Search Results

Search found 88745 results on 3550 pages for 'code snippet'.

Page 330/3550 | < Previous Page | 326 327 328 329 330 331 332 333 334 335 336 337  | Next Page >

  • How to Correct & Improve the Design of this Code?

    - by DaveDev
    HI Guys, I've been working on a little experiement to see if I could create a helper method to serialize any of my types to any type of HTML tag I specify. I'm getting a NullReferenceException when _writer = _viewContext.Writer; is called in protected virtual void Dispose(bool disposing) {/*...*/} I think I'm at a point where it almost works (I've gotten other implementations to work) and I was wondering if somebody could point out what I'm doing wrong? Also, I'd be interested in hearing suggestions on how I could improve the design? So basically, I have this code that will generate a Select box with a number of options: // the idea is I can use one method to create any complete tag of any type // and put whatever I want in the content area <% using (Html.GenerateTag<SelectTag>(Model, new { href = Url.Action("ActionName") })) { %> <%foreach (var fund in Model.Funds) {%> <% using (Html.GenerateTag<OptionTag>(fund)) { %> <%= fund.Name %> <% } %> <% } %> <% } %> This Html.GenerateTag helper is defined as: public static MMTag GenerateTag<T>(this HtmlHelper htmlHelper, object elementData, object attributes) where T : MMTag { return (T)Activator.CreateInstance(typeof(T), htmlHelper.ViewContext, elementData, attributes); } Depending on the type of T it'll create one of the types defined below, public class HtmlTypeBase : MMTag { public HtmlTypeBase() { } public HtmlTypeBase(ViewContext viewContext, params object[] elementData) { base._viewContext = viewContext; base.MergeDataToTag(viewContext, elementData); } } public class SelectTag : HtmlTypeBase { public SelectTag(ViewContext viewContext, params object[] elementData) { base._tag = new TagBuilder("select"); //base.MergeDataToTag(viewContext, elementData); } } public class OptionTag : HtmlTypeBase { public OptionTag(ViewContext viewContext, params object[] elementData) { base._tag = new TagBuilder("option"); //base.MergeDataToTag(viewContext, _elementData); } } public class AnchorTag : HtmlTypeBase { public AnchorTag(ViewContext viewContext, params object[] elementData) { base._tag = new TagBuilder("a"); //base.MergeDataToTag(viewContext, elementData); } } all of these types (anchor, select, option) inherit from HtmlTypeBase, which is intended to perform base.MergeDataToTag(viewContext, elementData);. This doesn't happen though. It works if I uncomment the MergeDataToTag methods in the derived classes, but I don't want to repeat that same code for every derived class I create. This is the definition for MMTag: public class MMTag : IDisposable { internal bool _disposed; internal ViewContext _viewContext; internal TextWriter _writer; internal TagBuilder _tag; internal object[] _elementData; public MMTag() {} public MMTag(ViewContext viewContext, params object[] elementData) { } public void Dispose() { Dispose(true /* disposing */); GC.SuppressFinalize(this); } protected virtual void Dispose(bool disposing) { if (!_disposed) { _disposed = true; _writer = _viewContext.Writer; _writer.Write(_tag.ToString(TagRenderMode.EndTag)); } } protected void MergeDataToTag(ViewContext viewContext, object[] elementData) { Type elementDataType = elementData[0].GetType(); foreach (PropertyInfo prop in elementDataType.GetProperties()) { if (prop.PropertyType.IsPrimitive || prop.PropertyType == typeof(Decimal) || prop.PropertyType == typeof(String)) { object propValue = prop.GetValue(elementData[0], null); string stringValue = propValue != null ? propValue.ToString() : String.Empty; _tag.Attributes.Add(prop.Name, stringValue); } } var dic = new Dictionary<string, object>(StringComparer.OrdinalIgnoreCase); var attributes = elementData[1]; if (attributes != null) { foreach (PropertyDescriptor descriptor in TypeDescriptor.GetProperties(attributes)) { object value = descriptor.GetValue(attributes); dic.Add(descriptor.Name, value); } } _tag.MergeAttributes<string, object>(dic); _viewContext = viewContext; _viewContext.Writer.Write(_tag.ToString(TagRenderMode.StartTag)); } } Thanks Dave

    Read the article

  • Opening a file with a variable as name & checking for undefined values

    - by Harm De Weirdt
    Hello everyone. I'm having some problems writing data into a file using perl. sub startNewOrder{ my $name = makeUniqueFileName(); open (ORDER, ">$name.txt") or die "can't open file: $!\n"; format ORDER_TOP = PRODUCT<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<CODE<<<<<<<<AANTAL<<<<EENHEIDSPRIJS<<<<<<TOTAAL<<<<<<< . format ORDER = @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< @<<<<<<<< @<<<< @<<<<<< @<<<<< $title, $code, $amount, $price, $total . close (ORDER); } This is the sub I use to make the file. (I translated most of it) The makeUniqueFileName method makes a fileName based upon current time("minuteshoursdayOrder"). The problem now is that I have to write in this file in another sub. sub addToOrder{ print "give productcode:"; $code = <STDIN>; chop $code; print "Give amount:"; $amount = <STDIN>; chop $amount; if($inventory{$code} eq undef){ #Does the product exist? print "This product does not exist"; }elsif($inventory{$code}[2] < $amount && !defined($inventaris{$code}[2]) ){ #Is there enough in the inventory? print "There is not enough in stock" }else{ $inventory{$code}[2] -= $amount; #write in order file open (ORDER ">>$naam.txt") or die "can't open file: $!\n"; $title = $inventory{$code}[0]; $code = $code; $amount = $inventory{$code}[2]; $price = $inventory{$code}[1]; $total = $inventory{$code}[1]; write; close(ORDER); } %inventory is a hashtable that has the productcode as key and an array with the title, price and amount as value. There are two problems here: when I enter an invalid product number, I still have to enter an amount even while my code says it should print the error directly after checking if there is a product with the given code. The second problem is that the writing doesn't seem to work. It always give's a "No such file or directory" error. Is there a way to open the ORDER file i made in the first sub without having to make $name not local? Or just a way to write in this file? I really don't know how to start here. I can't really find much info on writing a file that has been closed before, and in a different sub.. Any help is appreciated, Harm

    Read the article

  • Opening a file with a variable as name and checking for undefined values

    - by Harm De Weirdt
    I'm having some problems writing data into a file using Perl. sub startNewOrder{ my $name = makeUniqueFileName(); open (ORDER, ">$name.txt") or die "can't open file: $!\n"; format ORDER_TOP = PRODUCT<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<CODE<<<<<<<<AANTAL<<<<EENHEIDSPRIJS<<<<<<TOTAAL<<<<<<< . format ORDER = @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< @<<<<<<<< @<<<< @<<<<<< @<<<<< $title, $code, $amount, $price, $total . close (ORDER); } This is the sub I use to make the file. (I translated most of it.) The makeUniqueFileName method makes a fileName based upon current time("minuteshoursdayOrder"). The problem now is that I have to write to this file in another sub. sub addToOrder{ print "give productcode:"; $code = <STDIN>; chop $code; print "Give amount:"; $amount = <STDIN>; chop $amount; if($inventory{$code} eq undef){ #Does the product exist? print "This product does not exist"; }elsif($inventory{$code}[2] < $amount && !defined($inventaris{$code}[2]) ){ #Is there enough in the inventory? print "There is not enough in stock" }else{ $inventory{$code}[2] -= $amount; #write in order file open (ORDER ">>$naam.txt") or die "can't open file: $!\n"; $title = $inventory{$code}[0]; $code = $code; $amount = $inventory{$code}[2]; $price = $inventory{$code}[1]; $total = $inventory{$code}[1]; write; close(ORDER); } %inventory is a hashtable that has the productcode as key and an array with the title, price and amount as value. There are two problems here: when I enter an invalid product number, I still have to enter an amount even while my code says it should print the error directly after checking if there is a product with the given code. The second problem is that the writing doesn't seem to work. It always give's a "No such file or directory" error. Is there a way to open the ORDER file I made in the first sub without having to make $name not local? Or just a way to write in this file? I really don't know how to start here. I can't really find much info on writing a file that has been closed before, and in a different sub. Any help is appreciated, Harm

    Read the article

  • Unable to .append(); without eliminating all the spaces in the code

    - by Adam
    $('#form_holder').append('<div id="spec_id_'+count+'"><div class="avail_container"> <input class="avail_fields" type="checkbox" checked="checked" name="special'+count+'" /><span class="avail_field_label">Special Date</span></div> <div class="avail_container"><div class="avail_time_container"><span class="field_label">Time</span> <select name="special'+count+'_time_from_1"> <?php for ($t = 0; $t<24; $t++){ ?> <option value="<?php echo $t; ?>"><?php echo $t; ?></option> <?php } ?> </select>: <select name="special'+count+'_time_from_2"> <?php for ($t = 0; $t<60; $t+=15){ ?> <option value="<?php if($t == 0){ echo $t . '' . $t; }else{ echo $t; } ?>"><?php if($t == 0){ echo $t . '' . $t; }else{ echo $t; } ?></option> <?php } ?> </select> <span class="field_label">to</span> <select name="special'+count+'_time_to_1"> <?php for ($t = 0; $t<24; $t++){ ?> <option value="<?php echo $t; ?>"><?php echo $t; ?></option> <?php } ?> </select>: <select name="special'+count+'_time_to_2"> <?php for ($t = 0; $t<60; $t+=15){ ?> <option value="<?php if($t == 0){ echo $t . '' . $t; }else{ echo $t; } ?>"><?php if($t == 0){ echo $t . '' . $t; }else{ echo $t; } ?></option> <?php } ?> </select> </div> </div> </div>'); I'm assuming javascript or jquery does not like breaks like I have here, because all my javascript code does not work. What would be an alternative to eliminating all the spaces, which would make viewing the code difficult?

