Search Results

Search found 1746 results on 70 pages for 'bom signature'.

Page 33/70 | < Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >

  • Open source live message plugin wanted

    - by Bill Li
    I need write a live messenger plugin which periodically read messages from a remote http server, and then change my signature(the short message after my name) accordingly. Can anyone point me to any open source project or materials where I can get started? Thanks.

    Read the article

  • C++, class as parameter to a method, not template.

    - by ra170
    So, I came across an interesting method signature that I don't quite understand, it went along the lines of: void Initialize(std::vector< std::string > & param1, class SomeClassName * p); what I don't understand is the "class" keyword being used as the parameter, why is it there? Is it necessary to specify or it is purely superficial?

    Read the article

  • Scala: recursive search avoiding cycles

    - by user1826663
    How can I write a recursive search that I avoid cycles. My class is this: class Component(var name: String, var number: Int, var subComponent: Set[Component]) Now I need a way to check whether a component is contained within its subcomponent or between subcomponent of its subcomponent and so on.Avoiding possible cycles caused by other Component. My method of recursive search must have the following signature, where subC is the Set [component] of comp. def content (comp: Component, subC: Set[Component]) : Boolean = { } Thanks for the help.

    Read the article

  • Thread-safe get (accessor method)

    - by sonofdelphi
    I'm currently using the following code for thread-safe access of a variable. int gnVariable; void getVariableValue(int *pnValue) { acquireLock(); //Acquires the protection mechanism *pnValue = gnVariable; releaseLock(); //Releasing the protection mechanism } I would like to change my API signature to a more user-friendly int getVariableValue(void); How should I rewrite the function - such that the users of the API don't have to bother about the locking/unlocking details?

    Read the article

  • PHP rsa gePublicKey from .pem file

    - by mazheruddin
    Trying to verify received signature with following code. $file = "C:\key_file.pem"; $keypair = Crypt_RSA_KeyPair::fromPEMString(file_get_contents($file)); $public_key = $keypair->getPublicKey(); $rsa_pub_key = Crypt_RSA_Key::fromString($public_key->toString()); $rsa_obj = new Crypt_RSA; $verify_status = $rsa_obj->validateSign($text,$recieved_signed_sign, $rsa_pub_key) ? 'valid' : 'invalid'; getting error as Fatal error: Call to undefined method PEAR_Error::getPublicKey() in C:\Program Files\xxxx\rsa.php

    Read the article

  • Does the Visual Studio debugger implicitly cast smaller types to int?

    - by emddudley
    Does the Visual Studio 2008 debugger implicitly cast all smaller data types to int? I have a function with the following signature: public int DoSomething(sbyte value) { ... } When pass in -127 and I look at the value argument the Visual Studio debugger (e.g. Watch window) shows me that it has the value 0xFFFFFF81. This is correct except for the fact that sbyte is only 8 bits wide; I would expect the debugger to show me that it is 0x81.

    Read the article

  • How is the result of openssl_sign() encoded?

    - by Bozho
    The docs about openssl_sign() say that the signature is returned in the passed string argument. My question is - how is it encoded? Base64, Hex-string, anything else? I don't have php installed and I have to use this PHP code I was given simply in order to verify whether my Java implementation is correct, so don't ask me "have you tried it" ;)

    Read the article

  • Writting a getter for a pointer to a function .

    - by nomemory
    I have the following problem: "list.c" struct nmlist_element_s { void *data; struct nmlist_element_s *next; }; struct nmlist_s { nmlist_element *head; nmlist_element *tail; unsigned int size; void (*destructor)(void *data); int (*match)(const void *e1, const void *e2); }; /*** Other code ***/ What will be the signature for a function that returns 'destructor' ?

    Read the article

  • will be assumed to return id

    - by Andrew_E
    I import oourafft.h and oourafft.m class, but get strange error while ooura initialize. OouraFFT * myFFT = [OouraFFT initForSignalsOfLength:1024 numberOfWindows:10]; OouraFFT may not respond to +initForSignalsOfLength: numberOfWindows Messages without matching method signature will be assumed to return 'id' and accept argument - Warning I think that it some kind of error import .h file

    Read the article

  • when does java.util.zip.ZipFile.close() throw IOException?

    - by sk
    Under what circumstances would java.util.zip.ZipFile.close() throw an IOException? Its method signature indicates that it can be thrown, but from the source code there doesn't seem to be any place where this could happen, unless it's in native code. What corrective action, if any, could be taken at the point where that exception is caught?

