Search Results

Search found 264018 results on 10561 pages for 'stack based'.

Page 33/10561 | < Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >

  • Web-based clients vs thick/rich clients?

    - by rudolfv
    My company is a software solutions provider to a major telecommunications company. The environment is currently IBM WebSphere-based with front-end IBM Portal servers talking to a cluster of back-end WebSphere Application Servers providing EJB services. Some of the portlets use our own home-grown MVC-pattern and some are written in JSF. Recently we did a proof-of-concept rich/thick-client application that communicates directly with the EJB's on the back-end servers. It was written in NetBeans Platform and uses the WebSphere application client library to establish communication with the EJB's. The really painful bit was getting the client to use secure JAAS/SSL communications. But, after that was resolved, we've found that the rich client has a number of advantages over the web-based portal client applications we've become accustomed to: Enormous performance advantage (CORBA vs. HTTP, cut out the Portal Server middle man) Development is simplified and faster due to use of NetBeans' visual designer and Swing's generally robust architecture The debug cycle is shortened by not having to deploy your client application to a test server No mishmash of technologies as with web-based development (Struts, JSF, JQuery, HTML, JSTL etc., etc.) After enduring the pain of web-based development (even JSF) for a while now, I've come to the following conclusion: Rich clients aren't right for every situation, but when you're developing an in-house intranet-based solution, then you'd be crazy not to consider NetBeans Platform or Eclipse RCP. Any comments/experiences with rich clients vs. web clients?

    Read the article

  • Pros/Cons of document based database vs relational database

    - by damian
    I've been trying to see if I can accomplish some requirements with a document based database, in this case CouchDB. Two generic requirements: CRUD of entities with some fields which have unique index on it ecommerce web app like eBay (better description here). And I'm begining to think that a Document-based database isn't the best choice to address these requirements. Furthermore, I can´t imagine a use for a Document based database (maybe my imagination is too little). Can you explain me if I am asking pears to an elm when I try to use a Document based database for this requirements?

    Read the article

  • Fluent interface and task based applications

    - by Mmarquee
    We have a number of applications that are now looking tired and a bit drab. Looking at the MS style fluent interface looks nice but seems (to me) to be more document based rather than task based. Is there a nice 'modern' ui style that lends itself to task based applications?

    Read the article

  • CSS formatter NOT based on CSS Tidy?

    - by Abdu
    I can't find a css formatter (web based or Windows app) which formats the css where it puts the open brace on its own line aligned with its close brace, plus indents the attributes. The web based css formatters out here seem to be based on CSSTidy which doesn't do what I want. I don't like this CSSTidy format: .example { font-size: 3em; } I want: .example { font-size: 3em; }

    Read the article

  • Controls resize based on screen resolution

    - by user337173
    I have panel control. More controls are in panel.I set the dock property for panel as 'fill' .The panel are resized based on screen resolution. but the controls remains same.The controls in the panel are not resized based on screen solution. i have more labels and panels and text-boxs and button in the same page. How to set the dock property to resize all controls in page based on screen resolution? Thanks for any help

    Read the article

  • Why are action based web frameworks predominant?

    - by deamon
    Most web frameworks are still using the traditional action based MVC model. A controller recieves the request, calls the model and delegates rendering to a template. That is what Rails, Grails, Struts, Spring MVC ... are doing. The other category, the component based frameworks like Wicket, Tapestry, JSF, or ASP.Net Web Forms have become more popular over the last years, but my perception is that the traditional action based approach is far more popular. And even ASP .Net Web Forms has become a sibling name ASP .Net Web MVC. I think the kind of applications built with both types of frameworks is overlapping very much, so the question is: Why are action based frameworks so predominant?

    Read the article

  • Web based printing from a Django application?

    - by lud0h
    Is there any recent developments in web based printing? I know using @media print in CSS, PDF based solution or iTextSharp but they are not really easy (except @media print) but alignment is little tricky if receipt contains barcodes or if I have to format for A5 etc., Is there anything new in HTML5 which will support this? I would like to print receipts from a Django based webapplication. Any tips? Thanks.

    Read the article

  • ASP.NET MVC based CMS - dynamic generation of form helpers

    - by user252160
    I am working on an ASP.NET MVC based CMS that presents a rather extreme case. The system must allow the user to add custom content types based on different fields, and for every field, one can add options and validations. The thing is that everything is stored in a complex DB and extracted at runtime using LINQ. I am pretty fresh with ASPNET MVC so the following dilemma came to mind How should I make the content creation view so that form helpers are not predefined int he view code but are loaded based on the type of the field ? Do I have to create a factory class that checks the value of the type property of the field, and then returns a helper based on that or there's a better way to do it. This one seems pretty rigid to me , because anytime I make a change in the Fieldtypes table, I will have to make sure to create a check for that new type too.

    Read the article

  • Does this sound like a stack overflow?

    - by Jordan S
    I think I might be having a stack overflow problem or something similar in my embedded firmware code. I am a new programmer and have never dealt with a SO so I'm not sure if that is what's happening or not. The firmware controls a device with a wheel that has magnets evenly spaced around it and the board has a hall effect sensor that senses when magnet is over it. My firmware operates the stepper and also count steps while monitoring the magnet sensor in order to detect if the wheel has stalled. I am using a timer interrupt on my chip (8 bit, 8057 acrh.) to set output ports to control the motor and for the stall detection. The stall detection code looks like this... // Enter ISR // Change the ports to the appropriate value for the next step // ... StallDetector++; // Increment the stall detector if(PosSensor != LastPosMagState) { StallDetector = 0; LastPosMagState = PosSensor; } else { if (PosSensor == ON) { if (StallDetector > (MagnetSize + 10)) { HandleStallEvent(); } } else if (PosSensor == OFF) { if (StallDetector > (GapSize + 10)) { HandleStallEvent(); } } } this code is called every time the ISR is triggered. PosSensor is the magnet sensor. MagnetSize is the number of stepper steps that it takes to get through the magnet field. GapSize is the number of steps between two magnets. So I want to detect if the wheel gets stuck either with the sensor over a magnet or not over a magnet. This works great for a long time but then after a while the first stall event will occur because 'StallDetector (MagnetSize + 10)' but when I look at the value of StallDetector it is always around 220! This doesn't make sense because MagnetSize is always around 35. So the stall event should have been triggered at like 46 but somehow it got all the way up to 220? And I don't set the value of stall detector anywhere else in my code. Do you have any advice on how I can track down the root of this problem? The ISR looks like this void Timer3_ISR(void) interrupt 14 { OperateStepper(); // This is the function shown above TMR3CN &= ~0x80; // Clear Timer3 interrupt flag } HandleStallEvent just sets a few variable back to their default values so that it can attempt another move... #pragma save #pragma nooverlay void HandleStallEvent() { ///* PulseMotor = 0; //Stop the wheel from moving SetMotorPower(0); //Set motor power low MotorSpeed = LOW_SPEED; SetSpeedHz(); ERROR_STATE = 2; DEVICE_IS_HOMED = FALSE; DEVICE_IS_HOMING = FALSE; DEVICE_IS_MOVING = FALSE; HOMING_STATE = 0; MOVING_STATE = 0; CURRENT_POSITION = 0; StallDetector = 0; return; //*/ } #pragma restore

    Read the article

  • When is it appropriate to do interaction based testing as opposed to state based testing?

    - by Praneeth
    Hi, When I use Easymock(or a similar mocking framework) to implement my unit tests, I'm forced to do interaction-based testing (as I don't get to assert on the state of my dependencies. Or am I mistaken?). On the other hand if I use a hand written stub (instead of using easymock) I can implement state based testing. I'm quite unclear if I want to go with interaction based testing or state based testing. I'm biased and I want to use Easymock, but I'm not sure if there would be any side-effects that I may have to face in the future. Can anyone please throw some light on this? Thanks in advance!

    Read the article

  • Visual Studio Shell Based Application

    - by nils_gate
    My new project would be a custom IDE for proprietary Application creation. This can be a Shell based application on VS Shell. I wanted to know what are the license requirement for these kind of applications. My question: If I create my project as VS Shell based Application, what kind of license is required by the end user of the Shell based application?

    Read the article

  • Cross platform, Interactive text-based interface with command completion

    - by trojanfoe
    Does anyone know of a C++ library that will provide a text-based interactive interface? I want to create two versions of an application; a console based program that will perform whatever actions are given on the command line or interactively at the console as well as a GUI based program (Mac Cocoa and Windows MFC). Both versions will share a common C++ backend. For the console based program I would like similar history abilities to readline (which I cannot use as this application will be closed source) with command completion (Tab-activated for example). Perhaps there is something like this already available?

    Read the article

  • Java Spotlight Episode 139: Mark Heckler and José Pereda on JES based Energy Monitoring @MkHeck @JPeredaDnr

    - by Roger Brinkley
    Interview with Mark Heckler and José Pereda on using JavaSE Embedded with the Java Embedded Suite on a RaspberryPI along with a JavaFX client to monitor an energy production system and their JavaOne Tutorial- Java Embedded EXTREME MASHUPS: Building self-powering sensor nets for the IoT Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link: Java Spotlight Podcast in iTunes. Show Notes News Java Virtual Developer Day Session Videos Available JavaFX Maven Plugin 2.0 Released JavaFX Scene Builder 1.1 build b28 FXForm 2 release 0.2.2 OpenJDK8/Zero cross compile build for Foundation model HSAIL-based GPU offload: the Quest for Java Performance Begins Progress on Moving to Gradle Java EE 7 Launch Keynote Replay Java EE 7 Technical Breakouts Replay Java EE 7 support in NetBeans 7.3.1 Java EE 7 support in Eclipse 4.3 Java Magazine - May/June Events Jul 16-19, Uberconf, Denver, USA Jul 22-24, JavaOne Shanghai, China Jul 29-31, JVM Language Summit, Santa Clara Sep 11-12, JavaZone, Oslo, Norway Sep 19-20, Strange Loop, St. Louis Sep 22-26 JavaOne San Francisco 2013, USA Feature Interview Mark Heckler is an Oracle Corporation Java/Middleware/Core Tech Engineer with development experience in numerous environments. He has worked for and with key players in the manufacturing, emerging markets, retail, medical, telecom, and financial industries to develop and deliver critical capabilities on time and on budget. Currently, he works primarily with large government customers using Java throughout the stack and across the enterprise. He also participates in open-source development at every opportunity, being a JFXtras project committer and developer of DialogFX, MonologFX, and various other projects. When Mark isn't working with Java, he enjoys writing about his experiences at the Java Jungle website (https://blogs.oracle.com/javajungle/) and on Twitter (@MkHeck). José Pereda is a Structural Engineer working in the School of Engineers in the University of Valladolid in Spain for more than 15 years, and his passion is related to applying programming to solve real problems. Being involved with Java since 1999, José shares his time between JavaFX and the Embedded world, developing commercial applications and open source projects (https://github.com/jperedadnr), and blogging (http://jperedadnr.blogspot.com.es/) or tweeting (@JPeredaDnr) of both. What’s Cool AquaFX 0.1 - Mac OS X skin for JavaFX by Claudine Zillmann DromblerFX adds a docking framework Part 2 of Gerrit’s taming the Nashorn for writing JavaFX apps in Javascript Tool from mihosoft called JSelect for quickly switching JDKs Apache Maven Javadoc Plugin 2.9.1 Released Proposal: Java Concurrency Stress tests (jcstress) Slide-free Code-driven session at SV JUG JavaOne approvals/rejects gone out

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Ubuntu software stack to mimic Active Directory auth

    - by WickedGrey
    I'm going to have an Ubuntu 11.10 box in a customer's data center running a custom webapp. The customer will not have ssh access to the box, but will need authentication and authorization to access the webapp. The customer needs to have the option of either pointing the webapp at something that we've installed locally on the machine, or to use an Active Directory server that they have. I plan on using a standard "users belong to groups; groups have sets of permissions; the webapp requires certain permissions to respond" auth setup. What software stack can I install locally that will allow an easy switch to and from an Active Directory server, while keeping the configuration as simple as possible (both for me and the end customer)? I would like to use as much off-the-shelf software for this as possible; I do not want to be in the business of keeping user passwords secure. I could see handling the user/group/permission relationships myself if there is not a good out-of-the-box solution (but that seems highly unlikely). I will accept answers in the form of links to "here is what you need" pages, but not "here is what Kerberos does" unless that page also tells me if it's required for my use case (essentially, I know that AD can speak Kerberos, but I can't tell if I need it to, or if I can just use LDAP, or...).

    Read the article

  • Stack Managed Switches over a distance

    - by Joel Coel
    We have several buildings with stacked switches, where the distance between the stacked units is considerable... separate floors, or at opposite ends of a hallway. They are 3Com switches that stack using cat6 cabling. These switches are coming up on 12 years old now, and as I look around at replacements it seems no one supports this scenario any more. Stacking switches want to use fiber links (it more for me to run and terminate the fiber stacking cables than to purchase the switch) or other custom cables that seem only intended to jump up to the next unit in a rack. What have others done to support stacking over a distance? I'm considering breaking up the stacked switches into separate managed entities and just bridging from the root switch in the buildings, but I'd really like to avoid that for what I hope are obvious reason. The closest thing I've found are from netgear that use hdmi cables for the stacking connection... I could try to support that by running an additional cat6 line and re-terminating both links into a single hdmi port, but I have concerns over that approach as well.

    Read the article

  • Stack overflow error after creating a instance using 'new'

    - by Justin
    EDIT - The code looks strange here, so I suggest viewing the files directly in the link given. While working on my engine, I came across a issue that I'm unable to resolve. Hoping to fix this without any heavy modification, the code is below. void Block::DoCollision(GameObject* obj){ obj->DoCollision(this); } That is where the stack overflow occurs. This application works perfectly fine until I create two instances of the class using the new keyword. If I only had 1 instance of the class, it worked fine. Block* a = new Block(0, 0, 0, 5); AddGameObject(a); a = new Block(30, 0, 0, 5); AddGameObject(a); Those parameters are just x,y,z and size. The code is checked before hand. Only a object with a matching Collisonflag and collision type will trigger the DoCollision(); function. ((*list1)->m_collisionFlag & (*list2)->m_type) Maybe my check is messed up though. I attached the files concerned here http://celestialcoding.com/index.php?topic=1465.msg9913;topicseen#new. You can download them without having to sign up. The main suspects, I also pasted the code for below. From GameManager.cpp void GameManager::Update(float dt){ GameList::iterator list1; for(list1=m_gameObjectList.begin(); list1 != m_gameObjectList.end(); ++list1){ GameObject* temp = *list1; // Update logic and positions if((*list1)->m_active){ (*list1)->Update(dt); // Clip((*list1)->m_position); // Modify for bounce affect } else continue; // Check for collisions if((*list1)->m_collisionFlag != GameObject::TYPE_NONE){ GameList::iterator list2; for(list2=m_gameObjectList.begin(); list2 != m_gameObjectList.end(); ++list2){ if(!(*list2)->m_active) continue; if(list1 == list2) continue; if( (*list2)->m_active && ((*list1)->m_collisionFlag & (*list2)->m_type) && (*list1)->IsColliding(*list2)){ (*list1)->DoCollision((*list2)); } } } if(list1==m_gameObjectList.end()) break; } GameList::iterator end    = m_gameObjectList.end(); GameList::iterator newEnd = remove_if(m_gameObjectList.begin(),m_gameObjectList.end(),RemoveNotActive); if(newEnd != end)        m_gameObjectList.erase(newEnd,end); } void GameManager::LoadAllFiles(){ LoadSkin(m_gameTextureList, "Models/Skybox/Images/Top.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Models/Skybox/Images/Right.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Models/Skybox/Images/Back.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Models/Skybox/Images/Left.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Models/Skybox/Images/Front.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Models/Skybox/Images/Bottom.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Terrain/Textures/Terrain1.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Terrain/Textures/Terrain2.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Terrain/Details/TerrainDetails.bmp", GetNextFreeID()); LoadSkin(m_gameTextureList, "Terrain/Textures/Water1.bmp", GetNextFreeID()); Block* a = new Block(0, 0, 0, 5); AddGameObject(a); a = new Block(30, 0, 0, 5); AddGameObject(a); Player* d = new Player(0, 100,0); AddGameObject(d); } void Block::Draw(){ glPushMatrix(); glTranslatef(m_position.x(), m_position.y(), m_position.z()); glRotatef(m_facingAngle, 0, 1, 0); glScalef(m_size, m_size, m_size); glBegin(GL_LINES); glColor3f(255, 255, 255); glVertex3f(m_boundingRect.left, m_boundingRect.top, m_position.z()); glVertex3f(m_boundingRect.right, m_boundingRect.top, m_position.z()); glVertex3f(m_boundingRect.left, m_boundingRect.bottom, m_position.z()); glVertex3f(m_boundingRect.right, m_boundingRect.bottom, m_position.z()); glVertex3f(m_boundingRect.left, m_boundingRect.top, m_position.z()); glVertex3f(m_boundingRect.left, m_boundingRect.bottom, m_position.z()); glVertex3f(m_boundingRect.right, m_boundingRect.top, m_position.z()); glVertex3f(m_boundingRect.right, m_boundingRect.bottom, m_position.z()); glEnd(); // DrawBox(m_position.x(), m_position.y(), m_position.z(), m_size, m_size, m_size, 8); glPopMatrix(); } void Block::DoCollision(GameObject* obj){ GameObject* t = this;   // I modified this to see for sure that it was causing the mistake. // obj->DoCollision(NULL); // Just revert it back to /* void Block::DoCollision(GameObject* obj){     obj->DoCollision(this);   }   */ }

    Read the article

  • Excel-based Performance Reviews transformed into Web Application for Performance Management

    - by Webgui
    HR TMS provides enterprise talent management solutions for healthcare, retail and corporate customers, focusing on performance management, compensation management and succession planning. As the competency of nurses and other healthcare workers is critical, the government, via the Joint Commission (JCAHO), tightly monitors their performances. On a regular basis, accredited healthcare organizations are required to review employee performance using a complex set of position dependent job descriptions and competencies. Middlesex Hospital managed their performance reviews for 2500 employees manually with Excel spreadsheets. This was a labor intensive process that proved to be error prone and difficult to manage. Reviews were not always where they belonged and the job descriptions and competencies for healthcare workers were difficult to keep accurate and up to date. As a result, when the Joint Commission visited and requested to see specific review documentation, there was intense stress. Middlesex Hospital needed to automate their review process, pull in the position information from those spreadsheets and be able to deliver reviews online. Users needed to have online access to those reviews from a standard browser. Although the manual system had its issues, it did have the advantage of being very comprehensive and familiar to users. The decision was made to provide a web-based solution that leveraged the look and feel of those spreadsheets in order to insure user acceptance of the system and minimize the training needed. Read the full article here >

    Read the article

< Previous Page | 29 30 31 32 33 34 35 36 37 38 39 40  | Next Page >