    Read the article

  • SQL SERVER – Tricks to Comment T-SQL in SSMS – SQL in Sixty Seconds #019 – Video

    - by pinaldave
    Code commeting is the one of the most common tasks developers perform. There are two major reasons why developer comment code. 1) During Debug 2) Documenting the code. While debugging the T-SQL code I have often seen developers struggling to comment code.  They spend (or waste) more time in commenting and uncommenting  than doing actual debugging of the procedure.  When I see developer struggling to comment the code I feel little uncomfortable as commenting should be a very easy task over. Today we will see three quick method to comment T-SQL code in Query Editor. There are three different method to comment and uncomment statements in SQL Server Management Studio Using Keyboard Shortcuts Using Tool Bar Using Menu Bar Method 1: Using Keyboard Shortcuts Commenting the statement – CTRL+K, CTRL+C Commenting the statement – CTRL+K, CTRL+U Method 2: Using Tool Bar Using Tool bar buttons. (See Video) Method 3: Using Menu Bar Commenting the statement – Menu Bar >> Edit >> Advanced >> Click on Comment Selection. Unommenting the statement – Menu Bar >> Edit >> Advanced >> Click on Uncomment Selection. More on Importing CSV Data: Two Different Ways to Comment Code – Explanation and Example I encourage you to submit your ideas for SQL in Sixty Seconds. We will try to accommodate as many as we can. If we like your idea we promise to share with you educational material. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Database, Pinal Dave, PostADay, SQL, SQL Authority, SQL in Sixty Seconds, SQL Query, SQL Scripts, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology, Video

    Read the article

  • Guidance: A Branching strategy for Scrum Teams

    - by Martin Hinshelwood
    Having a good branching strategy will save your bacon, or at least your code. Be careful when deviating from your branching strategy because if you do, you may be worse off than when you started! This is one possible branching strategy for Scrum teams and I will not be going in depth with Scrum but you can find out more about Scrum by reading the Scrum Guide and you can even assess your Scrum knowledge by having a go at the Scrum Open Assessment. You can also read SSW’s Rules to Better Scrum using TFS which have been developed during our own Scrum implementations. Acknowledgements Bill Heys – Bill offered some good feedback on this post and helped soften the language. Note: Bill is a VS ALM Ranger and co-wrote the Branching Guidance for TFS 2010 Willy-Peter Schaub – Willy-Peter is an ex Visual Studio ALM MVP turned blue badge and has been involved in most of the guidance including the Branching Guidance for TFS 2010 Chris Birmele – Chris wrote some of the early TFS Branching and Merging Guidance. Dr Paul Neumeyer, Ph.D Parallel Processes, ScrumMaster and SSW Solution Architect – Paul wanted to have feature branches coming from the release branch as well. We agreed that this is really a spin-off that needs own project, backlog, budget and Team. Scenario: A product is developed RTM 1.0 is released and gets great sales.  Extra features are demanded but the new version will have double to price to pay to recover costs, work is approved by the guys with budget and a few sprints later RTM 2.0 is released.  Sales a very low due to the pricing strategy. There are lots of clients on RTM 1.0 calling out for patches. As I keep getting Reverse Integration and Forward Integration mixed up and Bill keeps slapping my wrists I thought I should have a reminder: You still seemed to use reverse and/or forward integration in the wrong context. I would recommend reviewing your document at the end to ensure that it agrees with the common understanding of these terms merge (forward integration) from parent to child (same direction as the branch), and merge  (reverse integration) from child to parent (the reverse direction of the branch). - one of my many slaps on the wrist from Bill Heys.   As I mentioned previously we are using a single feature branching strategy in our current project. The single biggest mistake developers make is developing against the “Main” or “Trunk” line. This ultimately leads to messy code as things are added and never finished. Your only alternative is to NEVER check in unless your code is 100%, but this does not work in practice, even with a single developer. Your ADD will kick in and your half-finished code will be finished enough to pass the build and the tests. You do use builds don’t you? Sadly, this is a very common scenario and I have had people argue that branching merely adds complexity. Then again I have seen the other side of the universe ... branching  structures from he... We should somehow convince everyone that there is a happy between no-branching and too-much-branching. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   A key benefit of branching for development is to isolate changes from the stable Main branch. Branching adds sanity more than it adds complexity. We do try to stress in our guidance that it is important to justify a branch, by doing a cost benefit analysis. The primary cost is the effort to do merges and resolve conflicts. A key benefit is that you have a stable code base in Main and accept changes into Main only after they pass quality gates, etc. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft The second biggest mistake developers make is branching anything other than the WHOLE “Main” line. If you branch parts of your code and not others it gets out of sync and can make integration a nightmare. You should have your Source, Assets, Build scripts deployment scripts and dependencies inside the “Main” folder and branch the whole thing. Some departments within MSFT even go as far as to add the environments used to develop the product in there as well; although I would not recommend that unless you have a massive SQL cluster to house your source code. We tried the “add environment” back in South-Africa and while it was “phenomenal”, especially when having to switch between environments, the disk storage and processing requirements killed us. We opted for virtualization to skin this cat of keeping a ready-to-go environment handy. - Willy-Peter Schaub, VS ALM Ranger, Microsoft   I think people often think that you should have separate branches for separate environments (e.g. Dev, Test, Integration Test, QA, etc.). I prefer to think of deploying to environments (such as from Main to QA) rather than branching for QA). - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   You can read about SSW’s Rules to better Source Control for some additional information on what Source Control to use and how to use it. There are also a number of branching Anti-Patterns that should be avoided at all costs: You know you are on the wrong track if you experience one or more of the following symptoms in your development environment: Merge Paranoia—avoiding merging at all cost, usually because of a fear of the consequences. Merge Mania—spending too much time merging software assets instead of developing them. Big Bang Merge—deferring branch merging to the end of the development effort and attempting to merge all branches simultaneously. Never-Ending Merge—continuous merging activity because there is always more to merge. Wrong-Way Merge—merging a software asset version with an earlier version. Branch Mania—creating many branches for no apparent reason. Cascading Branches—branching but never merging back to the main line. Mysterious Branches—branching for no apparent reason. Temporary Branches—branching for changing reasons, so the branch becomes a permanent temporary workspace. Volatile Branches—branching with unstable software assets shared by other branches or merged into another branch. Note   Branches are volatile most of the time while they exist as independent branches. That is the point of having them. The difference is that you should not share or merge branches while they are in an unstable state. Development Freeze—stopping all development activities while branching, merging, and building new base lines. Berlin Wall—using branches to divide the development team members, instead of dividing the work they are performing. -Branching and Merging Primer by Chris Birmele - Developer Tools Technical Specialist at Microsoft Pty Ltd in Australia   In fact, this can result in a merge exercise no-one wants to be involved in, merging hundreds of thousands of change sets and trying to get a consolidated build. Again, we need to find a happy medium. - Willy-Peter Schaub on Merge Paranoia Merge conflicts are generally the result of making changes to the same file in both the target and source branch. If you create merge conflicts, you will eventually need to resolve them. Often the resolution is manual. Merging more frequently allows you to resolve these conflicts close to when they happen, making the resolution clearer. Waiting weeks or months to resolve them, the Big Bang approach, means you are more likely to resolve conflicts incorrectly. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Main line, this is where your stable code lives and where any build has known entities, always passes and has a happy test that passes as well? Many development projects consist of, a single “Main” line of source and artifacts. This is good; at least there is source control . There are however a couple of issues that need to be considered. What happens if: you and your team are working on a new set of features and the customer wants a change to his current version? you are working on two features and the customer decides to abandon one of them? you have two teams working on different feature sets and their changes start interfering with each other? I just use labels instead of branches? That's a lot of “what if’s”, but there is a simple way of preventing this. Branching… In TFS, labels are not immutable. This does not mean they are not useful. But labels do not provide a very good development isolation mechanism. Branching allows separate code sets to evolve separately (e.g. Current with hotfixes, and vNext with new development). I don’t see how labels work here. - Bill Heys, VS ALM Ranger & TFS Branching Lead, Microsoft   Figure: Creating a single feature branch means you can isolate the development work on that branch.   Its standard practice for large projects with lots of developers to use Feature branching and you can check the Branching Guidance for the latest recommendations from the Visual Studio ALM Rangers for other methods. In the diagram above you can see my recommendation for branching when using Scrum development with TFS 2010. It consists of a single Sprint branch to contain all the changes for the current sprint. The main branch has the permissions changes so contributors to the project can only Branch and Merge with “Main”. This will prevent accidental check-ins or checkouts of the “Main” line that would contaminate the code. The developers continue to develop on sprint one until the completion of the sprint. Note: In the real world, starting a new Greenfield project, this process starts at Sprint 2 as at the start of Sprint 1 you would have artifacts in version control and no need for isolation.   Figure: Once the sprint is complete the Sprint 1 code can then be merged back into the Main line. There are always good practices to follow, and one is to always do a Forward Integration from Main into Sprint 1 before you do a Reverse Integration from Sprint 1 back into Main. In this case it may seem superfluous, but this builds good muscle memory into your developer’s work ethic and means that no bad habits are learned that would interfere with additional Scrum Teams being added to the Product. The process of completing your sprint development: The Team completes their work according to their definition of done. Merge from “Main” into “Sprint1” (Forward Integration) Stabilize your code with any changes coming from other Scrum Teams working on the same product. If you have one Scrum Team this should be quick, but there may have been bug fixes in the Release branches. (we will talk about release branches later) Merge from “Sprint1” into “Main” to commit your changes. (Reverse Integration) Check-in Delete the Sprint1 branch Note: The Sprint 1 branch is no longer required as its useful life has been concluded. Check-in Done But you are not yet done with the Sprint. The goal in Scrum is to have a “potentially shippable product” at the end of every Sprint, and we do not have that yet, we only have finished code.   Figure: With Sprint 1 merged you can create a Release branch and run your final packaging and testing In 99% of all projects I have been involved in or watched, a “shippable product” only happens towards the end of the overall lifecycle, especially when sprints are short. The in-between releases are great demonstration releases, but not shippable. Perhaps it comes from my 80’s brain washing that we only ship when we reach the agreed quality and business feature bar. - Willy-Peter Schaub, VS ALM Ranger, Microsoft Although you should have been testing and packaging your code all the way through your Sprint 1 development, preferably using an automated process, you still need to test and package with stable unchanging code. This is where you do what at SSW we call a “Test Please”. This is first an internal test of the product to make sure it meets the needs of the customer and you generally use a resource external to your Team. Then a “Test Please” is conducted with the Product Owner to make sure he is happy with the output. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: If you find a deviation from the expected result you fix it on the Release branch. If during your final testing or your “Test Please” you find there are issues or bugs then you should fix them on the release branch. If you can’t fix them within the time box of your Sprint, then you will need to create a Bug and put it onto the backlog for prioritization by the Product owner. Make sure you leave plenty of time between your merge from the development branch to find and fix any problems that are uncovered. This process is commonly called Stabilization and should always be conducted once you have completed all of your User Stories and integrated all of your branches. Even once you have stabilized and released, you should not delete the release branch as you would with the Sprint branch. It has a usefulness for servicing that may extend well beyond the limited life you expect of it. Note: Don't get forced by the business into adding features into a Release branch instead that indicates the unspoken requirement is that they are asking for a product spin-off. In this case you can create a new Team Project and branch from the required Release branch to create a new Main branch for that product. And you create a whole new backlog to work from.   Figure: When the Team decides it is happy with the product you can create a RTM branch. Once you have fixed all the bugs you can, and added any you can’t to the Product Backlog, and you Team is happy with the result you can create a Release. This would consist of doing the final Build and Packaging it up ready for your Sprint Review meeting. You would then create a read-only branch that represents the code you “shipped”. This is really an Audit trail branch that is optional, but is good practice. You could use a Label, but Labels are not Auditable and if a dispute was raised by the customer you can produce a verifiable version of the source code for an independent party to check. Rare I know, but you do not want to be at the wrong end of a legal battle. Like the Release branch the RTM branch should never be deleted, or only deleted according to your companies legal policy, which in the UK is usually 7 years.   Figure: If you have made any changes in the Release you will need to merge back up to Main in order to finalise the changes. Nothing is really ever done until it is in Main. The same rules apply when merging any fixes in the Release branch back into Main and you should do a reverse merge before a forward merge, again for the muscle memory more than necessity at this stage. Your Sprint is now nearly complete, and you can have a Sprint Review meeting knowing that you have made every effort and taken every precaution to protect your customer’s investment. Note: In order to really achieve protection for both you and your client you would add Automated Builds, Automated Tests, Automated Acceptance tests, Acceptance test tracking, Unit Tests, Load tests, Web test and all the other good engineering practices that help produce reliable software.     Figure: After the Sprint Planning meeting the process begins again. Where the Sprint Review and Retrospective meetings mark the end of the Sprint, the Sprint Planning meeting marks the beginning. After you have completed your Sprint Planning and you know what you are trying to achieve in Sprint 2 you can create your new Branch to develop in. How do we handle a bug(s) in production that can’t wait? Although in Scrum the only work done should be on the backlog there should be a little buffer added to the Sprint Planning for contingencies. One of these contingencies is a bug in the current release that can’t wait for the Sprint to finish. But how do you handle that? Willy-Peter Schaub asked an excellent question on the release activities: In reality Sprint 2 starts when sprint 1 ends + weekend. Should we not cater for a possible parallelism between Sprint 2 and the release activities of sprint 1? It would introduce FI’s from main to sprint 2, I guess. Your “Figure: Merging print 2 back into Main.” covers, what I tend to believe to be reality in most cases. - Willy-Peter Schaub, VS ALM Ranger, Microsoft I agree, and if you have a single Scrum team then your resources are limited. The Scrum Team is responsible for packaging and release, so at least one run at stabilization, package and release should be included in the Sprint time box. If more are needed on the current production release during the Sprint 2 time box then resource needs to be pulled from Sprint 2. The Product Owner and the Team have four choices (in order of disruption/cost): Backlog: Add the bug to the backlog and fix it in the next Sprint Buffer Time: Use any buffer time included in the current Sprint to fix the bug quickly Make time: Remove a Story from the current Sprint that is of equal value to the time lost fixing the bug(s) and releasing. Note: The Team must agree that it can still meet the Sprint Goal. Cancel Sprint: Cancel the sprint and concentrate all resource on fixing the bug(s) Note: This can be a very costly if the current sprint has already had a lot of work completed as it will be lost. The choice will depend on the complexity and severity of the bug(s) and both the Product Owner and the Team need to agree. In this case we will go with option #2 or #3 as they are uncomplicated but severe bugs. Figure: Real world issue where a bug needs fixed in the current release. If the bug(s) is urgent enough then then your only option is to fix it in place. You can edit the release branch to find and fix the bug, hopefully creating a test so it can’t happen again. Follow the prior process and conduct an internal and customer “Test Please” before releasing. You can read about how to conduct a Test Please on our Rules to Successful Projects: Do you conduct an internal "test please" prior to releasing a version to a client?   Figure: After you have fixed the bug you need to ship again. You then need to again create an RTM branch to hold the version of the code you released in escrow.   Figure: Main is now out of sync with your Release. We now need to get these new changes back up into the Main branch. Do a reverse and then forward merge again to get the new code into Main. But what about the branch, are developers not working on Sprint 2? Does Sprint 2 now have changes that are not in Main and Main now have changes that are not in Sprint 2? Well, yes… and this is part of the hit you take doing branching. But would this scenario even have been possible without branching?   Figure: Getting the changes in Main into Sprint 2 is very important. The Team now needs to do a Forward Integration merge into their Sprint and resolve any conflicts that occur. Maybe the bug has already been fixed in Sprint 2, maybe the bug no longer exists! This needs to be identified and resolved by the developers before they continue to get further out of Sync with Main. Note: Avoid the “Big bang merge” at all costs.   Figure: Merging Sprint 2 back into Main, the Forward Integration, and R0 terminates. Sprint 2 now merges (Reverse Integration) back into Main following the procedures we have already established.   Figure: The logical conclusion. This then allows the creation of the next release. By now you should be getting the big picture and hopefully you learned something useful from this post. I know I have enjoyed writing it as I find these exploratory posts coupled with real world experience really help harden my understanding.  Branching is a tool; it is not a silver bullet. Don’t over use it, and avoid “Anti-Patterns” where possible. Although the diagram above looks complicated I hope showing you how it is formed simplifies it as much as possible.   Technorati Tags: Branching,Scrum,VS ALM,TFS 2010,VS2010

