Search Results

Search found 23792 results on 952 pages for 'void pointers'.

Page 321/952 | < Previous Page | 317 318 319 320 321 322 323 324 325 326 327 328  | Next Page >

  • The Dispose Pattern (and FxCop warnings)

    - by Scott Dorman
    [This is actually a response to Bill’s blog post, but since it isn’t possible to leave this as a comment on his blog it’s a post here.] There are many different ways to implement the Dispose pattern correctly. Some are (in my opinion) better than others. In Bill’s blog post he presents a particular pattern, which is an excerpt from his book (Effective C#). The issue centers around the fact that a reader took the code sample presented in the book and ran FxCop (Code Analysis) on it, which generated a warning: “Ensure that base.Dispose() is always called.” The “lesson learned” that Bill presents is that “tools are there to help us, not control us.” While I completely agree with the belief that tools are there to help us, I think it’s important to understand why FxCop is raising this particular warning. The code presented in Bill’s book looks like: // Have its own disposed flag.private bool disposed = false;protected override void Dispose(bool isDisposing){ // Don't dispose more than once. if (disposed) return; if (isDisposing) { // TODO: free managed resources here. } // TODO: free unmanaged resources here. // Let the base class free its resources. // Base class is responsible for calling // GC.SuppressFinalize( ) base.Dispose(isDisposing); // Set derived class disposed flag: disposed = true;} This code does follow all of the guidelines for implementing the Dispose pattern. In this case, it’s presumably part of a larger example showing how to implement the pattern as part of a base class. The reason FxCop is warning you about this code is the first if statement in the Dispose method, which will cause the method to exit if disposed is true. The problem here is that there is the possibility that if the disposed flag is true, the call to base.Dispose() will never be executed. As Bill points out, it is possible for some other code elsewhere in the class to set this flag. He states that this is an “unlikely occurrence.” While that is probably true, it can be a potentially dangerous assumption to make and is one that can be easily corrected. By changing the code slightly you can remove this assumption and correct the FxCop violation. private bool disposed = false;protected override void Dispose(bool disposing){ if (!disposed) { if (disposing) { // Dispose managed resources. } // Dispose unmanaged resources. disposed = true; } base.Dispose(disposing);} Using this implementation allows the call to base.Dispose() to always occur, which ensures that the the disposal chain is always properly followed. Technorati Tags: .NET,C#,Dispose Pattern

    Read the article

  • Should main method be only consists of object creations and method calls?

    - by crucified soul
    A friend of mine told me that, the best practice is class containing main method should be named Main and only contains main method. Also main method should only parse inputs, create other objects and call other methods. The Main class and main method shouldn't do anything else. Basically what he is saying that class containing main method should be like: public class Main { public static void main(String[] args) { //parse inputs //create other objects //call methods } } Is it the best practice?

    Read the article

  • Programmatically navigate to a new page

    - by [email protected]
    Did you know you can programmatically navigate to a new page via code?  Inside your bean method, you can simply use the NavigationDispatchHelper class to do the work for you. The invokePageNavigation method of NavigationDispatchHelper takes a String parameter that holds the value of the navigation rule to follow.   import oracle.adfnmc.util.NavigationDispatchHelper; public void MyBeanMethod() { /'/ Do stuff NavigationDispatchHelper.invokePageNavigation("patients"); }

    Read the article

  • GLM Velocity Vectors - Basic Maths to Simulate Steering

    - by Reanimation
    UPDATE - Code updated below but still need help adjusting my math. I have a cube rendered on the screen which represents a car (or similar). Using Projection/Model matrices and Glm I am able to move it back and fourth along the axes and rotate it left or right. I'm having trouble with the vector mathematics to make the cube move forwards no matter which direction it's current orientation is. (ie. if I would like, if it's rotated right 30degrees, when it's move forwards, it travels along the 30degree angle on a new axes). I hope I've explained that correctly. This is what I've managed to do so far in terms of using glm to move the cube: glm::vec3 vel; //velocity vector void renderMovingCube(){ glUseProgram(movingCubeShader.handle()); GLuint matrixLoc4MovingCube = glGetUniformLocation(movingCubeShader.handle(), "ProjectionMatrix"); glUniformMatrix4fv(matrixLoc4MovingCube, 1, GL_FALSE, &ProjectionMatrix[0][0]); glm::mat4 viewMatrixMovingCube; viewMatrixMovingCube = glm::lookAt(camOrigin, camLookingAt, camNormalXYZ); vel.x = cos(rotX); vel.y=sin(rotX); vel*=moveCube; //move cube ModelViewMatrix = glm::translate(viewMatrixMovingCube,globalPos*vel); //bring ground and cube to bottom of screen ModelViewMatrix = glm::translate(ModelViewMatrix, glm::vec3(0,-48,0)); ModelViewMatrix = glm::rotate(ModelViewMatrix, rotX, glm::vec3(0,1,0)); //manually turn glUniformMatrix4fv(glGetUniformLocation(movingCubeShader.handle(), "ModelViewMatrix"), 1, GL_FALSE, &ModelViewMatrix[0][0]); //pass matrix to shader movingCube.render(); //draw glUseProgram(0); } keyboard input: void keyboard() { char BACKWARD = keys['S']; char FORWARD = keys['W']; char ROT_LEFT = keys['A']; char ROT_RIGHT = keys['D']; if (FORWARD) //W - move forwards { globalPos += vel; //globalPos.z -= moveCube; BACKWARD = false; } if (BACKWARD)//S - move backwards { globalPos.z += moveCube; FORWARD = false; } if (ROT_LEFT)//A - turn left { rotX +=0.01f; ROT_LEFT = false; } if (ROT_RIGHT)//D - turn right { rotX -=0.01f; ROT_RIGHT = false; } Where am I going wrong with my vectors? I would like change the direction of the cube (which it does) but then move forwards in that direction.

