Search Results

Search found 32053 results on 1283 pages for 'synthetic method'.

Page 327/1283 | < Previous Page | 323 324 325 326 327 328 329 330 331 332 333 334  | Next Page >

  • Dependency Injection in ASP.NET MVC NerdDinner App using Unity 2.0

    - by shiju
    In my previous post Dependency Injection in ASP.NET MVC NerdDinner App using Ninject, we did dependency injection in NerdDinner application using Ninject. In this post, I demonstrate how to apply Dependency Injection in ASP.NET MVC NerdDinner App using Microsoft Unity Application Block (Unity) v 2.0.Unity 2.0Unity 2.0 is available on Codeplex at http://unity.codeplex.com . In earlier versions of Unity, the ObjectBuilder generic dependency injection mechanism, was distributed as a separate assembly, is now integrated with Unity core assembly. So you no longer need to reference the ObjectBuilder assembly in your applications. Two additional Built-In Lifetime Managers - HierarchicalifetimeManager and PerResolveLifetimeManager have been added to Unity 2.0.Dependency Injection in NerdDinner using UnityIn my Ninject post on NerdDinner, we have discussed the interfaces and concrete types of NerdDinner application and how to inject dependencies controller constructors. The following steps will configure Unity 2.0 to apply controller injection in NerdDinner application. Step 1 – Add reference for Unity Application BlockOpen the NerdDinner solution and add  reference to Microsoft.Practices.Unity.dll and Microsoft.Practices.Unity.Configuration.dllYou can download Unity from at http://unity.codeplex.com .Step 2 – Controller Factory for Unity The controller factory is responsible for creating controller instances.We extend the built in default controller factory with our own factory for working Unity with ASP.NET MVC. public class UnityControllerFactory : DefaultControllerFactory {     protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType)     {         IController controller;         if (controllerType == null)             throw new HttpException(                     404, String.Format(                         "The controller for path '{0}' could not be found" +         "or it does not implement IController.",                     reqContext.HttpContext.Request.Path));           if (!typeof(IController).IsAssignableFrom(controllerType))             throw new ArgumentException(                     string.Format(                         "Type requested is not a controller: {0}",                         controllerType.Name),                         "controllerType");         try         {             controller = MvcUnityContainer.Container.Resolve(controllerType)                             as IController;         }         catch (Exception ex)         {             throw new InvalidOperationException(String.Format(                                     "Error resolving controller {0}",                                     controllerType.Name), ex);         }         return controller;     }   }   public static class MvcUnityContainer {     public static IUnityContainer Container { get; set; } }  Step 3 – Register Types and Set Controller Factory private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()     .RegisterType<IFormsAuthentication, FormsAuthenticationService>()     .RegisterType<IMembershipService, AccountMembershipService>()     .RegisterInstance<MembershipProvider>(Membership.Provider)     .RegisterType<IDinnerRepository, DinnerRepository>();     //Set container for Controller Factory     MvcUnityContainer.Container = container;     //Set Controller Factory as UnityControllerFactory     ControllerBuilder.Current.SetControllerFactory(                         typeof(UnityControllerFactory));            } Unity 2.0 provides a fluent interface for type configuration. Now you can call all the methods in a single statement.The above Unity configuration specified in the ConfigureUnity method tells that, to inject instance of DinnerRepositiry when there is a request for IDinnerRepositiry and  inject instance of FormsAuthenticationService when there is a request for IFormsAuthentication and inject instance of AccountMembershipService when there is a request for IMembershipService. The AccountMembershipService class has a dependency with ASP.NET Membership provider. So we configure that inject the instance of Membership Provider.After the registering the types, we set UnityControllerFactory as the current controller factory. //Set container for Controller Factory MvcUnityContainer.Container = container; //Set Controller Factory as UnityControllerFactory ControllerBuilder.Current.SetControllerFactory(                     typeof(UnityControllerFactory)); When you register a type  by using the RegisterType method, the default behavior is for the container to use a transient lifetime manager. It creates a new instance of the registered, mapped, or requested type each time you call the Resolve or ResolveAll method or when the dependency mechanism injects instances into other classes. The following are the LifetimeManagers provided by Unity 2.0ContainerControlledLifetimeManager - Implements a singleton behavior for objects. The object is disposed of when you dispose of the container.ExternallyControlledLifetimeManager - Implements a singleton behavior but the container doesn't hold a reference to object which will be disposed of when out of scope.HierarchicalifetimeManager - Implements a singleton behavior for objects. However, child containers don't share instances with parents.PerResolveLifetimeManager - Implements a behavior similar to the transient lifetime manager except that instances are reused across build-ups of the object graph.PerThreadLifetimeManager - Implements a singleton behavior for objects but limited to the current thread.TransientLifetimeManager - Returns a new instance of the requested type for each call. (default behavior)We can also create custome lifetime manager for Unity container. The following code creating a custom lifetime manager to store container in the current HttpContext. public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName]             = newValue;     }     public void Dispose()     {         RemoveValue();     } }  Step 4 – Modify Global.asax.cs for configure Unity container In the Application_Start event, we call the ConfigureUnity method for configuring the Unity container and set controller factory as UnityControllerFactory void Application_Start() {     RegisterRoutes(RouteTable.Routes);       ViewEngines.Engines.Clear();     ViewEngines.Engines.Add(new MobileCapableWebFormViewEngine());     ConfigureUnity(); }Download CodeYou can download the modified NerdDinner code from http://nerddinneraddons.codeplex.com

    Read the article

  • Convert OpenGL code to DirectX

    - by Fredrik Boston Westman
    First of all, this is kind of a follow up question on @byte56 excellent anwser on this question concerning picking algorithms. I'm trying to convert one of his code examples to directX 11 however I have run into some problems ( I can pick but the picking is way off), and I wanted to make sure I had done it right before moving on and checking the rest of my code. I am not that familiar with openGl but I can imagine openGl has different coordinations systems, and functions that alters how you must implement to code a bit. The getPickRay function on the answer linked is what I'm trying to convert. This is the part of my code that I think is giving me trouble when converting from openGl to directX Because I'm unsure on how their different coordination systems differs from one another. PRVecX = ((( 2.0f * mouseX) / ClientWidth ) - 1 ) * tan((viewAngle)/2); PRVecY = (1-(( 2.0f * mouseY) / ClientHeight)) * tan((viewAngle)/2); Another thing that I am unsure about is this part: XMVECTOR worldSpaceNear = XMVector3TransformCoord(cameraSpaceNear, invMat); XMVECTOR worldSpaceFar = XMVector3TransformCoord(cameraSpaceFar, invMat); A couple of notes: The mouse coordinates are already converted so that the top left corner of the client window would be (0,0) and the bottom right (800,600) ( or whatever resolution you would have) The viewAngle is the same angle that I used when setting the camera view with XMMatrixPerspectiveFovLH. I removed the variables aspectRatio and zoomFactor because I assumed that they were related to some specific function of his game. To summarize it up to questions : Does the openGL coordination system differ in such a way that this equation in the first of my code examples wouldn't be valid when used in DirectX 11 ( with its respective screen coordination system)? Is the openGL method Matrix4f.transform(a, b, c) equal to the directX method c = XMVector3TransformCoord(b,a)? (where a is a matrix and b,c are vectors). Because I know when it comes to matrices order is important.

    Read the article

  • Physics in my game confused after restructuring the Game loop

    - by Julian Assange
    Hello! I'm on my way with making a game in Java. Now I have some trouble with an interpolation based game loop in my calculations. Before I used that system the calculation of a falling object was like this: Delta based system private static final float SPEED_OF_GRAVITY = 500.0f; @Override public void update(float timeDeltaSeconds, Object parentObject) { parentObject.y = parentObject.y + (parentObject.yVelocity * timeDeltaSeconds); parentObject.yVelocity -= SPEED_OF_GRAVITY * timeDeltaSeconds; ...... What you see here is that I used that delta value from previous frame to the current frame to calculate the physics. Now I switched and implement a interpolation based system and I actually left the current system where I used delta to calculate my physics. However, with the interpolation system the delta time is removed - but now are my calculations screwed up and I've tried the whole day to solve this: Interpolation based system private static final float SPEED_OF_GRAVITY = 500.0f; @Override public void update(Object parentObject) { parentObject.y = parentObject.y + (parentObject.yVelocity); parentObject.yVelocity -= SPEED_OF_GRAVITY; ...... I'm totally clueless - how should this be solved? The rendering part is solved with a simple prediction method. With the delta system I could see my object be smoothly rendered to the screen, but with this interpolation/prediction method the object just appear sticky for one second and then it's gone. The core of this game loop is actually from here deWiTTERS Game Loop, where I trying to implement the last solution he describes. Shortly - my physics are in a mess and this need to be solved. Any ideas? Thanks in advance!

    Read the article

  • ASP.NET GZip Encoding Caveats

    - by Rick Strahl
    GZip encoding in ASP.NET is pretty easy to accomplish using the built-in GZipStream and DeflateStream classes and applying them to the Response.Filter property.  While applying GZip and Deflate behavior is pretty easy there are a few caveats that you have watch out for as I found out today for myself with an application that was throwing up some garbage data. But before looking at caveats let’s review GZip implementation for ASP.NET. ASP.NET GZip/Deflate Basics Response filters basically are applied to the Response.OutputStream and transform it as data is written to it through the ASP.NET Response object. So a Response.Write eventually gets written into the output stream which if a filter is also written through the filter stream’s interface. To perform the actual GZip (and Deflate) encoding typically used by Web pages .NET includes the GZipStream and DeflateStream stream classes which can be readily assigned to the Repsonse.OutputStream. With these two stream classes in place it’s almost trivially easy to create a couple of reusable methods that allow you to compress your HTTP output. In my standard WebUtils utility class (from the West Wind West Wind Web Toolkit) created two static utility methods – IsGZipSupported and GZipEncodePage – that check whether the client supports GZip encoding and then actually encodes the current output (note that although the method includes ‘Page’ in its name this code will work with any ASP.NET output). /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("deflate")) { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } else { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } } } As you can see the actual assignment of the Filter is as simple as: Response.Filter = new DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); which applies the filter to the OutputStream. You also need to ensure that your response reflects the new GZip or Deflate encoding and ensure that any pages that are cached in Proxy servers can differentiate between pages that were encoded with the various different encodings (or no encoding). To use this utility function now is trivially easy: In any ASP.NET code that wants to compress its Response output you simply use: protected void Page_Load(object sender, EventArgs e) { WebUtils.GZipEncodePage(); Entry = WebLogFactory.GetEntry(); var entries = Entry.GetLastEntries(App.Configuration.ShowEntryCount, "pk,Title,SafeTitle,Body,Entered,Feedback,Location,ShowTopAd", "TEntries"); if (entries == null) throw new ApplicationException("Couldn't load WebLog Entries: " + Entry.ErrorMessage); this.repEntries.DataSource = entries; this.repEntries.DataBind(); } Here I use an ASP.NET page, but the above WebUtils.GZipEncode() method call will work in any ASP.NET application type including HTTP Handlers. The only requirement is that the filter needs to be applied before any other output is sent to the OutputStream. For example, in my CallbackHandler service implementation by default output over a certain size is GZip encoded. The output that is generated is JSON or XML and if the output is over 5k in size I apply WebUtils.GZipEncode(): if (sbOutput.Length > GZIP_ENCODE_TRESHOLD) WebUtils.GZipEncodePage(); Response.ContentType = ControlResources.STR_JsonContentType; HttpContext.Current.Response.Write(sbOutput.ToString()); Ok, so you probably get the idea: Encoding GZip/Deflate content is pretty easy. Hold on there Hoss –Watch your Caching Or is it? There are a few caveats that you need to watch out for when dealing with GZip content. The fist issue is that you need to deal with the fact that some clients don’t support GZip or Deflate content. Most modern browsers support it, but if you have a programmatic Http client accessing your content GZip/Deflate support is by no means guaranteed. For example, WinInet Http clients don’t support GZip out of the box – it has to be explicitly implemented. Other low level HTTP clients on other platforms too don’t support GZip out of the box. The problem is that your application, your Web Server and Proxy Servers on the Internet might be caching your generated content. If you return content with GZip once and then again without, either caching is not applied or worse the wrong type of content is returned back to the client from a cache or proxy. The result is an unreadable response for *some clients* which is also very hard to debug and fix once in production. You already saw the issue of Proxy servers addressed in the GZipEncodePage() function: // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); This ensures that any Proxy servers also check for the Content-Encoding HTTP Header to cache their content – not just the URL. The same thing applies if you do OutputCaching in your own ASP.NET code. If you generate output for GZip on an OutputCached page the GZipped content will be cached (either by ASP.NET’s cache or in some cases by the IIS Kernel Cache). But what if the next client doesn’t support GZip? She’ll get served a cached GZip page that won’t decode and she’ll get a page full of garbage. Wholly undesirable. To fix this you need to add some custom OutputCache rules by way of the GetVaryByCustom() HttpApplication method in your global_ASAX file: public override string GetVaryByCustomString(HttpContext context, string custom) { // Override Caching for compression if (custom == "GZIP") { string acceptEncoding = HttpContext.Current.Response.Headers["Content-Encoding"]; if (string.IsNullOrEmpty(acceptEncoding)) return ""; else if (acceptEncoding.Contains("gzip")) return "GZIP"; else if (acceptEncoding.Contains("deflate")) return "DEFLATE"; return ""; } return base.GetVaryByCustomString(context, custom); } In a page that use Output caching you then specify: <%@ OutputCache Duration="180" VaryByParam="none" VaryByCustom="GZIP" %> To use that custom rule. It’s all Fun and Games until ASP.NET throws an Error Ok, so you’re up and running with GZip, you have your caching squared away and your pages that you are applying it to are jamming along. Then BOOM, something strange happens and you get a lovely garbled page that look like this: Lovely isn’t it? What’s happened here is that I have WebUtils.GZipEncode() applied to my page, but there’s an error in the page. The error falls back to the ASP.NET error handler and the error handler removes all existing output (good) and removes all the custom HTTP headers I’ve set manually (usually good, but very bad here). Since I applied the Response.Filter (via GZipEncode) the output is now GZip encoded, but ASP.NET has removed my Content-Encoding header, so the browser receives the GZip encoded content without a notification that it is encoded as GZip. The result is binary output. Here’s what Fiddler says about the raw HTTP header output when an error occurs when GZip encoding was applied: HTTP/1.1 500 Internal Server Error Cache-Control: private Content-Type: text/html; charset=utf-8 Date: Sat, 30 Apr 2011 22:21:08 GMT Content-Length: 2138 Connection: close ?`I?%&/m?{J?J??t??` … binary output striped here Notice: no Content-Encoding header and that’s why we’re seeing this garbage. ASP.NET has stripped the Content-Encoding header but left our filter intact. So how do we fix this? In my applications I typically have a global Application_Error handler set up and in this case I’ve been using that. One thing that you can do in the Application_Error handler is explicitly clear out the Response.Filter and set it to null at the top: protected void Application_Error(object sender, EventArgs e) { // Remove any special filtering especially GZip filtering Response.Filter = null; … } And voila I get my Yellow Screen of Death or my custom generated error output back via uncompressed content. BTW, the same is true for Page level errors handled in Page_Error or ASP.NET MVC Error handling methods in a controller. Another and possibly even better solution is to check whether a filter is attached just before the headers are sent to the client as pointed out by Adam Schroeder in the comments: protected void Application_PreSendRequestHeaders() { // ensure that if GZip/Deflate Encoding is applied that headers are set // also works when error occurs if filters are still active HttpResponse response = HttpContext.Current.Response; if (response.Filter is GZipStream && response.Headers["Content-encoding"] != "gzip") response.AppendHeader("Content-encoding", "gzip"); else if (response.Filter is DeflateStream && response.Headers["Content-encoding"] != "deflate") response.AppendHeader("Content-encoding", "deflate"); } This uses the Application_PreSendRequestHeaders() pipeline event to check for compression encoding in a filter and adjusts the content accordingly. This is actually a better solution since this is generic – it’ll work regardless of how the content is cleaned up. For example, an error Response.Redirect() or short error display might get changed and the filter not cleared and this code actually handles that. Sweet, thanks Adam. It’s unfortunate that ASP.NET doesn’t natively clear out Response.Filters when an error occurs just as it clears the Response and Headers. I can’t see where leaving a Filter in place in an error situation would make any sense, but hey - this is what it is and it’s easy enough to fix as long as you know where to look. Riiiight! IIS and GZip I should also mention that IIS 7 includes good support for compression natively. If you can defer encoding to let IIS perform it for you rather than doing it in your code by all means you should do it! Especially any static or semi-dynamic content that can be made static should be using IIS built-in compression. Dynamic caching is also supported but is a bit more tricky to judge in terms of performance and footprint. John Forsyth has a great article on the benefits and drawbacks of IIS 7 compression which gives some detailed performance comparisons and impact reviews. I’ll post another entry next with some more info on IIS compression since information on it seems to be a bit hard to come by. Related Content Built-in GZip/Deflate Compression in IIS 7.x HttpWebRequest and GZip Responses © Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET   IIS7  