    Read the article

  • "const char *" is incompatible with parameter of type "LPCWSTR" error

    - by N0xus
    I'm trying to incorporate some code from Programming an RTS Game With Direct3D into my game. Before anyone says it, I know the book is kinda old, but it's the particle effects system he creates that I'm trying to use. With his shader class, he intialise it thusly: void SHADER::Init(IDirect3DDevice9 *Dev, const char fName[], int typ) { m_pDevice = Dev; m_type = typ; if(m_pDevice == NULL)return; // Assemble and set the pixel or vertex shader HRESULT hRes; LPD3DXBUFFER Code = NULL; LPD3DXBUFFER ErrorMsgs = NULL; if(m_type == PIXEL_SHADER) hRes = D3DXCompileShaderFromFile(fName, NULL, NULL, "Main", "ps_2_0", D3DXSHADER_DEBUG, &Code, &ErrorMsgs, &m_pConstantTable); else hRes = D3DXCompileShaderFromFile(fName, NULL, NULL, "Main", "vs_2_0", D3DXSHADER_DEBUG, &Code, &ErrorMsgs, &m_pConstantTable); } How ever, this generates the following error: Error 1 error C2664: 'D3DXCompileShaderFromFileW' : cannot convert parameter 1 from 'const char []' to 'LPCWSTR' The compiler states the issue is with fName in the D3DXCompileShaderFromFile line. I know this has something to do with the character set, and my program was already running with a Unicode Character set on the go. I read that to solve the above problem, I need to switch to a multi-byte character set. But, if I do that, I get other errors in my code, like so: Error 2 error C2664: 'D3DXCreateEffectFromFileA' : cannot convert parameter 2 from 'const wchar_t *' to 'LPCSTR' With it being accredited to the following line of code: if(FAILED(D3DXCreateEffectFromFile(m_pD3DDevice9,effectFileName.c_str(),NULL,NULL,0,NULL,&m_pCurrentEffect,&pErrorBuffer))) This if is nested within another if statement checking my effectmap list. Though it is the FAILED word with the red line. Like wise I get the another error with the following line of code: wstring effectFileName = TEXT("Sky.fx"); With the error message being: Error 1 error C2440: 'initializing' : cannot convert from 'const char [7]' to 'std::basic_string<_Elem,_Traits,_Ax' If I change it back to a Uni code character set, I get the original (fewer) errors. Leaving as a multi-byte, I get more errors. Does anyone know of a way I can fix this issue?

    Read the article

  • Back to Basics: When does a .NET Assembly Dependency get loaded

    - by Rick Strahl
    When we work on typical day to day applications, it's easy to forget some of the core features of the .NET framework. For me personally it's been a long time since I've learned about some of the underlying CLR system level services even though I rely on them on a daily basis. I often think only about high level application constructs and/or high level framework functionality, but the low level stuff is often just taken for granted. Over the last week at DevConnections I had all sorts of low level discussions with other developers about the inner workings of this or that technology (especially in light of my Low Level ASP.NET Architecture talk and the Razor Hosting talk). One topic that came up a couple of times and ended up a point of confusion even amongst some seasoned developers (including some folks from Microsoft <snicker>) is when assemblies actually load into a .NET process. There are a number of different ways that assemblies are loaded in .NET. When you create a typical project assemblies usually come from: The Assembly reference list of the top level 'executable' project The Assembly references of referenced projects Dynamically loaded at runtime via AppDomain/Reflection loading In addition .NET automatically loads mscorlib (most of the System namespace) the boot process that hosts the .NET runtime in EXE apps, or some other kind of runtime hosting environment (runtime hosting in servers like IIS, SQL Server or COM Interop). In hosting environments the runtime host may also pre-load a bunch of assemblies on its own (for example the ASP.NET host requires all sorts of assemblies just to run itself, before ever routing into your user specific code). Assembly Loading The most obvious source of loaded assemblies is the top level application's assembly reference list. You can add assembly references to a top level application and those assembly references are then available to the application. In a nutshell, referenced assemblies are not immediately loaded - they are loaded on the fly as needed. So regardless of whether you have an assembly reference in a top level project, or a dependent assembly assemblies typically load on an as needed basis, unless explicitly loaded by user code. The same is true of dependent assemblies. To check this out I ran a simple test: I have a utility assembly Westwind.Utilities which is a general purpose library that can work in any type of project. Due to a couple of small requirements for encoding and a logging piece that allows logging Web content (dependency on HttpContext.Current) this utility library has a dependency on System.Web. Now System.Web is a pretty large assembly and generally you'd want to avoid adding it to a non-Web project if it can be helped. So I created a Console Application that loads my utility library: You can see that the top level Console app a reference to Westwind.Utilities and System.Data (beyond the core .NET libs). The Westwind.Utilities project on the other hand has quite a few dependencies including System.Web. I then add a main program that accesses only a simple utillity method in the Westwind.Utilities library that doesn't require any of the classes that access System.Web: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); } StringUtils.NewStringId() calls into Westwind.Utilities, but it doesn't rely on System.Web. Any guesses what the assembly list looks like when I stop the code on the ReadLine() command? I'll wait here while you think about it… … … So, when I stop on ReadLine() and then fire up Process Explorer and check the assembly list I get: We can see here that .NET has not actually loaded any of the dependencies of the Westwind.Utilities assembly. Also not loaded is the top level System.Data reference even though it's in the dependent assembly list of the top level project. Since this particular function I called only uses core System functionality (contained in mscorlib) there's in fact nothing else loaded beyond the main application and my Westwind.Utilities assembly that contains the method accessed. None of the dependencies of Westwind.Utilities loaded. If you were to open the assembly in a disassembler like Reflector or ILSpy, you would however see all the compiled in dependencies. The referenced assemblies are in the dependency list and they are loadable, but they are not immediately loaded by the application. In other words the C# compiler and .NET linker are smart enough to figure out the dependencies based on the code that actually is referenced from your application and any dependencies cascading down into the dependencies from your top level application into the referenced assemblies. In the example above the usage requirement is pretty obvious since I'm only calling a single static method and then exiting the app, but in more complex applications these dependency relationships become very complicated - however it's all taken care of by the compiler and linker figuring out what types and members are actually referenced and including only those assemblies that are in fact referenced in your code or required by any of your dependencies. The good news here is: That if you are referencing an assembly that has a dependency on something like System.Web in a few places that are not actually accessed by any of your code or any dependent assembly code that you are calling, that assembly is never loaded into memory! Some Hosting Environments pre-load Assemblies The load behavior can vary however. In Console and desktop applications we have full control over assembly loading so we see the core CLR behavior. However other environments like ASP.NET for example will preload referenced assemblies explicitly as part of the startup process - primarily to minimize load conflicts. Specifically ASP.NET pre-loads all assemblies referenced in the assembly list and the /bin folder. So in Web applications it definitely pays to minimize your top level assemblies if they are not used. Understanding when Assemblies Load To clarify and see it actually happen what I described in the first example , let's look at a couple of other scenarios. To see assemblies loading at runtime in real time lets create a utility function to print out loaded assemblies to the console: public static void PrintAssemblies() { var assemblies = AppDomain.CurrentDomain.GetAssemblies(); foreach (var assembly in assemblies) { Console.WriteLine(assembly.GetName()); } } Now let's look at the first scenario where I have class method that references internally uses System.Web. In the first scenario lets add a method to my main program like this: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.ReadLine(); PrintAssemblies(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } UpdateFromWebRequest() internally accesses HttpContext.Current to read some information of the ASP.NET Request object so it clearly needs a reference System.Web to work. In this first example, the method that holds the calling code is never called, but exists as a static method that can potentially be called externally at some point. What do you think will happen here with the assembly loading? Will System.Web load in this example? No - it doesn't. Because the WebLogEntry() method is never called by the mainline application (or anywhere else) System.Web is not loaded. .NET dynamically loads assemblies as code that needs it is called. No code references the WebLogEntry() method and so System.Web is never loaded. Next, let's add the call to this method, which should trigger System.Web to be loaded because a dependency exists. Let's change the code to: static void Main(string[] args) { Console.WriteLine(StringUtils.NewStringId()); Console.WriteLine("--- Before:"); PrintAssemblies(); WebLogEntry(); Console.WriteLine("--- After:"); PrintAssemblies(); Console.ReadLine(); } public static void WebLogEntry() { var entry = new WebLogEntry(); entry.UpdateFromRequest(); Console.WriteLine(entry.QueryString); } Looking at the code now, when do you think System.Web will be loaded? Will the before list include it? Yup System.Web gets loaded, but only after it's actually referenced. In fact, just until before the call to UpdateFromRequest() System.Web is not loaded - it only loads when the method is actually called and requires the reference in the executing code. Moral of the Story So what have we learned - or maybe remembered again? Dependent Assembly References are not pre-loaded when an application starts (by default) Dependent Assemblies that are not referenced by executing code are never loaded Dependent Assemblies are just in time loaded when first referenced in code All of this is nothing new - .NET has always worked like this. But it's good to have a refresher now and then and go through the exercise of seeing it work in action. It's not one of those things we think about everyday, and as I found out last week, I couldn't remember exactly how it worked since it's been so long since I've learned about this. And apparently I'm not the only one as several other people I had discussions with in relation to loaded assemblies also didn't recall exactly what should happen or assumed incorrectly that just having a reference automatically loads the assembly. The moral of the story for me is: Trying at all costs to eliminate an assembly reference from a component is not quite as important as it's often made out to be. For example, the Westwind.Utilities module described above has a logging component, including a Web specific logging entry that supports pulling information from the active HTTP Context. Adding that feature requires a reference to System.Web. Should I worry about this in the scope of this library? Probably not, because if I don't use that one class of nearly a hundred, System.Web never gets pulled into the parent process. IOW, System.Web only loads when I use that specific feature and if I am, well I clearly have to be running in a Web environment anyway to use it realistically. The alternative would be considerably uglier: Pulling out the WebLogEntry class and sticking it into another assembly and breaking up the logging code. In this case - definitely not worth it. So, .NET definitely goes through some pretty nifty optimizations to ensure that it loads only what it needs and in most cases you can just rely on .NET to do the right thing. Sometimes though assembly loading can go wrong (especially when signed and versioned local assemblies are involved), but that's subject for a whole other post…© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  CSharp   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Demystifying Silverlight Dependency Properties