    Read the article

  • What is wrong in my DKIM setup? I'm getting all fails

    - by djechelon
    I own a domain name I have implemented SPF and DKIM to avoid my mails being junked. I have also upgraded to DMARC in monitor mode. Since I received a few failure reports recently I wanted to investigate more. I have only one server sending outbound emails, running postfix + dkimproxy. I trust that dkimproxy has no major software bugs resulting in bad messages. I have tested ReturnPath's automated DKIM test and this is the part related to DKIM/DomainKeys DKIM Results ============ Result = failed: invalid key for signature: Syntax error in tag: \"v Domain = domain.org Selector = sel DNS Record(s) = sel._domainkey.domain.org TXT "v=1; p=MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAsMMLhxzXkU+tagc44oMi7eX2BsFb8BsWeT8MRL+hxi4Lsosx7tuPm90iYgilNteyJoXuSP5SUf8B2tDAifdzYQhfhctr0hX9b6ocBCukGq5p0GHpNsCPWyFvxZsCkGqLRmkfb0c36quEAWBeQLe4Z/BwXBBiW1g96WFNb2/GRI1+9OHhligdfuo4PPuU+xiwX4GB0Ik50cJL4xTdBf7lrFwoGYa03ZkXuzKxeGE4cTk50OeIs6eqrzAfbmej4nCex2qGOUt1TWI7ZvCY7u3Gxj+XKaE7VFrQACZof+NP0k2pXPHg9saGJqZrr2i6+RoxGD0w/ibjAWij9enwqlnv2ORsZfe+FmXNOLJAhlYvhHaruubDpte1c7V3ZKDceM45ZawnVmSdLCfBrMbsqipzy8NXN5MxuANYFBkx5EDT+Ieab+zqcnf08m9bgDc4RXMYppDT1/lUy6On+nyfZEnJWiH3BUtgxS8X0uXciXbsooTmPnpkzzvvKXAE/Tv3XqL90q51geqP0EmaZI6lRTpiqoX7zFGlEBiiF7/u8oheszATks8LsNZ/boTFy0OVldbYNhxlIuRmqeXkqD6+kM5ObKtMEv3AdaeBiZmvyJTP8tCsSmPt+e954RLlz2HaDjjNnZNgsj/39U2RzZsFbVqW6uyQh36/y1X4joOiPf366GkCAwEAAQ==; t=s" Public Key Length = 4096 DomainKeys Results ================== Domain = domain.org Selector = sel DNS Record(s) = sel._domainkey.domain.org TXT "v=1; p=MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAsMMLhxzXkU+tagc44oMi7eX2BsFb8BsWeT8MRL+hxi4Lsosx7tuPm90iYgilNteyJoXuSP5SUf8B2tDAifdzYQhfhctr0hX9b6ocBCukGq5p0GHpNsCPWyFvxZsCkGqLRmkfb0c36quEAWBeQLe4Z/BwXBBiW1g96WFNb2/GRI1+9OHhligdfuo4PPuU+xiwX4GB0Ik50cJL4xTdBf7lrFwoGYa03ZkXuzKxeGE4cTk50OeIs6eqrzAfbmej4nCex2qGOUt1TWI7ZvCY7u3Gxj+XKaE7VFrQACZof+NP0k2pXPHg9saGJqZrr2i6+RoxGD0w/ibjAWij9enwqlnv2ORsZfe+FmXNOLJAhlYvhHaruubDpte1c7V3ZKDceM45ZawnVmSdLCfBrMbsqipzy8NXN5MxuANYFBkx5EDT+Ieab+zqcnf08m9bgDc4RXMYppDT1/lUy6On+nyfZEnJWiH3BUtgxS8X0uXciXbsooTmPnpkzzvvKXAE/Tv3XqL90q51geqP0EmaZI6lRTpiqoX7zFGlEBiiF7/u8oheszATks8LsNZ/boTFy0OVldbYNhxlIuRmqeXkqD6+kM5ObKtMEv3AdaeBiZmvyJTP8tCsSmPt+e954RLlz2HaDjjNnZNgsj/39U2RzZsFbVqW6uyQh36/y1X4joOiPf366GkCAwEAAQ==; t=s" The mail displays an anonymised DNS record with genuine public key. It reports an error in tag v. A few hours ago I noticed my v tag was v=DKIM1 instead of v=1 as specified in RFC. I thought it was an error made by me during the initial setup months ago and fixed to v=1, but anyway I received one DMARC success from Google. Let me explain better: I enforced DMARC a couple of days ago. On 4/16 morning I got a mail from Google telling me that DMARC fully passes, then since 4/17 I get all failures. Then I discovered the v=DKIM1 tag and replaced with v=1 without success I have not modified my DNS records