithVector3(currentTransform, LERPScaling); GLKMatrix4 inverseBindTransform = GLKMatrix4MakeWithQuaternion(aSkeleton.joints[i].inverseBindTransform.q); inverseBindTransform = GLKMatrix4TranslateWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.t); inverseBindTransform = GLKMatrix4ScaleWithVector3(inverseBindTransform, aSkeleton.joints[i].inverseBindTransform.s); if (aSkeleton.joints[i].parentIndex == -1) { bindPosePalette[i] = inverseBindTransform; currentPosePalette[i] = currentTransform; } else { bindPosePalette[i] = GLKMatrix4Multiply(inverseBindTransform, bindPosePalette[aSkeleton.joints[i].parentIndex]); currentPosePalette[i] = GLKMatrix4Multiply(currentPosePalette[aSkeleton.joints[i].parentIndex], currentTransform); } aSkeleton.skinningPalette[i] = GLKMatrix4Multiply(currentPosePalette[i], bindPosePalette[i]); } Finally, this is my vertex shader: #version 100 uniform mat4 modelMatrix; uniform mat3 normalMatrix; uniform mat4 projectionMatrix; uniform mat4 skinningPalette[6]; uniform lowp float skinningEnabled; attribute vec4 position; attribute vec3 normal; attribute vec2 tCoordinates; attribute vec4 jointsWeights; attribute vec4 jointsIndices; varying highp vec2 tCoordinatesVarying; varying highp float lIntensity; void main() { tCoordinatesVarying = tCoordinates; vec4 skinnedVertexPosition = vec4(0.); for (int i = 0; i < 4; i++) { skinnedVertexPosition += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * position; } vec4 skinnedNormal = vec4(0.); for (int i = 0; i < 4; i++) { skinnedNormal += jointsWeights[i] * skinningPalette[int(jointsIndices[i])] * vec4(normal, 0.); } vec4 finalPosition = mix(position, skinnedVertexPosition, skinningEnabled); vec4 finalNormal = mix(vec4(normal, 0.), skinnedNormal, skinningEnabled); vec3 eyeNormal = normalize(normalMatrix * finalNormal.xyz); vec3 lightPosition = vec3(0., 0., 2.); lIntensity = max(0.0, dot(eyeNormal, normalize(lightPosition))); gl_Position = projectionMatrix * modelMatrix * finalPosition; } The result is that the animation displays wrong in terms of orientation. That is, instead of bobbing up and down it bobs in and out (along what I think is the Z axis according to my transform in the export clip). And the rotation angle is counterclockwise instead of clockwise. If I try with a more than one joint, then it's almost as if the second joint rotates in it's own different coordinate space and does not follow 100% its parent's transform. Which I assume it should from my animation subsystem which I assume in turn follows the theory I explained for the case of more than one joint. Any thoughts?

    Read the article

  • How do I get confidence intervals without inverting a singular Hessian matrix?

    - by AmalieNot
    Hello. I recently posted this to reddit and it was suggested I come here, so here I am. I'm a student working on an epidemiology model in R, using maximum likelihood methods. I created my negative log likelihood function. It's sort of gross looking, but here it is: NLLdiff = function(v1, CV1, v2, CV2, st1 = (czI01 - czV01), st2 = (czI02 - czV02), st01 = czI01, st02 = czI02, tt1 = czT01, tt2 = czT02) { prob1 = (1 + v1 * CV1 * tt1)^(-1/CV1) prob2 = ( 1 + v2 * CV2 * tt2)^(-1/CV2) -(sum(dbinom(st1, st01, prob1, log = T)) + sum(dbinom(st2, st02, prob2, log = T))) } The reason the first line looks so awful is because most of the data it takes is inputted there. czI01, for example, is already declared. I did this simply so that my later calls to the function don't all have to have awful vectors in them. I then optimized for CV1, CV2, v1 and v2 using mle2 (library bbmle). That's also a bit gross looking, and looks like: ml.cz.diff = mle2 (NLLdiff, start=list(v1 = vguess, CV1 = cguess, v2 = vguess, CV2 = cguess), method="L-BFGS-B", lower = 0.0001) Now, everything works fine up until here. ml.cz.diff gives me values that I can turn into a plot that reasonably fits my data. I also have several different models, and can get AICc values to compare them. However, when I try to get confidence intervals around v1, CV1, v2 and CV2 I have problems. Basically, I get a negative bound on CV1, which is impossible as it actually represents a square number in the biological model as well as some warnings. The warnings are this: http://i.imgur.com/B3H2l.png . Is there a better way to get confidence intervals? Or, really, a way to get confidence intervals that make sense here? What I see happening is that, by coincidence, my hessian matrix is singular for some values in the optimization space. But, since I'm optimizing over 4 variables and don't have overly extensive programming knowledge, I can't come up with a good method of optimization that doesn't rely on the hessian. I have googled the problem - it suggested that my model's bad, but I'm reconstructing some work done before which suggests that my model's really not awful (the plots I make using the ml.cz.diff look like the plots of the original work). I have also read the relevant parts of the manual as well as Bolker's book Ecological Models in R. I have also tried different optimization methods, which resulted in a longer run time but the same errors. The "SANN" method didn't finish running within an hour, so I didn't wait around to see the result. tl;dr : my confidence intervals are bad, is there a relatively straightforward way to fix them in R. My vectors are: czT01 = c(5, 5, 5, 5, 5, 5, 5, 25, 25, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 50, 50) czT02 = c(5, 5, 5, 5, 5, 10, 10, 10, 10, 10, 25, 25, 25, 25, 25, 50, 50, 50, 50, 50, 75, 75, 75, 75, 75) czI01 = c(25, 24, 22, 22, 26, 23, 25, 25, 25, 23, 25, 18, 21, 24, 22, 23, 25, 23, 25, 25, 25) czI02 = c(13, 16, 5, 18, 16, 13, 17, 22, 13, 15, 15, 22, 12, 12, 13, 13, 11, 19, 21, 13, 21, 18, 16, 15, 11) czV01 = c(1, 4, 5, 5, 2, 3, 4, 11, 8, 1, 11, 12, 10, 16, 5, 15, 18, 12, 23, 13, 22) czV02 = c(0, 3, 1, 5, 1, 6, 3, 4, 7, 12, 2, 8, 8, 5, 3, 6, 4, 6, 11, 5, 11, 1, 13, 9, 7) and I get my guesses by: v = -log((c(czI01, czI02) - c(czV01, czV02))/c(czI01, czI02))/c(czT01, czT02) vguess = mean(v) cguess = var(v)/vguess^2 It's also possible that I'm doing something else completely wrong, but my results seem reasonable so I haven't caught it.

    Read the article

  • QR Code encoding and decoding using zxing

    - by helixed
    Okay, so I'm going to take the off chance that someone here has used zxing before. I'm developing a Java application, and one of the things it needs to do is encode a byte array of data into a QR Code and then decode it at a later time. Here's an example of what my encoder looks like: byte[] b = {0x48, 0x45, 0x4C, 0x4C, 0x4F}; //convert the byte array into a UTF-8 string String data; try { data = new String(b, "UTF8"); } catch (UnsupportedEncodingException e) { //the program shouldn't be able to get here return; } //get a byte matrix for the data ByteMatrix matrix; com.google.zxing.Writer writer = new QRCodeWriter(); try { matrix = writer.encode(data, com.google.zxing.BarcodeFormat.QR_CODE, width, height); } catch (com.google.zxing.WriterException e) { //exit the method return; } //generate an image from the byte matrix int width = matrix.getWidth(); int height = matrix.getHeight(); byte[][] array = matrix.getArray(); //create buffered image to draw to BufferedImage image = new BufferedImage(width, height, BufferedImage.TYPE_INT_RGB); //iterate through the matrix and draw the pixels to the image for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { int grayValue = array[y][x] & 0xff; image.setRGB(x, y, (grayValue == 0 ? 0 : 0xFFFFFF)); } } //write the image to the output stream ImageIO.write(image, "png", outputStream); The beginning byte array in this code is just used to test it. The actual byte data will be varied. Here's what my decoder looks like: //get the data from the input stream BufferedImage image = ImageIO.read(inputStream); //convert the image to a binary bitmap source LuminanceSource source = new BufferedImageLuminanceSource(image); BinaryBitmap bitmap = new BinaryBitmap(new HybridBinarizer(source)); //decode the barcode QRCodeReader reader = new QRCodeReader(); Result result; try { result = reader.decode(bitmap, hints); } catch (ReaderException e) { //the data is improperly formatted throw new MCCDatabaseMismatchException(); } byte[] b = result.getRawBytes(); System.out.println(ByteHelper.convertUnsignedBytesToHexString(result.getText().getBytes("UTF8"))); System.out.println(ByteHelper.convertUnsignedBytesToHexString(b)); convertUnsignedBytesToHexString(byte) is a method which converts an array of bytes in a string of hexadecimal characters. When I try to run these two blocks of code together, this is the output: 48454c4c4f 202b0b78cc00ec11ec11ec11ec11ec11ec11ec Clearly the text is being encoded, but the actual bytes of data are completely off. Any help would be appreciated here. Thanks, helixed

    Read the article

  • Problem installing packages

    - by gappy
    I am installing Matrix on a Linux x86_64 multicore system. I receive a message: Warning message: In install.packages("Matrix", dependencies = TRUE) : package 'Matrix' is not available Sure enough, there are not many details on package troubleshooting. It appears that Matrix is available for x86_64, but it's not available in any repository. How come?

    Read the article

  • My frustum culling is culling from the wrong point [SOLVED]

    - by Xbetas
    I'm having problems with my frustum being in the wrong origin. It follows the rotation of my camera but not the position. In my camera class I'm generating a view-matrix: void Camera::Update() { UpdateViewMatrix(); glMatrixMode(GL_MODELVIEW); //glLoadIdentity(); glLoadMatrixf(GetViewMatrix().m); } Then extracting the planes using the projection matrix and modelview matrix: void UpdateFrustum() { Matrix4x4 projection, model, clip; glGetFloatv(GL_PROJECTION_MATRIX, projection.m); glGetFloatv(GL_MODELVIEW_MATRIX, model.m); clip = model * projection; m_Planes[RIGHT][0] = clip.m[ 3] - clip.m[ 0]; m_Planes[RIGHT][1] = clip.m[ 7] - clip.m[ 4]; m_Planes[RIGHT][2] = clip.m[11] - clip.m[ 8]; m_Planes[RIGHT][3] = clip.m[15] - clip.m[12]; NormalizePlane(RIGHT); m_Planes[LEFT][0] = clip.m[ 3] + clip.m[ 0]; m_Planes[LEFT][1] = clip.m[ 7] + clip.m[ 4]; m_Planes[LEFT][2] = clip.m[11] + clip.m[ 8]; m_Planes[LEFT][3] = clip.m[15] + clip.m[12]; NormalizePlane(LEFT); m_Planes[BOTTOM][0] = clip.m[ 3] + clip.m[ 1]; m_Planes[BOTTOM][1] = clip.m[ 7] + clip.m[ 5]; m_Planes[BOTTOM][2] = clip.m[11] + clip.m[ 9]; m_Planes[BOTTOM][3] = clip.m[15] + clip.m[13]; NormalizePlane(BOTTOM); m_Planes[TOP][0] = clip.m[ 3] - clip.m[ 1]; m_Planes[TOP][1] = clip.m[ 7] - clip.m[ 5]; m_Planes[TOP][2] = clip.m[11] - clip.m[ 9]; m_Planes[TOP][3] = clip.m[15] - clip.m[13]; NormalizePlane(TOP); m_Planes[NEAR][0] = clip.m[ 3] + clip.m[ 2]; m_Planes[NEAR][1] = clip.m[ 7] + clip.m[ 6]; m_Planes[NEAR][2] = clip.m[11] + clip.m[10]; m_Planes[NEAR][3] = clip.m[15] + clip.m[14]; NormalizePlane(NEAR); m_Planes[FAR][0] = clip.m[ 3] - clip.m[ 2]; m_Planes[FAR][1] = clip.m[ 7] - clip.m[ 6]; m_Planes[FAR][2] = clip.m[11] - clip.m[10]; m_Planes[FAR][3] = clip.m[15] - clip.m[14]; NormalizePlane(FAR); } void NormalizePlane(int side) { float length = 1.0/(float)sqrt(m_Planes[side][0] * m_Planes[side][0] + m_Planes[side][1] * m_Planes[side][1] + m_Planes[side][2] * m_Planes[side][2]); m_Planes[side][0] *= length; m_Planes[side][1] *= length; m_Planes[side][2] *= length; m_Planes[side][3] *= length; } And check against it with: bool PointInFrustum(float x, float y, float z) { for(int i = 0; i < 6; i++) { if( m_Planes[i][0] * x + m_Planes[i][1] * y + m_Planes[i][2] * z + m_Planes[i][3] <= 0 ) return false; } return true; } Then i render using: camera->Update(); UpdateFrustum(); int numCulled = 0; for(int i = 0; i < (int)meshes.size(); i++) { if(!PointInFrustum(meshCenter.x, meshCenter.y, meshCenter.z)) { meshes[i]->SetDraw(false); numCulled++; } else meshes[i]->SetDraw(true); } Matrices look like (Camera is at (5, 0, 0)): ModelView [0,0,0.99,0] [0,1,0,0] [-0.99,0,0,0] [0,0,-5,1] Projection [0.814,0,0,0] [0,1.303,0,0] [0,0,-1,0] [0,0,-0.02,0] Clip [0,0,-1,-0.999] [0,1.30,0,0] [-0.814,0,0,0] [0,0,4.98,4.99] What am i doing wrong?

    Read the article

  • How to store generated eigen faces for future face recognition?

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong? 2.Instead of running the training set everytime how eigen faces generated are stored so that stored eigen faces are used for future face recoginition for a new input image.So it reduces wastage of time.

    Read the article

  • Vectorization of matlab code for faster execution

    - by user3237134
    My code works in the following manner: 1.First, it obtains several images from the training set 2.After loading these images, we find the normalized faces,mean face and perform several calculation. 3.Next, we ask for the name of an image we want to recognize 4.We then project the input image into the eigenspace, and based on the difference from the eigenfaces we make a decision. 5.Depending on eigen weight vector for each input image we make clusters using kmeans command. Source code i tried: clear all close all clc % number of images on your training set. M=1200; %Chosen std and mean. %It can be any number that it is close to the std and mean of most of the images. um=60; ustd=32; %read and show images(bmp); S=[]; %img matrix for i=1:M str=strcat(int2str(i),'.jpg'); %concatenates two strings that form the name of the image eval('img=imread(str);'); [irow icol d]=size(img); % get the number of rows (N1) and columns (N2) temp=reshape(permute(img,[2,1,3]),[irow*icol,d]); %creates a (N1*N2)x1 matrix S=[S temp]; %X is a N1*N2xM matrix after finishing the sequence %this is our S end %Here we change the mean and std of all images. We normalize all images. %This is done to reduce the error due to lighting conditions. for i=1:size(S,2) temp=double(S(:,i)); m=mean(temp); st=std(temp); S(:,i)=(temp-m)*ustd/st+um; end %show normalized images for i=1:M str=strcat(int2str(i),'.jpg'); img=reshape(S(:,i),icol,irow); img=img'; end %mean image; m=mean(S,2); %obtains the mean of each row instead of each column tmimg=uint8(m); %converts to unsigned 8-bit integer. Values range from 0 to 255 img=reshape(tmimg,icol,irow); %takes the N1*N2x1 vector and creates a N2xN1 matrix img=img'; %creates a N1xN2 matrix by transposing the image. % Change image for manipulation dbx=[]; % A matrix for i=1:M temp=double(S(:,i)); dbx=[dbx temp]; end %Covariance matrix C=A'A, L=AA' A=dbx'; L=A*A'; % vv are the eigenvector for L % dd are the eigenvalue for both L=dbx'*dbx and C=dbx*dbx'; [vv dd]=eig(L); % Sort and eliminate those whose eigenvalue is zero v=[]; d=[]; for i=1:size(vv,2) if(dd(i,i)>1e-4) v=[v vv(:,i)]; d=[d dd(i,i)]; end end %sort, will return an ascending sequence [B index]=sort(d); ind=zeros(size(index)); dtemp=zeros(size(index)); vtemp=zeros(size(v)); len=length(index); for i=1:len dtemp(i)=B(len+1-i); ind(i)=len+1-index(i); vtemp(:,ind(i))=v(:,i); end d=dtemp; v=vtemp; %Normalization of eigenvectors for i=1:size(v,2) %access each column kk=v(:,i); temp=sqrt(sum(kk.^2)); v(:,i)=v(:,i)./temp; end %Eigenvectors of C matrix u=[]; for i=1:size(v,2) temp=sqrt(d(i)); u=[u (dbx*v(:,i))./temp]; end %Normalization of eigenvectors for i=1:size(u,2) kk=u(:,i); temp=sqrt(sum(kk.^2)); u(:,i)=u(:,i)./temp; end % show eigenfaces; for i=1:size(u,2) img=reshape(u(:,i),icol,irow); img=img'; img=histeq(img,255); end % Find the weight of each face in the training set. omega = []; for h=1:size(dbx,2) WW=[]; for i=1:size(u,2) t = u(:,i)'; WeightOfImage = dot(t,dbx(:,h)'); WW = [WW; WeightOfImage]; end omega = [omega WW]; end % Acquire new image % Note: the input image must have a bmp or jpg extension. % It should have the same size as the ones in your training set. % It should be placed on your desktop ed_min=[]; srcFiles = dir('G:\newdatabase\*.jpg'); % the folder in which ur images exists for b = 1 : length(srcFiles) filename = strcat('G:\newdatabase\',srcFiles(b).name); Imgdata = imread(filename); InputImage=Imgdata; InImage=reshape(permute((double(InputImage)),[2,1,3]),[irow*icol,1]); temp=InImage; me=mean(temp); st=std(temp); temp=(temp-me)*ustd/st+um; NormImage = temp; Difference = temp-m; p = []; aa=size(u,2); for i = 1:aa pare = dot(NormImage,u(:,i)); p = [p; pare]; end InImWeight = []; for i=1:size(u,2) t = u(:,i)'; WeightOfInputImage = dot(t,Difference'); InImWeight = [InImWeight; WeightOfInputImage]; end noe=numel(InImWeight); % Find Euclidean distance e=[]; for i=1:size(omega,2) q = omega(:,i); DiffWeight = InImWeight-q; mag = norm(DiffWeight); e = [e mag]; end ed_min=[ed_min MinimumValue]; theta=6.0e+03; %disp(e) z(b,:)=InImWeight; end IDX = kmeans(z,5); clustercount=accumarray(IDX, ones(size(IDX))); disp(clustercount); Running time for 50 images:Elapsed time is 103.947573 seconds. QUESTIONS: 1.It is working fine for M=50(i.e Training set contains 50 images) but not for M=1200(i.e Training set contains 1200 images).It is not showing any error.There is no output.I waited for 10 min still there is no output. I think it is going infinite loop.What is the problem?Where i was wrong?

    Read the article

  • My vertex shader doesn't affect texture coords or diffuse info but works for position

    - by tina nyaa
    I am new to 3D and DirectX - in the past I have only used abstractions for 2D drawing. Over the past month I've been studying really hard and I'm trying to modify and adapt some of the shaders as part of my personal 'study project'. Below I have a shader, modified from one of the Microsoft samples. I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? // // Skinned Mesh Effect file // Copyright (c) 2000-2002 Microsoft Corporation. All rights reserved. // float4 lhtDir = {0.0f, 0.0f, -1.0f, 1.0f}; //light Direction float4 lightDiffuse = {0.6f, 0.6f, 0.6f, 1.0f}; // Light Diffuse float4 MaterialAmbient : MATERIALAMBIENT = {0.1f, 0.1f, 0.1f, 1.0f}; float4 MaterialDiffuse : MATERIALDIFFUSE = {0.8f, 0.8f, 0.8f, 1.0f}; // Matrix Pallette static const int MAX_MATRICES = 100; float4x3 mWorldMatrixArray[MAX_MATRICES] : WORLDMATRIXARRAY; float4x4 mViewProj : VIEWPROJECTION; /////////////////////////////////////////////////////// struct VS_INPUT { float4 Pos : POSITION; float4 BlendWeights : BLENDWEIGHT; float4 BlendIndices : BLENDINDICES; float3 Normal : NORMAL; float3 Tex0 : TEXCOORD0; }; struct VS_OUTPUT { float4 Pos : POSITION; float4 Diffuse : COLOR; float2 Tex0 : TEXCOORD0; }; float3 Diffuse(float3 Normal) { float CosTheta; // N.L Clamped CosTheta = max(0.0f, dot(Normal, lhtDir.xyz)); // propogate scalar result to vector return (CosTheta); } VS_OUTPUT VShade(VS_INPUT i, uniform int NumBones) { VS_OUTPUT o; float3 Pos = 0.0f; float3 Normal = 0.0f; float LastWeight = 0.0f; // Compensate for lack of UBYTE4 on Geforce3 int4 IndexVector = D3DCOLORtoUBYTE4(i.BlendIndices); // cast the vectors to arrays for use in the for loop below float BlendWeightsArray[4] = (float[4])i.BlendWeights; int IndexArray[4] = (int[4])IndexVector; // calculate the pos/normal using the "normal" weights // and accumulate the weights to calculate the last weight for (int iBone = 0; iBone < NumBones-1; iBone++) { LastWeight = LastWeight + BlendWeightsArray[iBone]; Pos += mul(i.Pos, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; Normal += mul(i.Normal, mWorldMatrixArray[IndexArray[iBone]]) * BlendWeightsArray[iBone]; } LastWeight = 1.0f - LastWeight; // Now that we have the calculated weight, add in the final influence Pos += (mul(i.Pos, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); Normal += (mul(i.Normal, mWorldMatrixArray[IndexArray[NumBones-1]]) * LastWeight); // transform position from world space into view and then projection space //o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Pos = mul(float4(Pos.xyz, 1.0f), mViewProj); o.Diffuse.x = 0.0f; o.Diffuse.y = 0.0f; o.Diffuse.z = 0.0f; o.Diffuse.w = 0.0f; o.Tex0 = float2(0,0); return o; } technique t0 { pass p0 { VertexShader = compile vs_3_0 VShade(4); } } I am currently using the SlimDX .NET wrapper around DirectX, but the API is extremely similar: public void Draw() { var device = vertexBuffer.Device; device.Clear(ClearFlags.Target | ClearFlags.ZBuffer, Color.White, 1.0f, 0); device.SetRenderState(RenderState.Lighting, true); device.SetRenderState(RenderState.DitherEnable, true); device.SetRenderState(RenderState.ZEnable, true); device.SetRenderState(RenderState.CullMode, Cull.Counterclockwise); device.SetRenderState(RenderState.NormalizeNormals, true); device.SetSamplerState(0, SamplerState.MagFilter, TextureFilter.Anisotropic); device.SetSamplerState(0, SamplerState.MinFilter, TextureFilter.Anisotropic); device.SetTransform(TransformState.World, Matrix.Identity * Matrix.Translation(0, -50, 0)); device.SetTransform(TransformState.View, Matrix.LookAtLH(new Vector3(-200, 0, 0), Vector3.Zero, Vector3.UnitY)); device.SetTransform(TransformState.Projection, Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); var material = new Material(); material.Ambient = material.Diffuse = material.Emissive = material.Specular = new Color4(Color.White); material.Power = 1f; device.SetStreamSource(0, vertexBuffer, 0, vertexSize); device.VertexDeclaration = vertexDeclaration; device.Indices = indexBuffer; device.Material = material; device.SetTexture(0, texture); var param = effect.GetParameter(null, "mWorldMatrixArray"); var boneWorldTransforms = bones.OrderedBones.OrderBy(x => x.Id).Select(x => x.CombinedTransformation).ToArray(); effect.SetValue(param, boneWorldTransforms); effect.SetValue(effect.GetParameter(null, "mViewProj"), Matrix.Identity);// Matrix.PerspectiveFovLH((float)Math.PI / 4, (float)device.Viewport.Width / device.Viewport.Height, 10, 10000000)); effect.SetValue(effect.GetParameter(null, "MaterialDiffuse"), material.Diffuse); effect.SetValue(effect.GetParameter(null, "MaterialAmbient"), material.Ambient); effect.Technique = effect.GetTechnique(0); var passes = effect.Begin(FX.DoNotSaveState); for (var i = 0; i < passes; i++) { effect.BeginPass(i); device.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, skin.Vertices.Length, 0, skin.Indicies.Length / 3); effect.EndPass(); } effect.End(); } Again, I set diffuse and tex0 vertex shader outputs to zero, but my model still shows the full texture and lighting as if I hadn't changed the values from the vertex buffer. Changing the position of the model works, but nothing else. Why is this? Also, whatever I set in the bone transformation matrices doesn't seem to have an effect on my model. If I set every bone transformation to a zero matrix, the model still shows up as if nothing had happened, but changing the Pos field in shader output makes the model disappear. I don't understand why I'm getting this kind of behaviour. Thank you!

    Read the article

  • Pan point on Google Map to specific pixel position on screen (API v3)

    - by Jake
    When overlay is a Google maps overlay and offsetx, offsety is the pixel distance from the maps center that I want to pan latlong to, the following works. var projection = overlay.getProjection(); var pxlocation = projection.fromLatLngToContainerPixel(latlong); map.panTo(projection.fromContainerPixelToLatLng(new google.maps.Point(pxlocation.x+offsetx,pxlocation.y+offsety))); However, I don't always have an overlay on the map and map.getProjection() returns a projection, not a MapCanvasProjection which does not have the methods I need. Is there a way to do this without making an overlay specificaly for it?

    Read the article

  • XNA Reach profile with VMWare - Vertex Buffers not working?

    - by Nektarios
    Running XNA app, using Reach profile, in VMWare Fusion host OS Mac OSX, VM is Windows XP SP 3 (my dual-boot OS). Running on MacBook Pro w/NVidia 320M graphics card When I am booted in to XP natively, my code works. The code is drawing cubes that are set up using vertex buffers When another friend runs this same code on Windows 7, it also works for him just fine When I am running my code in the VM, it doesn't work. I have billboarding sprites running in a shader program and this part displays fine. I get no crashing or errors, the geometry just doesn't appear. I tried Debug and Release. This is very basic operation so I'm thinking VMWare isn't the problem, but it's my code.... My init code: var vertexArray = verts.ToArray(); var indexArray = indices.ToArray(); indexBuffer = new IndexBuffer(GraphicsDevice, typeof(Int16), indexArray.Length, BufferUsage.WriteOnly); indexBuffer.SetData(indexArray); vertexBuffer = new VertexBuffer(GraphicsDevice, typeof(VertexPositionColor), vertexArray.Length, BufferUsage.WriteOnly); vertexBuffer.SetData(vertexArray); My Draw code: // problem isn't here, tried no cull GraphicsDevice.RasterizerState = RasterizerState.CullClockwise; GraphicsDevice.BlendState = BlendState.AlphaBlend; GraphicsDevice.DepthStencilState = new DepthStencilState() { DepthBufferEnable = true }; // Update View and Projection TileEffect.View = ((Game1)Game).Camera.View; TileEffect.Projection = ((Game1)Game).Camera.Projection; TileEffect.CurrentTechnique.Passes[0].Apply(); GraphicsDevice.SetVertexBuffer(vertexBuffer); GraphicsDevice.Indices = indexBuffer; GraphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, indices.Count, 0, indices.Count / 3); For LoadContent: TileEffect = new BasicEffect(GraphicsDevice) { World = Matrix.Identity, View = ((Game1)Game).Camera.View, Projection = ((Game1)Game).Camera.Projection, VertexColorEnabled = true };

    Read the article

  • How to reshape matrices in Mathematica

    - by speciousfool
    When manipulating matrices it is often convenient to change their shape. For instance, to turn an N x M sized matrix into a vector of length N X M. In MATLAB a reshape function exists: RESHAPE(X,M,N) returns the M-by-N matrix whose elements are taken columnwise from X. An error results if X does not have M*N elements. In the case of converting between a matrix and vector I can use the Mathematica function Flatten which takes advantage of Mathematica's nested list representation for matrices. As a quick example, suppose I have a matrix X: With Flatten[X] I can get the vector {1,2,3,...,16}. But what would be far more useful is something akin to applying Matlab's reshape(X,2,8) which would result in the following Matrix: This would allow creation of arbitrary matrices as long as the dimensions equal N*M. As far as I can tell, there isn't anything built in which makes me wonder if someone hasn't coded up a Reshape function of their own.

    Read the article

  • OpenLayers Projections.

    - by Jenny
    I can succesfully do: point.transform(new OpenLayers.Projection("EPSG:900913"), new OpenLayers.Projection("EPSG:4326")); To a point that is in the google format (in meters), but when I want to do the reverse: point.transform(new OpenLayers.Projection("EPSG:4326"), new OpenLayers.Projection("EPSG:900913")); to a point that is in 4326 (regular lat/lon format), I am having some issues. Any negative value seems to become NaN (not a number) when I do the transformation. Is there something about the transformation in reverse that I don't understand? Edit: Even worse, when I have no negative values, the coordinates seem off. I am getting the coordinates by drawing a square on the screen, then saving those coordinates to a database and loading them later. I can draw a square near the tip of africa (positive coordinates), and then when it loads it's near the top of africa, in the atlantic ocean. I'm definitely doing something wrong....

    Read the article

  • What sort of loop structure to compare checkbox matrix with Google Maps markers?

    - by Kirkman14
    I'm trying to build a map of trails around my town. I'm using an XML file to hold all the trail data. For each marker, I have categories like "surface," "difficulty," "uses," etc. I have seen many examples of Google Maps that use checkboxes to show markers by category. However these examples are usually very simple: maybe three different checkboxes. What's different on my end is that I have multiple categories, and within each category there are several possible values. So, a particular trail might have "use" values of "hiking," "biking," "jogging," and "equestrian" because all are allowed. I put together one version, which you can see here: http://www.joshrenaud.com/pd/trails_withcheckboxes3.html In this version, any trail that has any value checked by the user will be displayed on the map. This version works. (although I should point out there is a bug where despite only one category being checked on load, all markers display anyway. After your first click on any checkbox, the map will work properly) However I now realize it's not quite what I want. I want to change it so that it will display only markers that match ALL the values that are checked (rather than ANY, which is what the example above does). I took a hack at this. You can see the result online, but I can't type a link to it because I am new user. Change the "3" in the URL above to a "4" to see it. My questions are about this SECOND url. (trails_withcheckboxes4.html) It doesn't work. I am pretty new to Javascript, so I am sure I have done something totally wrong, but I can't figure out what. My specific questions: Does anyone see anything glaringly obvious that is keeping my second example from working? If not, could someone just suggest what sort of loop structure I would need to build to compare the several arrays of checkboxes with the several arrays of values on any given marker? Here is some of the relevant code, although you can just view source on the examples above to see the whole thing: function createMarker(point,surface,difficulty,use,html) { var marker = new GMarker(point,GIcon); marker.mysurface = surface; marker.mydifficulty = difficulty; marker.myuse = use; GEvent.addListener(marker, "click", function() { marker.openInfoWindowHtml(html); }); gmarkers.push(marker); return marker; } function show() { hide(); var surfaceChecked = []; var difficultyChecked = []; var useChecked = []; var j=0; // okay, let's run through the checkbox elements and make arrays to serve as holders of any values the user has checked. for (i=0; i<surfaceArray.length; i++) { if (document.getElementById('surface'+surfaceArray[i]).checked == true) { surfaceChecked[j] = surfaceArray[i]; j++; } } j=0; for (i=0; i<difficultyArray.length; i++) { if (document.getElementById('difficulty'+difficultyArray[i]).checked == true) { difficultyChecked[j] = difficultyArray[i]; j++; } } j=0; for (i=0; i<useArray.length; i++) { if (document.getElementById('use'+useArray[i]).checked == true) { useChecked[j] = useArray[i]; j++; } } //now that we have our 'xxxChecked' holders, it's time to go through all the markers and see which to show. for (var k=0; k<gmarkers.length; k++) { // this loop runs thru all markers var surfaceMatches = []; var difficultyMatches = []; var useMatches = []; var surfaceOK = false; var difficultyOK = false; var useOK = false; for (var l=0; l<surfaceChecked.length; l++) { // this loops runs through all checked Surface categories for (var m=0; m<gmarkers[k].mysurface.length; m++) { // this loops through all surfaces on the marker if (gmarkers[k].mysurface[m].childNodes[0].nodeValue == surfaceChecked[l]) { surfaceMatches[l] = true; } } } for (l=0; l<difficultyChecked.length; l++) { // this loops runs through all checked Difficulty categories for (m=0; m<gmarkers[k].mydifficulty.length; m++) { // this loops through all difficulties on the marker if (gmarkers[k].mydifficulty[m].childNodes[0].nodeValue == difficultyChecked[l]) { difficultyMatches[l] = true; } } } for (l=0; l<useChecked.length; l++) { // this loops runs through all checked Use categories for (m=0; m<gmarkers[k].myuse.length; m++) { // this loops through all uses on the marker if (gmarkers[k].myuse[m].childNodes[0].nodeValue == useChecked[l]) { useMatches[l] = true; } } } // now it's time to loop thru the Match arrays and make sure they are all completely true. for (m=0; m<surfaceMatches.length; m++) { if (surfaceMatches[m] == true) { surfaceOK = true; } else if (surfaceMatches[m] == false) {surfaceOK = false; break; } } for (m=0; m<difficultyMatches.length; m++) { if (difficultyMatches[m] == true) { difficultyOK = true; } else if (difficultyMatches[m] == false) {difficultyOK = false; break; } } for (m=0; m<useMatches.length; m++) { if (useMatches[m] == true) { useOK = true; } else if (useMatches[m] == false) {useOK = false; break; } } // And finally, if each of the three OK's is true, then let's show the marker. if ((surfaceOK == true) && (difficultyOK == true) && (useOK == true)) { gmarkers[i].show(); } } }

    Read the article

  • rdlc - phantom page break, what to check?

    - by Antonio Nakic Alfirevic
    I have a RDLC report which has some controls on the first page, which are inside a rectangle and which display ok. Beneath the rectangle, i have a matrix, which spans more than one page both in width and in height. I want the matrix to start rendering on the second page. If I enable "insert break before" on the matrix, there is an extra blank page before the matrix(in print layout), which is my problem. If I reduce the amount of data, so the matrix does not span more than one page in width, there is no blank page, and all is well. I checked the Page and Body sizes, they are ok. Any tips? This has been driving me crazy all day, what can I check? Thx

    Read the article

  • open layers LineString not working

    - by AlexS
    Sorry to bother you guys, but I'm stuck with his problem for half a day. I want to draw poly line in OpenLayers using LineString object, so I've copied the example from documentation. It runs ok but i can't see the line on the screen Code looks like this <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> var map; var lineLayer ; var points; var style; var polygonFeature function test() { lineLayer = new OpenLayers.Layer.Vector("Line Layer"); style = { strokeColor: '#0000ff', strokeOpacity: 1, strokeWidth: 10 }; map.addLayer(lineLayer); points = new Array(); points[0] =new OpenLayers.LonLat(-2.460181,27.333984 ).transform(new OpenLayers.Projection("EPSG:4326"), map.getProjectionObject());; points[1] = new OpenLayers.LonLat(-3.864255,-22.5 ).transform(new OpenLayers.Projection("EPSG:4326"), map.getProjectionObject());; var linear_ring = new OpenLayers.Geometry.LinearRing(points); polygonFeature = new OpenLayers.Feature.Vector( new OpenLayers.Geometry.Polygon([linear_ring]), null, style); lineLayer.addFeatures([polygonFeature]); alert("1"); } function initialize() { map = new OpenLayers.Map ("map_canvas", { controls:[ new OpenLayers.Control.Navigation(), new OpenLayers.Control.PanZoomBar(), new OpenLayers.Control.LayerSwitcher(), new OpenLayers.Control.Attribution()], maxExtent: new OpenLayers.Bounds(-20037508.34,-20037508.34,20037508.34,20037508.34), maxResolution: 156543.0399, numZoomLevels: 19, units: 'm', projection: new OpenLayers.Projection("EPSG:900913"), displayProjection: new OpenLayers.Projection("EPSG:4326") }); // Define the map layer // Here we use a predefined layer that will be kept up to date with URL changes layerMapnik = new OpenLayers.Layer.OSM.Mapnik("Mapnik"); map.addLayer(layerMapnik); var lonLat = new OpenLayers.LonLat(0, 0).transform(new OpenLayers.Projection("EPSG:4326"), map.getProjectionObject()); map.zoomTo(3); map.setCenter(lonLat, 19); test(); } </head> <body onload="initialize()" > <div id="map_canvas" style="width: 828px; height: 698px"></div> I'm sure I'm missing some parameter in creation of map or something but I really can't figure which one.

    Read the article

  • FileReference and HttpService Browse Image Modify it then Upload it

    - by user177787
    Hello, I am trying to do an image uploader, user can: - browse local file with button.browse - select one and save it as a FileReference. - then we do FileReference.load() then bind the data to our image control. - after we make a rotation on it and change the data of image. - and to finish we upload it to a server. To change the data of image i get the matrix of the displayed image and transform it then i re-use the new matrix and bind it to my old image: private function TurnImage():void { //Turn it var m:Matrix = _img.transform.matrix; rotateImage(m); _img.transform.matrix = m; } Now the mater is that i really don't know how to send the data as a file to my server cause its not stored in the FileReference and data inside FileReference is readOnly so we can't change it or create a new, so i can't use .upload();. Then i tried HttpService.send but i can't figure out how you send a file and not a mxml.

    Read the article

  • Beagleboard: How do I send/receive data to/from the DSP?

    - by snakile
    I have a beagleboard with TMS320C64x+ DSP. I'm working on an image processing beagleboard application. Here's how it's going to work: The ARM reads an image from a file and put the image in a 2D array. The arm sends the matrix to the DSP. The DSP receives the matrix. The DSP performs the image processing algorithm on the received matrix (the algorithm code uses about 5MB of dynamically allocated memory). The DSP sends the processed image (matrix) to the ARM. The arm received the matrix. The arm saved the processed image to a file. I'v already written the code for steps 1,3,5. What is the easiest way to do steps 3+4 (sending the data)? Code examples are welcome.

    Read the article

  • Simple XNA 2D demo: why is my F# version slower than C# version?