    - by dwahlin
    I have the opportunity to teach a lot of people about Silverlight (amongst other technologies) and one of the topics that definitely confuses people initially is the concept of dependency properties. I confess that when I first heard about them my initial thought was “Why do we need a specialized type of property?” While you can certainly use standard CLR properties in Silverlight applications, Silverlight relies heavily on dependency properties for just about everything it does behind the scenes. In fact, dependency properties are an essential part of the data binding, template, style and animation functionality available in Silverlight. They simply back standard CLR properties. In this post I wanted to put together a (hopefully) simple explanation of dependency properties and why you should care about them if you’re currently working with Silverlight or looking to move to it.   What are Dependency Properties? XAML provides a great way to define layout controls, user input controls, shapes, colors and data binding expressions in a declarative manner. There’s a lot that goes on behind the scenes in order to make XAML work and an important part of that magic is the use of dependency properties. If you want to bind data to a property, style it, animate it or transform it in XAML then the property involved has to be a dependency property to work properly. If you’ve ever positioned a control in a Canvas using Canvas.Left or placed a control in a specific Grid row using Grid.Row then you’ve used an attached property which is a specialized type of dependency property. Dependency properties play a key role in XAML and the overall Silverlight framework. Any property that you bind, style, template, animate or transform must be a dependency property in Silverlight applications. You can programmatically bind values to controls and work with standard CLR properties, but if you want to use the built-in binding expressions available in XAML (one of my favorite features) or the Binding class available through code then dependency properties are a necessity. Dependency properties aren’t needed in every situation, but if you want to customize your application very much you’ll eventually end up needing them. For example, if you create a custom user control and want to expose a property that consumers can use to change the background color, you have to define it as a dependency property if you want bindings, styles and other features to be available for use. Now that the overall purpose of dependency properties has been discussed let’s take a look at how you can create them. Creating Dependency Properties When .NET first came out you had to write backing fields for each property that you defined as shown next: Brush _ScheduleBackground; public Brush ScheduleBackground { get { return _ScheduleBackground; } set { _ScheduleBackground = value; } } Although .NET 2.0 added auto-implemented properties (for example: public Brush ScheduleBackground { get; set; }) where the compiler would automatically generate the backing field used by get and set blocks, the concept is still the same as shown in the above code; a property acts as a wrapper around a field. Silverlight dependency properties replace the _ScheduleBackground field shown in the previous code and act as the backing store for a standard CLR property. The following code shows an example of defining a dependency property named ScheduleBackgroundProperty: public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null);   Looking through the code the first thing that may stand out is that the definition for ScheduleBackgroundProperty is marked as static and readonly and that the property appears to be of type DependencyProperty. This is a standard pattern that you’ll use when working with dependency properties. You’ll also notice that the property explicitly adds the word “Property” to the name which is another standard you’ll see followed. In addition to defining the property, the code also makes a call to the static DependencyProperty.Register method and passes the name of the property to register (ScheduleBackground in this case) as a string. The type of the property, the type of the class that owns the property and a null value (more on the null value later) are also passed. In this example a class named Scheduler acts as the owner. The code handles registering the property as a dependency property with the call to Register(), but there’s a little more work that has to be done to allow a value to be assigned to and retrieved from the dependency property. The following code shows the complete code that you’ll typically use when creating a dependency property. You can find code snippets that greatly simplify the process of creating dependency properties out on the web. The MVVM Light download available from http://mvvmlight.codeplex.com comes with built-in dependency properties snippets as well. public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), null); public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } The standard CLR property code shown above should look familiar since it simply wraps the dependency property. However, you’ll notice that the get and set blocks call GetValue and SetValue methods respectively to perform the appropriate operation on the dependency property. GetValue and SetValue are members of the DependencyObject class which is another key component of the Silverlight framework. Silverlight controls and classes (TextBox, UserControl, CompositeTransform, DataGrid, etc.) ultimately derive from DependencyObject in their inheritance hierarchy so that they can support dependency properties. Dependency properties defined in Silverlight controls and other classes tend to follow the pattern of registering the property by calling Register() and then wrapping the dependency property in a standard CLR property (as shown above). They have a standard property that wraps a registered dependency property and allows a value to be assigned and retrieved. If you need to expose a new property on a custom control that supports data binding expressions in XAML then you’ll follow this same pattern. Dependency properties are extremely useful once you understand why they’re needed and how they’re defined. Detecting Changes and Setting Defaults When working with dependency properties there will be times when you want to assign a default value or detect when a property changes so that you can keep the user interface in-sync with the property value. Silverlight’s DependencyProperty.Register() method provides a fourth parameter that accepts a PropertyMetadata object instance. PropertyMetadata can be used to hook a callback method to a dependency property. The callback method is called when the property value changes. PropertyMetadata can also be used to assign a default value to the dependency property. By assigning a value of null for the final parameter passed to Register() you’re telling the property that you don’t care about any changes and don’t have a default value to apply. Here are the different constructor overloads available on the PropertyMetadata class: PropertyMetadata Constructor Overload Description PropertyMetadata(Object) Used to assign a default value to a dependency property. PropertyMetadata(PropertyChangedCallback) Used to assign a property changed callback method. PropertyMetadata(Object, PropertyChangedCalback) Used to assign a default property value and a property changed callback.   There are many situations where you need to know when a dependency property changes or where you want to apply a default. Performing either task is easily accomplished by creating a new instance of the PropertyMetadata class and passing the appropriate values to its constructor. The following code shows an enhanced version of the initial dependency property code shown earlier that demonstrates these concepts: public Brush ScheduleBackground { get { return (Brush)GetValue(ScheduleBackgroundProperty); } set { SetValue(ScheduleBackgroundProperty, value); } } public static readonly DependencyProperty ScheduleBackgroundProperty = DependencyProperty.Register("ScheduleBackground", typeof(Brush), typeof(Scheduler), new PropertyMetadata(new SolidColorBrush(Colors.LightGray), ScheduleBackgroundChanged)); private static void ScheduleBackgroundChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var scheduler = d as Scheduler; scheduler.Background = e.NewValue as Brush; } The code wires ScheduleBackgroundProperty to a property change callback method named ScheduleBackgroundChanged. What’s interesting is that this callback method is static (as is the dependency property) so it gets passed the instance of the object that owns the property that has changed (otherwise we wouldn’t be able to get to the object instance). In this example the dependency object is cast to a Scheduler object and its Background property is assigned to the new value of the dependency property. The code also handles assigning a default value of LightGray to the dependency property by creating a new instance of a SolidColorBrush. To Sum Up In this post you’ve seen the role of dependency properties and how they can be defined in code. They play a big role in XAML and the overall Silverlight framework. You can think of dependency properties as being replacements for fields that you’d normally use with standard CLR properties. In addition to a discussion on how dependency properties are created, you also saw how to use the PropertyMetadata class to define default dependency property values and hook a dependency property to a callback method. The most important thing to understand with dependency properties (especially if you’re new to Silverlight) is that they’re needed if you want a property to support data binding, animations, transformations and styles properly. Any time you create a property on a custom control or user control that has these types of requirements you’ll want to pick a dependency property over of a standard CLR property with a backing field. There’s more that can be covered with dependency properties including a related property called an attached property….more to come.

    Read the article

  • Free CodeSmith License!