before that. So, keeping in topic with the question, why does ReturnPath refuse my DKIM DNS record? Is something wrong in my DKIM implementation at DNS level? [Add] I have just tried port25.com's tester but at least DKIM passes ---------------------------------------------------------- DomainKeys check details: ---------------------------------------------------------- Result: permerror (DK_STAT_BADKEY: Unusable key, public if verifying, private if signing.) ID(s) verified: header.From=########### DNS record(s): sel._domainkey.domain.org. 1800 IN TXT ""v=1; p=MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAsMMLhxzXkU+tagc44oMi7eX2BsFb8BsWeT8MRL+hxi4Lsosx7tuPm90iYgilNteyJoXuSP5SUf8B2tDAifdzYQhfhctr0hX9b6ocBCukGq5p0GHpNsCPWyFvxZsCkGqLRmkfb0c36quEAWBeQLe4Z/BwXBBiW1g96WFNb2/GRI1+9OHhligdfuo4PPuU+xiwX4GB0Ik50cJL4xTdBf7lrFwoGYa03ZkXuzKxeGE4cTk50OeIs6eqrzAfbmej4nCex2qGOUt1TWI7ZvCY7u3Gxj+XKaE7VFrQACZof+NP0k2pXPHg9saGJqZrr2i6+RoxGD0w/ibjAWij9enwqlnv2ORsZfe+FmXNOLJAhlYvhHaruubDpte1c7V3ZKDceM45ZawnVmSdLCfBrMbsqipzy8NXN5MxuANYFBkx5EDT+Ieab+zqcnf08m9bgDc4RXMYppDT1/lUy6On+nyfZEnJWiH3BUtgxS8X0uXciXbsooTmPnpkzzvvKXAE/Tv3XqL90q51geqP0EmaZI6lRTpiqoX7zFGlEBiiF7/u8oheszATks8LsNZ/boTFy0OVldbYNhxlIuRmqeXkqD6+kM5ObKtMEv3AdaeBiZmvyJTP8tCsSmPt+e954RLlz2HaDjjNnZNgsj/39U2RzZsFbVqW6uyQh36/y1X4joOiPf366GkCAwEAAQ==; t=s"" ---------------------------------------------------------- DKIM check details: ---------------------------------------------------------- Result: pass (matches From: #########) ID(s) verified: header.d=domain.org Canonicalized Headers: message-id:<[email protected]>'0D''0A' date:Thu,'20'18'20'Apr'20'2013'20'11:40:26'20'+0200'0D''0A' from:#############'0D''0A' mime-version:1.0'0D''0A' to:[email protected]'0D''0A' subject:Test'0D''0A' content-type:text/plain;'20'charset=ISO-8859-15;'20'format=flowed'0D''0A' content-transfer-encoding:7bit'0D''0A' dkim-signature:v=1;'20'a=rsa-sha1;'20'c=relaxed;'20'd=domain.org;'20'h='20'message-id:date:from:mime-version:to:subject:content-type'20':content-transfer-encoding;'20's=dom;'20'bh=uoq1oCgLlTqpdDX/iUbLy7J1Wi'20'c=;'20'b= Canonicalized Body: '0D''0A' DNS record(s): sel._domainkey.domain.org. 1800 IN TXT ""v=1; p=MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAsMMLhxzXkU+tagc44oMi7eX2BsFb8BsWeT8MRL+hxi4Lsosx7tuPm90iYgilNteyJoXuSP5SUf8B2tDAifdzYQhfhctr0hX9b6ocBCukGq5p0GHpNsCPWyFvxZsCkGqLRmkfb0c36quEAWBeQLe4Z/BwXBBiW1g96WFNb2/GRI1+9OHhligdfuo4PPuU+xiwX4GB0Ik50cJL4xTdBf7lrFwoGYa03ZkXuzKxeGE4cTk50OeIs6eqrzAfbmej4nCex2qGOUt1TWI7ZvCY7u3Gxj+XKaE7VFrQACZof+NP0k2pXPHg9saGJqZrr2i6+RoxGD0w/ibjAWij9enwqlnv2ORsZfe+FmXNOLJAhlYvhHaruubDpte1c7V3ZKDceM45ZawnVmSdLCfBrMbsqipzy8NXN5MxuANYFBkx5EDT+Ieab+zqcnf08m9bgDc4RXMYppDT1/lUy6On+nyfZEnJWiH3BUtgxS8X0uXciXbsooTmPnpkzzvvKXAE/Tv3XqL90q51geqP0EmaZI6lRTpiqoX7zFGlEBiiF7/u8oheszATks8LsNZ/boTFy0OVldbYNhxlIuRmqeXkqD6+kM5ObKtMEv3AdaeBiZmvyJTP8tCsSmPt+e954RLlz2HaDjjNnZNgsj/39U2RzZsFbVqW6uyQh36/y1X4joOiPf366GkCAwEAAQ==; t=s"" Public key used for verification: sel._domainkey.domain.org (4096 bits)