    Read the article

  • openGL ES - change the render mode from RENDERMODE_WHEN_DIRTY to RENDERMODE_CONTINUOUSLY on touch

    - by Sid
    i want to change the rendermode from RENDERMODE_WHEN_DIRTY to RENDERMODE_CONTINUOUSLY when i touch the screen. WHAT i Need : Initially the object should be stationary. after touching the screen, it should move automatically. The motion of my object is a projectile motion ans it is working fine. what i get : Force close and a NULL pointer exception. My code : public class BallThrowGLSurfaceView extends GLSurfaceView{ MyRender _renderObj; Context context; GLSurfaceView glView; public BallThrowGLSurfaceView(Context context) { super(context); // TODO Auto-generated constructor stub _renderObj = new MyRender(context); this.setRenderer(_renderObj); this.setRenderMode(RENDERMODE_WHEN_DIRTY); this.requestFocus(); this.setFocusableInTouchMode(true); glView = new GLSurfaceView(context.getApplicationContext()); } @Override public boolean onTouchEvent(MotionEvent event) { // TODO Auto-generated method stub if (event != null) { if (event.getAction() == MotionEvent.ACTION_DOWN) { if (_renderObj != null) { Log.i("renderObj", _renderObj + "lll"); // Ensure we call switchMode() on the OpenGL thread. // queueEvent() is a method of GLSurfaceView that will do this for us. queueEvent(new Runnable() { public void run() { glView.setRenderMode(RENDERMODE_CONTINUOUSLY); } }); return true; } } } return super.onTouchEvent(event); } } PS : i know that i am making some silly mistakes in this, but cannot figure out what it really is.

    Read the article

  • Quartz.Net Writing your first Hello World Job

    - by Tarun Arora
    In this blog post I’ll be covering, 01: A few things to consider before you should schedule a Job using Quartz.Net 02: Setting up your solution to use Quartz.Net API 03: Quartz.Net configuration 04: Writing & scheduling a hello world job with Quartz.Net If you are new to Quartz.Net I would recommend going through, A brief introduction to Quartz.net Walkthrough of Installing & Testing Quartz.Net as a Windows Service A few things to consider before you should schedule a Job using Quartz.Net - An instance of the scheduler service - A trigger - And last but not the least a job For example, if I wanted to schedule a script to run on the server, I should be jotting down answers to the below questions, a. Considering there are multiple machines set up with Quartz.Net windows service, how can I choose the instance of Quartz.Net where I want my script to be run b. What will trigger the execution of the job c. How often do I want the job to run d. Do I want the job to run right away or start after a delay or may be have the job start at a specific time e. What will happen to my job if Quartz.Net windows service is reset f. Do I want multiple instances of this job to run concurrently g. Can I pass parameters to the job being executed by Quartz.Net windows service Setting up your solution to use Quartz.Net API 1. Create a new C# Console Application project and call it “HelloWorldQuartzDotNet” and add a reference to Quartz.Net.dll. I use the NuGet Package Manager to add the reference. This can be done by right clicking references and choosing Manage NuGet packages, from the Nuget Package Manager choose Online from the left panel and in the search box on the right search for Quartz.Net. Click Install on the package “Quartz” (Screen shot below). 2. Right click the project and choose Add New Item. Add a new Interface and call it ‘IScheduledJob.cs’. Mark the Interface public and add the signature for Run. Your interface should look like below. namespace HelloWorldQuartzDotNet { public interface IScheduledJob { void Run(); } }   3. Right click the project and choose Add new Item. Add a class and call it ‘Scheduled Job’. Use this class to implement the interface ‘IscheduledJob.cs’. Look at the pseudo code in the implementation of the Run method. using System; namespace HelloWorldQuartzDotNet { class ScheduledJob : IScheduledJob { public void Run() { // Get an instance of the Quartz.Net scheduler // Define the Job to be scheduled // Associate a trigger with the Job // Assign the Job to the scheduler throw new NotImplementedException(); } } }   I’ll get into the implementation in more detail, but let’s look at the minimal configuration a sample configuration file for Quartz.Net service to work. Quartz.Net configuration In the App.Config file copy the below configuration <?xml version="1.0" encoding="utf-8" ?> <configuration> <configSections> <section name="quartz" type="System.Configuration.NameValueSectionHandler, System, Version=1.0.5000.0,Culture=neutral, PublicKeyToken=b77a5c561934e089" /> </configSections> <quartz> <add key="quartz.scheduler.instanceName" value="ServerScheduler" /> <add key="quartz.threadPool.type" value="Quartz.Simpl.SimpleThreadPool, Quartz" /> <add key="quartz.threadPool.threadCount" value="10" /> <add key="quartz.threadPool.threadPriority" value="2" /> <add key="quartz.jobStore.misfireThreshold" value="60000" /> <add key="quartz.jobStore.type" value="Quartz.Simpl.RAMJobStore, Quartz" /> </quartz> </configuration>   As you can see in the configuration above, I have included the instance name of the quartz scheduler, the thread pool type, count and priority, the job store type has been defined as RAM. You have the option of configuring that to ADO.NET JOB store. More details here. Writing & scheduling a hello world job with Quartz.Net Once fully implemented the ScheduleJob.cs class should look like below. I’ll walk you through the details of the implementation… - GetScheduler() uses the name of the quartz.net and listens on localhost port 555 to try and connect to the quartz.net windows service. - Run() an attempt is made to start the scheduler in case it is in standby mode - I have defined a job “WriteHelloToConsole” (that’s the name of the job), this job belongs to the group “IT”. Think of group as a logical grouping feature. It helps you bucket jobs into groups. Quartz.Net gives you the ability to pause or delete all jobs in a group (We’ll look at that in some of the future posts). I have requested for recovery of this job in case the quartz.net service fails over to the other node in the cluster. The jobType is “HelloWorldJob”. This is the class that would be called to execute the job. More details on this below… - I have defined a trigger for my job. I have called the trigger “WriteHelloToConsole”. The Trigger works on the cron schedule “0 0/1 * 1/1 * ? *” which means fire the job once every minute. I would recommend that you look at www.cronmaker.com a free and great website to build and parse cron expressions. The trigger has a priority 1. So, if two jobs are run at the same time, this trigger will have high priority and will be run first. - Use the Job and Trigger to schedule the job. This method returns a datetime offeset. It is possible to see the next fire time for the job from this variable. using System.Collections.Specialized; using System.Configuration; using Quartz; using System; using Quartz.Impl; namespace HelloWorldQuartzDotNet { class ScheduledJob : IScheduledJob { public void Run() { // Get an instance of the Quartz.Net scheduler var schd = GetScheduler(); // Start the scheduler if its in standby if (!schd.IsStarted) schd.Start(); // Define the Job to be scheduled var job = JobBuilder.Create<HelloWorldJob>() .WithIdentity("WriteHelloToConsole", "IT") .RequestRecovery() .Build(); // Associate a trigger with the Job var trigger = (ICronTrigger)TriggerBuilder.Create() .WithIdentity("WriteHelloToConsole", "IT") .WithCronSchedule("0 0/1 * 1/1 * ? *") // visit http://www.cronmaker.com/ Queues the job every minute .WithPriority(1) .Build(); // Assign the Job to the scheduler var schedule = schd.ScheduleJob(job, trigger); Console.WriteLine("Job '{0}' scheduled for '{1}'", "", schedule.ToString("r")); } // Get an instance of the Quartz.Net scheduler private static IScheduler GetScheduler() { try { var properties = new NameValueCollection(); properties["quartz.scheduler.instanceName"] = "ServerScheduler"; // set remoting expoter properties["quartz.scheduler.proxy"] = "true"; properties["quartz.scheduler.proxy.address"] = string.Format("tcp://{0}:{1}/{2}", "localhost", "555", "QuartzScheduler"); // Get a reference to the scheduler var sf = new StdSchedulerFactory(properties); return sf.GetScheduler(); } catch (Exception ex) { Console.WriteLine("Scheduler not available: '{0}'", ex.Message); throw; } } } }   The above highlighted values have been taken from the Quartz.config file, this file is available in the Quartz.net server installation directory. Implementation of my HelloWorldJob Class below. The HelloWorldJob class gets called to execute the job “WriteHelloToConsole” using the once every minute trigger set up for this job. The HelloWorldJob is a class that implements the interface IJob. I’ll walk you through the details of the implementation… - context is passed to the method execute by the quartz.net scheduler service. This has everything you need to pull out the job, trigger specific information. - for example. I have pulled out the value of the jobKey name, the fire time and next fire time. using Quartz; using System; namespace HelloWorldQuartzDotNet { class HelloWorldJob : IJob { public void Execute(IJobExecutionContext context) { try { Console.WriteLine("Job {0} fired @ {1} next scheduled for {2}", context.JobDetail.Key, context.FireTimeUtc.Value.ToString("r"), context.NextFireTimeUtc.Value.ToString("r")); Console.WriteLine("Hello World!"); } catch (Exception ex) { Console.WriteLine("Failed: {0}", ex.Message); } } } }   I’ll add a call to call the scheduler in the Main method in Program.cs using System; using System.Threading; namespace HelloWorldQuartzDotNet { class Program { static void Main(string[] args) { try { var sj = new ScheduledJob(); sj.Run(); Thread.Sleep(10000 * 10000); } catch (Exception ex) { Console.WriteLine("Failed: {0}", ex.Message); } } } }   This was third in the series of posts on enterprise scheduling using Quartz.net, in the next post I’ll be covering how to pass parameters to the scheduled task scheduled on Quartz.net windows service. Thank you for taking the time out and reading this blog post. If you enjoyed the post, remember to subscribe to http://feeds.feedburner.com/TarunArora. Stay tuned!