    - by Randy Walker
    The catch?  Attend the Ozarks .Net User Group meeting on April 1st. Here’s a list of the other prizes for the event GRAND PRIZE 1 - iPad (Wi-Fi 16GB) THIRD PARTY COMPONENTS 6 - Telerik Premium Collection 5 - Infragistics NetAdvantage for .NET 1 - Nevron Chart for .NET Lite DevExpress Xceed PRODUCTIVITY 2 - CodeRush with Refactor! Pro 2 - ReSharper CodeSmith GAMES 3 - Halo3 ODST (XBox 360) 3 - Forza Motorsport (Xbox 360) OTHER SOFTWARE 3 - Windows 7 Ultimate 2 - Microsoft Office Standard 2007 HARDWARE 2 - Microsoft Arc Mouse BOOKS 12 - OReilly eBooks 12 - Microsoft Press books 5 - Apress books 3 - Addison-Wesley books 2 - Manning books 2 - Sams books The Info: "Be a Professional Developer and Write Clean Code!" by Claudio Lassala on April 1, 2010 PRESENTATION TOPIC "Be a Professional Developer and Write Clean Code!" - by Claudio Lassala Poorly written code can be created quickly, but it comes at a cost of high maintenance. Most of the time, code can be improved easily by following some simple practices. Professional developers should know these practices and tools and apply it to their work every day. This session will cover the importance of writing clean code, the kind of attitude all developers should have towards the code they produce, as well as the practices and tools that can be used to aid you in becoming a better developer. BIOGRAPHY Claudio Lassala is a Senior Developer at EPS Software Corp. He has presented several lectures at Microsoft events such as PDC Brazil and various other Microsoft seminars, as well as several conferences and user groups across North America and Brazil. He is a multiple winner of the Microsoft MVP Award since 2001 (for Visual FoxPro in 2001-2002, and for C# ever since), an INETA speaker, and also holds the MCSD for .NET certification. He has articles published on several magazines, such as MSDN Brazil Magazine, CoDe Magazine, UTMag, Developers Magazine, and FoxPro Advisor. More detailed information regarding his presentations and articles can be found in his MVP Profile. You can also read more about Claudio on his blog or on Twitter Schedule 5:30 PM – 6:30 PM Social Networking 6:30 PM - 7:00 PM  Prizes 7:00 PM - 8:30 PM Presentation:  "Be a Professional Developer and Write Clean Code!" by Claudio Lassala 8:30 PM - 9:00 PM Wrap-Up

    Read the article

  • Adding an Admin user to an ASP.NET MVC 4 application using a single drop-in file

    - by Jon Galloway
    I'm working on an ASP.NET MVC 4 tutorial and wanted to set it up so just dropping a file in App_Start would create a user named "Owner" and assign them to the "Administrator" role (more explanation at the end if you're interested). There are reasons why this wouldn't fit into most application scenarios: It's not efficient, as it checks for (and creates, if necessary) the user every time the app starts up The username, password, and role name are hardcoded in the app (although they could be pulled from config) Automatically creating an administrative account in code (without user interaction) could lead to obvious security issues if the user isn't informed However, with some modifications it might be more broadly useful - e.g. creating a test user with limited privileges, ensuring a required account isn't accidentally deleted, or - as in my case - setting up an account for demonstration or tutorial purposes. Challenge #1: Running on startup without requiring the user to install or configure anything I wanted to see if this could be done just by having the user drop a file into the App_Start folder and go. No copying code into Global.asax.cs, no installing addition NuGet packages, etc. That may not be the best approach - perhaps a NuGet package with a dependency on WebActivator would be better - but I wanted to see if this was possible and see if it offered the best experience. Fortunately ASP.NET 4 and later provide a PreApplicationStartMethod attribute which allows you to register a method which will run when the application starts up. You drop this attribute in your application and give it two parameters: a method name and the type that contains it. I created a static class named PreApplicationTasks with a static method named, then dropped this attribute in it: [assembly: PreApplicationStartMethod(typeof(PreApplicationTasks), "Initializer")] That's it. One small gotcha: the namespace can be a problem with assembly attributes. I decided my class didn't need a namespace. Challenge #2: Only one PreApplicationStartMethod per assembly In .NET 4, the PreApplicationStartMethod is marked as AllMultiple=false, so you can only have one PreApplicationStartMethod per assembly. This was fixed in .NET 4.5, as noted by Jon Skeet, so you can have as many PreApplicationStartMethods as you want (allowing you to keep your users waiting for the application to start indefinitely!). The WebActivator NuGet package solves the multiple instance problem if you're in .NET 4 - it registers as a PreApplicationStartMethod, then calls any methods you've indicated using [assembly: WebActivator.PreApplicationStartMethod(type, method)]. David Ebbo blogged about that here:  Light up your NuGets with startup code and WebActivator. In my scenario (bootstrapping a beginner level tutorial) I decided not to worry about this and stick with PreApplicationStartMethod. Challenge #3: PreApplicationStartMethod kicks in before configuration has been read This is by design, as Phil explains. It allows you to make changes that need to happen very early in the pipeline, well before Application_Start. That's fine in some cases, but it caused me problems when trying to add users, since the Membership Provider configuration hadn't yet been read - I got an exception stating that "Default Membership Provider could not be found." The solution here is to run code that requires configuration in a PostApplicationStart method. But how to do that? Challenge #4: Getting PostApplicationStartMethod without requiring WebActivator The WebActivator NuGet package, among other things, provides a PostApplicationStartMethod attribute. That's generally how I'd recommend running code that needs to happen after Application_Start: [assembly: WebActivator.PostApplicationStartMethod(typeof(TestLibrary.MyStartupCode), "CallMeAfterAppStart")] This works well, but I wanted to see if this would be possible without WebActivator. Hmm. Well, wait a minute - WebActivator works in .NET 4, so clearly it's registering and calling PostApplicationStartup tasks somehow. Off to the source code! Sure enough, there's even a handy comment in ActivationManager.cs which shows where PostApplicationStartup tasks are being registered: public static void Run() { if (!_hasInited) { RunPreStartMethods(); // Register our module to handle any Post Start methods. But outside of ASP.NET, just run them now if (HostingEnvironment.IsHosted) { Microsoft.Web.Infrastructure.DynamicModuleHelper.DynamicModuleUtility.RegisterModule(typeof(StartMethodCallingModule)); } else { RunPostStartMethods(); } _hasInited = true; } } Excellent. Hey, that DynamicModuleUtility seems familiar... Sure enough, K. Scott Allen mentioned it on his blog last year. This is really slick - a PreApplicationStartMethod can register a new HttpModule in code. Modules are run right after application startup, so that's a perfect time to do any startup stuff that requires configuration to be read. As K. Scott says, it's this easy: using System; using System.Web; using Microsoft.Web.Infrastructure.DynamicModuleHelper; [assembly:PreApplicationStartMethod(typeof(MyAppStart), "Start")] public class CoolModule : IHttpModule { // implementation not important // imagine something cool here } public static class MyAppStart { public static void Start() { DynamicModuleUtility.RegisterModule(typeof(CoolModule)); } } Challenge #5: Cooperating with SimpleMembership The ASP.NET MVC Internet template includes SimpleMembership. SimpleMembership is a big improvement over traditional ASP.NET Membership. For one thing, rather than forcing a database schema, it can work with your database schema. In the MVC 4 Internet template case, it uses Entity Framework Code First to define the user model. SimpleMembership bootstrap includes a call to InitializeDatabaseConnection, and I want to play nice with that. There's a new [InitializeSimpleMembership] attribute on the AccountController, which calls \Filters\InitializeSimpleMembershipAttribute.cs::OnActionExecuting(). That comment in that method that says "Ensure ASP.NET Simple Membership is initialized only once per app start" which sounds like good advice. I figured the best thing would be to call that directly: new Mvc4SampleApplication.Filters.InitializeSimpleMembershipAttribute().OnActionExecuting(null); I'm not 100% happy with this - in fact, it's my least favorite part of this solution. There are two problems - first, directly calling a method on a filter, while legal, seems odd. Worse, though, the Filter lives in the application's namespace, which means that this code no longer works well as a generic drop-in. The simplest workaround would be to duplicate the relevant SimpleMembership initialization code into my startup code, but I'd rather not. I'm interested in your suggestions here. Challenge #6: Module Init methods are called more than once When debugging, I noticed (and remembered) that the Init method may be called more than once per page request - it's run once per instance in the app pool, and an individual page request can cause multiple resource requests to the server. While SimpleMembership does have internal checks to prevent duplicate user or role entries, I'd rather not cause or handle those exceptions. So here's the standard single-use lock in the Module's init method: void IHttpModule.Init(HttpApplication context) { lock (lockObject) { if (!initialized) { //Do stuff } initialized = true; } } Putting it all together With all of that out of the way, here's the code I came up with: using Mvc4SampleApplication.Filters; using System.Web; using System.Web.Security; using WebMatrix.WebData; [assembly: PreApplicationStartMethod(typeof(PreApplicationTasks), "Initializer")] public static class PreApplicationTasks { public static void Initializer() { Microsoft.Web.Infrastructure.DynamicModuleHelper.DynamicModuleUtility .RegisterModule(typeof(UserInitializationModule)); } } public class UserInitializationModule : IHttpModule { private static bool initialized; private static object lockObject = new object(); private const string _username = "Owner"; private const string _password = "p@ssword123"; private const string _role = "Administrator"; void IHttpModule.Init(HttpApplication context) { lock (lockObject) { if (!initialized) { new InitializeSimpleMembershipAttribute().OnActionExecuting(null); if (!WebSecurity.UserExists(_username)) WebSecurity.CreateUserAndAccount(_username, _password); if (!Roles.RoleExists(_role)) Roles.CreateRole(_role); if (!Roles.IsUserInRole(_username, _role)) Roles.AddUserToRole(_username, _role); } initialized = true; } } void IHttpModule.Dispose() { } } The Verdict: Is this a good thing? Maybe. I think you'll agree that the journey was undoubtedly worthwhile, as it took us through some of the finer points of hooking into application startup, integrating with membership, and understanding why the WebActivator NuGet package is so useful Will I use this in the tutorial? I'm leaning towards no - I think a NuGet package with a dependency on WebActivator might work better: It's a little more clear what's going on Installing a NuGet package might be a little less error prone than copying a file A novice user could uninstall the package when complete It's a good introduction to NuGet, which is a good thing for beginners to see This code either requires either duplicating a little code from that filter or modifying the file to use the namespace Honestly I'm undecided at this point, but I'm glad that I can weigh the options. If you're interested: Why are you doing this? I'm updating the MVC Music Store tutorial to ASP.NET MVC 4, taking advantage of a lot of new ASP.NET MVC 4 features and trying to simplify areas that are giving people trouble. One change that addresses both needs us using the new OAuth support for membership as much as possible - it's a great new feature from an application perspective, and we get a fair amount of beginners struggling with setting up membership on a variety of database and development setups, which is a distraction from the focus of the tutorial - learning ASP.NET MVC. Side note: Thanks to some great help from Rick Anderson, we had a draft of the tutorial that was looking pretty good earlier this summer, but there were enough changes in ASP.NET MVC 4 all the way up to RTM that there's still some work to be done. It's high priority and should be out very soon. The one issue I ran into with OAuth is that we still need an Administrative user who can edit the store's inventory. I thought about a number of solutions for that - making the first user to register the admin, or the first user to use the username "Administrator" is assigned to the Administrator role - but they both ended up requiring extra code; also, I worried that people would use that code without understanding it or thinking about whether it was a good fit.

    Read the article

  • Dynamically loading Assemblies to reduce Runtime Depencies

    - by Rick Strahl
    I've been working on a request to the West Wind Application Configuration library to add JSON support. The config library is a very easy to use code-first approach to configuration: You create a class that holds the configuration data that inherits from a base configuration class, and then assign a persistence provider at runtime that determines where and how the configuration data is store. Currently the library supports .NET Configuration stores (web.config/app.config), XML files, SQL records and string storage.About once a week somebody asks me about JSON support and I've deflected this question for the longest time because frankly I think that JSON as a configuration store doesn't really buy a heck of a lot over XML. Both formats require the user to perform some fixup of the plain configuration data - in XML into XML tags, with JSON using JSON delimiters for properties and property formatting rules. Sure JSON is a little less verbose and maybe a little easier to read if you have hierarchical data, but overall the differences are pretty minor in my opinion. And yet - the requests keep rolling in.Hard Link Issues in a Component LibraryAnother reason I've been hesitant is that I really didn't want to pull in a dependency on an external JSON library - in this case JSON.NET - into the core library. If you're not using JSON.NET elsewhere I don't want a user to have to require a hard dependency on JSON.NET unless they want to use the JSON feature. JSON.NET is also sensitive to versions and doesn't play nice with multiple versions when hard linked. For example, when you have a reference to V4.4 in your project but the host application has a reference to version 4.5 you can run into assembly load problems. NuGet's Update-Package can solve some of this *if* you can recompile, but that's not ideal for a component that's supposed to be just plug and play. This is no criticism of JSON.NET - this really applies to any dependency that might change.  So hard linking the DLL can be problematic for a number reasons, but the primary reason is to not force loading of JSON.NET unless you actually need it when you use the JSON configuration features of the library.Enter Dynamic LoadingSo rather than adding an assembly reference to the project, I decided that it would be better to dynamically load the DLL at runtime and then use dynamic typing to access various classes. This allows me to run without a hard assembly reference and allows more flexibility with version number differences now and in the future.But there are also a couple of downsides:No assembly reference means only dynamic access - no compiler type checking or IntellisenseRequirement for the host application to have reference to JSON.NET or else get runtime errorsThe former is minor, but the latter can be problematic. Runtime errors are always painful, but in this case I'm willing to live with this. If you want to use JSON configuration settings JSON.NET needs to be loaded in the project. If this is a Web project, it'll likely be there already.So there are a few things that are needed to make this work:Dynamically create an instance and optionally attempt to load an Assembly (if not loaded)Load types into dynamic variablesUse Reflection for a few tasks like statics/enumsThe dynamic keyword in C# makes the formerly most difficult Reflection part - method calls and property assignments - fairly painless. But as cool as dynamic is it doesn't handle all aspects of Reflection. Specifically it doesn't deal with object activation, truly dynamic (string based) member activation or accessing of non instance members, so there's still a little bit of work left to do with Reflection.Dynamic Object InstantiationThe first step in getting the process rolling is to instantiate the type you need to work with. This might be a two step process - loading the instance from a string value, since we don't have a hard type reference and potentially having to load the assembly. Although the host project might have a reference to JSON.NET, that instance might have not been loaded yet since it hasn't been accessed yet. In ASP.NET this won't be a problem, since ASP.NET preloads all referenced assemblies on AppDomain startup, but in other executable project, assemblies are just in time loaded only when they are accessed.Instantiating a type is a two step process: Finding the type reference and then activating it. Here's the generic code out of my ReflectionUtils library I use for this:/// <summary> /// Creates an instance of a type based on a string. Assumes that the type's /// </summary> /// <param name="typeName">Common name of the type</param> /// <param name="args">Any constructor parameters</param> /// <returns></returns> public static object CreateInstanceFromString(string typeName, params object[] args) { object instance = null; Type type = null; try { type = GetTypeFromName(typeName); if (type == null) return null; instance = Activator.CreateInstance(type, args); } catch { return null; } return instance; } /// <summary> /// Helper routine that looks up a type name and tries to retrieve the /// full type reference in the actively executing assemblies. /// </summary> /// <param name="typeName"></param> /// <returns></returns> public static Type GetTypeFromName(string typeName) { Type type = null; // Let default name binding find it type = Type.GetType(typeName, false); if (type != null) return type; // look through assembly list var assemblies = AppDomain.CurrentDomain.GetAssemblies(); // try to find manually foreach (Assembly asm in assemblies) { type = asm.GetType(typeName, false); if (type != null) break; } return type; } To use this for loading JSON.NET I have a small factory function that instantiates JSON.NET and sets a bunch of configuration settings on the generated object. The startup code also looks for failure and tries loading up the assembly when it fails since that's the main reason the load would fail. Finally it also caches the loaded instance for reuse (according to James the JSON.NET instance is thread safe and quite a bit faster when cached). Here's what the factory function looks like in JsonSerializationUtils:/// <summary> /// Dynamically creates an instance of JSON.NET /// </summary> /// <param name="throwExceptions">If true throws exceptions otherwise returns null</param> /// <returns>Dynamic JsonSerializer instance</returns> public static dynamic CreateJsonNet(bool throwExceptions = true) { if (JsonNet != null) return JsonNet; lock (SyncLock) { if (JsonNet != null) return JsonNet; // Try to create instance dynamic json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); if (json == null) { try { var ass = AppDomain.CurrentDomain.Load("Newtonsoft.Json"); json = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.JsonSerializer"); } catch (Exception ex) { if (throwExceptions) throw; return null; } } if (json == null) return null; json.ReferenceLoopHandling = (dynamic) ReflectionUtils.GetStaticProperty("Newtonsoft.Json.ReferenceLoopHandling", "Ignore"); // Enums as strings in JSON dynamic enumConverter = ReflectionUtils.CreateInstanceFromString("Newtonsoft.Json.Converters.StringEnumConverter"); json.Converters.Add(enumConverter); JsonNet = json; } return JsonNet; }This code's purpose is to return a fully configured JsonSerializer instance. As you can see the code tries to create an instance and when it fails tries to load the assembly, and then re-tries loading.Once the instance is loaded some configuration occurs on it. Specifically I set the ReferenceLoopHandling option to not blow up immediately when circular references are encountered. There are a host of other small config setting that might be useful to set, but the default seem to be good enough in recent versions. Note that I'm setting ReferenceLoopHandling which requires an Enum value to be set. There's no real easy way (short of using the cardinal numeric value) to set a property or pass parameters from static values or enums. This means I still need to use Reflection to make this work. I'm using the same ReflectionUtils class I previously used to handle this for me. The function looks up the type and then uses Type.InvokeMember() to read the static property.Another feature I need is have Enum values serialized as strings rather than numeric values which is the default. To do this I can use the StringEnumConverter to convert enums to strings by adding it to the Converters collection.As you can see there's still a bit of Reflection to be done even in C# 4+ with dynamic, but with a few helpers this process is relatively painless.Doing the actual JSON ConversionFinally I need to actually do my JSON conversions. For the Utility class I need serialization that works for both strings and files so I created four methods that handle these tasks two each for serialization and deserialization for string and file.Here's what the File Serialization looks like:/// <summary> /// Serializes an object instance to a JSON file. /// </summary> /// <param name="value">the value to serialize</param> /// <param name="fileName">Full path to the file to write out with JSON.</param> /// <param name="throwExceptions">Determines whether exceptions are thrown or false is returned</param> /// <param name="formatJsonOutput">if true pretty-formats the JSON with line breaks</param> /// <returns>true or false</returns> public static bool SerializeToFile(object value, string fileName, bool throwExceptions = false, bool formatJsonOutput = false) { dynamic writer = null; FileStream fs = null; try { Type type = value.GetType(); var json = CreateJsonNet(throwExceptions); if (json == null) return false; fs = new FileStream(fileName, FileMode.Create); var sw = new StreamWriter(fs, Encoding.UTF8); writer = Activator.CreateInstance(JsonTextWriterType, sw); if (formatJsonOutput) writer.Formatting = (dynamic)Enum.Parse(FormattingType, "Indented"); writer.QuoteChar = '"'; json.Serialize(writer, value); } catch (Exception ex) { Debug.WriteLine("JsonSerializer Serialize error: " + ex.Message); if (throwExceptions) throw; return false; } finally { if (writer != null) writer.Close(); if (fs != null) fs.Close(); } return true; }You can see more of the dynamic invocation in this code. First I grab the dynamic JsonSerializer instance using the CreateJsonNet() method shown earlier which returns a dynamic. I then create a JsonTextWriter and configure a couple of enum settings on it, and then call Serialize() on the serializer instance with the JsonTextWriter that writes the output to disk. Although this code is dynamic it's still fairly short and readable.For full circle operation here's the DeserializeFromFile() version:/// <summary> /// Deserializes an object from file and returns a reference. /// </summary> /// <param name="fileName">name of the file to serialize to</param> /// <param name="objectType">The Type of the object. Use typeof(yourobject class)</param> /// <param name="binarySerialization">determines whether we use Xml or Binary serialization</param> /// <param name="throwExceptions">determines whether failure will throw rather than return null on failure</param> /// <returns>Instance of the deserialized object or null. Must be cast to your object type</returns> public static object DeserializeFromFile(string fileName, Type objectType, bool throwExceptions = false) { dynamic json = CreateJsonNet(throwExceptions); if (json == null) return null; object result = null; dynamic reader = null; FileStream fs = null; try { fs = new FileStream(fileName, FileMode.Open, FileAccess.Read); var sr = new StreamReader(fs, Encoding.UTF8); reader = Activator.CreateInstance(JsonTextReaderType, sr); result = json.Deserialize(reader, objectType); reader.Close(); } catch (Exception ex) { Debug.WriteLine("JsonNetSerialization Deserialization Error: " + ex.Message); if (throwExceptions) throw; return null; } finally { if (reader != null) reader.Close(); if (fs != null) fs.Close(); } return result; }This code is a little more compact since there are no prettifying options to set. Here JsonTextReader is created dynamically and it receives the output from the Deserialize() operation on the serializer.You can take a look at the full JsonSerializationUtils.cs file on GitHub to see the rest of the operations, but the string operations are very similar - the code is fairly repetitive.These generic serialization utilities isolate the dynamic serialization logic that has to deal with the dynamic nature of JSON.NET, and any code that uses these functions is none the wiser that JSON.NET is dynamically loaded.Using the JsonSerializationUtils WrapperThe final consumer of the SerializationUtils wrapper is an actual ConfigurationProvider, that is responsible for handling reading and writing JSON values to and from files. The provider is simple a small wrapper around the SerializationUtils component and there's very little code to make this work now:The whole provider looks like this:/// <summary> /// Reads and Writes configuration settings in .NET config files and /// sections. Allows reading and writing to default or external files /// and specification of the configuration section that settings are /// applied to. /// </summary> public class JsonFileConfigurationProvider<TAppConfiguration> : ConfigurationProviderBase<TAppConfiguration> where TAppConfiguration: AppConfiguration, new() { /// <summary> /// Optional - the Configuration file where configuration settings are /// stored in. If not specified uses the default Configuration Manager /// and its default store. /// </summary> public string JsonConfigurationFile { get { return _JsonConfigurationFile; } set { _JsonConfigurationFile = value; } } private string _JsonConfigurationFile = string.Empty; public override bool Read(AppConfiguration config) { var newConfig = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfiguration)) as TAppConfiguration; if (newConfig == null) { if(Write(config)) return true; return false; } DecryptFields(newConfig); DataUtils.CopyObjectData(newConfig, config, "Provider,ErrorMessage"); return true; } /// <summary> /// Return /// </summary> /// <typeparam name="TAppConfig"></typeparam> /// <returns></returns> public override TAppConfig Read<TAppConfig>() { var result = JsonSerializationUtils.DeserializeFromFile(JsonConfigurationFile, typeof(TAppConfig)) as TAppConfig; if (result != null) DecryptFields(result); return result; } /// <summary> /// Write configuration to XmlConfigurationFile location /// </summary> /// <param name="config"></param> /// <returns></returns> public override bool Write(AppConfiguration config) { EncryptFields(config); bool result = JsonSerializationUtils.SerializeToFile(config, JsonConfigurationFile,false,true); // Have to decrypt again to make sure the properties are readable afterwards DecryptFields(config); return result; } }This incidentally demonstrates how easy it is to create a new provider for the West Wind Application Configuration component. Simply implementing 3 methods will do in most cases.Note this code doesn't have any dynamic dependencies - all that's abstracted away in the JsonSerializationUtils(). From here on, serializing JSON is just a matter of calling the static methods on the SerializationUtils class.Already, there are several other places in some other tools where I use JSON serialization this is coming in very handy. With a couple of lines of code I was able to add JSON.NET support to an older AJAX library that I use replacing quite a bit of code that was previously in use. And for any other manual JSON operations (in a couple of apps I use JSON Serialization for 'blob' like document storage) this is also going to be handy.Performance?Some of you might be thinking that using dynamic and Reflection can't be good for performance. And you'd be right… In performing some informal testing it looks like the performance of the native code is nearly twice as fast as the dynamic code. Most of the slowness is attributable to type lookups. To test I created a native class that uses an actual reference to JSON.NET and performance was consistently around 85-90% faster with the referenced code. That being said though - I serialized 10,000 objects in 80ms vs. 45ms so this isn't hardly slouchy. For the configuration component speed is not that important because both read and write operations typically happen once on first access and then every once in a while. But for other operations - say a serializer trying to handle AJAX requests on a Web Server one would be well served to create a hard dependency.Dynamic Loading - Worth it?On occasion dynamic loading makes sense. But there's a price to be paid in added code complexity and a performance hit. But for some operations that are not pivotal to a component or application and only used under certain circumstances dynamic loading can be beneficial to avoid having to ship extra files and loading down distributions. These days when you create new projects in Visual Studio with 30 assemblies before you even add your own code, trying to keep file counts under control seems a good idea. It's not the kind of thing you do on a regular basis, but when needed it can be a useful tool. Hopefully some of you find this information useful…© Rick Strahl, West Wind Technologies, 2005-2013Posted in .NET  C#   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Where'd My Data Go? (and/or...How Do I Get Rid of It?)