    Read the article

  • SSH Public Key Authentication only works if active session exists before

    - by Webx10
    I have a rather strange problem with my SSH configuration. I set up my server with the help of a Remote Access Card and configured everything with a KVM viewer. So while being logged into the server via the KVM Viewer I configured SSH with only pubkey and tried to login from my local laptop. It worked fine. If I quit the KVM Session (or logout with the user in the KVM session) I cannot login via ssh anymore (pubkey denied). SSH login only works as long as the user is somewhere still logged in. Any hints what the problem might be? Console output for a failed login (all personal data exchanged): OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011 debug1: Reading configuration data /Users/mylocaluser/.ssh/config debug1: Reading configuration data /etc/ssh_config debug1: /etc/ssh_config line 20: Applying options for * debug1: /etc/ssh_config line 103: Applying options for * debug1: Connecting to 100.100.100.100 [100.100.100.100] port 12345. debug1: Connection established. debug1: identity file /Users/mylocaluser/.ssh/id_rsa type 1 debug1: identity file /Users/mylocaluser/.ssh/id_rsa-cert type -1 debug1: identity file /Users/mylocaluser/.ssh/id_dsa type -1 debug1: identity file /Users/mylocaluser/.ssh/id_dsa-cert type -1 debug1: Enabling compatibility mode for protocol 2.0 debug1: Local version string SSH-2.0-OpenSSH_6.2 debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 pat OpenSSH* debug1: SSH2_MSG_KEXINIT sent debug1: SSH2_MSG_KEXINIT received debug1: kex: server->client aes128-ctr [email protected] none debug1: kex: client->server aes128-ctr [email protected] none debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP debug1: SSH2_MSG_KEX_DH_GEX_INIT sent debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY debug1: Server host key: RSA ab:12:23:34:45:56:67:78:89:90:12:23:34:45:56:67 debug1: Host '[100.100.100.100]:12345' is known and matches the RSA host key. debug1: Found key in /Users/mylocaluser/.ssh/known_hosts:36 debug1: ssh_rsa_verify: signature correct debug1: SSH2_MSG_NEWKEYS sent debug1: expecting SSH2_MSG_NEWKEYS debug1: SSH2_MSG_NEWKEYS received debug1: Roaming not allowed by server debug1: SSH2_MSG_SERVICE_REQUEST sent debug1: SSH2_MSG_SERVICE_ACCEPT received debug1: Authentications that can continue: publickey debug1: Next authentication method: publickey debug1: Offering RSA public key: /Users/mylocaluser/.ssh/id_rsa debug1: Authentications that can continue: publickey debug1: Offering RSA public key: /Users/mylocaluser/.ssh/id_rsa2 debug1: Authentications that can continue: publickey debug1: Trying private key: /Users/mylocaluser/.ssh/id_dsa debug1: No more authentication methods to try. Permission denied (publickey). Console output for a successfull login (only possible while "active session" exists): OpenSSH_6.2p2, OSSLShim 0.9.8r 8 Dec 2011 debug1: Reading configuration data /Users/mylocaluser/.ssh/config debug1: Reading configuration data /etc/ssh_config debug1: /etc/ssh_config line 20: Applying options for * debug1: /etc/ssh_config line 103: Applying options for * debug1: Connecting to 100.100.100.100 [100.100.100.100] port 12345. debug1: Connection established. debug1: identity file /Users/mylocaluser/.ssh/id_rsa type 1 debug1: identity file /Users/mylocaluser/.ssh/id_rsa-cert type -1 debug1: identity file /Users/mylocaluser/.ssh/id_dsa type -1 debug1: identity file /Users/mylocaluser/.ssh/id_dsa-cert type -1 debug1: Enabling compatibility mode for protocol 2.0 debug1: Local version string SSH-2.0-OpenSSH_6.2 debug1: Remote protocol version 2.0, remote software version OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 debug1: match: OpenSSH_6.6.1p1 Ubuntu-2ubuntu2 pat OpenSSH* debug1: SSH2_MSG_KEXINIT sent debug1: SSH2_MSG_KEXINIT received debug1: kex: server->client aes128-ctr [email protected] none debug1: kex: client->server aes128-ctr [email protected] none debug1: SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192) sent debug1: expecting SSH2_MSG_KEX_DH_GEX_GROUP debug1: SSH2_MSG_KEX_DH_GEX_INIT sent debug1: expecting SSH2_MSG_KEX_DH_GEX_REPLY debug1: Server host key: RSA ab:12:23:34:45:56:67:78:89:90:12:23:34:45:56:67 debug1: Host '[100.100.100.100]:12345' is known and matches the RSA host key. debug1: Found key in /Users/mylocaluser/.ssh/known_hosts:36 debug1: ssh_rsa_verify: signature correct debug1: SSH2_MSG_NEWKEYS sent debug1: expecting SSH2_MSG_NEWKEYS debug1: SSH2_MSG_NEWKEYS received debug1: Roaming not allowed by server debug1: SSH2_MSG_SERVICE_REQUEST sent debug1: SSH2_MSG_SERVICE_ACCEPT received debug1: Authentications that can continue: publickey debug1: Next authentication method: publickey debug1: Offering RSA public key: /Users/mylocaluser/.ssh/id_rsa debug1: Server accepts key: pkalg ssh-rsa blen 279 debug1: Authentication succeeded (publickey). Authenticated to 100.100.100.100 ([100.100.100.100]:12345). debug1: channel 0: new [client-session] debug1: Requesting [email protected] debug1: Entering interactive session. debug1: Sending environment. debug1: Sending env LANG = de_DE.UTF-8 Welcome to Ubuntu 14.04.1 LTS