    Read the article

  • Integrate Bing Search API into ASP.Net application

    - by sreejukg
    Couple of months back, I wrote an article about how to integrate Bing Search engine (API 2.0) with ASP.Net website. You can refer the article here http://weblogs.asp.net/sreejukg/archive/2012/04/07/integrate-bing-api-for-search-inside-asp-net-web-application.aspx Things are changing rapidly in the tech world and Bing has also changed! The Bing Search API 2.0 will work until August 1, 2012, after that it will not return results. Shocked? Don’t worry the API has moved to Windows Azure market place and available for you to sign up and continue using it and there is a free version available based on your usage. In this article, I am going to explain how you can integrate the new Bing API that is available in the Windows Azure market place with your website. You can access the Windows Azure market place from the below link https://datamarket.azure.com/ There is lot of applications available for you to subscribe and use. Bing is one of them. You can find the new Bing Search API from the below link https://datamarket.azure.com/dataset/5BA839F1-12CE-4CCE-BF57-A49D98D29A44 To get access to Bing Search API, first you need to register an account with Windows Azure market place. Sign in to the Windows Azure market place site using your windows live account. Once you sign in with your windows live account, you need to register to Windows Azure Market place account. From the Windows Azure market place, you will see the sign in button it the top right of the page. Clicking on the sign in button will take you to the Windows live ID authentication page. You can enter a windows live ID here to login. Once logged in you will see the Registration page for the Windows Azure market place as follows. You can agree or disagree for the email address usage by Microsoft. I believe selecting the check box means you will get email about what is happening in Windows Azure market place. Click on continue button once you are done. In the next page, you should accept the terms of use, it is not optional, you must agree to terms and conditions. Scroll down to the page and select the I agree checkbox and click on Register Button. Now you are a registered member of Windows Azure market place. You can subscribe to data applications. In order to use BING API in your application, you must obtain your account Key, in the previous version of Bing you were required an API key, the current version uses Account Key instead. Once you logged in to the Windows Azure market place, you can see “My Account” in the top menu, from the Top menu; go to “My Account” Section. From the My Account section, you can manage your subscriptions and Account Keys. Account Keys will be used by your applications to access the subscriptions from the market place. Click on My Account link, you can see Account Keys in the left menu and then Add an account key or you can use the default Account key available. Creating account key is very simple process. Also you can remove the account keys you create if necessary. The next step is to subscribe to BING Search API. At this moment, Bing Offers 2 APIs for search. The available options are as follows. 1. Bing Search API - https://datamarket.azure.com/dataset/5ba839f1-12ce-4cce-bf57-a49d98d29a44 2. Bing Search API – Web Results only - https://datamarket.azure.com/dataset/8818f55e-2fe5-4ce3-a617-0b8ba8419f65 The difference is that the later will give you only web results where the other you can specify the source type such as image, video, web, news etc. Carefully choose the API based on your application requirements. In this article, I am going to use Web Results Only API, but the steps will be similar to both. Go to the API page https://datamarket.azure.com/dataset/8818f55e-2fe5-4ce3-a617-0b8ba8419f65, you can see the subscription options in the right side. And in the bottom of the page you can see the free option Since I am going to use the free options, just Click the Sign Up link for that. Just select I agree check box and click on the Sign Up button. You will get a recipt pagethat detail your subscription. Now you are ready Bing Search API – Web results. The next step is to integrate the API into your ASP.Net application. Now if you go to the Search API page (as well as in the Receipt page), you can see a .Net C# Class Library link, click on the link, you will get a code file named “BingSearchContainer.cs”. In the following sections I am going to demonstrate the use of Bing Search API from an ASP.Net application. Create an empty ASP.Net web application. In the solution explorer, the application will looks as follows. Now add the downloaded code file (“BingSearchContainer.cs”) to the project. Right click your project in solution explorer, Add -> existing item, then browse to the downloaded location, select the “BingSearchContainer.cs” file and add it to the project. To build the code file you need to add reference to the following library. System.Data.Services.Client You can find the library in the .Net tab, when you select Add -> Reference Try to build your project now; it should build without any errors. Add an ASP.Net page to the project. I have included a text box and a button, then a Grid View to the page. The idea is to Search the text entered and display the results in the gridview. The page will look in the Visual Studio Designer as follows. The markup of the page is as follows. In the button click event handler for the search button, I have used the following code. Now run your project and enter some text in the text box and click the Search button, you will see the results coming from Bing, cool. I entered the text “Microsoft” in the textbox and clicked on the button and I got the following results. Searching Specific Websites If you want to search a particular website, you pass the site url with site:<site url name> and if you have more sites, use pipe (|). e.g. The following search query site:microsoft.com | site:adobe.com design will search the word design and return the results from Microsoft.com and Adobe.com See the sample code that search only Microsoft.com for the text entered for the above sample. var webResults = bingContainer.Web("site:www.Microsoft.com " + txtSearch.Text, null, null, null, null, null, null); Paging the results returned by the API By default the BING API will return 100 results based on your query. The default code file that you downloaded from BING doesn’t include any option for this. You can modify the downloaded code to perform this paging. The BING API supports two parameters $top (for number of results to return) and $skip (for number of records to skip). So if you want 3rd page of results with page size = 10, you need to pass $top = 10 and $skip=20. Open the BingSearchContainer.cs in the editor. You can see the Web method in it as follows. public DataServiceQuery<WebResult> Web(String Query, String Market, String Adult, Double? Latitude, Double? Longitude, String WebFileType, String Options) {  In the method signature, I have added two more parameters public DataServiceQuery<WebResult> Web(String Query, String Market, String Adult, Double? Latitude, Double? Longitude, String WebFileType, String Options, int resultCount, int pageNo) { and in the method, you need to pass the parameters to the query variable. query = query.AddQueryOption("$top", resultCount); query = query.AddQueryOption("$skip", (pageNo -1)*resultCount); return query; Note that I didn’t perform any validation, but you need to check conditions such as resultCount and pageCount should be greater than or equal to 1. If the parameters are not valid, the Bing Search API will throw the error. The modified method is as follows. The changes are highlighted. Now see the following code in the SearchPage.aspx.cs file protected void btnSearch_Click(object sender, EventArgs e) {     var bingContainer = new Bing.BingSearchContainer(new Uri(https://api.datamarket.azure.com/Bing/SearchWeb/));     // replace this value with your account key     var accountKey = "your key";     // the next line configures the bingContainer to use your credentials.     bingContainer.Credentials = new NetworkCredential(accountKey, accountKey);     var webResults = bingContainer.Web("site:microsoft.com" +txtSearch.Text , null, null, null, null, null, null,3,2);     lstResults.DataSource = webResults;     lstResults.DataBind(); } The following code will return 3 results starting from second page (by skipping first 3 results). See the result page as follows. Bing provides complete integration to its offerings. When you develop search based applications, you can use the power of Bing to perform the search. Integrating Bing Search API to ASP.Net application is a simple process and without investing much time, you can develop a good search based application. Make sure you read the terms of use before designing the application and decide which API usage is suitable for you. Further readings BING API Migration Guide http://go.microsoft.com/fwlink/?LinkID=248077 Bing API FAQ http://go.microsoft.com/fwlink/?LinkID=252146 Bing API Schema Guide http://go.microsoft.com/fwlink/?LinkID=252151

    Read the article

  • Arduino IDE not connecting to microcontroller

    - by JDD
    I get this error when trying to connect to an Arduino through a USB serial connection. I'm using the Arduino IDE 1.0.1 and the 64bit version of Ubuntu 12.04. This has been a reoccurring problem since 10.04 and happens to a few other programs that use a serial connection too. I have no problem getting serial data from the Arduino using Python or Screen. The Arduino IDE seems to work just fine otherwise. processing.app.SerialException: Error opening serial port '/dev/ttyACM0'. at processing.app.Serial.<init>(Serial.java:178) at processing.app.Serial.<init>(Serial.java:92) at processing.app.SerialMonitor.openSerialPort(SerialMonitor.java:207) at processing.app.Editor.handleSerial(Editor.java:2447) at processing.app.EditorToolbar.mousePressed(EditorToolbar.java:353) at java.awt.Component.processMouseEvent(Component.java:6386) at javax.swing.JComponent.processMouseEvent(JComponent.java:3268) at java.awt.Component.processEvent(Component.java:6154) at java.awt.Container.processEvent(Container.java:2045) at java.awt.Component.dispatchEventImpl(Component.java:4750) at java.awt.Container.dispatchEventImpl(Container.java:2103) at java.awt.Component.dispatchEvent(Component.java:4576) at java.awt.LightweightDispatcher.retargetMouseEvent(Container.java:4633) at java.awt.LightweightDispatcher.processMouseEvent(Container.java:4294) at java.awt.LightweightDispatcher.dispatchEvent(Container.java:4227) at java.awt.Container.dispatchEventImpl(Container.java:2089) at java.awt.Window.dispatchEventImpl(Window.java:2518) at java.awt.Component.dispatchEvent(Component.java:4576) at java.awt.EventQueue.dispatchEventImpl(EventQueue.java:672) at java.awt.EventQueue.access$400(EventQueue.java:96) at java.awt.EventQueue$2.run(EventQueue.java:631) at java.awt.EventQueue$2.run(EventQueue.java:629) at java.security.AccessController.doPrivileged(Native Method) at java.security.AccessControlContext$1.doIntersectionPrivilege(AccessControlContext.java:105) at java.security.AccessControlContext$1.doIntersectionPrivilege(AccessControlContext.java:116) at java.awt.EventQueue$3.run(EventQueue.java:645) at java.awt.EventQueue$3.run(EventQueue.java:643) at java.security.AccessController.doPrivileged(Native Method) at java.security.AccessControlContext$1.doIntersectionPrivilege(AccessControlContext.java:105) at java.awt.EventQueue.dispatchEvent(EventQueue.java:642) at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:275) at java.awt.EventDispatchThread.pumpEventsForFilter(EventDispatchThread.java:200) at java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:190) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:185) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:177) at java.awt.EventDispatchThread.run(EventDispatchThread.java:138) Caused by: gnu.io.UnsupportedCommOperationException: Invalid Parameter at gnu.io.RXTXPort.setSerialPortParams(RXTXPort.java:171) at processing.app.Serial.<init>(Serial.java:163) ... 35 more

    Read the article

  • First round playing with Memcached

    - by Shaun
    To be honest I have not been very interested in the caching before I’m going to a project which would be using the multi-site deployment and high connection and concurrency and very sensitive to the user experience. That means we must cache the output data for better performance. After looked for the Internet I finally focused on the Memcached. What’s the Memcached? I think the description on its main site gives us a very good and simple explanation. Free & open source, high-performance, distributed memory object caching system, generic in nature, but intended for use in speeding up dynamic web applications by alleviating database load. Memcached is an in-memory key-value store for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or page rendering. Memcached is simple yet powerful. Its simple design promotes quick deployment, ease of development, and solves many problems facing large data caches. Its API is available for most popular languages. The original Memcached was built on *nix system are is being widely used in the PHP world. Although it’s not a problem to use the Memcached installed on *nix system there are some windows version available fortunately. Since we are WISC (Windows – IIS – SQL Server – C#, which on the opposite of LAMP) it would be much easier for us to use the Memcached on Windows rather than *nix. I’m using the Memcached Win X64 version provided by NorthScale. There are also the x86 version and other operation system version.   Install Memcached Unpack the Memcached file to a folder on the machine you want it to be installed, we can see that there are only 3 files and the main file should be the “memcached.exe”. Memcached would be run on the server as a service. To install the service just open a command windows and navigate to the folder which contains the “memcached.exe”, let’s say “C:\Memcached\”, and then type “memcached.exe -d install”. If you are using Windows Vista and Windows 7 system please be execute the command through the administrator role. Right-click the command item in the start menu and use “Run as Administrator”, otherwise the Memcached would not be able to be installed successfully. Once installed successful we can type “memcached.exe -d start” to launch the service. Now it’s ready to be used. The default port of Memcached is 11211 but you can change it through the command argument. You can find the help by typing “memcached -h”.   Using Memcached Memcahed has many good and ready-to-use providers for vary program language. After compared and reviewed I chose the Memcached Providers. It’s built based on another 3rd party Memcached client named enyim.com Memcached Client. The Memcached Providers is very simple to set/get the cached objects through the Memcached servers and easy to be configured through the application configuration file (aka web.config and app.config). Let’s create a console application for the demonstration and add the 3 DLL files from the package of the Memcached Providers to the project reference. Then we need to add the configuration for the Memcached server. Create an App.config file and firstly add the section on top of it. Here we need three sections: the section for Memcached Providers, for enyim.com Memcached client and the log4net. 1: <configSections> 2: <section name="cacheProvider" 3: type="MemcachedProviders.Cache.CacheProviderSection, MemcachedProviders" 4: allowDefinition="MachineToApplication" 5: restartOnExternalChanges="true"/> 6: <sectionGroup name="enyim.com"> 7: <section name="memcached" 8: type="Enyim.Caching.Configuration.MemcachedClientSection, Enyim.Caching"/> 9: </sectionGroup> 10: <section name="log4net" 11: type="log4net.Config.Log4NetConfigurationSectionHandler,log4net"/> 12: </configSections> Then we will add the configuration for 3 of them in the App.config file. The Memcached server information would be defined under the enyim.com section since it will be responsible for connect to the Memcached server. Assuming I installed the Memcached on two servers with the default port, the configuration would be like this. 1: <enyim.com> 2: <memcached> 3: <servers> 4: <!-- put your own server(s) here--> 5: <add address="192.168.0.149" port="11211"/> 6: <add address="10.10.20.67" port="11211"/> 7: </servers> 8: <socketPool minPoolSize="10" maxPoolSize="100" connectionTimeout="00:00:10" deadTimeout="00:02:00"/> 9: </memcached> 10: </enyim.com> Memcached supports the multi-deployment which means you can install the Memcached on the servers as many as you need. The protocol of the Memcached responsible for routing the cached objects into the proper server. So it’s very easy to scale-out your system by Memcached. And then define the Memcached Providers configuration. The defaultExpireTime indicates how long the objected cached in the Memcached would be expired, the default value is 2000 ms. 1: <cacheProvider defaultProvider="MemcachedCacheProvider"> 2: <providers> 3: <add name="MemcachedCacheProvider" 4: type="MemcachedProviders.Cache.MemcachedCacheProvider, MemcachedProviders" 5: keySuffix="_MySuffix_" 6: defaultExpireTime="2000"/> 7: </providers> 8: </cacheProvider> The last configuration would be the log4net. 1: <log4net> 2: <!-- Define some output appenders --> 3: <appender name="ConsoleAppender" type="log4net.Appender.ConsoleAppender"> 4: <layout type="log4net.Layout.PatternLayout"> 5: <conversionPattern value="%date [%thread] %-5level %logger [%property{NDC}] - %message%newline"/> 6: </layout> 7: </appender> 8: <!--<threshold value="OFF" />--> 9: <!-- Setup the root category, add the appenders and set the default priority --> 10: <root> 11: <priority value="WARN"/> 12: <appender-ref ref="ConsoleAppender"> 13: <filter type="log4net.Filter.LevelRangeFilter"> 14: <levelMin value="WARN"/> 15: <levelMax value="FATAL"/> 16: </filter> 17: </appender-ref> 18: </root> 19: </log4net>   Get, Set and Remove the Cached Objects Once we finished the configuration it would be very simple to consume the Memcached servers. The Memcached Providers gives us a static class named DistCache that can be used to operate the Memcached servers. Get<T>: Retrieve the cached object from the Memcached servers. If failed it will return null or the default value. Add: Add an object with a unique key into the Memcached servers. Assuming that we have an operation that retrieve the email from the name which is time consuming. This is the operation that should be cached. The method would be like this. I utilized Thread.Sleep to simulate the long-time operation. 1: static string GetEmailByNameSlowly(string name) 2: { 3: Thread.Sleep(2000); 4: return name + "@ethos.com.cn"; 5: } Then in the real retrieving method we will firstly check whether the name, email information had been searched previously and cached. If yes we will just return them from the Memcached, otherwise we will invoke the slowly method to retrieve it and then cached. 1: static string GetEmailByName(string name) 2: { 3: var email = DistCache.Get<string>(name); 4: if (string.IsNullOrEmpty(email)) 5: { 6: Console.WriteLine("==> The name/email not be in memcached so need slow loading. (name = {0})==>", name); 7: email = GetEmailByNameSlowly(name); 8: DistCache.Add(name, email); 9: } 10: else 11: { 12: Console.WriteLine("==> The name/email had been in memcached. (name = {0})==>", name); 13: } 14: return email; 15: } Finally let’s finished the calling method and execute. 1: static void Main(string[] args) 2: { 3: var name = string.Empty; 4: while (name != "q") 5: { 6: Console.Write("==> Please enter the name to find the email: "); 7: name = Console.ReadLine(); 8:  9: var email = GetEmailByName(name); 10: Console.WriteLine("==> The email of {0} is {1}.", name, email); 11: } 12: } The first time I entered “ziyanxu” it takes about 2 seconds to get the email since there’s nothing cached. But the next time I entered “ziyanxu” it returned very quickly from the Memcached.   Summary In this post I explained a bit on why we need cache, what’s Memcached and how to use it through the C# application. The example is fairly simple but hopefully demonstrated on how to use it. Memcached is very easy and simple to be used since it gives you the full opportunity to consider what, when and how to cache the objects. And when using Memcached you don’t need to consider the cache servers. The Memcached would be like a huge object pool in front of you. The next step I’m thinking now are: What kind of data should be cached? And how to determined the key? How to implement the cache as a layer on top of the business layer so that the application will not notice that the cache is there. How to implement the cache by AOP so that the business logic no need to consider the cache. I will investigate on them in the future and will share my thoughts and results.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Creating HTML5 Offline Web Applications with ASP.NET

    - by Stephen Walther
    The goal of this blog entry is to describe how you can create HTML5 Offline Web Applications when building ASP.NET web applications. I describe the method that I used to create an offline Web application when building the JavaScript Reference application. You can read about the HTML5 Offline Web Application standard by visiting the following links: Offline Web Applications Firefox Offline Web Applications Safari Offline Web Applications Currently, the HTML5 Offline Web Applications feature works with all modern browsers with one important exception. You can use Offline Web Applications with Firefox, Chrome, and Safari (including iPhone Safari). Unfortunately, however, Internet Explorer does not support Offline Web Applications (not even IE 9). Why Build an HTML5 Offline Web Application? The official reason to build an Offline Web Application is so that you do not need to be connected to the Internet to use it. For example, you can use the JavaScript Reference Application when flying in an airplane, riding a subway, or hiding in a cave in Borneo. The JavaScript Reference Application works great on my iPhone even when I am completely disconnected from any network. The following screenshot shows the JavaScript Reference Application running on my iPhone when airplane mode is enabled (notice the little orange airplane):   Admittedly, it is becoming increasingly difficult to find locations where you can’t get Internet access. A second, and possibly better, reason to create Offline Web Applications is speed. An Offline Web Application must be downloaded only once. After it gets downloaded, all of the files required by your Web application (HTML, CSS, JavaScript, Image) are stored persistently on your computer. Think of Offline Web Applications as providing you with a super browser cache. Normally, when you cache files in a browser, the files are cached on a file-by-file basis. For each HTML, CSS, image, or JavaScript file, you specify how long the file should remain in the cache by setting cache headers. Unlike the normal browser caching mechanism, the HTML5 Offline Web Application cache is used to specify a caching policy for an entire set of files. You use a manifest file to list the files that you want to cache and these files are cached until the manifest is changed. Another advantage of using the HTML5 offline cache is that the HTML5 standard supports several JavaScript events and methods related to the offline cache. For example, you can be notified in your JavaScript code whenever the offline application has been updated. You can use JavaScript methods, such as the ApplicationCache.update() method, to update the cache programmatically. Creating the Manifest File The HTML5 Offline Cache uses a manifest file to determine the files that get cached. Here’s what the manifest file looks like for the JavaScript Reference application: CACHE MANIFEST # v30 Default.aspx # Standard Script Libraries Scripts/jquery-1.4.4.min.js Scripts/jquery-ui-1.8.7.custom.min.js Scripts/jquery.tmpl.min.js Scripts/json2.js # App Scripts App_Scripts/combine.js App_Scripts/combine.debug.js # Content (CSS & images) Content/default.css Content/logo.png Content/ui-lightness/jquery-ui-1.8.7.custom.css Content/ui-lightness/images/ui-bg_glass_65_ffffff_1x400.png Content/ui-lightness/images/ui-bg_glass_100_f6f6f6_1x400.png Content/ui-lightness/images/ui-bg_highlight-soft_100_eeeeee_1x100.png Content/ui-lightness/images/ui-icons_222222_256x240.png Content/ui-lightness/images/ui-bg_glass_100_fdf5ce_1x400.png Content/ui-lightness/images/ui-bg_diagonals-thick_20_666666_40x40.png Content/ui-lightness/images/ui-bg_gloss-wave_35_f6a828_500x100.png Content/ui-lightness/images/ui-icons_ffffff_256x240.png Content/ui-lightness/images/ui-icons_ef8c08_256x240.png Content/browsers/c8.png Content/browsers/es3.png Content/browsers/es5.png Content/browsers/ff3_6.png Content/browsers/ie8.png Content/browsers/ie9.png Content/browsers/sf5.png NETWORK: Services/EntryService.svc http://superexpert.com/resources/JavaScriptReference/ A Cache Manifest file always starts with the line of text Cache Manifest. In the manifest above, all of the CSS, image, and JavaScript files required by the JavaScript Reference application are listed. For example, the Default.aspx ASP.NET page, jQuery library, JQuery UI library, and several images are listed. Notice that you can add comments to a manifest by starting a line with the hash character (#). I use comments in the manifest above to group JavaScript and image files. Finally, notice that there is a NETWORK: section of the manifest. You list any file that you do not want to cache (any file that requires network access) in this section. In the manifest above, the NETWORK: section includes the URL for a WCF Service named EntryService.svc. This service is called to get the JavaScript entries displayed by the JavaScript Reference. There are two important things that you need to be aware of when using a manifest file. First, all relative URLs listed in a manifest are resolved relative to the manifest file. The URLs listed in the manifest above are all resolved relative to the root of the application because the manifest file is located in the application root. Second, whenever you make a change to the manifest file, browsers will download all of the files contained in the manifest (all of them). For example, if you add a new file to the manifest then any browser that supports the Offline Cache standard will detect the change in the manifest and download all of the files listed in the manifest automatically. If you make changes to files in the manifest (for example, modify a JavaScript file) then you need to make a change in the manifest file in order for the new version of the file to be downloaded. The standard way of updating a manifest file is to include a comment with a version number. The manifest above includes a # v30 comment. If you make a change to a file then you need to modify the comment to be # v31 in order for the new file to be downloaded. When Are Updated Files Downloaded? When you make changes to a manifest, the changes are not reflected the very next time you open the offline application in your web browser. Your web browser will download the updated files in the background. This can be very confusing when you are working with JavaScript files. If you make a change to a JavaScript file, and you have cached the application offline, then the changes to the JavaScript file won’t appear when you reload the application. The HTML5 standard includes new JavaScript events and methods that you can use to track changes and make changes to the Application Cache. You can use the ApplicationCache.update() method to initiate an update to the application cache and you can use the ApplicationCache.swapCache() method to switch to the latest version of a cached application. My heartfelt recommendation is that you do not enable your application for offline storage until after you finish writing your application code. Otherwise, debugging the application can become a very confusing experience. Offline Web Applications versus Local Storage Be careful to not confuse the HTML5 Offline Web Application feature and HTML5 Local Storage (aka DOM storage) feature. The JavaScript Reference Application uses both features. HTML5 Local Storage enables you to store key/value pairs persistently. Think of Local Storage as a super cookie. I describe how the JavaScript Reference Application uses Local Storage to store the database of JavaScript entries in a separate blog entry. Offline Web Applications enable you to store static files persistently. Think of Offline Web Applications as a super cache. Creating a Manifest File in an ASP.NET Application A manifest file must be served with the MIME type text/cache-manifest. In order to serve the JavaScript Reference manifest with the proper MIME type, I added two files to the JavaScript Reference Application project: Manifest.txt – This text file contains the actual manifest file. Manifest.ashx – This generic handler sends the Manifest.txt file with the MIME type text/cache-manifest. Here’s the code for the generic handler: using System.Web; namespace JavaScriptReference { public class Manifest : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/cache-manifest"; context.Response.WriteFile(context.Server.MapPath("Manifest.txt")); } public bool IsReusable { get { return false; } } } } The Default.aspx file contains a reference to the manifest. The opening HTML tag in the Default.aspx file looks like this: <html manifest="Manifest.ashx"> Notice that the HTML tag contains a manifest attribute that points to the Manifest.ashx generic handler. Internet Explorer simply ignores this attribute. Every other modern browser will download the manifest when the Default.aspx page is requested. Seeing the Offline Web Application in Action The experience of using an HTML5 Web Application is different with different browsers. When you first open the JavaScript Reference application with Firefox, you get the following warning: Notice that you are provided with the choice of whether you want to use the application offline or not. Browsers other than Firefox, such as Chrome and Safari, do not provide you with this choice. Chrome and Safari will create an offline cache automatically. If you click the Allow button then Firefox will download all of the files listed in the manifest. You can view the files contained in the Firefox offline application cache by typing about:cache in the Firefox address bar: You can view the actual items being cached by clicking the List Cache Entries link: The Offline Web Application experience is different in the case of Google Chrome. You can view the entries in the offline cache by opening the Developer Tools (hit Shift+CTRL+I), selecting the Storage tab, and selecting Application Cache: Notice that you view the status of the Application Cache. In the screen shot above, the status is UNCACHED which means that the files listed in the manifest have not been downloaded and cached yet. The different possible values for the status are included in the HTML5 Offline Web Application standard: UNCACHED – The Application Cache has not been initialized. IDLE – The Application Cache is not currently being updated. CHECKING – The Application Cache is being fetched and checked for updates. DOWNLOADING – The files in the Application Cache are being updated. UPDATEREADY – There is a new version of the Application. OBSOLETE – The contents of the Application Cache are obsolete. Summary In this blog entry, I provided a description of how you can use the HTML5 Offline Web Application feature in the context of an ASP.NET application. I described how this feature is used with the JavaScript Reference Application to store the entire application on a user’s computer. By taking advantage of this new feature of the HTML5 standard, you can improve the performance of your ASP.NET web applications by requiring users of your web application to download your application once and only once. Furthermore, you can enable users to take advantage of your applications anywhere -- regardless of whether or not they are connected to the Internet.

    Read the article

  • Silverlight for Windows Embedded tutorial (step 6)

    - by Valter Minute
    In this tutorial step we will develop a very simple clock application that may be used as a screensaver on our devices and will allow us to discover a new feature of Silverlight for Windows Embedded (transforms) and how to use an “old” feature of Windows CE (timers) inside a Silverlight for Windows Embedded application. Let’s start with some XAML, as usual: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Width="640" Height="480" FontSize="18" x:Name="Clock">   <Canvas x:Name="LayoutRoot" Background="#FF000000"> <Grid Height="24" Width="150" Canvas.Left="320" Canvas.Top="234" x:Name="SecondsHand" Background="#FFFF0000"> <TextBlock Text="Seconds" TextWrapping="Wrap" Width="50" HorizontalAlignment="Right" VerticalAlignment="Center" x:Name="SecondsText" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> <Grid Height="24" x:Name="MinutesHand" Width="100" Background="#FF00FF00" Canvas.Left="320" Canvas.Top="234"> <TextBlock HorizontalAlignment="Right" x:Name="MinutesText" VerticalAlignment="Center" Width="50" Text="Minutes" TextWrapping="Wrap" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> <Grid Height="24" x:Name="HoursHand" Width="50" Background="#FF0000FF" Canvas.Left="320" Canvas.Top="234"> <TextBlock HorizontalAlignment="Right" x:Name="HoursText" VerticalAlignment="Center" Width="50" Text="Hours" TextWrapping="Wrap" Foreground="#FFFFFFFF" TextAlignment="Right" Margin="2,2,2,2"/> </Grid> </Canvas> </UserControl> This XAML file defines three grid panels, one for each hand of our clock (we are implementing an analog clock using one of the most advanced technologies of the digital world… how cool is that?). Inside each hand we put a TextBlock that will be used to display the current hour, minute, second inside the dial (you can’t do that on plain old analog clocks, but it looks nice). As usual we use XAML2CPP to generate the boring part of our code. We declare a class named “Clock” and derives from the TClock template that XAML2CPP has declared for us. class Clock : public TClock<Clock> { ... }; Our WinMain function is more or less the same we used in all the previous samples. It initializes the XAML runtime, create an instance of our class, initialize it and shows it as a dialog: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1; Clock clock;   if (FAILED(clock.Init(hInstance,app))) return -1;     UINT exitcode;   if (FAILED(clock.GetVisualHost()->StartDialog(&exitcode))) return -1;   return exitcode; } Silverlight for Windows Embedded provides a lot of features to implement our UI, but it does not provide timers. How we can update our clock if we don’t have a timer feature? We just use plain old Windows timers, as we do in “regular” Windows CE applications! To use a timer in WinCE we should declare an id for it: #define IDT_CLOCKUPDATE 0x12341234 We also need an HWND that will be used to receive WM_TIMER messages. Our Silverlight for Windows Embedded page is “hosted” inside a GWES Window and we can retrieve its handle using the GetContainerHWND function of our VisualHost object. Let’s see how this is implemented inside our Clock class’ Init method: HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TClock<Clock>::Init(hInstance,app))) return retcode;   // create the timer user to update the clock HWND clockhwnd;   if (FAILED(GetVisualHost()->GetContainerHWND(&clockhwnd))) return -1;   timer=SetTimer(clockhwnd,IDT_CLOCKUPDATE,1000,NULL); return 0; } We use SetTimer to create a new timer and GWES will send a WM_TIMER to our window every second, giving us a chance to update our clock. That sounds great… but how could we handle the WM_TIMER message if we didn’t implement a window procedure for our window? We have to move a step back and look how a visual host is created. This code is generated by XAML2CPP and is inside xaml2cppbase.h: virtual HRESULT CreateHost(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode; XRWindowCreateParams wp;   ZeroMemory(&wp, sizeof(XRWindowCreateParams)); InitWindowParms(&wp);   XRXamlSource xamlsrc;   SetXAMLSource(hInstance,&xamlsrc); if (FAILED(retcode=app->CreateHostFromXaml(&xamlsrc, &wp, &vhost))) return retcode;   if (FAILED(retcode=vhost->GetRootElement(&root))) return retcode; return S_OK; } As you can see the CreateHostFromXaml function of IXRApplication accepts a structure named XRWindowCreateParams that control how the “plain old” GWES Window is created by the runtime. This structure is initialized inside the InitWindowParm method: // Initializes Windows parameters, can be overridden in the user class to change its appearance virtual void InitWindowParms(XRWindowCreateParams* wp) { wp->Style = WS_OVERLAPPED; wp->pTitle = windowtitle; wp->Left = 0; wp->Top = 0; } This method set up the window style, title and position. But the XRWindowCreateParams contains also other fields and, since the function is declared as virtual, we could initialize them inside our version of InitWindowParms: // add hook procedure to the standard windows creation parms virtual void InitWindowParms(XRWindowCreateParams* wp) { TClock<Clock>::InitWindowParms(wp);   wp->pHookProc=StaticHostHookProc; wp->pvUserParam=this; } This method calls the base class implementation (useful to not having to re-write some code, did I told you that I’m quite lazy?) and then initializes the pHookProc and pvUserParam members of the XRWindowsCreateParams structure. Those members will allow us to install a “hook” procedure that will be called each time the GWES window “hosting” our Silverlight for Windows Embedded UI receives a message. We can declare a hook procedure inside our Clock class: // static hook procedure static BOOL CALLBACK StaticHostHookProc(VOID* pv,HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { ... } You should notice two things here. First that the function is declared as static. This is required because a non-static function has a “hidden” parameters, that is the “this” pointer of our object. Having an extra parameter is not allowed for the type defined for the pHookProc member of the XRWindowsCreateParams struct and so we should implement our hook procedure as static. But in a static procedure we will not have a this pointer. How could we access the data member of our class? Here’s the second thing to notice. We initialized also the pvUserParam of the XRWindowsCreateParams struct. We set it to our this pointer. This value will be passed as the first parameter of the hook procedure. In this way we can retrieve our this pointer and use it to call a non-static version of our hook procedure: // static hook procedure static BOOL CALLBACK StaticHostHookProc(VOID* pv,HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { return ((Clock*)pv)->HostHookProc(hwnd,Msg,wParam,lParam,pRetVal); } Inside our non-static hook procedure we will have access to our this pointer and we will be able to update our clock: // hook procedure (handles timers) BOOL HostHookProc(HWND hwnd,UINT Msg,WPARAM wParam,LPARAM lParam,LRESULT* pRetVal) { switch (Msg) { case WM_TIMER: if (wParam==IDT_CLOCKUPDATE) UpdateClock(); *pRetVal=0; return TRUE; } return FALSE; } The UpdateClock member function will update the text inside our TextBlocks and rotate the hands to reflect current time: // udates Hands positions and labels HRESULT UpdateClock() { SYSTEMTIME time; HRESULT retcode;   GetLocalTime(&time);   //updates the text fields TCHAR timebuffer[32];   _itow(time.wSecond,timebuffer,10);   SecondsText->SetText(timebuffer);   _itow(time.wMinute,timebuffer,10);   MinutesText->SetText(timebuffer);   _itow(time.wHour,timebuffer,10);   HoursText->SetText(timebuffer);   if (FAILED(retcode=RotateHand(((float)time.wSecond)*6-90,SecondsHand))) return retcode;   if (FAILED(retcode=RotateHand(((float)time.wMinute)*6-90,MinutesHand))) return retcode;   if (FAILED(retcode=RotateHand(((float)(time.wHour%12))*30-90,HoursHand))) return retcode;   return S_OK; } The function retrieves current time, convert hours, minutes and seconds to strings and display those strings inside the three TextBlocks that we put inside our clock hands. Then it rotates the hands to position them at the right angle (angles are in degrees and we have to subtract 90 degrees because 0 degrees means horizontal on Silverlight for Windows Embedded and usually a clock 0 is in the top position of the dial. The code of the RotateHand function uses transforms to rotate our clock hands on the screen: // rotates a Hand HRESULT RotateHand(float angle,IXRFrameworkElement* Hand) { HRESULT retcode; IXRRotateTransformPtr rotatetransform; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode;   if (FAILED(retcode=app->CreateObject(IID_IXRRotateTransform,&rotatetransform))) return retcode;     if (FAILED(retcode=rotatetransform->SetAngle(angle))) return retcode;   if (FAILED(retcode=rotatetransform->SetCenterX(0.0))) return retcode;   float height;   if (FAILED(retcode==Hand->GetActualHeight(&height))) return retcode;   if (FAILED(retcode=rotatetransform->SetCenterY(height/2))) return retcode; if (FAILED(retcode=Hand->SetRenderTransform(rotatetransform))) return retcode;   return S_OK; } It creates a IXRotateTransform object, set its rotation angle and origin (the default origin is at the top-left corner of our Grid panel, we move it in the vertical center to keep the hand rotating around a single point in a more “clock like” way. Then we can apply the transform to our UI object using SetRenderTransform. Every UI element (derived from IXRFrameworkElement) can be rotated! And using different subclasses of IXRTransform also moved, scaled, skewed and distorted in many ways. You can also concatenate multiple transforms and apply them at once suing a IXRTransformGroup object. The XAML engine uses vector graphics and object will not look “pixelated” when they are rotated or scaled. As usual you can download the code here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/Clock.zip If you read up to (down to?) this point you seem to be interested in Silverlight for Windows Embedded. If you want me to discuss some specific topic, please feel free to point it out in the comments! Technorati Tags: Silverlight for Windows Embedded,Windows CE

    Read the article

  • LINQ – TakeWhile and SkipWhile methods

    - by nmarun
    I happened to read about these methods on Vikram's blog and tried testing it. Somehow when I saw the output, things did not seem to add up right. I’m writing this blog to show the actual workings of these methods. Let’s take the same example as showing in Vikram’s blog and I’ll build around it. 1: int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 2:  3: foreach(var number in numbers.TakeWhile(n => n < 7)) 4: { 5: Console.WriteLine(number); 6: } Now, the way I (incorrectly) read the upper bound condition in the foreach loop was: ‘Give me all numbers that pass the condition of n<7’. So I was expecting the answer to be: 5, 4, 1, 3, 2, 0. But when I run the application, I see only: 5, 4, 1,3. Turns out I was wrong (happens at least once a day). The documentation on the method says ‘Returns elements from a sequence as long as a specified condition is true. To show in code, my interpretation was the below code’: 1: foreach (var number in numbers) 2: { 3: if (number < 7) 4: { 5: Console.WriteLine(number); 6: } 7: } But the actual implementation is: 1: foreach(var number in numbers) 2: { 3: if(number < 7) 4: { 5: Console.WriteLine(number); 6: break; 7: } 8: } So there it is, another situation where one simple word makes a difference of a whole world. The SkipWhile method has been implemented in a similar way – ‘Bypasses elements in a sequence as long as a specified condition is true and then returns the remaining elements’ and not ‘Bypasses elements in a sequence where a specified condition is true and then returns the remaining elements’. (Subtle.. very very subtle). It’s feels strange saying this, but hope very few require to read this article to understand these methods.

    Read the article

  • problem opening eclipse

    - by Marchosius
    I'm having a problem loading Eclipise in 12.04. I loaded the error log and this was inside: !SESSION 2012-09-03 16:52:09.742 ----------------------------------------------- eclipse.buildId=I20110613-1736 java.version=1.7.0_07 java.vendor=Oracle Corporation BootLoader constants: OS=linux, ARCH=x86_64, WS=gtk, NL=en_GB Command-line arguments: -os linux -ws gtk -arch x86_64 !ENTRY org.eclipse.osgi 4 0 2012-09-03 16:52:11.317 !MESSAGE Application error !STACK 1 java.lang.UnsatisfiedLinkError: Could not load SWT library. Reasons: no swt-gtk-3740 in java.library.path no swt-gtk in java.library.path Can't load library: /home/marcel/.swt/lib/linux/x86_64/libswt-gtk-3740.so Can't load library: /home/marcel/.swt/lib/linux/x86_64/libswt-gtk.so at org.eclipse.swt.internal.Library.loadLibrary(Library.java:285) at org.eclipse.swt.internal.Library.loadLibrary(Library.java:194) at org.eclipse.swt.internal.C.<clinit>(C.java:21) at org.eclipse.swt.internal.Converter.wcsToMbcs(Converter.java:63) at org.eclipse.swt.internal.Converter.wcsToMbcs(Converter.java:54) at org.eclipse.swt.widgets.Display.<clinit>(Display.java:132) at org.eclipse.ui.internal.Workbench.createDisplay(Workbench.java:695) at org.eclipse.ui.PlatformUI.createDisplay(PlatformUI.java:161) at org.eclipse.ui.internal.ide.application.IDEApplication.createDisplay(IDEApplication.java:153) at org.eclipse.ui.internal.ide.application.IDEApplication.start(IDEApplication.java:95) at org.eclipse.equinox.internal.app.EclipseAppHandle.run(EclipseAppHandle.java:196) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.runApplication(EclipseAppLauncher.java:110) at org.eclipse.core.runtime.internal.adaptor.EclipseAppLauncher.start(EclipseAppLauncher.java:79) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:344) at org.eclipse.core.runtime.adaptor.EclipseStarter.run(EclipseStarter.java:179) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source) at java.lang.reflect.Method.invoke(Unknown Source) at org.eclipse.equinox.launcher.Main.invokeFramework(Main.java:622) at org.eclipse.equinox.launcher.Main.basicRun(Main.java:577) at org.eclipse.equinox.launcher.Main.run(Main.java:1410) at org.eclipse.equinox.launcher.Main.main(Main.java:1386) I had openJDK installed and to remove and replace with Oracle Java to install Aptana Studio. This thread explains it all. So now reinstalled OpenJDK, this might give some insight to the problem?

    Read the article

  • C# Neural Networks with Encog

    - by JoshReuben
    Neural Networks ·       I recently read a book Introduction to Neural Networks for C# , by Jeff Heaton. http://www.amazon.com/Introduction-Neural-Networks-C-2nd/dp/1604390093/ref=sr_1_2?ie=UTF8&s=books&qid=1296821004&sr=8-2-spell. Not the 1st ANN book I've perused, but a nice revision.   ·       Artificial Neural Networks (ANNs) are a mechanism of machine learning – see http://en.wikipedia.org/wiki/Artificial_neural_network , http://en.wikipedia.org/wiki/Category:Machine_learning ·       Problems Not Suited to a Neural Network Solution- Programs that are easily written out as flowcharts consisting of well-defined steps, program logic that is unlikely to change, problems in which you must know exactly how the solution was derived. ·       Problems Suited to a Neural Network – pattern recognition, classification, series prediction, and data mining. Pattern recognition - network attempts to determine if the input data matches a pattern that it has been trained to recognize. Classification - take input samples and classify them into fuzzy groups. ·       As far as machine learning approaches go, I thing SVMs are superior (see http://en.wikipedia.org/wiki/Support_vector_machine ) - a neural network has certain disadvantages in comparison: an ANN can be overtrained, different training sets can produce non-deterministic weights and it is not possible to discern the underlying decision function of an ANN from its weight matrix – they are black box. ·       In this post, I'm not going to go into internals (believe me I know them). An autoassociative network (e.g. a Hopfield network) will echo back a pattern if it is recognized. ·       Under the hood, there is very little maths. In a nutshell - Some simple matrix operations occur during training: the input array is processed (normalized into bipolar values of 1, -1) - transposed from input column vector into a row vector, these are subject to matrix multiplication and then subtraction of the identity matrix to get a contribution matrix. The dot product is taken against the weight matrix to yield a boolean match result. For backpropogation training, a derivative function is required. In learning, hill climbing mechanisms such as Genetic Algorithms and Simulated Annealing are used to escape local minima. For unsupervised training, such as found in Self Organizing Maps used for OCR, Hebbs rule is applied. ·       The purpose of this post is not to mire you in technical and conceptual details, but to show you how to leverage neural networks via an abstraction API - Encog   Encog ·       Encog is a neural network API ·       Links to Encog: http://www.encog.org , http://www.heatonresearch.com/encog, http://www.heatonresearch.com/forum ·       Encog requires .Net 3.5 or higher – there is also a Silverlight version. Third-Party Libraries – log4net and nunit. ·       Encog supports feedforward, recurrent, self-organizing maps, radial basis function and Hopfield neural networks. ·       Encog neural networks, and related data, can be stored in .EG XML files. ·       Encog Workbench allows you to edit, train and visualize neural networks. The Encog Workbench can generate code. Synapses and layers ·       the primary building blocks - Almost every neural network will have, at a minimum, an input and output layer. In some cases, the same layer will function as both input and output layer. ·       To adapt a problem to a neural network, you must determine how to feed the problem into the input layer of a neural network, and receive the solution through the output layer of a neural network. ·       The Input Layer - For each input neuron, one double value is stored. An array is passed as input to a layer. Encog uses the interface INeuralData to hold these arrays. The class BasicNeuralData implements the INeuralData interface. Once the neural network processes the input, an INeuralData based class will be returned from the neural network's output layer. ·       convert a double array into an INeuralData object : INeuralData data = new BasicNeuralData(= new double[10]); ·       the Output Layer- The neural network outputs an array of doubles, wraped in a class based on the INeuralData interface. ·        The real power of a neural network comes from its pattern recognition capabilities. The neural network should be able to produce the desired output even if the input has been slightly distorted. ·       Hidden Layers– optional. between the input and output layers. very much a “black box”. If the structure of the hidden layer is too simple it may not learn the problem. If the structure is too complex, it will learn the problem but will be very slow to train and execute. Some neural networks have no hidden layers. The input layer may be directly connected to the output layer. Further, some neural networks have only a single layer. A single layer neural network has the single layer self-connected. ·       connections, called synapses, contain individual weight matrixes. These values are changed as the neural network learns. Constructing a Neural Network ·       the XOR operator is a frequent “first example” -the “Hello World” application for neural networks. ·       The XOR Operator- only returns true when both inputs differ. 0 XOR 0 = 0 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 ·       Structuring a Neural Network for XOR  - two inputs to the XOR operator and one output. ·       input: 0.0,0.0 1.0,0.0 0.0,1.0 1.0,1.0 ·       Expected output: 0.0 1.0 1.0 0.0 ·       A Perceptron - a simple feedforward neural network to learn the XOR operator. ·       Because the XOR operator has two inputs and one output, the neural network will follow suit. Additionally, the neural network will have a single hidden layer, with two neurons to help process the data. The choice for 2 neurons in the hidden layer is arbitrary, and often comes down to trial and error. ·       Neuron Diagram for the XOR Network ·       ·       The Encog workbench displays neural networks on a layer-by-layer basis. ·       Encog Layer Diagram for the XOR Network:   ·       Create a BasicNetwork - Three layers are added to this network. the FinalizeStructure method must be called to inform the network that no more layers are to be added. The call to Reset randomizes the weights in the connections between these layers. var network = new BasicNetwork(); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(2)); network.AddLayer(new BasicLayer(1)); network.Structure.FinalizeStructure(); network.Reset(); ·       Neural networks frequently start with a random weight matrix. This provides a starting point for the training methods. These random values will be tested and refined into an acceptable solution. However, sometimes the initial random values are too far off. Sometimes it may be necessary to reset the weights again, if training is ineffective. These weights make up the long-term memory of the neural network. Additionally, some layers have threshold values that also contribute to the long-term memory of the neural network. Some neural networks also contain context layers, which give the neural network a short-term memory as well. The neural network learns by modifying these weight and threshold values. ·       Now that the neural network has been created, it must be trained. Training a Neural Network ·       construct a INeuralDataSet object - contains the input array and the expected output array (of corresponding range). Even though there is only one output value, we must still use a two-dimensional array to represent the output. public static double[][] XOR_INPUT ={ new double[2] { 0.0, 0.0 }, new double[2] { 1.0, 0.0 }, new double[2] { 0.0, 1.0 }, new double[2] { 1.0, 1.0 } };   public static double[][] XOR_IDEAL = { new double[1] { 0.0 }, new double[1] { 1.0 }, new double[1] { 1.0 }, new double[1] { 0.0 } };   INeuralDataSet trainingSet = new BasicNeuralDataSet(XOR_INPUT, XOR_IDEAL); ·       Training is the process where the neural network's weights are adjusted to better produce the expected output. Training will continue for many iterations, until the error rate of the network is below an acceptable level. Encog supports many different types of training. Resilient Propagation (RPROP) - general-purpose training algorithm. All training classes implement the ITrain interface. The RPROP algorithm is implemented by the ResilientPropagation class. Training the neural network involves calling the Iteration method on the ITrain class until the error is below a specific value. The code loops through as many iterations, or epochs, as it takes to get the error rate for the neural network to be below 1%. Once the neural network has been trained, it is ready for use. ITrain train = new ResilientPropagation(network, trainingSet);   for (int epoch=0; epoch < 10000; epoch++) { train.Iteration(); Debug.Print("Epoch #" + epoch + " Error:" + train.Error); if (train.Error > 0.01) break; } Executing a Neural Network ·       Call the Compute method on the BasicNetwork class. Console.WriteLine("Neural Network Results:"); foreach (INeuralDataPair pair in trainingSet) { INeuralData output = network.Compute(pair.Input); Console.WriteLine(pair.Input[0] + "," + pair.Input[1] + ", actual=" + output[0] + ",ideal=" + pair.Ideal[0]); } ·       The Compute method accepts an INeuralData class and also returns a INeuralData object. Neural Network Results: 0.0,0.0, actual=0.002782538818034049,ideal=0.0 1.0,0.0, actual=0.9903741937121177,ideal=1.0 0.0,1.0, actual=0.9836807956566187,ideal=1.0 1.0,1.0, actual=0.0011646072586172778,ideal=0.0 ·       the network has not been trained to give the exact results. This is normal. Because the network was trained to 1% error, each of the results will also be within generally 1% of the expected value.

    Read the article

  • Scoring/analysis of Subjective testing for skills assessment

    - by ChrisBint
    I am lucky in the sense that I have been given the opportunity to be a 'Technical Troubleshooter' for our offshore development team. While I am confident and capable of dealing with most issues, I have come across something that I am not. Based on initial discussions with various team members both on and offshore, a requirement for a 'repeatable, consistent' skills assessment has been identified. In my opinion, the best way to achieve this would be a combination of objective and subjective tests. The former normally being an initial online skills assessment on various subjects, for example General C#, WCF and MVC. The latter being a technical test where the candidate would need to solve various problems and (hopefully) explain the thought processes involved with the solution whilst doing so. Obviously, the first method is consistent, repeatable and extremely accurate. The second is always going to be subjective and based on the approach, the solution (or possibly not) and other factors. The 'scoring' of this is also going to be down to the experience and skills of the assessor and this is where my problem lies; The person that is expected to be the assessor initially (me) has no experience. The people that will ultimately continue this process for other people will never remain the same due to project constraints and internal reasons, this changes the baseline for comparison. I am not aware of any suitable system that can be classed as consistent and repeatable for subjective tests with the 2 factors above, let alone if those did not exist. So anyway, I have to present a plan that will ultimately generate a skills/gap analysis and it is unlikely that I will be able to use an objective method (budget constraints most likely reason). The only option left is the subjective methods and the issues above. Does anyone have any suggestions for an approach that may tick all the boxes?

    Read the article

  • SharePoint and COMException (0x80004005): Cannot complete this action

    - by Damon
    I ran into a small issue today working on a deployment.  We were moving a custom ASP.NET control from my development environment into a SharePoint layout page on a staging environment .  I was expecting some minor issues to arise since I had developed the control in an ASP.NET website project, but after getting everything moved over we got an obscure COMException error the that looked like this: Cannot complete this action. Please try again. Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.Runtime.InteropServices.COMException: Cannot complete this action. [COMException (0x80004005): Cannot complete this action. .Lengthy stack trace goes here. Everything in the custom control was built using managed code, so we weren't sure why a COMException would suddenly appear. The control made use of an ITemplate to define its UI, so there was a lot of markup and binding code inside the template. As such, we started taking chunks of the template out of the layout page and eventually the error went away.  It was being caused by a section of code where we were calling a custom utility method inside some binding code: <%# WebUtility.FormatDecimal(.) %> Solution: It turns out that we were missing an Assembly and Import directive at the top of the page to let the page know where to find this method.  After adding these to the page, the error went away and everything worked great.  So a COMException (0x80004005) Cannot complete this action error is just SharePoint's friendly way of letting you know you're missing an assembly or imports reference.

    Read the article

  • Verbosity Isn’t Always a Bad Thing

    - by PSteele
    There was a message posted to the Rhino.Mocks forums yesterday about verifying a single parameter of a method that accepted 5 parameters.  The code looked like this:   [TestMethod] public void ShouldCallTheAvanceServiceWithTheAValidGuid() { _sut.Send(_sampleInput); _avanceInterface.AssertWasCalled(x => x.SendData( Arg<Guid>.Is.Equal(Guid.Empty), Arg<string>.Is.Anything, Arg<string>.Is.Anything, Arg<string>.Is.Anything, Arg<string>.Is.Anything)); } Not the prettiest code, but it does work. I was going to reply that he could use the “GetArgumentsForCallsMadeOn” method to pull out an array that would contain all of the arguments.  A quick check of “args[0]” would be all that he needed.  But then Tim Barcz replied with the following: Just to help allay your fears a bit...this verbosity isn't always a bad thing.  When I read the code, based on the syntax you have used I know that for this particular test no parameters matter except the first...extremely useful in my opinion. An excellent point!  We need to make sure our unit tests are as clear as our code. Technorati Tags: Rhino.Mocks,Unit Testing

    Read the article

  • Just released: a new SEO extension for the ASP.NET MVC routing engine

    - by efran.cobisi
    Dear users,after several months of hard work, we are proud to announce to the world that Cobisi's new SEO routing engine for ASP.NET MVC has been officially released! We even provide a free edition which comes at no cost, so this is something you can't really miss if you are a serious ASP.NET developer. ;)SEO routes for ASP.NET MVCCobisi SEO Extensions - this is the name of the product - is an advanced tool for software developers that allows to optimize ASP.NET MVC web applications and sites for search engines. It comes with a powerful routing engine, which extends the standard ASP.NET routing module to provide a much more flexible way to define search optimized routes, and a complete set of classes that make customizing the entire routing infrastructure very easy and cool.In its simplest form, defining a route for an MVC action is just a matter of decorating the method with the [Route("...")] attribute and specifying the desired URL. The library will take care of the rest and set up the route accordingly; while coding routes this way, Cobisi SEO Extensions also shows how the final routes will be, without leaving the Visual Studio IDE!Manage MVC routes with easeIn fact, Cobisi SEO Extensions integrates with the Visual Studio IDE to offer a large set of time-saving improvements targeted at ASP.NET developers. A new tool window, for example, allows to easily browse among the routes exposed by your applications, being them standard ASP.NET routes, MVC specific routes or SEO routes. The routes can be easily filtered on the fly, to ease finding the ones you are interested in. Double clicking a SEO route will even open the related ASP.NET MVC controller, at the beginning of the specified action method.In addition to that, Cobisi SEO Extensions allows to easily understand how each SEO route is composed by showing the routing model details directly in the IDE, beneath each MVC action route.Furthermore, Cobisi SEO Extensions helps developers to easily recognize which class is an MVC controller and which methods is an MVC action by drawing a special dashed underline mark under each items of these categories.Developers, developers, developers, ...We are really eager to receive your feedback and suggestions - please feel free to ping us with your comments! Thank you! Cheers! -- Efran Cobisi Cobisi lead developer Microsoft MVP, MCSD, MCAD, MCTS: SQL Server 2005, MCP

    Read the article

  • Starting a Java activity in Unity3d Android

    - by Matthew Pavlinsky
    I wrote a small Java activity extension of UnityPlayerActivity similar to what is described in the Unity docs. It has a method for displaying a song picking interface using an ACTION_GET_CONTENT intent. I start this activity using startActivityForResult() and it absolutely kills the performance of my Unity game when it is finished, it drops to about .1 FPS afterwords. I've changed removed the onActivityResult function and even tried starting the activity from inside an onKeyDown event in Java to make sure my method of starting the activity from Unity was not the problem. Heres the code in a basic sense: package com.company.product; import com.unity3d.player.UnityPlayerActivity; import com.unity3d.player.UnityPlayer; import android.os.Bundle; import android.util.Log; import android.content.Intent; public class SongPickerActivity extends UnityPlayerActivity { private Intent myIntent; final static int PICK_SONG = 1; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); Log.i("SongPickerActivity", "OnCreate"); myIntent = new Intent(Intent.ACTION_GET_CONTENT); myIntent.setType("audio/*"); } public void Pick() { Log.i("SongPickerActivity", "Pick"); startActivityForResult(myIntent, PICK_SONG); } @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) { super.onActivityResult(requestCode, resultCode, data); } } This is causing me a bit more of a headache than it should and I would be thankful for any sort of advice. Does anyone have any experience with using custom activities in Unity Android or any insight on why this is happening or how to resolve this?

    Read the article

  • Creating a JSONP Formatter for ASP.NET Web API

    - by Rick Strahl
    Out of the box ASP.NET WebAPI does not include a JSONP formatter, but it's actually very easy to create a custom formatter that implements this functionality. JSONP is one way to allow Browser based JavaScript client applications to bypass cross-site scripting limitations and serve data from the non-current Web server. AJAX in Web Applications uses the XmlHttp object which by default doesn't allow access to remote domains. There are number of ways around this limitation <script> tag loading and JSONP is one of the easiest and semi-official ways that you can do this. JSONP works by combining JSON data and wrapping it into a function call that is executed when the JSONP data is returned. If you use a tool like jQUery it's extremely easy to access JSONP content. Imagine that you have a URL like this: http://RemoteDomain/aspnetWebApi/albums which on an HTTP GET serves some data - in this case an array of record albums. This URL is always directly accessible from an AJAX request if the URL is on the same domain as the parent request. However, if that URL lives on a separate server it won't be easily accessible to an AJAX request. Now, if  the server can serve up JSONP this data can be accessed cross domain from a browser client. Using jQuery it's really easy to retrieve the same data with JSONP:function getAlbums() { $.getJSON("http://remotedomain/aspnetWebApi/albums?callback=?",null, function (albums) { alert(albums.length); }); } The resulting callback the same as if the call was to a local server when the data is returned. jQuery deserializes the data and feeds it into the method. Here the array is received and I simply echo back the number of items returned. From here your app is ready to use the data as needed. This all works fine - as long as the server can serve the data with JSONP. What does JSONP look like? JSONP is a pretty simple 'protocol'. All it does is wrap a JSON response with a JavaScript function call. The above result from the JSONP call looks like this:Query17103401925975181569_1333408916499( [{"Id":"34043957","AlbumName":"Dirty Deeds Done Dirt Cheap",…},{…}] ) The way JSONP works is that the client (jQuery in this case) sends of the request, receives the response and evals it. The eval basically executes the function and deserializes the JSON inside of the function. It's actually a little more complex for the framework that does this, but that's the gist of what happens. JSONP works by executing the code that gets returned from the JSONP call. JSONP and ASP.NET Web API As mentioned previously, JSONP support is not natively in the box with ASP.NET Web API. But it's pretty easy to create and plug-in a custom formatter that provides this functionality. The following code is based on Christian Weyers example but has been updated to the latest Web API CodePlex bits, which changes the implementation a bit due to the way dependent objects are exposed differently in the latest builds. Here's the code:  using System; using System.IO; using System.Net; using System.Net.Http.Formatting; using System.Net.Http.Headers; using System.Threading.Tasks; using System.Web; using System.Net.Http; namespace Westwind.Web.WebApi { /// <summary> /// Handles JsonP requests when requests are fired with /// text/javascript or application/json and contain /// a callback= (configurable) query string parameter /// /// Based on Christian Weyers implementation /// https://github.com/thinktecture/Thinktecture.Web.Http/blob/master/Thinktecture.Web.Http/Formatters/JsonpFormatter.cs /// </summary> public class JsonpFormatter : JsonMediaTypeFormatter { public JsonpFormatter() { SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/json")); SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/javascript")); //MediaTypeMappings.Add(new UriPathExtensionMapping("jsonp", "application/json")); JsonpParameterName = "callback"; } /// <summary> /// Name of the query string parameter to look for /// the jsonp function name /// </summary> public string JsonpParameterName {get; set; } /// <summary> /// Captured name of the Jsonp function that the JSON call /// is wrapped in. Set in GetPerRequestFormatter Instance /// </summary> private string JsonpCallbackFunction; public override bool CanWriteType(Type type) { return true; } /// <summary> /// Override this method to capture the Request object /// and look for the query string parameter and /// create a new instance of this formatter. /// /// This is the only place in a formatter where the /// Request object is available. /// </summary> /// <param name="type"></param> /// <param name="request"></param> /// <param name="mediaType"></param> /// <returns></returns> public override MediaTypeFormatter GetPerRequestFormatterInstance(Type type, HttpRequestMessage request, MediaTypeHeaderValue mediaType) { var formatter = new JsonpFormatter() { JsonpCallbackFunction = GetJsonCallbackFunction(request) }; return formatter; } /// <summary> /// Override to wrap existing JSON result with the /// JSONP function call /// </summary> /// <param name="type"></param> /// <param name="value"></param> /// <param name="stream"></param> /// <param name="contentHeaders"></param> /// <param name="transportContext"></param> /// <returns></returns> public override Task WriteToStreamAsync(Type type, object value, Stream stream, HttpContentHeaders contentHeaders, TransportContext transportContext) { if (!string.IsNullOrEmpty(JsonpCallbackFunction)) { return Task.Factory.StartNew(() => { var writer = new StreamWriter(stream); writer.Write( JsonpCallbackFunction + "("); writer.Flush(); base.WriteToStreamAsync(type, value, stream, contentHeaders, transportContext).Wait(); writer.Write(")"); writer.Flush(); }); } else { return base.WriteToStreamAsync(type, value, stream, contentHeaders, transportContext); } } /// <summary> /// Retrieves the Jsonp Callback function /// from the query string /// </summary> /// <returns></returns> private string GetJsonCallbackFunction(HttpRequestMessage request) { if (request.Method != HttpMethod.Get) return null; var query = HttpUtility.ParseQueryString(request.RequestUri.Query); var queryVal = query[this.JsonpParameterName]; if (string.IsNullOrEmpty(queryVal)) return null; return queryVal; } } } Note again that this code will not work with the Beta bits of Web API - it works only with post beta bits from CodePlex and hopefully this will continue to work until RTM :-) This code is a bit different from Christians original code as the API has changed. The biggest change is that the Read/Write functions no longer receive a global context object that gives access to the Request and Response objects as the older bits did. Instead you now have to override the GetPerRequestFormatterInstance() method, which receives the Request as a parameter. You can capture the Request there, or use the request to pick up the values you need and store them on the formatter. Note that I also have to create a new instance of the formatter since I'm storing request specific state on the instance (information whether the callback= querystring is present) so I return a new instance of this formatter. Other than that the code should be straight forward: The code basically writes out the function pre- and post-amble and the defers to the base stream to retrieve the JSON to wrap the function call into. The code uses the Async APIs to write this data out (this will take some getting used to seeing all over the place for me). Hooking up the JsonpFormatter Once you've created a formatter, it has to be added to the request processing sequence by adding it to the formatter collection. Web API is configured via the static GlobalConfiguration object.  protected void Application_Start(object sender, EventArgs e) { // Verb Routing RouteTable.Routes.MapHttpRoute( name: "AlbumsVerbs", routeTemplate: "albums/{title}", defaults: new { title = RouteParameter.Optional, controller = "AlbumApi" } ); GlobalConfiguration .Configuration .Formatters .Insert(0, new Westwind.Web.WebApi.JsonpFormatter()); }   That's all it takes. Note that I added the formatter at the top of the list of formatters, rather than adding it to the end which is required. The JSONP formatter needs to fire before any other JSON formatter since it relies on the JSON formatter to encode the actual JSON data. If you reverse the order the JSONP output never shows up. So, in general when adding new formatters also try to be aware of the order of the formatters as they are added. Resources JsonpFormatter Code on GitHub© Rick Strahl, West Wind Technologies, 2005-2012Posted in Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Oracle Coherence & Oracle Service Bus: REST API Integration

    - by Nino Guarnacci
    This post aims to highlight one of the features found in Oracle Coherence which allows it to be easily added and integrated inside a wider variety of projects.  The features in question are the REST API exposed by the Coherence nodes, with which you can interact in the wider mode in memory data grid.Oracle Coherence and Oracle Service Bus are natively integrated through a feature found in the Oracle Service Bus, which allows you to use the coherence grid cache during the configuration phase of a business service. This feature allows you to use an intermediate layer of cache to retrieve the answers from previous invocations of the same service, without necessarily having to invoke the real business service again. Directly from the web console of Oracle Service Bus, you can decide the policies of eviction of the objects / answers and define the discriminating parameters that identify their uniqueness.The coherence REST APIs, however, allow you to integrate both products for other necessities enabling realization of new architectures design.  Consider coherence’s node as a simple service which interoperates through the stardard services and in particular REST (with JSON and XML). Thinking of coherence as a company’s shared service, able to have an implementation of a centralized “map and reduce” which you can access  by a huge variety of protocols (transport and envelopes).An amazing step forward for those who still imagine connectors and code. This type of integration does not require writing custom code or complex implementation to be self-supported. The added value is made unique by the incredible value of both products independently, and still more out of their simple and robust integration.As already mentioned this scenario discovers a hidden new door behind the columns of these two products. The door leads to new ideas and perspectives for enterprise architectures that increasingly wink to next-generation applications: simple and dynamic, perhaps towards the mobile and web 2.0.Below, a small and simple demo useful to demonstrate how easily is to integrate these two products using the Coherence REST API. This demo is also intended to imagine new enterprise architectures using this approach.The idea is to create a centralized system of alerting, fed easily from any company’s application, regardless of the technology with which they were built . Then use a representation standard protocol: RSS, using a service exposed by the service bus; So you can browse and search only the alerts that you are interested on, by category, author, title, date, etc etc.. The steps needed to implement this system are very simple and very few. Here they are listed below and described to be easily replicated within your environment. I would remind you that the demo is only meant to demonstrate how easily is to integrate Oracle Coherence and the Oracle Service Bus, and stimulate your imagination to new technological approaches.1) Install the two products: In this demo used (if necessary, consult the installation guides of 2 products)  - Oracle Service Bus ver. 11.1.1.5.0 http://www.oracle.com/technetwork/middleware/service-bus/downloads/index.html - Oracle Coherence ver. 3.7.1 http://www.oracle.com/technetwork/middleware/coherence/downloads/index.html 2) Because you choose to create a centralized alerting system, we need to define a structure type containing some alerting attributes useful to preserve and organize the information of the various alerts sent by the different applications. Here, then it was built a java class named Alert containing the canonical properties of an alarm information:- Title- Description- System- Time- Severity 3) Therefore, we need to create two configuration files for the coherence node, in order to save the Alert objects within the grid, through the rest/http protocol (more than the native API for Java, C + +, C,. Net). Here are the two minimal configuration files for Coherence:coherence-rest-config.xml resty-server-config.xml This minimum configuration allows me to use a distributed cache named "alerts" that can  also be accessed via http - rest on the host "localhost" over port "8080", objects are of type “oracle.cohsb.Alert”. 4) Below  a simple Java class that represents the type of alert messages: 5) At this point we just need to startup our coherence node, able to listen on http protocol to manage the “alerts” cache, which will receive incoming XML or JSON objects of type Alert. Remember to include in the classpath of the coherence node, the Alert java class and the following coherence libraries and configuration files:  At this point, just run the coherence class node “com.tangosol.net.DefaultCacheServer”advising you to set the following parameters:-Dtangosol.coherence.log.level=9 -Dtangosol.coherence.log=stdout -Dtangosol.coherence.cacheconfig=[PATH_TO_THE_FILE]\resty-server-config.xml 6) Let's create a procedure to test our configuration of Coherence and in order to insert some custom alerts in our cache. The technology with which you want to achieve this functionality is fully not considerable: Javascript, Python, Ruby, Scala, C + +, Java.... Because the protocol to communicate with Coherence is simply HTTP / JSON or XML. For this little demo i choose Java: A method to send/put the alert to the cache: A method to query and view the content of the cache: Finally the main method that execute our methods:  No special library added in the classpath for our class (json struct static defined), when it will be executed, it asks some information such as title, description,... in order to compose and send an alert to the cache and then it will perform an inquiry, to the same cache. At this point, a good exercise at this point, may be to create the same procedure using other technologies, such as a simple html page containing some JavaScript code, and then using Python, Ruby, and so on.7) Now we are ready to start configuring the Oracle Service Bus in order to integrate the two products. First integrate the internal alerting system of Oracle Service Bus with our centralized alerting system based on coherence node. This ensures that by monitoring, or directly from within our Proxy Message Flow, we can throw alerts and save them directly into the Coherence node. To do this I choose to use the jms technology, natively present inside the Oracle Weblogic / Service Bus. Access to the Oracle WebLogic Administration console and create and configure a new JMS connection factory and a new jms destination (queue). Now we should create a new resource of type “alert destination” within our Oracle Service Bus project. The new “alert destination” resource should be configured using the newly created connection factory jms and jms destination. Finally, in order to withdraw the message alert enqueued in our JMS destination and send it to our coherence node, we just need to create a new business service and proxy service within our Oracle Service Bus project.Our business service is responsible for sending a message to our REST service Coherence using as a method action: PUT Finally our proxy service have to collect all messages enqueued on the destination, execute an xquery transformation on those messages  in order to translate them into valid XML / alert objects useful to be sent to our coherence service, through the newly created business service. The message flow pipeline containing the xquery transformation: Incredibly,  we just did a basic first integration between the native alerting system of Oracle Service Bus and our centralized alerting system by simply configuring our coherence node without developing anything.It's time to test it out. To do this I create a proxy service able to generate an alert using our "alert destination", whenever the proxy is invoked. After some invocation to our proxy that generates fake alerts, we could open an Internet browser and type the URL  http://localhost: 8080/alerts/  so we could see what has been inserted within the coherence node. 8) We are ready for the final step.  We would create a new message flow, that can be used to search and display the results in standard mode. To do this I choosen the standard representation of RSS, to display a formatted result on a huge variety of devices such as readers for the iPhone and Android. The inquiry may be defined already at the time of the request able to return only feed / items related to our needs. To do this we need to create a new business service, a new proxy service, and finally a new XQuery Transformation to take care of translating the collection of alerts that will be return from our coherence node in a nicely formatted RSS standard document.So we start right from this resource (xquery), which has the task of transforming a collection of alerts / xml returned from the node coherence in a type well-formatted feed RSS 2.0 our new business service that will search the alerts on our coherence node using the Rest API. And finally, our last resource, the proxy service that will be exposed as an RSS / feeds to various mobile devices and traditional web readers, in which we will intercept any search query, and transform the result returned by the business service in an RSS feed 2.0. The message flow with the transformation phase (Alert TO Feed Items): Finally some little tricks to follow during the routing to the business service, - check for any queries present in the url to require a subset of alerts  - the http header "Accept" to help get an answer XML instead of JSON: In our little demo we also static added some coherence parameters to the request:sort=time:desc;start=0;count=100I would like to get from Coherence that the results will be sorted by date, and starting from 1 up to a maximum of 100.Done!!Just incredible, our centralized alerting system is ready. Inheriting all the qualities and capabilities of the two products involved Oracle Coherence & Oracle Service Bus: - RASP (Reliability, Availability, Scalability, Performance)Now try to use your mobile device, or a normal Internet browser by accessing the RSS just published: Some urls you may test: Search for the last 100 alerts : http://localhost:7001/alarmsSearch for alerts that do not have time set to null (time is not null):http://localhost:7001/alarms?q=time+is+not+nullSearch for alerts that the system property is “Web Browser” (system = ‘Web Browser’):http://localhost:7001/alarms?q=system+%3D+%27Web+Browser%27Search for alerts that the system property is “Web Browser” and the severity property is “Fatal” and the title property contain the word “Javascript”  (system = ‘Web Broser’ and severity = ‘Fatal’ and title like ‘%Javascript%’)http://localhost:8080/alerts?q=system+%3D+%27Web+Browser%27+AND+severity+%3D+%27Fatal%27+AND+title+LIKE+%27%25Javascript%25%27 To compose more complex queries about your need I would suggest you to read the chapter in the coherence documentation inherent the Cohl language (Coherence Query Language) http://download.oracle.com/docs/cd/E24290_01/coh.371/e22837/api_cq.htm . Some useful links: - Oracle Coherence REST API Documentation http://download.oracle.com/docs/cd/E24290_01/coh.371/e22839/rest_intro.htm - Oracle Service Bus Documentation http://download.oracle.com/docs/cd/E21764_01/soa.htm#osb - REST explanation from Wikipedia http://en.wikipedia.org/wiki/Representational_state_transfer At this URL could be downloaded the whole materials of this demo http://blogs.oracle.com/slc/resource/cosb/coh-sb-demo.zip Author: Nino Guarnacci.

    Read the article

  • Points on lines where the two lines are the closest together

    - by James Bedford
    Hey guys, I'm trying to find the points on two lines where the two lines are the closest. I've implemented the following method (Points and Vectors are as you'd expect, and a Line consists of a Point on the line and a non-normalized direction Vector from that point): void CDClosestPointsOnTwoLines(Line line1, Line line2, Point* closestPoints) { closestPoints[0] = line1.pointOnLine; closestPoints[1] = line2.pointOnLine; Vector d1 = line1.direction; Vector d2 = line2.direction; float a = d1.dot(d1); float b = d1.dot(d2); float e = d2.dot(d2); float d = a*e - b*b; if (d != 0) // If the two lines are not parallel. { Vector r = Vector(line1.pointOnLine) - Vector(line2.pointOnLine); float c = d1.dot(r); float f = d2.dot(r); float s = (b*f - c*e) / d; float t = (a*f - b*c) / d; closestPoints[0] = line1.positionOnLine(s); closestPoints[1] = line2.positionOnLine(t); } else { printf("Lines were parallel.\n"); } } I'm using OpenGL to draw three lines that move around the world, the third of which should be the line that most closely connects the other two lines, the two end points of which are calculated using this function. The problem is that the first point of closestPoints after this function is called will lie on line1, but the second point won't lie on line2, let alone at the closest point on line2! I've checked over the function many times but I can't see where the mistake in my implementation is. I've checked my dot product function, scalar multiplication, subtraction, positionOnLine() etc. etc. So my assumption is that the problem is within this method implementation. If it helps to find the answer, this is function supposed to be an implementation of section 5.1.8 from 'Real-Time Collision Detection' by Christer Ericson. Many thanks for any help!

    Read the article

  • ASP.NET MVC localization DisplayNameAttribute alternatives: a good way

    - by Brian Schroer
    The ASP.NET MVC HTML helper methods like .LabelFor and .EditorFor use model metadata to autogenerate labels for model properties. By default it uses the property name for the label text, but if that’s not appropriate, you can use a DisplayName attribute to specify the desired label text: [DisplayName("Remember me?")] public bool RememberMe { get; set; } I’m working on a multi-language web site, so the labels need to be localized. I tried pointing the DisplayName attribute to a resource string: [DisplayName(MyResource.RememberMe)] public bool RememberMe { get; set; } …but that results in the compiler error "An attribute argument must be a constant expression, typeof expression or array creation expression of an attribute parameter type”. I got around this by creating a custom LocalizedDisplayNameAttribute class that inherits from DisplayNameAttribute: 1: public class LocalizedDisplayNameAttribute : DisplayNameAttribute 2: { 3: public LocalizedDisplayNameAttribute(string resourceKey) 4: { 5: ResourceKey = resourceKey; 6: } 7:   8: public override string DisplayName 9: { 10: get 11: { 12: string displayName = MyResource.ResourceManager.GetString(ResourceKey); 13:   14: return string.IsNullOrEmpty(displayName) 15: ? string.Format("[[{0}]]", ResourceKey) 16: : displayName; 17: } 18: } 19:   20: private string ResourceKey { get; set; } 21: } Instead of a display string, it takes a constructor argument of a resource key. The DisplayName method is overridden to get the display string from the resource file (line 12). If the key is not found, I return a formatted string containing the key (e.g. “[[RememberMe]]”) so I can tell by looking at my web pages which resource keys I haven’t defined yet (line 15). The usage of my custom attribute in the model looks like this: [LocalizedDisplayName("RememberMe")] public bool RememberMe { get; set; } That was my first attempt at localized display names, and it’s a technique that I still use in some cases, but in my next post I’ll talk about the method that I now prefer, a custom DataAnnotationsModelMetadataProvider class…

    Read the article

  • Dotfuscator Deep Dive with WP7

    - by Bil Simser
    I thought I would share some experience with code obfuscation (specifically the Dotfuscator product) and Windows Phone 7 apps. These days twitter is a buzz with black hat and white operations coming out about how the marketplace is insecure and Microsoft failed, blah, blah, blah. So it’s that much more important to protect your intellectual property. You should protect it no matter what when releasing apps into the wild but more so when someone is paying for them. You want to protect the time and effort that went into your code and have some comfort that the casual hacker isn’t going to usurp your next best thing. Enter code obfuscation. Code obfuscation is one tool that can help protect your IP. Basically it goes into your compiled assemblies, rewrites things at an IL level (like renaming methods and classes and hiding logic flow) and rewrites it back so that the assembly or executable is still fully functional but prying eyes using a tool like ILDASM or Reflector can’t see what’s going on.  You can read more about code obfuscation here on Wikipedia. A word to the wise. Code obfuscation isn’t 100% secure. More so on the WP7 platform where the OS expects certain things to be as they were meant to be. So don’t expect 100% obfuscation of every class and every method and every property. It’s just not going to happen. What this does do is give you some level of protection but don’t put all your eggs in one basket and call it done. Like I said, this is just one step in the process. There are a few tools out there that provide code obfuscation and support the Windows Phone 7 platform (see links to other tools at the end of this post). One such tool is Dotfuscator from PreEmptive solutions. The thing about Dotfuscator is that they’ve struck a deal with Microsoft to provide a *free* copy of their commercial product for Windows Phone 7. The only drawback is that it only runs until March 31, 2010. However it’s a good place to start and the focus of this article. Getting Started When you fire up Dotfuscator you’re presented with a dialog to start a new project or load a previous one. We’ll start with a new project. You’re then looking at a somewhat blank screen that shows an Input tab (among others) and you’re probably wondering what to do? Click on the folder icon (first one) and browse to where your xap file is. At this point you can save the project and click on the arrow to start the process. Bam! You’re done. Right? Think again. The program did indeed run and create a new version of your xap (doing it’s thing and rewriting back your *obfuscated* assemblies) but let’s take a look at the assembly in Reflector to see the end result. Remember a xap file is really just a glorified zip file (or cab file if you prefer). When you ran Dotfuscator for the first time with the default settings you’ll see it created a new version of your xap in a folder under “My Documents” called “Dotfuscated” (you can configure the output directory in settings). Here’s the new xap file. Since a xap is just a zip, rename it to .cab or .zip or something and open it with your favorite unarchive program (I use WinRar but it doesn’t matter as long as it can unzip files). If you already have the xap file associated with your unarchive tool the rename isn’t needed. Once renamed extract the contents of the xap to your hard drive: Now you’ll have a folder with the contents of the xap file extracted: Double click or load up your assembly (WindowsPhoneDataBoundApplication1.dll in the example) in Reflector and let’s see the results: Hmm. That doesn’t look right. I can see all the methods and the code is all there for my LoadData method I wanted to protect. Product failure. Let’s return it for a refund. Hold your horses. We need to check out the settings in the program first. Remember when we loaded up our xap file. It started us on the Input tab but there was a settings tab before that. Wonder what it does? Here’s the default settings: Renaming Taking a closer look, all of the settings in Feature are disabled. WTF? Yeah, it leaves me scratching my head why an obfuscator by default doesn’t obfuscate. However it’s a simple fix to change these settings. Let’s enable Renaming as it sounds like a good start. Renaming obscures code by renaming methods and fields to names that are not understandable. Great. Run the tool again and go through the process of unzipping the updated xap and let’s take a look in Reflector again at our project. This looks a lot better. Lots of methods named a, b, c, d, etc. That’ll help slow hackers down a bit. What about our logic that we spent days weeks on? Let’s take a look at the LoadData method: What gives? We have renaming enabled but all of our code is still there. If you look through all your methods you’ll find it’s still sitting there out in the open. Control Flow Back to the settings page again. Let’s enable Control Flow now. Control Flow obfuscation synthesizes branching, conditional, and iterative constructs (such as if, for, and while) that produce valid executable logic, but yield non-deterministic semantic results when decompilation is attempted. In other words, the code runs as before, but decompilers cannot reproduce the original code. Do the dance again and let’s see the results in Reflector. Ahh, that’s better. Methods renamed *and* nobody can look at our LoadData method now. Life is good. More than Minimum This is the bare minimum to obfuscate your xap to at least a somewhat comfortable level. However I did find that while this worked in my Hello World demo, it didn’t work on one of my real world apps. I had to do some extra tweaking with that. Below are the screens that I used on one app that worked. I’m not sure what it was about the app that the approach above didn’t work with (maybe the extra assembly?) but it works and I’m happy with it. YMMV. Remember to test your obfuscated app on your device first before submitting to ensure you haven’t obfuscated the obfuscator. settings tab: rename tab: string encryption tab: premark tab: A few final notes Play with the settings and keep bumping up the bar to try to get as much obfuscation as you can. The more the better but remember you can overdo it. Always (always, always, always) deploy your obfuscated xap to your device and test it before submitting to the marketplace. I didn’t and got rejected because I had gone overboard with the obfuscation so the app wouldn’t launch at all. Not everything is going to be obfuscated. Specifically I don’t see a way to obfuscate auto properties and a few other language features. Again, if you crank the settings up you might hide these but I haven’t spent a lot of time optimizing the process. Some people might say to obfuscate your xaml using string encryption but again, test, test, test. Xaml is picky so too much obfuscation (or any) might disable your app or produce odd rendering effets. Remember, obfuscation is not 100% secure! Don’t rely on it as a sole way of protecting your assets. Other Tools Dotfuscator is one just product and isn’t the end-all be-all to obfuscation so check out others below. For example, Crypto can make it so Reflector doesn’t even recognize the app as a .NET one and won’t open it. Others can encrypt resources and Xaml markup files. Here are some other obfuscators that support the Windows Phone 7 platform. Feel free to give them a try and let people know your experience with them! Dotfuscator Windows Phone Edition Crypto Obfuscator for .NET DeepSea Obfuscation

    Read the article

  • Why can I not map a dynamic texture in D3D?

    - by sebf
    I am trying to map a Texture2D resource in DirectX11 via SharpDX. The resource is declared as a ShaderResource, with Dynamic usage and the 'Write' CPU flag specified. My call however fails with a generic exception from SharpDX: _Parent.Context.MapSubresource( _Resource, 0, SharpDX.Direct3D11.MapMode.Write, SharpDX.Direct3D11.MapFlags.None, out stream ); I see from this question that it is supported. The MSDN docs and this other question hint that instead of using Context.MapSubresource() I should be using Texture2D.Map(), however, the DirectX11 Texture2D class does not define Map() (though it does for the D3D 10 equivalent). If I call the above with MapMode.WriteDiscard, the call succeeds but in this case the previous content of the texture is lost, which is no good when I only want to update a section of it. Has the Map() method been removed in Direct3D 11 or am I looking in the wrong place? Is the MapSubresource() method unsuitable or am I using it wrong? EDIT: I declared my resource as Dynamic with CPU Write Flags - not Default as I originaly wrote - sorry for the fairly huge 'typo' that changes the entire question!

    Read the article

< Previous Page | 323 324 325 326 327 328 329 330 331 332 333 334  | Next Page >