    - by David Paquette
    Want to get a better idea of how cascade deletes work in Entity Framework Code First scenarios? Want to see it in action? Stick with us as we quickly demystify what happens when you tell your data context to nuke a parent entity. This post is authored by Calgary .NET User Group Leader David Paquette with help from Microsoft MVP in Asp.Net James Chambers. We got to spend a great week back in March at Prairie Dev Con West, chalk full of sessions, presentations, workshops, conversations and, of course, questions.  One of the questions that came up during my session: "How does Entity Framework Code First deal with cascading deletes?". James and I had different thoughts on what the default was, if it was different from SQL server, if it was the same as EF proper and if there was a way to override whatever the default was.  So we built a set of examples and figured out that the answer is simple: it depends.  (Download Samples) Consider the example of a hockey league. You have several different entities in the league including games, teams that play the games and players that make up the teams. Each team also has a mascot.  If you delete a team, we need a couple of things to happen: The team, games and mascot will be deleted, and The players for that team will remain in the league (and therefore the database) but they should no longer be assigned to a team. So, let's make this start to come together with a look at the default behaviour in SQL when using an EDMX-driven project. The Reference – Understanding EF's Behaviour with an EDMX/DB First Approach First up let’s take a look at the DB first approach.  In the database, we defined 4 tables: Teams, Players, Mascots, and Games.  We also defined 4 foreign keys as follows: Players.Team_Id (NULL) –> Teams.Id Mascots.Id (NOT NULL) –> Teams.Id (ON DELETE CASCADE) Games.HomeTeam_Id (NOT NULL) –> Teams.Id Games.AwayTeam_Id (NOT NULL) –> Teams.Id Note that by specifying ON DELETE CASCADE for the Mascots –> Teams foreign key, the database will automatically delete the team’s mascot when the team is deleted.  While we want the same behaviour for the Games –> Teams foreign keys, it is not possible to accomplish this using ON DELETE CASCADE in SQL Server.  Specifying a ON DELETE CASCADE on these foreign keys would cause a circular reference error: The series of cascading referential actions triggered by a single DELETE or UPDATE must form a tree that contains no circular references. No table can appear more than one time in the list of all cascading referential actions that result from the DELETE or UPDATE – MSDN When we create an entity data model from the above database, we get the following:   In order to get the Games to be deleted when the Team is deleted, we need to specify End1 OnDelete action of Cascade for the HomeGames and AwayGames associations.   Now, we have an Entity Data Model that accomplishes what we set out to do.  One caveat here is that Entity Framework will only properly handle the cascading delete when the the players and games for the team have been loaded into memory.  For a more detailed look at Cascade Delete in EF Database First, take a look at this blog post by Alex James.   Building The Same Sample with EF Code First Next, we're going to build up the model with the code first approach.  EF Code First is defined on the Ado.Net team blog as such: Code First allows you to define your model using C# or VB.Net classes, optionally additional configuration can be performed using attributes on your classes and properties or by using a Fluent API. Your model can be used to generate a database schema or to map to an existing database. Entity Framework Code First follows some conventions to determine when to cascade delete on a relationship.  More details can be found on MSDN: If a foreign key on the dependent entity is not nullable, then Code First sets cascade delete on the relationship. If a foreign key on the dependent entity is nullable, Code First does not set cascade delete on the relationship, and when the principal is deleted the foreign key will be set to null. The multiplicity and cascade delete behavior detected by convention can be overridden by using the fluent API. For more information, see Configuring Relationships with Fluent API (Code First). Our DbContext consists of 4 DbSets: public DbSet<Team> Teams { get; set; } public DbSet<Player> Players { get; set; } public DbSet<Mascot> Mascots { get; set; } public DbSet<Game> Games { get; set; } When we set the Mascot –> Team relationship to required, Entity Framework will automatically delete the Mascot when the Team is deleted.  This can be done either using the [Required] data annotation attribute, or by overriding the OnModelCreating method of your DbContext and using the fluent API. Data Annotations: public class Mascot { public int Id { get; set; } public string Name { get; set; } [Required] public virtual Team Team { get; set; } } Fluent API: protected override void OnModelCreating(DbModelBuilder modelBuilder) { modelBuilder.Entity<Mascot>().HasRequired(m => m.Team); } The Player –> Team relationship is automatically handled by the Code First conventions. When a Team is deleted, the Team property for all the players on that team will be set to null.  No additional configuration is required, however all the Player entities must be loaded into memory for the cascading to work properly. The Game –> Team relationship causes some grief in our Code First example.  If we try setting the HomeTeam and AwayTeam relationships to required, Entity Framework will attempt to set On Cascade Delete for the HomeTeam and AwayTeam foreign keys when creating the database tables.  As we saw in the database first example, this causes a circular reference error and throws the following SqlException: Introducing FOREIGN KEY constraint 'FK_Games_Teams_AwayTeam_Id' on table 'Games' may cause cycles or multiple cascade paths. Specify ON DELETE NO ACTION or ON UPDATE NO ACTION, or modify other FOREIGN KEY constraints. Could not create constraint. To solve this problem, we need to disable the default cascade delete behaviour using the fluent API: protected override void OnModelCreating(DbModelBuilder modelBuilder) { modelBuilder.Entity<Mascot>().HasRequired(m => m.Team); modelBuilder.Entity<Team>() .HasMany(t => t.HomeGames) .WithRequired(g => g.HomeTeam) .WillCascadeOnDelete(false); modelBuilder.Entity<Team>() .HasMany(t => t.AwayGames) .WithRequired(g => g.AwayTeam) .WillCascadeOnDelete(false); base.OnModelCreating(modelBuilder); } Unfortunately, this means we need to manually manage the cascade delete behaviour.  When a Team is deleted, we need to manually delete all the home and away Games for that Team. foreach (Game awayGame in jets.AwayGames.ToArray()) { entities.Games.Remove(awayGame); } foreach (Game homeGame in homeGames) { entities.Games.Remove(homeGame); } entities.Teams.Remove(jets); entities.SaveChanges();   Overriding the Defaults – When and How To As you have seen, the default behaviour of Entity Framework Code First can be overridden using the fluent API.  This can be done by overriding the OnModelCreating method of your DbContext, or by creating separate model override files for each entity.  More information is available on MSDN.   Going Further These were simple examples but they helped us illustrate a couple of points. First of all, we were able to demonstrate the default behaviour of Entity Framework when dealing with cascading deletes, specifically how entity relationships affect the outcome. Secondly, we showed you how to modify the code and control the behaviour to get the outcome you're looking for. Finally, we showed you how easy it is to explore this kind of thing, and we're hoping that you get a chance to experiment even further. For example, did you know that: Entity Framework Code First also works seamlessly with SQL Azure (MSDN) Database creation defaults can be overridden using a variety of IDatabaseInitializers  (Understanding Database Initializers) You can use Code Based migrations to manage database upgrades as your model continues to evolve (MSDN) Next Steps There's no time like the present to start the learning, so here's what you need to do: Get up-to-date in Visual Studio 2010 (VS2010 | SP1) or Visual Studio 2012 (VS2012) Build yourself a project to try these concepts out (or download the sample project) Get into the community and ask questions! There are a ton of great resources out there and community members willing to help you out (like these two guys!). Good luck! About the Authors David Paquette works as a lead developer at P2 Energy Solutions in Calgary, Alberta where he builds commercial software products for the energy industry.  Outside of work, David enjoys outdoor camping, fishing, and skiing. David is also active in the software community giving presentations both locally and at conferences. David also serves as the President of Calgary .Net User Group. James Chambers crafts software awesomeness with an incredible team at LogiSense Corp, based in Cambridge, Ontario. A husband, father and humanitarian, he is currently residing in the province of Manitoba where he resists the urge to cheer for the Jets and maintains he allegiance to the Calgary Flames. When he's not active with the family, outdoors or volunteering, you can find James speaking at conferences and user groups across the country about web development and related technologies.

    Read the article

  • What is the best way to track / record the current programming project you work on? [duplicate]

    - by user2424160
    This question already has an answer here: Methodology for Documenting Existing Code Base 6 answers When do you start documenting the code? 13 answers Where should a programmer explain the extended logic behind the code? 5 answers I have been in this problem for long time and I want to know how it's done in real / big companies project? Suppose I have the project to build a website. Now I divide the project into sub tasks and do it. But you know that suppose I have task1 in hand like export the page to pdf. Now I spend 3 days to do that , came across various problems, many Stack Overflow questions and in the end I solve it. Now 4 months after someone told me that there is some error in the code. Now by that I completely forgot about (60%) of how I did it and why I do this way. I document the code but I can't write the whole story of that in the code. Then I have to spend much time on code to find what was the problem so that I added this line etc. I want to know that is there any way that i can log steps in completing the project. So that I can see how I end up with code, what errors I got, what questions I asked on SO and etc. How people do it in real time? Which software to use? I know in our project management software called JIRA we have tasks but that does not cover what steps I took to solve that tasks. What is the best way so that when I look back at my 2 year old project, I know how I solve particular task?

    Read the article

  • Adding complexity by generalising: how far should you go?

    - by marcog
    Reference question: http://stackoverflow.com/questions/4303813/help-with-interview-question The above question asked to solve a problem for an NxN matrix. While there was an easy solution, I gave a more general solution to solve the more general problem for an NxM matrix. A handful of people commented that this generalisation was bad because it made the solution more complex. One such comment is voted +8. Putting aside the hard-to-explain voting effects on SO, there are two types of complexity to be considered here: Runtime complexity, i.e. how fast does the code run Code complexity, i.e. how difficult is the code to read and understand The question of runtime complexity is something that requires a better understanding of the input data today and what it might look like in the future, taking the various growth factors into account where necessary. The question of code complexity is the one I'm interested in here. By generalising the solution, we avoid having to rewrite it in the event that the constraints change. However, at the same time it can often result in complicating the code. In the reference question, the code for NxN is easy to understand for any competent programmer, but the NxM case (unless documented well) could easily confuse someone coming across the code for the first time. So, my question is this: Where should you draw the line between generalising and keeping the code easy to understand?