    Read the article

  • obtaining nimbuzz server certificate for nmdecrypt expert in NetMon

    - by lurscher
    I'm using Network Monitor 3.4 with the nmdecrypt expert. I'm opening a nimbuzz conversation node in the conversation window and i click Expert- nmDecrpt - run Expert that shows up a window where i have to add the server certificate. I am not sure how to retrieve the server certificate for nimbuzz XMPP chat service. Any idea how to do this? this question is a follow up question of this one. Edit for some background so it might be that this is encrypted with the server pubkey and i cannot retrieve the message, unless i debug the native binary and try to intercept the encryption code. I have a test client (using agsXMPP) that is able to connect with nimbuzz with no problems. the only thing that is not working is adding invisible mode. It seems this is some packet sent from the official client during login which i want to obtain. any suggestions to try to grab this info would be greatly appreciated. Maybe i should get myself (and learn) IDA pro? This is what i get inspecting the TLS frames on Network Monitor: Frame: Number = 81, Captured Frame Length = 769, MediaType = ETHERNET + Ethernet: Etype = Internet IP (IPv4),DestinationAddress:[...],SourceAddress:[....] + Ipv4: Src = ..., Dest = 192.168.2.101, Next Protocol = TCP, Packet ID = 9939, Total IP Length = 755 - Tcp: Flags=...AP..., SrcPort=5222, DstPort=3578, PayloadLen=715, Seq=4101074854 - 4101075569, Ack=1127356300, Win=4050 (scale factor 0x0) = 4050 SrcPort: 5222 DstPort: 3578 SequenceNumber: 4101074854 (0xF4716FA6) AcknowledgementNumber: 1127356300 (0x4332178C) + DataOffset: 80 (0x50) + Flags: ...AP... Window: 4050 (scale factor 0x0) = 4050 Checksum: 0x8841, Good UrgentPointer: 0 (0x0) TCPPayload: SourcePort = 5222, DestinationPort = 3578 TLSSSLData: Transport Layer Security (TLS) Payload Data - TLS: TLS Rec Layer-1 HandShake: Server Hello.; TLS Rec Layer-2 HandShake: Certificate.; TLS Rec Layer-3 HandShake: Server Hello Done. - TlsRecordLayer: TLS Rec Layer-1 HandShake: ContentType: HandShake: - Version: TLS 1.0 Major: 3 (0x3) Minor: 1 (0x1) Length: 42 (0x2A) - SSLHandshake: SSL HandShake ServerHello(0x02) HandShakeType: ServerHello(0x02) Length: 38 (0x26) - ServerHello: 0x1 + Version: TLS 1.0 + RandomBytes: SessionIDLength: 0 (0x0) TLSCipherSuite: TLS_RSA_WITH_AES_256_CBC_SHA { 0x00, 0x35 } CompressionMethod: 0 (0x0) - TlsRecordLayer: TLS Rec Layer-2 HandShake: ContentType: HandShake: - Version: TLS 1.0 Major: 3 (0x3) Minor: 1 (0x1) Length: 654 (0x28E) - SSLHandshake: SSL HandShake Certificate(0x0B) HandShakeType: Certificate(0x0B) Length: 650 (0x28A) - Cert: 0x1 CertLength: 647 (0x287) - Certificates: CertificateLength: 644 (0x284) - X509Cert: Issuer: nimbuzz.com,Nimbuzz,NL, Subject: nimbuzz.com,Nimbuzz,NL + SequenceHeader: - TbsCertificate: Issuer: nimbuzz.com,Nimbuzz,NL, Subject: nimbuzz.com,Nimbuzz,NL + SequenceHeader: + Tag0: + Version: (2) + SerialNumber: -1018418383 + Signature: Sha1WithRSAEncryption (1.2.840.113549.1.1.5) - Issuer: nimbuzz.com,Nimbuzz,NL - RdnSequence: nimbuzz.com,Nimbuzz,NL + SequenceOfHeader: 0x1 + Name: NL + Name: Nimbuzz + Name: nimbuzz.com + Validity: From: 02/22/10 20:22:32 UTC To: 02/20/20 20:22:32 UTC + Subject: nimbuzz.com,Nimbuzz,NL - SubjectPublicKeyInfo: RsaEncryption (1.2.840.113549.1.1.1) + SequenceHeader: + Algorithm: RsaEncryption (1.2.840.113549.1.1.1) - SubjectPublicKey: - AsnBitStringHeader: - AsnId: BitString type (Universal 3) - LowTag: Class: (00......) Universal (0) Type: (..0.....) Primitive TagValue: (...00011) 3 - AsnLen: Length = 141, LengthOfLength = 1 LengthType: LengthOfLength = 1 Length: 141 bytes BitString: + Tag3: + Extensions: - SignatureAlgorithm: Sha1WithRSAEncryption (1.2.840.113549.1.1.5) - SequenceHeader: - AsnId: Sequence and SequenceOf types (Universal 16) + LowTag: - AsnLen: Length = 13, LengthOfLength = 0 Length: 13 bytes, LengthOfLength = 0 + Algorithm: Sha1WithRSAEncryption (1.2.840.113549.1.1.5) - Parameters: Null Value - Sha1WithRSAEncryption: Null Value + AsnNullHeader: - Signature: - AsnBitStringHeader: - AsnId: BitString type (Universal 3) - LowTag: Class: (00......) Universal (0) Type: (..0.....) Primitive TagValue: (...00011) 3 - AsnLen: Length = 129, LengthOfLength = 1 LengthType: LengthOfLength = 1 Length: 129 bytes BitString: + TlsRecordLayer: TLS Rec Layer-3 HandShake:

    Read the article

  • Dynamically creating a Generic Type at Runtime

    - by Rick Strahl
    I learned something new today. Not uncommon, but it's a core .NET runtime feature I simply did not know although I know I've run into this issue a few times and worked around it in other ways. Today there was no working around it and a few folks on Twitter pointed me in the right direction. The question I ran into is: How do I create a type instance of a generic type when I have dynamically acquired the type at runtime? Yup it's not something that you do everyday, but when you're writing code that parses objects dynamically at runtime it comes up from time to time. In my case it's in the bowels of a custom JSON parser. After some thought triggered by a comment today I realized it would be fairly easy to implement two-way Dictionary parsing for most concrete dictionary types. I could use a custom Dictionary serialization format that serializes as an array of key/value objects. Basically I can use a custom type (that matches the JSON signature) to hold my parsed dictionary data and then add it to the actual dictionary when parsing is complete. Generic Types at Runtime One issue that came up in the process was how to figure out what type the Dictionary<K,V> generic parameters take. Reflection actually makes it fairly easy to figure out generic types at runtime with code like this: if (arrayType.GetInterface("IDictionary") != null) { if (arrayType.IsGenericType) { var keyType = arrayType.GetGenericArguments()[0]; var valueType = arrayType.GetGenericArguments()[1]; … } } The GetArrayType method gets passed a type instance that is the array or array-like object that is rendered in JSON as an array (which includes IList, IDictionary, IDataReader and a few others). In my case the type passed would be something like Dictionary<string, CustomerEntity>. So I know what the parent container class type is. Based on the the container type using it's then possible to use GetGenericTypeArguments() to retrieve all the generic types in sequential order of definition (ie. string, CustomerEntity). That's the easy part. Creating a Generic Type and Providing Generic Parameters at RunTime The next problem is how do I get a concrete type instance for the generic type? I know what the type name and I have a type instance is but it's generic, so how do I get a type reference to keyvaluepair<K,V> that is specific to the keyType and valueType above? Here are a couple of things that come to mind but that don't work (and yes I tried that unsuccessfully first): Type elementType = typeof(keyvalue<keyType, valueType>); Type elementType = typeof(keyvalue<typeof(keyType), typeof(valueType)>); The problem is that this explicit syntax expects a type literal not some dynamic runtime value, so both of the above won't even compile. I turns out the way to create a generic type at runtime is using a fancy bit of syntax that until today I was completely unaware of: Type elementType = typeof(keyvalue<,>).MakeGenericType(keyType, valueType); The key is the type(keyvalue<,>) bit which looks weird at best. It works however and produces a non-generic type reference. You can see the difference between the full generic type and the non-typed (?) generic type in the debugger: The nonGenericType doesn't show any type specialization, while the elementType type shows the string, CustomerEntity (truncated above) in the type name. Once the full type reference exists (elementType) it's then easy to create an instance. In my case the parser parses through the JSON and when it completes parsing the value/object it creates a new keyvalue<T,V> instance. Now that I know the element type that's pretty trivial with: // Objects start out null until we find the opening tag resultObject = Activator.CreateInstance(elementType); Here the result object is picked up by the JSON array parser which creates an instance of the child object (keyvalue<K,V>) and then parses and assigns values from the JSON document using the types  key/value property signature. Internally the parser then takes each individually parsed item and adds it to a list of  List<keyvalue<K,V>> items. Parsing through a Generic type when you only have Runtime Type Information When parsing of the JSON array is done, the List needs to be turned into a defacto Dictionary<K,V>. This should be easy since I know that I'm dealing with an IDictionary, and I know the generic types for the key and value. The problem is again though that this needs to happen at runtime which would mean using several Convert.ChangeType() calls in the code to dynamically cast at runtime. Yuk. In the end I decided the easier and probably only slightly slower way to do this is a to use the dynamic type to collect the items and assign them to avoid all the dynamic casting madness: else if (IsIDictionary) { IDictionary dict = Activator.CreateInstance(arrayType) as IDictionary; foreach (dynamic item in items) { dict.Add(item.key, item.value); } return dict; } This code creates an instance of the generic dictionary type first, then loops through all of my custom keyvalue<K,V> items and assigns them to the actual dictionary. By using Dynamic here I can side step all the explicit type conversions that would be required in the three highlighted areas (not to mention that this nested method doesn't have access to the dictionary item generic types here). Static <- -> Dynamic Dynamic casting in a static language like C# is a bitch to say the least. This is one of the few times when I've cursed static typing and the arcane syntax that's required to coax types into the right format. It works but it's pretty nasty code. If it weren't for dynamic that last bit of code would have been a pretty ugly as well with a bunch of Convert.ChangeType() calls to litter the code. Fortunately this type of type convulsion is rather rare and reserved for system level code. It's not every day that you create a string to object parser after all :-)© Rick Strahl, West Wind Technologies, 2005-2011Posted in .NET  CSharp   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • Agile PLM 9.3 Service Pack 2 (SP2 or 9.3.0.2) is released along with AUT 1.6.2.0 and AutoVue 20 for