    Read the article

  • MVC Portable Area Modules *Without* MasterPages

    - by Steve Michelotti
    Portable Areas from MvcContrib provide a great way to build modular and composite applications on top of MVC. In short, portable areas provide a way to distribute MVC binary components as simple .NET assemblies where the aspx/ascx files are actually compiled into the assembly as embedded resources. I’ve blogged about Portable Areas in the past including this post here which talks about embedding resources and you can read more of an intro to Portable Areas here. As great as Portable Areas are, the question that seems to come up the most is: what about MasterPages? MasterPages seems to be the one thing that doesn’t work elegantly with portable areas because you specify the MasterPage in the @Page directive and it won’t use the same mechanism of the view engine so you can’t just embed them as resources. This means that you end up referencing a MasterPage that exists in the host application but not in your portable area. If you name the ContentPlaceHolderId’s correctly, it will work – but it all seems a little fragile. Ultimately, what I want is to be able to build a portable area as a module which has no knowledge of the host application. I want to be able to invoke the module by a full route on the user’s browser and it gets invoked and “automatically appears” inside the application’s visual chrome just like a MasterPage. So how could we accomplish this with portable areas? With this question in mind, I looked around at what other people are doing to address similar problems. Specifically, I immediately looked at how the Orchard team is handling this and I found it very compelling. Basically Orchard has its own custom layout/theme framework (utilizing a custom view engine) that allows you to build your module without any regard to the host. You simply decorate your controller with the [Themed] attribute and it will render with the outer chrome around it: 1: [Themed] 2: public class HomeController : Controller Here is the slide from the Orchard talk at this year MIX conference which shows how it conceptually works:   It’s pretty cool stuff.  So I figure, it must not be too difficult to incorporate this into the portable areas view engine as an optional piece of functionality. In fact, I’ll even simplify it a little – rather than have 1) Document.aspx, 2) Layout.ascx, and 3) <view>.ascx (as shown in the picture above); I’ll just have the outer page be “Chrome.aspx” and then the specific view in question. The Chrome.aspx not only takes the place of the MasterPage, but now since we’re no longer constrained by the MasterPage infrastructure, we have the choice of the Chrome.aspx living in the host or inside the portable areas as another embedded resource! Disclaimer: credit where credit is due – much of the code from this post is me re-purposing the Orchard code to suit my needs. To avoid confusion with Orchard, I’m going to refer to my implementation (which will be based on theirs) as a Chrome rather than a Theme. The first step I’ll take is to create a ChromedAttribute which adds a flag to the current HttpContext to indicate that the controller designated Chromed like this: 1: [Chromed] 2: public class HomeController : Controller The attribute itself is an MVC ActionFilter attribute: 1: public class ChromedAttribute : ActionFilterAttribute 2: { 3: public override void OnActionExecuting(ActionExecutingContext filterContext) 4: { 5: var chromedAttribute = GetChromedAttribute(filterContext.ActionDescriptor); 6: if (chromedAttribute != null) 7: { 8: filterContext.HttpContext.Items[typeof(ChromedAttribute)] = null; 9: } 10: } 11:   12: public static bool IsApplied(RequestContext context) 13: { 14: return context.HttpContext.Items.Contains(typeof(ChromedAttribute)); 15: } 16:   17: private static ChromedAttribute GetChromedAttribute(ActionDescriptor descriptor) 18: { 19: return descriptor.GetCustomAttributes(typeof(ChromedAttribute), true) 20: .Concat(descriptor.ControllerDescriptor.GetCustomAttributes(typeof(ChromedAttribute), true)) 21: .OfType<ChromedAttribute>() 22: .FirstOrDefault(); 23: } 24: } With that in place, we only have to override the FindView() method of the custom view engine with these 6 lines of code: 1: public override ViewEngineResult FindView(ControllerContext controllerContext, string viewName, string masterName, bool useCache) 2: { 3: if (ChromedAttribute.IsApplied(controllerContext.RequestContext)) 4: { 5: var bodyView = ViewEngines.Engines.FindPartialView(controllerContext, viewName); 6: var documentView = ViewEngines.Engines.FindPartialView(controllerContext, "Chrome"); 7: var chromeView = new ChromeView(bodyView, documentView); 8: return new ViewEngineResult(chromeView, this); 9: } 10:   11: // Just execute normally without applying Chromed View Engine 12: return base.FindView(controllerContext, viewName, masterName, useCache); 13: } If the view engine finds the [Chromed] attribute, it will invoke it’s own process – otherwise, it’ll just defer to the normal web forms view engine (with masterpages). The ChromeView’s primary job is to independently set the BodyContent on the view context so that it can be rendered at the appropriate place: 1: public class ChromeView : IView 2: { 3: private ViewEngineResult bodyView; 4: private ViewEngineResult documentView; 5:   6: public ChromeView(ViewEngineResult bodyView, ViewEngineResult documentView) 7: { 8: this.bodyView = bodyView; 9: this.documentView = documentView; 10: } 11:   12: public void Render(ViewContext viewContext, System.IO.TextWriter writer) 13: { 14: ChromeViewContext chromeViewContext = ChromeViewContext.From(viewContext); 15:   16: // First render the Body view to the BodyContent 17: using (var bodyViewWriter = new StringWriter()) 18: { 19: var bodyViewContext = new ViewContext(viewContext, bodyView.View, viewContext.ViewData, viewContext.TempData, bodyViewWriter); 20: this.bodyView.View.Render(bodyViewContext, bodyViewWriter); 21: chromeViewContext.BodyContent = bodyViewWriter.ToString(); 22: } 23: // Now render the Document view 24: this.documentView.View.Render(viewContext, writer); 25: } 26: } The ChromeViewContext (code excluded here) mainly just has a string property for the “BodyContent” – but it also makes sure to put itself in the HttpContext so it’s available. Finally, we created a little extension method so the module’s view can be rendered in the appropriate place: 1: public static void RenderBody(this HtmlHelper htmlHelper) 2: { 3: ChromeViewContext chromeViewContext = ChromeViewContext.From(htmlHelper.ViewContext); 4: htmlHelper.ViewContext.Writer.Write(chromeViewContext.BodyContent); 5: } At this point, the other thing left is to decide how we want to implement the Chrome.aspx page. One approach is the copy/paste the HTML from the typical Site.Master and change the main content placeholder to use the HTML helper above – this way, there are no MasterPages anywhere. Alternatively, we could even have Chrome.aspx utilize the MasterPage if we wanted (e.g., in the case where some pages are Chromed and some pages want to use traditional MasterPage): 1: <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> 2: <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> 3: <% Html.RenderBody(); %> 4: </asp:Content> At this point, it’s all academic. I can create a controller like this: 1: [Chromed] 2: public class WidgetController : Controller 3: { 4: public ActionResult Index() 5: { 6: return View(); 7: } 8: } Then I’ll just create Index.ascx (a partial view) and put in the text “Inside my widget”. Now when I run the app, I can request the full route (notice the controller name of “widget” in the address bar below) and the HTML from my Index.ascx will just appear where it is supposed to.   This means no more warnings for missing MasterPages and no more need for your module to have knowledge of the host’s MasterPage placeholders. You have the option of using the Chrome.aspx in the host or providing your own while embedding it as an embedded resource itself. I’m curious to know what people think of this approach. The code above was done with my own local copy of MvcContrib so it’s not currently something you can download. At this point, these are just my initial thoughts – just incorporating some ideas for Orchard into non-Orchard apps to enable building modular/composite apps more easily. Additionally, on the flip side, I still believe that Portable Areas have potential as the module packaging story for Orchard itself.   What do you think?

    Read the article

  • IrrKlang with Ogre

    - by Vinnie
    I'm trying to set up sound in my Ogre3D project. I have installed irrKlang 1.4.0 and added it's include and lib directories to my projects VC++ Include and Library directories, but I'm still getting a Linker error when I attempt to build. Any suggestions? (Error 4007 error LNK2019: unresolved external symbol "__declspec(dllimport) class irrklang::ISoundEngine * __cdecl irrklang::createIrrKlangDevice(enum irrklang::E_SOUND_OUTPUT_DRIVER,int,char const *,char const *)" (_imp?createIrrKlangDevice@irrklang@@YAPAVISoundEngine@1@W4E_SOUND_OUTPUT_DRIVER@1@HPBD1@Z) referenced in function "public: __thiscall SoundManager::SoundManager(void)" (??0SoundManager@@QAE@XZ)

    Read the article

  • Use CSS Selectors with HtmlUnit

    - by kerry
    HtmlUnit is a great library for performing web integration tests in Java.  But sometimes node traversal can be somewhat cumbersome. Fear not fellow automated tester (good for you!).  I found a great little project on Github that will allow you to query your document for elements via css selectors similar to jQuery. The project is located at https://github.com/chrsan/css-selectors.  You can use Maven to build it, or download 1.0.2 here.  Beware.  I will not be updating this link so I suggest you download the latest code. In any case, you can use it like so: // from HtmlUnit getting started final WebClient webClient = new WebClient(); final HtmlPage page = webClient.getPage("http://htmlunit.sourceforge.net"); final DOMNodeSelector cssSelector = new DOMNodeSelector(page.getDocumentElement()); final Set elements = cssSelector.querySelectorAll("div.section h2"); final Node first = elements.iterator().next(); assertThat(first.getTextContent(), equalTo("HtmlUnit")); The only problem here is that the querySelectAll returns a Set<Node>.  Not HtmlElement like we may want in some cases.   However, if you were to reflect on the Set, you would find that it is indeed a Set of HtmlElement objects. Typically, I like to create a base class for my web tests.  Just for fun, I am using the $ method similar to jQuery. public class WebTestBase { protected WebClient webClient; protected HtmlPage htmlPage; protected void goTo(final String url){ return (HtmlPage)webClient.getPage(url); } protected List $(final String cssSelector) { final DOMNodeSelector cssSelector = new DOMNodeSelector(htmlPage.getDocumentElement()); final Set nodes = cssSelector.querySelectorAll("div.section h2"); // for some reason Set cannot be cast to Set? final List elements = new ArrayList(nodes.size()); for (final Node node : nodes) { elements.add((HtmlElement)node); } return elements; } } Now we can write tests like this: public class LoginWebTest extends WebTestBase { @Test public void login_page_has_instructions() throws Exception { goTo(baseUrl + "/login") assertThat( $("p.instructions").size(), equalTo(1) ); } }

    Read the article

  • Composite-like pattern and SRP violation

    - by jimmy_keen
    Recently I've noticed myself implementing pattern similar to the one described below. Starting with interface: public interface IUserProvider { User GetUser(UserData data); } GetUser method's pure job is to somehow return user (that would be an operation speaking in composite terms). There might be many implementations of IUserProvider, which all do the same thing - return user basing on input data. It doesn't really matter, as they are only leaves in composite terms and that's fairly simple. Now, my leaves are used by one own them all composite class, which at the moment follows this implementation: public interface IUserProviderComposite : IUserProvider { void RegisterProvider(Predicate<UserData> predicate, IUserProvider provider); } public class UserProviderComposite : IUserProviderComposite { public User GetUser(SomeUserData data) ... public void RegisterProvider(Predicate<UserData> predicate, IUserProvider provider) ... } Idea behind UserProviderComposite is simple. You register providers, and this class acts as a reusable entry-point. When calling GetUser, it will use whatever registered provider matches predicate for requested user data (if that helps, it stores key-value map of predicates and providers internally). Now, what confuses me is whether RegisterProvider method (brings to mind composite's add operation) should be a part of that class. It kind of expands its responsibilities from providing user to also managing providers collection. As far as my understanding goes, this violates Single Responsibility Principle... or am I wrong here? I thought about extracting register part into separate entity and inject it to the composite. As long as it looks decent on paper (in terms of SRP), it feels bit awkward because: I would be essentially injecting Dictionary (or other key-value map) ...or silly wrapper around it, doing nothing more than adding entires This won't be following composite anymore (as add won't be part of composite) What exactly is the presented pattern called? Composite felt natural to compare it with, but I realize it's not exactly the one however nothing else rings any bells. Which approach would you take - stick with SRP or stick with "composite"/pattern? Or is the design here flawed and given the problem this can be done in a better way?

    Read the article

  • How to boot Chromebook from SD card without entering developer mode?

    - by Caleb Strutz
    I have a question. Is it at all possible to install Ubuntu or Chrubuntu onto a SD Card and then boot a chromebook from said SD card? I know this is easily possible, but the chromebook in question belongs to my school, so I cannot enter developer mode, because that would void the license agreement. I don't really care how technical or how many steps this will take, as long as it can be possible. Thanks in advance.

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Light following me around the room. Something is wrong with my shader!

    - by Robinson
    I'm trying to do a spot (Blinn) light, with falloff and attenuation. It seems to be working OK except I have a bit of a space problem. That is, whenever I move the camera the light moves to maintain the same relative position, rather than changing with the camera. This results in the light moving around, i.e. not always falling on the same surfaces. It's as if there's a flashlight attached to the camera. I'm transforming the lights beforehand into view space, so Light_Position and Light_Direction are already in eye space (I hope!). I made a little movie of what it looks like here: My camera rotating around a point inside a box. The light is fixed in the centre up and its "look at" point in a fixed position in front of it. As you can see, as the camera rotates around the origin (always looking at the centre), so don't think the box is rotating (!). The lighting follows it around. To start, some code. This is how I'm transforming the light into view space (it gets passed into the shader already in view space): // Compute eye-space light position. Math::Vector3d eyeSpacePosition = MyCamera->ViewMatrix() * MyLightPosition; MyShaderVariables->Set(MyLightPositionIndex, eyeSpacePosition); // Compute eye-space light direction vector. Math::Vector3d eyeSpaceDirection = Math::Unit(MyLightLookAt - MyLightPosition); MyCamera->ViewMatrixInverseTranspose().TransformNormal(eyeSpaceDirection); MyShaderVariables->Set(MyLightDirectionIndex, eyeSpaceDirection); Can anyone give me a clue as to what I'm doing wrong here? I think the light should remain looking at a fixed point on the box, regardless of the camera orientation. Here are the vertex and pixel shaders: /////////////////////////////////////////////////// // Vertex Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Uniform Buffer Structures /////////////////////////////////////////////////// // Camera. layout (std140) uniform Camera { mat4 Camera_View; mat4 Camera_ViewInverseTranspose; mat4 Camera_Projection; }; // Matrices per model. layout (std140) uniform Model { mat4 Model_World; mat4 Model_WorldView; mat4 Model_WorldViewInverseTranspose; mat4 Model_WorldViewProjection; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Streams (per vertex) /////////////////////////////////////////////////// layout(location = 0) in vec3 attrib_Position; layout(location = 1) in vec3 attrib_Normal; layout(location = 2) in vec3 attrib_Tangent; layout(location = 3) in vec3 attrib_BiNormal; layout(location = 4) in vec2 attrib_Texture; /////////////////////////////////////////////////// // Output streams (per vertex) /////////////////////////////////////////////////// out vec3 attrib_Fragment_Normal; out vec4 attrib_Fragment_Position; out vec2 attrib_Fragment_Texture; out vec3 attrib_Fragment_Light; out vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main() { // Transform normal into eye space attrib_Fragment_Normal = (Model_WorldViewInverseTranspose * vec4(attrib_Normal, 0.0)).xyz; // Transform vertex into eye space (world * view * vertex = eye) vec4 position = Model_WorldView * vec4(attrib_Position, 1.0); // Compute vector from eye space vertex to light (light is in eye space already) attrib_Fragment_Light = Light_Position - position.xyz; // Compute vector from the vertex to the eye (which is now at the origin). attrib_Fragment_Eye = -position.xyz; // Output texture coord. attrib_Fragment_Texture = attrib_Texture; // Compute vertex position by applying camera projection. gl_Position = Camera_Projection * position; } and the pixel shader: /////////////////////////////////////////////////// // Pixel Shader /////////////////////////////////////////////////// #version 420 /////////////////////////////////////////////////// // Samplers /////////////////////////////////////////////////// uniform sampler2D Map_Diffuse; /////////////////////////////////////////////////// // Global Uniforms /////////////////////////////////////////////////// // Material. layout (std140) uniform Material { vec4 Material_Ambient_Colour; vec4 Material_Diffuse_Colour; vec4 Material_Specular_Colour; vec4 Material_Emissive_Colour; float Material_Shininess; float Material_Strength; }; // Spotlight. layout (std140) uniform OmniLight { float Light_Intensity; vec3 Light_Position; vec3 Light_Direction; vec4 Light_Ambient_Colour; vec4 Light_Diffuse_Colour; vec4 Light_Specular_Colour; float Light_Attenuation_Min; float Light_Attenuation_Max; float Light_Cone_Min; float Light_Cone_Max; }; /////////////////////////////////////////////////// // Input streams (per vertex) /////////////////////////////////////////////////// in vec3 attrib_Fragment_Normal; in vec3 attrib_Fragment_Position; in vec2 attrib_Fragment_Texture; in vec3 attrib_Fragment_Light; in vec3 attrib_Fragment_Eye; /////////////////////////////////////////////////// // Result /////////////////////////////////////////////////// out vec4 Out_Colour; /////////////////////////////////////////////////// // Main /////////////////////////////////////////////////// void main(void) { // Compute N dot L. vec3 N = normalize(attrib_Fragment_Normal); vec3 L = normalize(attrib_Fragment_Light); vec3 E = normalize(attrib_Fragment_Eye); vec3 H = normalize(L + E); float NdotL = clamp(dot(L,N), 0.0, 1.0); float NdotH = clamp(dot(N,H), 0.0, 1.0); // Compute ambient term. vec4 ambient = Material_Ambient_Colour * Light_Ambient_Colour; // Diffuse. vec4 diffuse = texture2D(Map_Diffuse, attrib_Fragment_Texture) * Light_Diffuse_Colour * Material_Diffuse_Colour * NdotL; // Specular. float specularIntensity = pow(NdotH, Material_Shininess) * Material_Strength; vec4 specular = Light_Specular_Colour * Material_Specular_Colour * specularIntensity; // Light attenuation (so we don't have to use 1 - x, we step between Max and Min). float d = length(-attrib_Fragment_Light); float attenuation = smoothstep(Light_Attenuation_Max, Light_Attenuation_Min, d); // Adjust attenuation based on light cone. float LdotS = dot(-L, Light_Direction), CosI = Light_Cone_Min - Light_Cone_Max; attenuation *= clamp((LdotS - Light_Cone_Max) / CosI, 0.0, 1.0); // Final colour. Out_Colour = (ambient + diffuse + specular) * Light_Intensity * attenuation; }

    Read the article

  • OpenGL flickerinng near the edges

    - by Daniel
    I am trying to simulate particles moving around the scene with OpenCL for computation and OpenGL for rendering with GLUT. There is no OpenCL-OpenGL interop yet, so the drawing is done in the older fixed pipeline way. Whenever circles get close to the edges, they start to flicker. The drawing should draw a part of the circle on the top of the scene and a part on the bottom. The effect is the following: The balls you see on the bottom should be one part on the bottom and one part on the top. Wrapping around the scene, so to say, but they constantly flicker. The code for drawing them is: void Scene::drawCircle(GLuint index){ glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(pos.at(2*index),pos.at(2*index+1), 0.0f); glBegin(GL_TRIANGLE_FAN); GLfloat incr = (2.0 * M_PI) / (GLfloat) slices; glColor3f(0.8f, 0.255f, 0.26f); glVertex2f(0.0f, 0.0f); glColor3f(1.0f, 0.0f, 0.0f); for(GLint i = 0; i <=slices; ++i){ GLfloat x = radius * sin((GLfloat) i * incr); GLfloat y = radius * cos((GLfloat) i * incr); glVertex2f(x, y); } glEnd(); } If it helps, this is the reshape method: void Scene::reshape(GLint width, GLint height){ if(0 == height) height = 1; //Prevent division by zero glViewport(0, 0, width, height); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(xmin, xmax, ymin, ymax); std::cout << xmin << " " << xmax << " " << ymin << " " << ymax << std::endl; }

    Read the article

  • Library to fake intermittent failures according to tester-defined policy?

    - by crosstalk
    I'm looking for a library that I can use to help mock a program component that works only intermittently - usually, it works fine, but sometimes it fails. For example, suppose I need to read data from a file, and my program has to avoid crashing or hanging when a read fails due to a disk head crash. I'd like to model that by having a mock data reader function that returns mock data 90% of the time, but hangs or returns garbage otherwise. Or, if I'm stress-testing my full program, I could turn on debugging code in my real data reader module to make it return real data 90% of the time and hang otherwise. Now, obviously, in this particular example I could just code up my mock manually to test against a random() routine. However, I was looking for a system that allows implementing any failure policy I want, including: Fail randomly 10% of the time Succeed 10 times, fail 4 times, repeat Fail semi-randomly, such that one failure tends to be followed by a burst of more failures Any policy the tester wants to define Furthermore, I'd like to be able to change the failure policy at runtime, using either code internal to the program under test, or external knobs or switches (though the latter can be implemented with the former). In pig-Java, I'd envision a FailureFaker interface like so: interface FailureFaker { /** Return true if and only if the mocked operation succeeded. Implementors should override this method with versions consistent with their failure policy. */ public boolean attempt(); } And each failure policy would be a class implementing FailureFaker; for example there would be a PatternFailureFaker that would succeed N times, then fail M times, then repeat, and a AlwaysFailFailureFaker that I'd use temporarily when I need to simulate, say, someone removing the external hard drive my data was on. The policy could then be used (and changed) in my mock object code like so: class MyMockComponent { FailureFaker faker; public void doSomething() { if (faker.attempt()) { // ... } else { throw new RuntimeException(); } } void setFailurePolicy (FailureFaker policy) { this.faker = policy; } } Now, this seems like something that would be part of a mocking library, so I wouldn't be surprised if it's been done before. (In fact, I got the idea from Steve Maguire's Writing Solid Code, where he discusses this exact idea on pages 228-231, saying that such facilities were common in Microsoft code of that early-90's era.) However, I'm only familiar with EasyMock and jMockit for Java, and neither AFAIK have this function, or something similar with different syntax. Hence, the question: Do such libraries as I've described above exist? If they do, where have you found them useful? If you haven't found them useful, why not?

    Read the article

  • Android Touch Event Collision Detection

    - by chrissb
    I'm relatively new to both Java and Android, so hopefully the problem I'm having is stemming from something pretty minor that I've overlooked. I've got a (very early stage) game that I've started working on, for Android using Java. At this stage, when the user touches the screen, if they touched a point at which there is an enemy, the enemies health is decreased and they become immobile (for the current implementation at least). The issue that I'm having is that the touch detection doesn't always seem to work. I've got a testing sprite set up that goes to the eventX and eventY coordinates of the touch down event, and it always seems to collide with the enemy object. Yet, the enemy doesn't always register as being hit, and sometimes a hit is registered when the sprite indicates the touch coordinates were outside of the enemies bounding box. I realise that this probably doesn't mean much without any code, so here's what I've got so far. Be gentle, as this is literally my first attempt at something more than basic movement etc. First off, the MainGamePanel class registers the touch event, and informs the levelmanager class (which is what I set up to monitor/handle enemies) public boolean onTouchEvent(MotionEvent event) { if (event.getAction() == MotionEvent.ACTION_DOWN){ levelManager.handleActionDown((int)event.getX(), (int)event.getY()); targetX=event.getX(); targetY=event.getY(); } if (event.getAction() == MotionEvent.ACTION_MOVE) { //the gestures } if (event.getAction() == MotionEvent.ACTION_UP) { //touch was released } return true; } From there, in the levelmanager class the touch event is passed on to all of the enemies within a list array: public static void handleActionDown(int eventX,int eventY){ hit=false; for (enemy1 en : enemy1array){ en.handleActionDown(eventX, eventY); } } The rest of the collision code is handled within the enemies handleActionDown function: public void handleActionDown(int eventX, int eventY) { if(eventX>this.x-enemy1bitmap.getWidth() && eventX<this.x+enemy1bitmap.getWidth() && eventY>this.y-enemy1bitmap.getHeight() && eventY<this.x+enemy1bitmap.getHeight()){ takeDamage(1); levelmanager.setHit(); } } I should probably be using getWidth()/2 and getHeight()/2 for it to be more accurate, but I expanded the area to test this - although I've noticed no improvement. At this stage, the games detection over whether or not the enemy is hit is spotty at best. Generally it takes two or three attempts before a collision is successfully registered, even though the sprite that is being used for testing and set to the eventX and eventY coordinates always indicates that the collision should have worked. Hopefully someone can steer me in the right direction here, and if more information is needed, ask away! Cheers, -Chris

    Read the article

  • Engine Rendering pipeline : Making shaders generic

    - by fakhir
    I am trying to make a 2D game engine using OpenGL ES 2.0 (iOS for now). I've written Application layer in Objective C and a separate self contained RendererGLES20 in C++. No GL specific call is made outside the renderer. It is working perfectly. But I have some design issues when using shaders. Each shader has its own unique attributes and uniforms that need to be set just before the main draw call (glDrawArrays in this case). For instance, in order to draw some geometry I would do: void RendererGLES20::render(Model * model) { // Set a bunch of uniforms glUniformMatrix4fv(.......); // Enable specific attributes, can be many glEnableVertexAttribArray(......); // Set a bunch of vertex attribute pointers: glVertexAttribPointer(positionSlot, 2, GL_FLOAT, GL_FALSE, stride, m->pCoords); // Now actually Draw the geometry glDrawArrays(GL_TRIANGLES, 0, m->vertexCount); // After drawing, disable any vertex attributes: glDisableVertexAttribArray(.......); } As you can see this code is extremely rigid. If I were to use another shader, say ripple effect, i would be needing to pass extra uniforms, vertex attribs etc. In other words I would have to change the RendererGLES20 render source code just to incorporate the new shader. Is there any way to make the shader object totally generic? Like What if I just want to change the shader object and not worry about game source re-compiling? Any way to make the renderer agnostic of uniforms and attributes etc?. Even though we need to pass data to uniforms, what is the best place to do that? Model class? Is the model class aware of shader specific uniforms and attributes? Following shows Actor class: class Actor : public ISceneNode { ModelController * model; AIController * AI; }; Model controller class: class ModelController { class IShader * shader; int textureId; vec4 tint; float alpha; struct Vertex * vertexArray; }; Shader class just contains the shader object, compiling and linking sub-routines etc. In Game Logic class I am actually rendering the object: void GameLogic::update(float dt) { IRenderer * renderer = g_application->GetRenderer(); Actor * a = GetActor(id); renderer->render(a->model); } Please note that even though Actor extends ISceneNode, I haven't started implementing SceneGraph yet. I will do that as soon as I resolve this issue. Any ideas how to improve this? Related design patterns etc? Thank you for reading the question.

    Read the article

  • Multithreading: Communication from Parent thread to child thread

    - by Dennis Nowland
    I have a List of threads normally 3 threads each of the threads reference a webbrowser control that communicates with the parent control to populate a datagridview. What I need to do is when the user clicks the button in a datagridviewButtonCell corresponding data will be sent back to the webbrowser control within the child thread that originally communicated with the main thread. but when I try to do this I receive the following error message 'COM object that has been separated from its underlying RCW cannot be used.' my problem is that I can not figure out how to reference the relevant webbrowser control. I would appreciate any help that anyone can give me. The language used is c# winforms .Net 4.0 targeted Code sample: The following code is executed when user click on the Start button in the main thread private void StartSubmit(object idx) { /* method used by the new thread to initialise a 'myBrowser' inherited from the webbrowser control each submitters object is an a custom Control called 'myBrowser' which holds detail about the function of the object eg: */ //index: is an integer value which represents the threads id int index = (int)idx; //submitters[index] is an instance of the 'myBrowser' control submitters[index] = new myBrowser(); //threads integer id submitters[index]._ThreadNum = index; // naming convention used 'browser' +the thread index submitters[index].Name = "browser" + index; //set list in 'myBrowser' class to hold a copy of the list found in the main thread submitters[index]._dirs = dirLists[index]; // suppress and javascript errors the may occur in the 'myBrowser' control submitters[index].ScriptErrorsSuppressed = true; //execute eventHandler submitters[index].DocumentCompleted += new WebBrowserDocumentCompletedEventHandler(DocumentCompleted); //advance to the next un-opened address in datagridview the navigate the that address //in the 'myBrowser' control. SetNextDir(submitters[index]); } private void btnStart_Click(object sender, EventArgs e) { // used to fill list<string> for use in each thread. fillDirs(); //connections is the list<Thread> holding the thread that have been opened //1 to 10 maximum for (int n = 0; n < (connections.Length); n++) { //initialise new thread to the StartSubmit method passing parameters connections[n] = new Thread(new ParameterizedThreadStart(StartSubmit)); // naming convention used conn + the threadIndex ie: 'conn1' to 'conn10' connections[n].Name = "conn" + n.ToString(); // due to the webbrowser control needing to be ran in the single //apartment state connections[n].SetApartmentState(ApartmentState.STA); //start thread passing the threadIndex connections[n].Start(n); } } Once the 'myBrowser' control is fully loaded I am inserting form data into webforms found in webpages loaded via data enter into rows found in the datagridview. Once a user has entered the relevant details into the different areas in the row the can then clicking a DataGridViewButtonCell that has tha collects the data entered and then has to be send back to the corresponding 'myBrowser' object that is found on a child thread. Thank you

    Read the article

  • Drawing multiple objects from one Vertex Buffer Object in OpenGL/OpenTK

    - by stoney78us
    I am trying to experimenting drawing method using VBO in OpenGL. Many people normally use 1 vbo to store one object data array. I was trying to do something quite opposite which is storing multiple object data into 1 vbo then drawing it. There is story behind why i want to do this. I want to group many of objects as a single object sometime. However my code doesn't do the justice. Following is my pseudo code: //Data double[] vertices = {line strip 1, line strip 2, line strip 3}; //series of vertices int linestrip1offset = index of the first vertex in line strip 1; int linestrip2offset = index of the first vertex in line strip 2; int linestrip3offset = index of the first vertex in line strip 3; int linestrip1VertexNum = number of vertices in linestrip 1; int linestrip2VertexNum = number of vertices in linestrip 2; int linestrip3VertexNum = number of vertices in linestrip 3; //Setting Up void init() { int[] vBO = new int[1]; GL.GenBuffer(1, vBO); GL.BindBuffer(BufferTarget.ArrayBuffer, vBO[0]); GL.BufferData(BufferTarget.ArrayBuffer, new IntPtr(_vertices.Length * sizeof(double)), _vertices, BufferUsageHint.StaticDraw); GL.EnableClientState(Array.VertexArray); } //Drawing void draw() { GL.BindBuffer(BufferTarget.ArrayBuffer, vBO[0]); GL.EnableClientState(ArrayCap.VertexArray); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip1offset); //drawing first linestrip GL.DrawArrays(drawMode, linestrip1offset , linestrip1VertexNum ); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip2offset); //drawing second linestrip GL.DrawArrays(drawMode, linestrip2offset , linestrip2VertexNum ); GL.VertexPointer(3, VertexPointerType.Double, 0, linestrip3offset); //drawing third linestrip GL.DrawArrays(drawMode, linestrip3offset , linestrip3VertexNum ); GL.DisableClientState(ArrayCap.VertexArray); GL.BindBuffer(BufferTarget.ArrayBuffer, 0); } I don't know what i did wrong but i think technically it should work where we can tell OpenGL which part of the data in the vBO to be drawn.

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • PowerShell – Show a Notification Balloon

    - by BuckWoody
    In my presentations for PowerShell I sometimes want to start a process (like a backup) that will take some time. I normally pop up a notification “balloon” at the start, and then do the bulk of the work, and then pop up a balloon at the end to let me know it’s done. You can actually try out this little sample (on a test system, of course) without any other code to see what it does. Then just put the other PowerShell commands in the #Do Some Work part. Oh – throw an icon (.ico file) in a c:\temp directory or point that somewhere else. (No, this probably isn’t original. Can’t remember where I saw the original code, but I’ve modified it a bit anyway, so if you’re the original author and this looks slightly familiar, post a comment.) [void] [System.Reflection.Assembly]::LoadWithPartialName("System.Windows.Forms") $objBalloon = New-Object System.Windows.Forms.NotifyIcon $objBalloon.Icon = "C:\temp\Folder.ico" # You can use the value Info, Warning, Error $objBalloon.BalloonTipIcon = "Info" # Put what you want to say here for the Start of the process $objBalloon.BalloonTipTitle = "Begin Title" $objBalloon.BalloonTipText = "Begin Message" $objBalloon.Visible = $True $objBalloon.ShowBalloonTip(10000) # Do some work # Put what you want to say here for the completion of the process $objBalloon.BalloonTipTitle = "End Title" $objBalloon.BalloonTipText = "End Message" $objBalloon.Visible = $True $objBalloon.ShowBalloonTip(10000) Script Disclaimer, for people who need to be told this sort of thing: Never trust any script, including those that you find here, until you understand exactly what it does and how it will act on your systems. Always check the script on a test system or Virtual Machine, not a production system. Yes, there are always multiple ways to do things, and this script may not work in every situation, for everything. It’s just a script, people. All scripts on this site are performed by a professional stunt driver on a closed course. Your mileage may vary. Void where prohibited. Offer good for a limited time only. Keep out of reach of small children. Do not operate heavy machinery while using this script. If you experience blurry vision, indigestion or diarrhea during the operation of this script, see a physician immediately. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Correct use of VAO's in OpenGL ES2 for iOS?

    - by sak
    I'm migrating to OpenGL ES2 for one of my iOS projects, and I'm having trouble to get any geometry to render successfully. Here's where I'm setting up the VAO rendering: void bindVAO(int vertexCount, struct Vertex* vertexData, GLushort* indexData, GLuint* vaoId, GLuint* indexId){ //generate the VAO & bind glGenVertexArraysOES(1, vaoId); glBindVertexArrayOES(*vaoId); GLuint positionBufferId; //generate the VBO & bind glGenBuffers(1, &positionBufferId); glBindBuffer(GL_ARRAY_BUFFER, positionBufferId); //populate the buffer data glBufferData(GL_ARRAY_BUFFER, vertexCount, vertexData, GL_STATIC_DRAW); //size of verte position GLsizei posTypeSize = sizeof(kPositionVertexType); glVertexAttribPointer(kVertexPositionAttributeLocation, kVertexSize, kPositionVertexTypeEnum, GL_FALSE, sizeof(struct Vertex), (void*)offsetof(struct Vertex, position)); glEnableVertexAttribArray(kVertexPositionAttributeLocation); //create & bind index information glGenBuffers(1, indexId); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, *indexId); glBufferData(GL_ELEMENT_ARRAY_BUFFER, vertexCount, indexData, GL_STATIC_DRAW); //restore default state glBindVertexArrayOES(0); glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); glBindBuffer(GL_ARRAY_BUFFER, 0); } And here's the rendering step: //bind the frame buffer for drawing glBindFramebuffer(GL_FRAMEBUFFER, outputFrameBuffer); glClear(GL_COLOR_BUFFER_BIT); //use the shader program glUseProgram(program); glClearColor(0.4, 0.5, 0.6, 0.5); float aspect = fabsf(320.0 / 480.0); GLKMatrix4 projectionMatrix = GLKMatrix4MakePerspective(GLKMathDegreesToRadians(65.0f), aspect, 0.1f, 100.0f); GLKMatrix4 modelViewMatrix = GLKMatrix4MakeTranslation(0.0f, 0.0f, -1.0f); GLKMatrix4 mvpMatrix = GLKMatrix4Multiply(projectionMatrix, modelViewMatrix); //glUniformMatrix4fv(projectionMatrixUniformLocation, 1, GL_FALSE, projectionMatrix.m); glUniformMatrix4fv(modelViewMatrixUniformLocation, 1, GL_FALSE, mvpMatrix.m); glBindVertexArrayOES(vaoId); glDrawElements(GL_TRIANGLE_FAN, kVertexCount, GL_FLOAT, &indexId); //bind the color buffer glBindRenderbuffer(GL_RENDERBUFFER, colorRenderBuffer); [context presentRenderbuffer:GL_RENDERBUFFER]; The screen is rendering the color passed to glClearColor correctly, but not the shape passed into bindVAO. Is my VAO being built correctly? Thanks!

    Read the article

  • Subterranean IL: Exception handling 1

    - by Simon Cooper
    Today, I'll be starting a look at the Structured Exception Handling mechanism within the CLR. Exception handling is quite a complicated business, and, as a result, the rules governing exception handling clauses in IL are quite strict; you need to be careful when writing exception clauses in IL. Exception handlers Exception handlers are specified using a .try clause within a method definition. .try <TryStartLabel> to <TryEndLabel> <HandlerType> handler <HandlerStartLabel> to <HandlerEndLabel> As an example, a basic try/catch block would be specified like so: TryBlockStart: // ... leave.s CatchBlockEndTryBlockEnd:CatchBlockStart: // at the start of a catch block, the exception thrown is on the stack callvirt instance string [mscorlib]System.Object::ToString() call void [mscorlib]System.Console::WriteLine(string) leave.s CatchBlockEnd CatchBlockEnd: // method code continues... .try TryBlockStart to TryBlockEnd catch [mscorlib]System.Exception handler CatchBlockStart to CatchBlockEnd There are four different types of handler that can be specified: catch <TypeToken> This is the standard exception catch clause; you specify the object type that you want to catch (for example, [mscorlib]System.ArgumentException). Any object can be thrown as an exception, although Microsoft recommend that only classes derived from System.Exception are thrown as exceptions. filter <FilterLabel> A filter block allows you to provide custom logic to determine if a handler block should be run. This functionality is exposed in VB, but not in C#. finally A finally block executes when the try block exits, regardless of whether an exception was thrown or not. fault This is similar to a finally block, but a fault block executes only if an exception was thrown. This is not exposed in VB or C#. You can specify multiple catch or filter handling blocks in each .try, but fault and finally handlers must have their own .try clause. We'll look into why this is in later posts. Scoped exception handlers The .try syntax is quite tricky to use; it requires multiple labels, and you've got to be careful to keep separate the different exception handling sections. However, starting from .NET 2, IL allows you to use scope blocks to specify exception handlers instead. Using this syntax, the example above can be written like so: .try { // ... leave.s EndSEH}catch [mscorlib]System.Exception { callvirt instance string [mscorlib]System.Object::ToString() call void [mscorlib]System.Console::WriteLine(string) leave.s EndSEH}EndSEH:// method code continues... As you can see, this is much easier to write (and read!) than a stand-alone .try clause. Next time, I'll be looking at some of the restrictions imposed by SEH on control flow, and how the C# compiler generated exception handling clauses.

    Read the article

  • Two interfaces with identical signatures

    - by corsiKa
    I am attempting to model a card game where cards have two important sets of features: The first is an effect. These are the changes to the game state that happen when you play the card. The interface for effect is as follows: boolean isPlayable(Player p, GameState gs); void play(Player p, GameState gs); And you could consider the card to be playable if and only if you can meet its cost and all its effects are playable. Like so: // in Card class boolean isPlayable(Player p, GameState gs) { if(p.resource < this.cost) return false; for(Effect e : this.effects) { if(!e.isPlayable(p,gs)) return false; } return true; } Okay, so far, pretty simple. The other set of features on the card are abilities. These abilities are changes to the game state that you can activate at-will. When coming up with the interface for these, I realized they needed a method for determining whether they can be activated or not, and a method for implementing the activation. It ends up being boolean isActivatable(Player p, GameState gs); void activate(Player p, GameState gs); And I realize that with the exception of calling it "activate" instead of "play", Ability and Effect have the exact same signature. Is it a bad thing to have multiple interfaces with an identical signature? Should I simply use one, and have two sets of the same interface? As so: Set<Effect> effects; Set<Effect> abilities; If so, what refactoring steps should I take down the road if they become non-identical (as more features are released), particularly if they're divergent (i.e. they both gain something the other shouldn't, as opposed to only one gaining and the other being a complete subset)? I'm particularly concerned that combining them will be non-sustainable as soon as something changes. The fine print: I recognize this question is spawned by game development, but I feel it's the sort of problem that could just as easily creep up in non-game development, particularly when trying to accommodate the business models of multiple clients in one application as happens with just about every project I've ever done with more than one business influence... Also, the snippets used are Java snippets, but this could just as easily apply to a multitude of object oriented languages.

    Read the article

  • Protecting Cookies: Once and For All

    - by Your DisplayName here!
    Every once in a while you run into a situation where you need to temporarily store data for a user in a web app. You typically have two options here – either store server-side or put the data into a cookie (if size permits). When you need web farm compatibility in addition – things become a little bit more complicated because the data needs to be available on all nodes. In my case I went for a cookie – but I had some requirements Cookie must be protected from eavesdropping (sent only over SSL) and client script Cookie must be encrypted and signed to be protected from tampering with Cookie might become bigger than 4KB – some sort of overflow mechanism would be nice I really didn’t want to implement another cookie protection mechanism – this feels wrong and btw can go wrong as well. WIF to the rescue. The session management feature already implements the above requirements but is built around de/serializing IClaimsPrincipals into cookies and back. But if you go one level deeper you will find the CookieHandler and CookieTransform classes which contain all the needed functionality. public class ProtectedCookie {     private List<CookieTransform> _transforms;     private ChunkedCookieHandler _handler = new ChunkedCookieHandler();     // DPAPI protection (single server)     public ProtectedCookie()     {         _transforms = new List<CookieTransform>             {                 new DeflateCookieTransform(),                 new ProtectedDataCookieTransform()             };     }     // RSA protection (load balanced)     public ProtectedCookie(X509Certificate2 protectionCertificate)     {         _transforms = new List<CookieTransform>             {                 new DeflateCookieTransform(),                 new RsaSignatureCookieTransform(protectionCertificate),                 new RsaEncryptionCookieTransform(protectionCertificate)             };     }     // custom transform pipeline     public ProtectedCookie(List<CookieTransform> transforms)     {         _transforms = transforms;     }     public void Write(string name, string value, DateTime expirationTime)     {         byte[] encodedBytes = EncodeCookieValue(value);         _handler.Write(encodedBytes, name, expirationTime);     }     public void Write(string name, string value, DateTime expirationTime, string domain, string path)     {         byte[] encodedBytes = EncodeCookieValue(value);         _handler.Write(encodedBytes, name, path, domain, expirationTime, true, true, HttpContext.Current);     }     public string Read(string name)     {         var bytes = _handler.Read(name);         if (bytes == null || bytes.Length == 0)         {             return null;         }         return DecodeCookieValue(bytes);     }     public void Delete(string name)     {         _handler.Delete(name);     }     protected virtual byte[] EncodeCookieValue(string value)     {         var bytes = Encoding.UTF8.GetBytes(value);         byte[] buffer = bytes;         foreach (var transform in _transforms)         {             buffer = transform.Encode(buffer);         }         return buffer;     }     protected virtual string DecodeCookieValue(byte[] bytes)     {         var buffer = bytes;         for (int i = _transforms.Count; i > 0; i—)         {             buffer = _transforms[i - 1].Decode(buffer);         }         return Encoding.UTF8.GetString(buffer);     } } HTH

    Read the article

  • Euler angles to Cartesian Coordinates for use with gluLookAt

    - by notrodash
    I have searched all of the internet but just couldn't find the answer. I am using LibGDX and this is part of my code that loops over and over: public void render() { GL11 gl = Gdx.gl11; float centerX = (float)Math.cos(yaw) * (float)Math.cos(pitch); float centerY = (float)Math.sin(yaw) * (float)Math.cos(pitch); float centerZ = (float)Math.sin(pitch); System.out.println(centerX+" "+centerY+" "+centerZ+" ~ "+GDXRacing.camera.position.x+" "+GDXRacing.camera.position.y+" "+GDXRacing.camera.position.z); Gdx.glu.gluLookAt(gl, GDXRacing.camera.position.x, GDXRacing.camera.position.y, GDXRacing.camera.position.z, centerX, centerY, centerZ, 0, 1, 0); if(Gdx.input.isKeyPressed(Keys.A)) { yaw--; } if(Gdx.input.isKeyPressed(Keys.D)) { yaw++; } } I might just be bad at the math, but I dont get it. Does someone have a good explanation and an idea about how to deal with this? I am trying to make a first person camera. By the way, the camera is translated by +10 on the Z axis. Currently when I run the application, this is what I get: Watch video in browser | Download video (for those who cant download the video, everything shakes in a clockwise/anticlockwise action, depending on if I increase or decrease the Yaw value) -Thank you. [edit] and with this code: public void render() { GL11 gl = Gdx.gl11; float centerX = (float)(MathUtils.cosDeg(yaw)*4); float centerY = 0; float centerZ = (float)(MathUtils.sinDeg(yaw)*4); System.out.println(centerX+" "+centerY+" "+centerZ+" ~ "+GDXRacing.camera.position.x+" "+GDXRacing.camera.position.y+" "+GDXRacing.camera.position.z); Gdx.glu.gluLookAt(gl, GDXRacing.camera.position.x, GDXRacing.camera.position.y, GDXRacing.camera.position.z, centerX, centerY, centerZ, 0, 1, 0); if(Gdx.input.isKeyPressed(Keys.A)) { yaw--; } if(Gdx.input.isKeyPressed(Keys.D)) { yaw++; } } it slowly swings from the left to the right. This approach worked for turning left and right for 2d games though. What am I doing wrong?

    Read the article

  • Lock mouse in center of screen, and still use to move camera Unity

    - by Flotolk
    I am making a program from 1st person point of view. I would like the camera to be moved using the mouse, preferably using simple code, like from XNA var center = this.Window.ClientBounds; MouseState newState = Mouse.GetState(); if (Keyboard.GetState().IsKeyUp(Keys.Escape)) { Mouse.SetPosition((int)center.X, (int)center.Y); camera.Rotation -= (newState.X - center.X) * 0.005f; camera.UpDown += (newState.Y - center.Y) * 0.005f; } Is there any code that lets me do this in Unity, since Unity does not support XNA, I need a new library to use, and a new way to collect this input. this is also a little tougher, since I want one object to go up and down based on if you move it the mouse up and down, and another object to be the one turning left and right. I am also very concerned about clamping the mouse to the center of the screen, since you will be selecting items, and it is easiest to have a simple cross-hairs in the center of the screen for this purpose. Here is the code I am using to move right now: using UnityEngine; using System.Collections; [AddComponentMenu("Camera-Control/Mouse Look")] public class MouseLook : MonoBehaviour { public enum RotationAxes { MouseXAndY = 0, MouseX = 1, MouseY = 2 } public RotationAxes axes = RotationAxes.MouseXAndY; public float sensitivityX = 15F; public float sensitivityY = 15F; public float minimumX = -360F; public float maximumX = 360F; public float minimumY = -60F; public float maximumY = 60F; float rotationY = 0F; void Update () { if (axes == RotationAxes.MouseXAndY) { float rotationX = transform.localEulerAngles.y + Input.GetAxis("Mouse X") * sensitivityX; rotationY += Input.GetAxis("Mouse Y") * sensitivityY; rotationY = Mathf.Clamp (rotationY, minimumY, maximumY); transform.localEulerAngles = new Vector3(-rotationY, rotationX, 0); } else if (axes == RotationAxes.MouseX) { transform.Rotate(0, Input.GetAxis("Mouse X") * sensitivityX, 0); } else { rotationY += Input.GetAxis("Mouse Y") * sensitivityY; rotationY = Mathf.Clamp (rotationY, minimumY, maximumY); transform.localEulerAngles = new Vector3(-rotationY, transform.localEulerAngles.y, 0); } while (Input.GetKeyDown(KeyCode.Space) == true) { Screen.lockCursor = true; } } void Start () { // Make the rigid body not change rotation if (GetComponent<Rigidbody>()) GetComponent<Rigidbody>().freezeRotation = true; } } This code does everything except lock the mouse to the center of the screen. Screen.lockCursor = true; does not work though, since then the camera no longer moves, and the cursor does not allow you to click anything else either.

    Read the article

< Previous Page | 317 318 319 320 321 322 323 324 325 326 327 328  | Next Page >