    Read the article

  • What is your strategy for converting RC builds into retail?

    - by Matthew PK
    We're trying to implement a strategy for how we transition our builds from RC to released retail code. When we label a build as a release candidate, we send it to QA for regression. If they approve it, that RC then becomes our released retail code. I liked the idea of "obvious" labeling of versions so that a user knows whether they have a beta or an RC or retail code... where you would have some obvious watermark in non-retail code (think Windows 7 where the RC or non-genuine builds watermark in the bottom right). ... but it seemed strange to us to manipulate the project (to remove the watermark) once it passed regression. If QA certified version a.b.c.d then our retail code should be that same version, not a.b.c.d+1 what strategies have you employed to clearly label non-release software versions without incrementing your build to disable the watermarks in your retail code? One idea I've considered is writing your build to look for a signed file in the installer archive... non-release code wouldn't include this file and so the app would know to display a watermark. But even this seems like QA is then working with non-release code. Ideas?

    Read the article

  • Adding complexity by generalising: how far should you go?

    - by marcog
    Reference question: http://stackoverflow.com/questions/4303813/help-with-interview-question The above question asked to solve a problem for an NxN matrix. While there was an easy solution, I gave a more general solution to solve the more general problem for an NxM matrix. A handful of people commented that this generalisation was bad because it made the solution more complex. One such comment is voted +8. Putting aside the hard-to-explain voting effects on SO, there are two types of complexity to be considered here: Runtime complexity, i.e. how fast does the code run Code complexity, i.e. how difficult is the code to read and understand The question of runtime complexity is something that requires a better understanding of the input data today and what it might look like in the future, taking the various growth factors into account where necessary. The question of code complexity is the one I'm interested in here. By generalising the solution, we avoid having to rewrite it in the event that the constraints change. However, at the same time it can often result in complicating the code. In the reference question, the code for NxN is easy to understand for any competent programmer, but the NxM case (unless documented well) could easily confuse someone coming across the code for the first time. So, my question is this: Where should you draw the line between generalising and keeping the code easy to understand?

    Read the article

  • Using Telerik MVC with your own custom jQuery and or other plug-ins

    - by Steve Clements
    If you are using MVC it might be worth checking out the telerik controls (http://demos.telerik.com/aspnet-mvc), they are free if you are doing an internal or “not for profit” application. If however you do choose to use them, you could come up against a little problem I had.  Using the telerik controls with your own custom jQuery.  In my case I was using the jQuery UI dialog. It kept throwing an error where I was setting my div to a dialog. Code Snippet $("#textdialog").dialog({ The problem is when you use the telerik mvc stuff you need to call ScriptRegistrar Code Snippet @Html.Telerik().ScriptRegistrar() in order to setup the javascript for the controls. By default this adds a reference to jQuery and if you have already added a reference to jQuery because you are using it elsewhere, this causes a problem. I found the solution here And it was to change the above ScriptRegistrar call to this… Code Snippet @Html.Telerik().ScriptRegistrar().jQuery(false).DefaultGroup(g => g.Combined(true).Compress(true));   If you come across this one on stackoverflow it wont work – in my case the HtmlEditor would render no problem, but was unusable.  Which is the same as someone else found when using the tab control – they went to the bother of re-writing the ScriptRegistrar.  Not for me that one!!

    Read the article

  • Inheritance vs containment while extending a large legacy project

    - by Flot2011
    I have got a legacy Java project with a lot of code. The code uses MVC pattern and is well structured and well written. It also has a lot of unit tests and it is still actively maintained (bug fixing, minor features adding). Therefore I want to preserve the original structure and code style as much as possible. The new feature I am going to add is a conceptual one, so I have to make my changes all over the code. In order to minimize changes I decided not to extend existing classes but to use containment: class ExistingClass { // .... existing code // my code adding new functionality private ExistingClassExtension extension = new ExistingClassExtension(); public ExistingClassExtension getExtension() {return extension;} } ... // somewhere in code ExistingClass instance = new ExistingClass(); ... // when I need a new functionality instance.getExtension().newMethod1(); All functionality that I am adding is inside a new ExistingClassExtension class. Actually I am adding only these 2 lines to each class that needs to be extended. By doing so I also do not need to instantiate new, extended classes all over the code and I may use existing tests to make sure there is no regression. However my colleagues argue that in this situation doing so isn't a proper OOP approach, and I need to inherit from ExistingClass in order to add a new functionality. What do you think? I am aware of numerous inheritance/containment questions here, but I think my question is different.

    Read the article

  • What is the value to checking in broken unit tests?

    - by Adam W.
    While there are ways of keeping unit tests from being executed, what is the value of checking in broken unit tests? I will use a simple example. Case sensitivity. The current code is Case Sensitive. A valid input into the method is "Cat" and it would return an enum of Animal.Cat. However, the desired functionality of the method should not be case sensitive. So if the method described was passed "cat" it could possibly return something like Animal.Null instead of Animal.Cat and the unit test would fail. Though a simple code change would make this work, a more complex issue may take weeks to fix, but identifying the bug with a unit test could be a less complex task. The application currently being analyzed has 4 years of code that "works". However, recent discussions regarding unit tests has found flaws in the code. Some just need explicit implementation documentation (ex. case sensitive or not), or code that does not execute the bug based on how it is currently called. But unit tests can be created executing specific scenarios that will cause the bug to be seen and are valid inputs. What is the value of checking in unit tests that exercise the bug until someone can get around to fixing the code? Should this unit test be flagged with ignore, priority, category etc, to determine whether a build was successful based on tests executed? Eventually the unit test should be created to execute the code once someone fixes it. On one hand it shows that identified bugs have not been fixed. On the other, there could be hundreds of failed unit tests showing up in the logs and weeding through the ones that should fail vs. failures due to a code check-in would be difficult to find.

    Read the article

  • What is the value of checking in failing unit tests?

    - by Adam W.
    While there are ways of keeping unit tests from being executed, what is the value of checking in failing unit tests? I will use a simple example: Case Sensitivity. The current code is case sensitive. A valid input into the method is "Cat" and it would return an enum of Animal.Cat. However, the desired functionality of the method should not be case sensitive. So if the method described was passed "cat" it could possibly return something like Animal.Null instead of Animal.Cat and the unit test would fail. Though a simple code change would make this work, a more complex issue may take weeks to fix, but identifying the bug with a unit test could be a less complex task. The application currently being analyzed has 4 years of code that "works". However, recent discussions regarding unit tests have found flaws in the code. Some just need explicit implementation documentation (ex. case sensitive or not), or code that does not execute the bug based on how it is currently called. But unit tests can be created executing specific scenarios that will cause the bug to be seen and are valid inputs. What is the value of checking in unit tests that exercise the bug until someone can get around to fixing the code? Should this unit test be flagged with ignore, priority, category etc, to determine whether a build was successful based on tests executed? Eventually the unit test should be created to execute the code once someone fixes it. On one hand it shows that identified bugs have not been fixed. On the other, there could be hundreds of failed unit tests showing up in the logs and weeding through the ones that should fail vs. failures due to a code check-in would be difficult to find.

    Read the article

  • Why does Android make good coding so difficult?

    - by metacircle
    my daily work is writing tools in C#/WPF. After over more than 1 year on the job now, I came to love MVVM, IoC Containers, XAML (and more). It's pure fun to write code, since simple, maintainable and extendable code just comes naturally when you follow a few basic patterns. In my free time I really want to write some apps, mainly for my own personal use. I want to write apps for fun and not to make money or anything, that being said, paying an annual fee to be allowed to use my own apps on my own device is a total no-go for me. So I am not able to code for Windows Phone and am also not able to use Xamarin on Android (which is sad since Visual Studio + Resharper is programmers heaven). So I am stuck with Android "classic" Java development. Everytime I sit down at home to create an app, or improve some of the code I have already written I get annoyed very quick because getting good, decoupled code is just so hard to accomplish. It feels like everything you have to do in Android to create a good architecture is a workaround instead of being the way things are meant to be. Writing the UI in xml is fine, but everything else is one big code mess. Even all the tutorials do all their coding in the code behind. For 'hello world' this is fine, but for anything bigger this gets messy very very quick. This is where the fun for me ends. It's just no fun anymore because I just spend 90% of my time refactoring and thinking of workarounds how to make my code more maintainable with all the restrictions Android puts on me. Am I missing a crucial part or is this just the way Android is meant to be? Do you have any suggestions how to learn 'the fun way' of Android programming.

    Read the article

  • What is the value of checking in failing unit tests?

    - by user20194
    While there are ways of keeping unit tests from being executed, what is the value of checking in failing unit tests? I will use a simple example: Case Sensitivity. The current code is case sensitive. A valid input into the method is "Cat" and it would return an enum of Animal.Cat. However, the desired functionality of the method should not be case sensitive. So if the method described was passed "cat" it could possibly return something like Animal.Null instead of Animal.Cat and the unit test would fail. Though a simple code change would make this work, a more complex issue may take weeks to fix, but identifying the bug with a unit test could be a less complex task. The application currently being analyzed has 4 years of code that "works". However, recent discussions regarding unit tests have found flaws in the code. Some just need explicit implementation documentation (ex. case sensitive or not), or code that does not execute the bug based on how it is currently called. But unit tests can be created executing specific scenarios that will cause the bug to be seen and are valid inputs. What is the value of checking in unit tests that exercise the bug until someone can get around to fixing the code? Should this unit test be flagged with ignore, priority, category etc, to determine whether a build was successful based on tests executed? Eventually the unit test should be created to execute the code once someone fixes it. On one hand it shows that identified bugs have not been fixed. On the other, there could be hundreds of failed unit tests showing up in the logs and weeding through the ones that should fail vs. failures due to a code check-in would be difficult to find.

    Read the article

  • How do I map a composite primary key in Entity Framework 4 code first?

    - by jamesfm
    I'm getting to grips with EF4 code first, and liking it so far. But I'm having trouble mapping an entity to a table with a composite primary key. The configuration I've tried looks like this: public SubscriptionUserConfiguration() { Property(u => u.SubscriptionID).IsIdentity(); Property(u => u.UserName).IsIdentity(); } Which throws this exception: Unable to infer a key for entity type 'SubscriptionUser'. What am I missing?

    Read the article

  • Eclipse complains android:scrollbars and android:fadingEdge do not allow Strings - includes code.

    - by emanuel
    Having a problem in Eclipse with regards to an XML file. Eclipse complains that android:scrollbars and android:fadingEdge do not allow Strings. I checked the Android developer site and they do in fact accept strings in the xml file. A related question posed had the problem where there was a missing :android after xmlns. As you can see from the code the line beginning with xmlns is correct I believe. Here is the complete file contents: <?xml version="1.0" encoding="UTF-8"?> <com.example.todolist.TodoListItemView xmlns:android="http://schemas.android.com/apk/res/android" android:layout_width="fill_parent" android:layout_height="fill_parent" android:padding="10dp" android:scrollbars="verticle" android:textColor="@color/notepad_text" android:fadingEdge="verticle" />

    Read the article

< Previous Page | 326 327 328 329 330 331 332 333 334 335 336 337  | Next Page >