    - by Shane Goodwin
    Oracle released Agile PLM 9.3 SP2 on June 14 and the Agile installer for AutoVue 20 for Agile PLM on April 30. Also available are the new versions of AUT and Averify - 1.6.3 for both tools. 9.3 SP2 is a combined English and NLS release for use on any version of 9.3.0. SP2 contains many bug fixes and rolls up several Hot Fixes - please review the Readme for all the details. In addition, this release also addresses some scalability issues when working with very large Exports and Reports. When exporting very large BOMs, the export module will now release objects more efficiently to reduce the amount of memory consumed on the Application Server. Adminstrators can also control the maximum row limits for Users verses system processes, like ACS. Several out of the box BOM reports have also been changed to use a new row limit option. The combination of all these changes will provide more stability on the application server for customers managing very large datasets. 9.3 SP2 also adds support for Oracle Database 11gR2 for Windows, Oracle Internet Directory (OID) and Oracle Access Manager (OAM). Please note that currently the Variant Patch is not intended to be released for SP2. Customers running the Variant Patch should remain on 9.3.0.0 or 9.3.0.1. Back in April, we also released the AutoVue 20 for Agile PLM installer. AutoVue 20 has many new features which will help Agile PLM customers. Large multi-page Word documents and 2D CAD documents will open more quickly to the first page or first rendition. Memory usage is less when working with 3D Models. There are many new formats supported for MCAD, 2D Cad, and EDA. AutoVue 20 is immediately available for Windows and Linux platforms. The new software can be found in Edelivery or Metalink / Oracle Support: - AutoVue 20 for Agile PLM is on E-Delivery with part number B58963-01 - Oracle Agile PLM 9.3 Service Pack 2 (9.3.0.2) My Oracle Support Patch ID 9782736 - AVERIFY 1.6.3 My Oracle Support Patch ID 9791892 - AUT 1.6.3 My Oracle Support Patch ID 9791908 - Agile PLM 9.3 SP2 Documentation is available on the OTN Agile Documentation Page

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • parallel_for_each from amp.h – part 1