    - by Den
    When running this XNA application it should display a rotated rectangle that moves from top-left corner to bottom-right corner. It looks like my F# version is noticeably much slower. It seems that the Draw method skips a lot of frames. I am using VS 2012 RC, XNA 4.0, .NET 4.5, F# 3.0. I am trying to make it as functional as possible. What could be the reason for poor performance? C#: class Program { static void Main(string[] args) { using (var game = new FlockGame()) { game.Run(); } } } public class FlockGame : Game { private GraphicsDeviceManager graphics; private DrawingManager drawingManager; private Vector2 position = Vector2.Zero; public FlockGame() { graphics = new GraphicsDeviceManager(this); } protected override void Initialize() { drawingManager = new DrawingManager(graphics.GraphicsDevice); this.IsFixedTimeStep = false; } protected override void Update(GameTime gameTime) { position = new Vector2(position.X + 50.1f * (float)gameTime.ElapsedGameTime.TotalSeconds, position.Y + 50.1f * (float)gameTime.ElapsedGameTime.TotalSeconds); base.Update(gameTime); } protected override void Draw(GameTime gameTime) { //this.GraphicsDevice.Clear(Color.Lavender) drawingManager.DrawRectangle(position, new Vector2(100.0f, 100.0f), 0.7845f, Color.Red); base.Draw(gameTime); } } public class DrawingManager { private GraphicsDevice GraphicsDevice; private Effect Effect; public DrawingManager(GraphicsDevice graphicsDevice) { GraphicsDevice = graphicsDevice; this.Effect = new BasicEffect(this.GraphicsDevice) { VertexColorEnabled = true, Projection = Matrix.CreateOrthographicOffCenter(0.0f, this.GraphicsDevice.Viewport.Width, this.GraphicsDevice.Viewport.Height, 0.0f, 0.0f, 1.0f) }; } private VertexPositionColor[] GetRectangleVertices (Vector2 center, Vector2 size, float radians, Color color) { var halfSize = size/2.0f; var topLeft = -halfSize; var bottomRight = halfSize; var topRight = new Vector2(bottomRight.X, topLeft.Y); var bottomLeft = new Vector2(topLeft.X, bottomRight.Y); topLeft = Vector2.Transform(topLeft, Matrix.CreateRotationZ(radians)) + center; topRight = Vector2.Transform(topRight, Matrix.CreateRotationZ(radians)) + center; bottomRight = Vector2.Transform(bottomRight, Matrix.CreateRotationZ(radians)) + center; bottomLeft = Vector2.Transform(bottomLeft, Matrix.CreateRotationZ(radians)) + center; return new VertexPositionColor[] { new VertexPositionColor(new Vector3(topLeft, 0.0f), color), new VertexPositionColor(new Vector3(topRight, 0.0f), color), new VertexPositionColor(new Vector3(topRight, 0.0f), color), new VertexPositionColor(new Vector3(bottomRight, 0.0f), color), new VertexPositionColor(new Vector3(bottomRight, 0.0f), color), new VertexPositionColor(new Vector3(bottomLeft, 0.0f), color), new VertexPositionColor(new Vector3(bottomLeft, 0.0f), color), new VertexPositionColor(new Vector3(topLeft, 0.0f), color) }; } public void DrawRectangle(Vector2 center, Vector2 size, float radians, Color color) { var vertices = GetRectangleVertices(center, size, radians, color); foreach (var pass in this.Effect.CurrentTechnique.Passes) { pass.Apply(); this.GraphicsDevice.DrawUserPrimitives(PrimitiveType.LineList, vertices, 0, vertices.Length/2); } } } F#: namespace Flocking module FlockingProgram = open System open Flocking [<STAThread>] [<EntryPoint>] let Main _ = use g = new FlockGame() g.Run() 0 //------------------------------------------------------------------------------ namespace Flocking open System open System.Diagnostics open Microsoft.Xna.Framework open Microsoft.Xna.Framework.Graphics open Microsoft.Xna.Framework.Input type public FlockGame() as this = inherit Game() let mutable graphics = new GraphicsDeviceManager(this) let mutable drawingManager = null let mutable position = Vector2.Zero override Game.LoadContent() = drawingManager <- new Rendering.DrawingManager(graphics.GraphicsDevice) this.IsFixedTimeStep <- false override Game.Update gameTime = position <- Vector2(position.X + 50.1f * float32 gameTime.ElapsedGameTime.TotalSeconds, position.Y + 50.1f * float32 gameTime.ElapsedGameTime.TotalSeconds) base.Update gameTime override Game.Draw gameTime = //this.GraphicsDevice.Clear(Color.Lavender) Rendering.DrawRectangle(drawingManager, position, Vector2(100.0f, 100.0f), 0.7845f, Color.Red) base.Draw gameTime //------------------------------------------------------------------------------ namespace Flocking open System open System.Collections.Generic open Microsoft.Xna.Framework open Microsoft.Xna.Framework.Graphics open Microsoft.Xna.Framework.Input module Rendering = [<AllowNullLiteral>] type DrawingManager (graphicsDevice : GraphicsDevice) = member this.GraphicsDevice = graphicsDevice member this.Effect = new BasicEffect(this.GraphicsDevice, VertexColorEnabled = true, Projection = Matrix.CreateOrthographicOffCenter(0.0f, float32 this.GraphicsDevice.Viewport.Width, float32 this.GraphicsDevice.Viewport.Height, 0.0f, 0.0f, 1.0f)) let private GetRectangleVertices (center:Vector2, size:Vector2, radians:float32, color:Color) = let halfSize = size / 2.0f let mutable topLeft = -halfSize let mutable bottomRight = halfSize let mutable topRight = new Vector2(bottomRight.X, topLeft.Y) let mutable bottomLeft = new Vector2(topLeft.X, bottomRight.Y) topLeft <- Vector2.Transform(topLeft, Matrix.CreateRotationZ(radians)) + center topRight <- Vector2.Transform(topRight, Matrix.CreateRotationZ(radians)) + center bottomRight <- Vector2.Transform(bottomRight, Matrix.CreateRotationZ(radians)) + center bottomLeft <- Vector2.Transform(bottomLeft, Matrix.CreateRotationZ(radians)) + center [| new VertexPositionColor(new Vector3(topLeft, 0.0f), color) new VertexPositionColor(new Vector3(topRight, 0.0f), color) new VertexPositionColor(new Vector3(topRight, 0.0f), color) new VertexPositionColor(new Vector3(bottomRight, 0.0f), color) new VertexPositionColor(new Vector3(bottomRight, 0.0f), color) new VertexPositionColor(new Vector3(bottomLeft, 0.0f), color) new VertexPositionColor(new Vector3(bottomLeft, 0.0f), color) new VertexPositionColor(new Vector3(topLeft, 0.0f), color) |] let DrawRectangle (drawingManager:DrawingManager, center:Vector2, size:Vector2, radians:float32, color:Color) = let vertices = GetRectangleVertices(center, size, radians, color) for pass in drawingManager.Effect.CurrentTechnique.Passes do pass.Apply() drawingManager.GraphicsDevice.DrawUserPrimitives(PrimitiveType.LineList, vertices, 0, vertices.Length/2)

    Read the article

  • Passing a 2D array to a function in C

    - by Tyler Treat
    I have, essentially, a matrix of data (lets say ints) that I would like to store in a 2D array in which the dimensions are not known until runtime (say x columns and y rows). I want to populate the array in a function, so I assume I need to do something like this: int main(int argc, char **argv) { int y = atoi(argv[1]); int x = atoi(argv[2]); int **matrix = malloc(x * sizeof(int*)); populateMatrix(matrix, y, x); return 0; } void populateMatrix(**matrix, int y, int x) { int i, j; for (i = 0; i < y; i++) { for (j = 0; j < x; j++) { matrix[i][j] = i * j; // populated with trivial data to keep it simple } } } Obviously this doesn't work, but I'm not sure how to do what I'm describing exactly.

    Read the article

  • Row/column counter in 'apply' functions

    - by mortalitysequence
    What if one wants to apply a functon i.e. to each row of a matrix, but also wants to use as an argument for this function the number of that row. As an example, suppose you wanted to get the n-th root of the numbers in each row of a matrix, where n is the row number. Is there another way (using apply only) than column-binding the row numbers to the initial matrix, like this? test <- data.frame(x=c(26,21,20),y=c(34,29,28)) t(apply(cbind(as.numeric(rownames(test)),test),1,function(x) x[2:3]^(1/x[1]))) P.S. Actually if test was really a matrix : test <- matrix(c(26,21,20,34,29,28),nrow=3) , rownames(test) doesn't help :( Thank you.

    Read the article

< Previous Page | 28 29 30 31 32 33 34 35 36 37 38 39  | Next Page >