    - by Daniel Moth
    This posts assumes that you've read my other C++ AMP posts on index<N> and extent<N>, as well as about the restrict modifier. It also assumes you are familiar with C++ lambdas (if not, follow my links to C++ documentation). Basic structure and parameters Now we are ready for part 1 of the description of the new overload for the concurrency::parallel_for_each function. The basic new parallel_for_each method signature returns void and accepts two parameters: a grid<N> (think of it as an alias to extent) a restrict(direct3d) lambda, whose signature is such that it returns void and accepts an index of the same rank as the grid So it looks something like this (with generous returns for more palatable formatting) assuming we are dealing with a 2-dimensional space: // some_code_A parallel_for_each( g, // g is of type grid<2> [ ](index<2> idx) restrict(direct3d) { // kernel code } ); // some_code_B The parallel_for_each will execute the body of the lambda (which must have the restrict modifier), on the GPU. We also call the lambda body the "kernel". The kernel will be executed multiple times, once per scheduled GPU thread. The only difference in each execution is the value of the index object (aka as the GPU thread ID in this context) that gets passed to your kernel code. The number of GPU threads (and the values of each index) is determined by the grid object you pass, as described next. You know that grid is simply a wrapper on extent. In this context, one way to think about it is that the extent generates a number of index objects. So for the example above, if your grid was setup by some_code_A as follows: extent<2> e(2,3); grid<2> g(e); ...then given that: e.size()==6, e[0]==2, and e[1]=3 ...the six index<2> objects it generates (and hence the values that your lambda would receive) are:    (0,0) (1,0) (0,1) (1,1) (0,2) (1,2) So what the above means is that the lambda body with the algorithm that you wrote will get executed 6 times and the index<2> object you receive each time will have one of the values just listed above (of course, each one will only appear once, the order is indeterminate, and they are likely to call your code at the same exact time). Obviously, in real GPU programming, you'd typically be scheduling thousands if not millions of threads, not just 6. If you've been following along you should be thinking: "that is all fine and makes sense, but what can I do in the kernel since I passed nothing else meaningful to it, and it is not returning any values out to me?" Passing data in and out It is a good question, and in data parallel algorithms indeed you typically want to pass some data in, perform some operation, and then typically return some results out. The way you pass data into the kernel, is by capturing variables in the lambda (again, if you are not familiar with them, follow the links about C++ lambdas), and the way you use data after the kernel is done executing is simply by using those same variables. In the example above, the lambda was written in a fairly useless way with an empty capture list: [ ](index<2> idx) restrict(direct3d), where the empty square brackets means that no variables were captured. If instead I write it like this [&](index<2> idx) restrict(direct3d), then all variables in the some_code_A region are made available to the lambda by reference, but as soon as I try to use any of those variables in the lambda, I will receive a compiler error. This has to do with one of the direct3d restrictions, where only one type can be capture by reference: objects of the new concurrency::array class that I'll introduce in the next post (suffice for now to think of it as a container of data). If I write the lambda line like this [=](index<2> idx) restrict(direct3d), all variables in the some_code_A region are made available to the lambda by value. This works for some types (e.g. an integer), but not for all, as per the restrictions for direct3d. In particular, no useful data classes work except for one new type we introduce with C++ AMP: objects of the new concurrency::array_view class, that I'll introduce in the post after next. Also note that if you capture some variable by value, you could use it as input to your algorithm, but you wouldn’t be able to observe changes to it after the parallel_for_each call (e.g. in some_code_B region since it was passed by value) – the exception to this rule is the array_view since (as we'll see in a future post) it is a wrapper for data, not a container. Finally, for completeness, you can write your lambda, e.g. like this [av, &ar](index<2> idx) restrict(direct3d) where av is a variable of type array_view and ar is a variable of type array - the point being you can be very specific about what variables you capture and how. So it looks like from a large data perspective you can only capture array and array_view objects in the lambda (that is how you pass data to your kernel) and then use the many threads that call your code (each with a unique index) to perform some operation. You can also capture some limited types by value, as input only. When the last thread completes execution of your lambda, the data in the array_view or array are ready to be used in the some_code_B region. We'll talk more about all this in future posts… (a)synchronous Please note that the parallel_for_each executes as if synchronous to the calling code, but in reality, it is asynchronous. I.e. once the parallel_for_each call is made and the kernel has been passed to the runtime, the some_code_B region continues to execute immediately by the CPU thread, while in parallel the kernel is executed by the GPU threads. However, if you try to access the (array or array_view) data that you captured in the lambda in the some_code_B region, your code will block until the results become available. Hence the correct statement: the parallel_for_each is as-if synchronous in terms of visible side-effects, but asynchronous in reality.   That's all for now, we'll revisit the parallel_for_each description, once we introduce properly array and array_view – coming next. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • Strange corruption saving from Textpad 5 within Windows 7-64 VirtualBox VM to shared folder with Mac host

    - by joelarson
    I have a fairly new Window-7 64bit install running in Virtual Box on a MacBook Pro. I'm using TextPad 5 within that environment to edit source files that live on a shared folder that is on the Mac Host. When I save some of these source files, the saved file ends up with some amount of the end of the file repeated one or more times. For example, a file that has this at the end: ... return ttp; }; would, once saved, open up with: ... return ttp; }; }; It is definitely a problem with how the file gets written as opposed to how it's read, because I can see this now matter what app I use to open the file with (NotePad & Word in Windows 7, TextWrangler back in the Mac). I've tried saving as ANSI and UTF-8, and with or without the 'Write Unicode and UTF-8 BOM' checked in TextPad preferences. It doesn't happen with all files though I can't see any pattern about which files do or don't have the problem. It doesn't happen with files written to the Windows 7 c:\ drive. And so far it doesn't happen from other applications saving files, only TextPad. Any ideas? My versions: Textpad 5.4.2 Windows 7 Professional 64-bit, fully up to date VirtualBox 4.0.8 r71778 OSX 10.6.7

    Read the article

< Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >