Search Results

Search found 18220 results on 729 pages for 'null hypothesis'.

Page 347/729 | < Previous Page | 343 344 345 346 347 348 349 350 351 352 353 354  | Next Page >

  • SQLBits - Unicode Porn

    - by Most Valuable Yak (Rob Volk)
    We've just finished up a fantastic event at SQLBits X in London!  If you've never been to SQLBits and you can make it to the UK, I highly recommend it.  If you didn't attend, here's what you missed. Meanwhile, for those who attended the Lightning Talk sessions and were disappointed that I ran out of time, here's the last part that you would have seen: /*    How to Lose Friends and Irritate People...With Unicode!     Rob Volk     SQLBits X - London - March 31, 2012 */ -- some sexy SQL DECLARE @oohbaby TABLE(i INT NOT NULL UNIQUE, uni_char AS NCHAR(i), hex AS CAST(i AS BINARY(2))) INSERT @oohbaby VALUES(664),(1022),(1023),(1120),(1150),(8857),(11609),(42420),(42427) -- change results font to larger size, some only work in grid font SELECT * FROM @oohbaby SELECT NCHAR(1022) + NCHAR(1023) AS Page3Girl It's probably better that you run this yourself, in the privacy of your own home/office, you know *wink* *wink* *nudge* *nudge* *say no more*

    Read the article

  • Coding error at open URL

    - by Lobo
    Hi, I have the following method to open a URL API String c=""; URL direccionURL; try { direccionURL = new URL("http://api.stackoverflow.com/1.0/users/523725"); BufferedReader in = new BufferedReader(new InputStreamReader( direccionURL.openStream())); String inputLine; while ((inputLine = in.readLine()) != null) c+=inputLine; in.close(); } catch (MalformedURLException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return c; In the end, the "c" variable contains a set of characters that are not the same I get if I open the same URL with a browser. Why?, What am I doing wrong? Thank's for help. Regards!

    Read the article

  • Syncing Data with a Server using Silverlight and HTTP Polling Duplex

    - by dwahlin
    Many applications have the need to stay in-sync with data provided by a service. Although web applications typically rely on standard polling techniques to check if data has changed, Silverlight provides several interesting options for keeping an application in-sync that rely on server “push” technologies. A few years back I wrote several blog posts covering different “push” technologies available in Silverlight that rely on sockets or HTTP Polling Duplex. We recently had a project that looked like it could benefit from pushing data from a server to one or more clients so I thought I’d revisit the subject and provide some updates to the original code posted. If you’ve worked with AJAX before in Web applications then you know that until browsers fully support web sockets or other duplex (bi-directional communication) technologies that it’s difficult to keep applications in-sync with a server without relying on polling. The problem with polling is that you have to check for changes on the server on a timed-basis which can often be wasteful and take up unnecessary resources. With server “push” technologies, data can be pushed from the server to the client as it changes. Once the data is received, the client can update the user interface as appropriate. Using “push” technologies allows the client to listen for changes from the data but stay 100% focused on client activities as opposed to worrying about polling and asking the server if anything has changed. Silverlight provides several options for pushing data from a server to a client including sockets, TCP bindings and HTTP Polling Duplex.  Each has its own strengths and weaknesses as far as performance and setup work with HTTP Polling Duplex arguably being the easiest to setup and get going.  In this article I’ll demonstrate how HTTP Polling Duplex can be used in Silverlight 4 applications to push data and show how you can create a WCF server that provides an HTTP Polling Duplex binding that a Silverlight client can consume.   What is HTTP Polling Duplex? Technologies that allow data to be pushed from a server to a client rely on duplex functionality. Duplex (or bi-directional) communication allows data to be passed in both directions.  A client can call a service and the server can call the client. HTTP Polling Duplex (as its name implies) allows a server to communicate with a client without forcing the client to constantly poll the server. It has the benefit of being able to run on port 80 making setup a breeze compared to the other options which require specific ports to be used and cross-domain policy files to be exposed on port 943 (as with sockets and TCP bindings). Having said that, if you’re looking for the best speed possible then sockets and TCP bindings are the way to go. But, they’re not the only game in town when it comes to duplex communication. The first time I heard about HTTP Polling Duplex (initially available in Silverlight 2) I wasn’t exactly sure how it was any better than standard polling used in AJAX applications. I read the Silverlight SDK, looked at various resources and generally found the following definition unhelpful as far as understanding the actual benefits that HTTP Polling Duplex provided: "The Silverlight client periodically polls the service on the network layer, and checks for any new messages that the service wants to send on the callback channel. The service queues all messages sent on the client callback channel and delivers them to the client when the client polls the service." Although the previous definition explained the overall process, it sounded as if standard polling was used. Fortunately, Microsoft’s Scott Guthrie provided me with a more clear definition several years back that explains the benefits provided by HTTP Polling Duplex quite well (used with his permission): "The [HTTP Polling Duplex] duplex support does use polling in the background to implement notifications – although the way it does it is different than manual polling. It initiates a network request, and then the request is effectively “put to sleep” waiting for the server to respond (it doesn’t come back immediately). The server then keeps the connection open but not active until it has something to send back (or the connection times out after 90 seconds – at which point the duplex client will connect again and wait). This way you are avoiding hitting the server repeatedly – but still get an immediate response when there is data to send." After hearing Scott’s definition the light bulb went on and it all made sense. A client makes a request to a server to check for changes, but instead of the request returning immediately, it parks itself on the server and waits for data. It’s kind of like waiting to pick up a pizza at the store. Instead of calling the store over and over to check the status, you sit in the store and wait until the pizza (the request data) is ready. Once it’s ready you take it back home (to the client). This technique provides a lot of efficiency gains over standard polling techniques even though it does use some polling of its own as a request is initially made from a client to a server. So how do you implement HTTP Polling Duplex in your Silverlight applications? Let’s take a look at the process by starting with the server. Creating an HTTP Polling Duplex WCF Service Creating a WCF service that exposes an HTTP Polling Duplex binding is straightforward as far as coding goes. Add some one way operations into an interface, create a client callback interface and you’re ready to go. The most challenging part comes into play when configuring the service to properly support the necessary binding and that’s more of a cut and paste operation once you know the configuration code to use. To create an HTTP Polling Duplex service you’ll need to expose server-side and client-side interfaces and reference the System.ServiceModel.PollingDuplex assembly (located at C:\Program Files (x86)\Microsoft SDKs\Silverlight\v4.0\Libraries\Server on my machine) in the server project. For the demo application I upgraded a basketball simulation service to support the latest polling duplex assemblies. The service simulates a simple basketball game using a Game class and pushes information about the game such as score, fouls, shots and more to the client as the game changes over time. Before jumping too far into the game push service, it’s important to discuss two interfaces used by the service to communicate in a bi-directional manner. The first is called IGameStreamService and defines the methods/operations that the client can call on the server (see Listing 1). The second is IGameStreamClient which defines the callback methods that a server can use to communicate with a client (see Listing 2).   [ServiceContract(Namespace = "Silverlight", CallbackContract = typeof(IGameStreamClient))] public interface IGameStreamService { [OperationContract(IsOneWay = true)] void GetTeamData(); } Listing 1. The IGameStreamService interface defines server operations that can be called on the server.   [ServiceContract] public interface IGameStreamClient { [OperationContract(IsOneWay = true)] void ReceiveTeamData(List<Team> teamData); [OperationContract(IsOneWay = true, AsyncPattern=true)] IAsyncResult BeginReceiveGameData(GameData gameData, AsyncCallback callback, object state); void EndReceiveGameData(IAsyncResult result); } Listing 2. The IGameStreamClient interfaces defines client operations that a server can call.   The IGameStreamService interface is decorated with the standard ServiceContract attribute but also contains a value for the CallbackContract property.  This property is used to define the interface that the client will expose (IGameStreamClient in this example) and use to receive data pushed from the service. Notice that each OperationContract attribute in both interfaces sets the IsOneWay property to true. This means that the operation can be called and passed data as appropriate, however, no data will be passed back. Instead, data will be pushed back to the client as it’s available.  Looking through the IGameStreamService interface you can see that the client can request team data whereas the IGameStreamClient interface allows team and game data to be received by the client. One interesting point about the IGameStreamClient interface is the inclusion of the AsyncPattern property on the BeginReceiveGameData operation. I initially created this operation as a standard one way operation and it worked most of the time. However, as I disconnected clients and reconnected new ones game data wasn’t being passed properly. After researching the problem more I realized that because the service could take up to 7 seconds to return game data, things were getting hung up. By setting the AsyncPattern property to true on the BeginReceivedGameData operation and providing a corresponding EndReceiveGameData operation I was able to get around this problem and get everything running properly. I’ll provide more details on the implementation of these two methods later in this post. Once the interfaces were created I moved on to the game service class. The first order of business was to create a class that implemented the IGameStreamService interface. Since the service can be used by multiple clients wanting game data I added the ServiceBehavior attribute to the class definition so that I could set its InstanceContextMode to InstanceContextMode.Single (in effect creating a Singleton service object). Listing 3 shows the game service class as well as its fields and constructor.   [ServiceBehavior(ConcurrencyMode = ConcurrencyMode.Multiple, InstanceContextMode = InstanceContextMode.Single)] public class GameStreamService : IGameStreamService { object _Key = new object(); Game _Game = null; Timer _Timer = null; Random _Random = null; Dictionary<string, IGameStreamClient> _ClientCallbacks = new Dictionary<string, IGameStreamClient>(); static AsyncCallback _ReceiveGameDataCompleted = new AsyncCallback(ReceiveGameDataCompleted); public GameStreamService() { _Game = new Game(); _Timer = new Timer { Enabled = false, Interval = 2000, AutoReset = true }; _Timer.Elapsed += new ElapsedEventHandler(_Timer_Elapsed); _Timer.Start(); _Random = new Random(); }} Listing 3. The GameStreamService implements the IGameStreamService interface which defines a callback contract that allows the service class to push data back to the client. By implementing the IGameStreamService interface, GameStreamService must supply a GetTeamData() method which is responsible for supplying information about the teams that are playing as well as individual players.  GetTeamData() also acts as a client subscription method that tracks clients wanting to receive game data.  Listing 4 shows the GetTeamData() method. public void GetTeamData() { //Get client callback channel var context = OperationContext.Current; var sessionID = context.SessionId; var currClient = context.GetCallbackChannel<IGameStreamClient>(); context.Channel.Faulted += Disconnect; context.Channel.Closed += Disconnect; IGameStreamClient client; if (!_ClientCallbacks.TryGetValue(sessionID, out client)) { lock (_Key) { _ClientCallbacks[sessionID] = currClient; } } currClient.ReceiveTeamData(_Game.GetTeamData()); //Start timer which when fired sends updated score information to client if (!_Timer.Enabled) { _Timer.Enabled = true; } } Listing 4. The GetTeamData() method subscribes a given client to the game service and returns. The key the line of code in the GetTeamData() method is the call to GetCallbackChannel<IGameStreamClient>().  This method is responsible for accessing the calling client’s callback channel. The callback channel is defined by the IGameStreamClient interface shown earlier in Listing 2 and used by the server to communicate with the client. Before passing team data back to the client, GetTeamData() grabs the client’s session ID and checks if it already exists in the _ClientCallbacks dictionary object used to track clients wanting callbacks from the server. If the client doesn’t exist it adds it into the collection. It then pushes team data from the Game class back to the client by calling ReceiveTeamData().  Since the service simulates a basketball game, a timer is then started if it’s not already enabled which is then used to randomly send data to the client. When the timer fires, game data is pushed down to the client. Listing 5 shows the _Timer_Elapsed() method that is called when the timer fires as well as the SendGameData() method used to send data to the client. void _Timer_Elapsed(object sender, ElapsedEventArgs e) { int interval = _Random.Next(3000, 7000); lock (_Key) { _Timer.Interval = interval; _Timer.Enabled = false; } SendGameData(_Game.GetGameData()); } private void SendGameData(GameData gameData) { var cbs = _ClientCallbacks.Where(cb => ((IContextChannel)cb.Value).State == CommunicationState.Opened); for (int i = 0; i < cbs.Count(); i++) { var cb = cbs.ElementAt(i).Value; try { cb.BeginReceiveGameData(gameData, _ReceiveGameDataCompleted, cb); } catch (TimeoutException texp) { //Log timeout error } catch (CommunicationException cexp) { //Log communication error } } lock (_Key) _Timer.Enabled = true; } private static void ReceiveGameDataCompleted(IAsyncResult result) { try { ((IGameStreamClient)(result.AsyncState)).EndReceiveGameData(result); } catch (CommunicationException) { // empty } catch (TimeoutException) { // empty } } LIsting 5. _Timer_Elapsed is used to simulate time in a basketball game. When _Timer_Elapsed() fires the SendGameData() method is called which iterates through the clients wanting to be notified of changes. As each client is identified, their respective BeginReceiveGameData() method is called which ultimately pushes game data down to the client. Recall that this method was defined in the client callback interface named IGameStreamClient shown earlier in Listing 2. Notice that BeginReceiveGameData() accepts _ReceiveGameDataCompleted as its second parameter (an AsyncCallback delegate defined in the service class) and passes the client callback as the third parameter. The initial version of the sample application had a standard ReceiveGameData() method in the client callback interface. However, sometimes the client callbacks would work properly and sometimes they wouldn’t which was a little baffling at first glance. After some investigation I realized that I needed to implement an asynchronous pattern for client callbacks to work properly since 3 – 7 second delays are occurring as a result of the timer. Once I added the BeginReceiveGameData() and ReceiveGameDataCompleted() methods everything worked properly since each call was handled in an asynchronous manner. The final task that had to be completed to get the server working properly with HTTP Polling Duplex was adding configuration code into web.config. In the interest of brevity I won’t post all of the code here since the sample application includes everything you need. However, Listing 6 shows the key configuration code to handle creating a custom binding named pollingDuplexBinding and associate it with the service’s endpoint.   <bindings> <customBinding> <binding name="pollingDuplexBinding"> <binaryMessageEncoding /> <pollingDuplex maxPendingSessions="2147483647" maxPendingMessagesPerSession="2147483647" inactivityTimeout="02:00:00" serverPollTimeout="00:05:00"/> <httpTransport /> </binding> </customBinding> </bindings> <services> <service name="GameService.GameStreamService" behaviorConfiguration="GameStreamServiceBehavior"> <endpoint address="" binding="customBinding" bindingConfiguration="pollingDuplexBinding" contract="GameService.IGameStreamService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange" /> </service> </services>   Listing 6. Configuring an HTTP Polling Duplex binding in web.config and associating an endpoint with it. Calling the Service and Receiving “Pushed” Data Calling the service and handling data that is pushed from the server is a simple and straightforward process in Silverlight. Since the service is configured with a MEX endpoint and exposes a WSDL file, you can right-click on the Silverlight project and select the standard Add Service Reference item. After the web service proxy is created you may notice that the ServiceReferences.ClientConfig file only contains an empty configuration element instead of the normal configuration elements created when creating a standard WCF proxy. You can certainly update the file if you want to read from it at runtime but for the sample application I fed the service URI directly to the service proxy as shown next: var address = new EndpointAddress("http://localhost.:5661/GameStreamService.svc"); var binding = new PollingDuplexHttpBinding(); _Proxy = new GameStreamServiceClient(binding, address); _Proxy.ReceiveTeamDataReceived += _Proxy_ReceiveTeamDataReceived; _Proxy.ReceiveGameDataReceived += _Proxy_ReceiveGameDataReceived; _Proxy.GetTeamDataAsync(); This code creates the proxy and passes the endpoint address and binding to use to its constructor. It then wires the different receive events to callback methods and calls GetTeamDataAsync().  Calling GetTeamDataAsync() causes the server to store the client in the server-side dictionary collection mentioned earlier so that it can receive data that is pushed.  As the server-side timer fires and game data is pushed to the client, the user interface is updated as shown in Listing 7. Listing 8 shows the _Proxy_ReceiveGameDataReceived() method responsible for handling the data and calling UpdateGameData() to process it.   Listing 7. The Silverlight interface. Game data is pushed from the server to the client using HTTP Polling Duplex. void _Proxy_ReceiveGameDataReceived(object sender, ReceiveGameDataReceivedEventArgs e) { UpdateGameData(e.gameData); } private void UpdateGameData(GameData gameData) { //Update Score this.tbTeam1Score.Text = gameData.Team1Score.ToString(); this.tbTeam2Score.Text = gameData.Team2Score.ToString(); //Update ball visibility if (gameData.Action != ActionsEnum.Foul) { if (tbTeam1.Text == gameData.TeamOnOffense) { AnimateBall(this.BB1, this.BB2); } else //Team 2 { AnimateBall(this.BB2, this.BB1); } } if (this.lbActions.Items.Count > 9) this.lbActions.Items.Clear(); this.lbActions.Items.Add(gameData.LastAction); if (this.lbActions.Visibility == Visibility.Collapsed) this.lbActions.Visibility = Visibility.Visible; } private void AnimateBall(Image onBall, Image offBall) { this.FadeIn.Stop(); Storyboard.SetTarget(this.FadeInAnimation, onBall); Storyboard.SetTarget(this.FadeOutAnimation, offBall); this.FadeIn.Begin(); } Listing 8. As the server pushes game data, the client’s _Proxy_ReceiveGameDataReceived() method is called to process the data. In a real-life application I’d go with a ViewModel class to handle retrieving team data, setup data bindings and handle data that is pushed from the server. However, for the sample application I wanted to focus on HTTP Polling Duplex and keep things as simple as possible.   Summary Silverlight supports three options when duplex communication is required in an application including TCP bindins, sockets and HTTP Polling Duplex. In this post you’ve seen how HTTP Polling Duplex interfaces can be created and implemented on the server as well as how they can be consumed by a Silverlight client. HTTP Polling Duplex provides a nice way to “push” data from a server while still allowing the data to flow over port 80 or another port of your choice.   Sample Application Download

    Read the article

  • Alien deletes .deb when converting from .rpm

    - by Andre
    I'm trying to convert .rpm to .deb using alien. sudo alien -k libtetra-1.0.0-2.i386.rpm Alien says that: libtetra-1.0.0-2.i386.deb generated But when I check the folder - there is just original .rpm and no .deb. Also - I can see that for a split second there is a .deb file in a folder. so it looks like alien create .deb and deletes it right away. I suspect that it's maybe because I run 64 bit os and package is 32? Can somebody explain why alien deletes .deb automatically? Verbose output: LANG=C rpm -qp --queryformat %{NAME} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{VERSION} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{RELEASE} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{ARCH} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{CHANGELOGTEXT} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{SUMMARY} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{DESCRIPTION} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{PREFIXES} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{POSTIN} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{POSTUN} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{PREUN} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{LICENSE} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{PREIN} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qcp libtetra-1.0.0-2.i386.rpm rpm -qpi libtetra-1.0.0-2.i386.rpm LANG=C rpm -qpl libtetra-1.0.0-2.i386.rpm mkdir libtetra-1.0.0 chmod 755 libtetra-1.0.0 rpm2cpio libtetra-1.0.0-2.i386.rpm | lzma -t -q > /dev/null 2>&1 rpm2cpio libtetra-1.0.0-2.i386.rpm | (cd libtetra-1.0.0; cpio --extract --make-directories --no-absolute-filenames --preserve-modification-time) 2>&1 chmod 755 libtetra-1.0.0/./ chmod 755 libtetra-1.0.0/./usr chmod 755 libtetra-1.0.0/./usr/lib chown 0:0 libtetra-1.0.0//usr/lib/libtetra.so.1.0.0 chmod 755 libtetra-1.0.0//usr/lib/libtetra.so.1.0.0 mkdir libtetra-1.0.0/debian date -R date -R chmod 755 libtetra-1.0.0/debian/rules debian/rules binary 2>&1 libtetra_1.0.0-3_i386.deb generated find libtetra-1.0.0 -type d -exec chmod 755 {} ; rm -rf libtetra-1.0.0 Very Verbose output LANG=C rpm -qp --queryformat %{NAME} libtetra-1.0.0-2.i386.rpm libtetra LANG=C rpm -qp --queryformat %{VERSION} libtetra-1.0.0-2.i386.rpm 1.0.0 LANG=C rpm -qp --queryformat %{RELEASE} libtetra-1.0.0-2.i386.rpm 2 LANG=C rpm -qp --queryformat %{ARCH} libtetra-1.0.0-2.i386.rpm i386 LANG=C rpm -qp --queryformat %{CHANGELOGTEXT} libtetra-1.0.0-2.i386.rpm - First RPM Package LANG=C rpm -qp --queryformat %{SUMMARY} libtetra-1.0.0-2.i386.rpm Panasonic KX-MC6000 series Printer Driver for Linux. LANG=C rpm -qp --queryformat %{DESCRIPTION} libtetra-1.0.0-2.i386.rpm This software is Panasonic KX-MC6000 series Printer Driver for Linux. You can print from applications by using CUPS(Common Unix Printing System) which is the printing system for Linux. Other functions for KX-MC6000 series are not supported by this software. LANG=C rpm -qp --queryformat %{PREFIXES} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qp --queryformat %{POSTIN} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qp --queryformat %{POSTUN} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qp --queryformat %{PREUN} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qp --queryformat %{LICENSE} libtetra-1.0.0-2.i386.rpm GPL and LGPL (Version2) LANG=C rpm -qp --queryformat %{PREIN} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qcp libtetra-1.0.0-2.i386.rpm rpm -qpi libtetra-1.0.0-2.i386.rpm Name : libtetra Relocations: (not relocatable) Version : 1.0.0 Vendor: Panasonic Communications Co., Ltd. Release : 2 Build Date: Tue 27 Apr 2010 05:16:40 AM EDT Install Date: (not installed) Build Host: localhost.localdomain Group : System Environment/Daemons Source RPM: libtetra-1.0.0-2.src.rpm Size : 31808 License: GPL and LGPL (Version2) Signature : (none) URL : http://panasonic.net/pcc/support/fax/world.htm Summary : Panasonic KX-MC6000 series Printer Driver for Linux. Description : This software is Panasonic KX-MC6000 series Printer Driver for Linux. You can print from applications by using CUPS(Common Unix Printing System) which is the printing system for Linux. Other functions for KX-MC6000 series are not supported by this software. LANG=C rpm -qpl libtetra-1.0.0-2.i386.rpm /usr/lib/libtetra.so /usr/lib/libtetra.so.1.0.0 mkdir libtetra-1.0.0 chmod 755 libtetra-1.0.0 rpm2cpio libtetra-1.0.0-2.i386.rpm | lzma -t -q > /dev/null 2>&1 rpm2cpio libtetra-1.0.0-2.i386.rpm | (cd libtetra-1.0.0; cpio --extract --make-directories --no-absolute-filenames --preserve-modification-time) 2>&1 63 blocks chmod 755 libtetra-1.0.0/./ chmod 755 libtetra-1.0.0/./usr chmod 755 libtetra-1.0.0/./usr/lib chown 0:0 libtetra-1.0.0//usr/lib/libtetra.so.1.0.0 chmod 755 libtetra-1.0.0//usr/lib/libtetra.so.1.0.0 mkdir libtetra-1.0.0/debian date -R Mon, 07 Feb 2011 11:03:58 -0500 date -R Mon, 07 Feb 2011 11:03:58 -0500 chmod 755 libtetra-1.0.0/debian/rules debian/rules binary 2>&1 dh_testdir dh_testdir dh_testroot dh_clean -k -d dh_clean: No packages to build. dh_installdirs dh_installdocs dh_installchangelogs find . -maxdepth 1 -mindepth 1 -not -name debian -print0 | \ xargs -0 -r -i cp -a {} debian/ dh_compress dh_makeshlibs dh_installdeb dh_shlibdeps dh_gencontrol dh_md5sums dh_builddeb libtetra_1.0.0-2_i386.deb generated find libtetra-1.0.0 -type d -exec chmod 755 {} ; rm -rf libtetra-1.0.0

    Read the article

  • Metro: Using Templates

    - by Stephen.Walther
    The goal of this blog post is to describe how templates work in the WinJS library. In particular, you learn how to use a template to display both a single item and an array of items. You also learn how to load a template from an external file. Why use Templates? Imagine that you want to display a list of products in a page. The following code is bad: var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productsHTML = ""; for (var i = 0; i < products.length; i++) { productsHTML += "<h1>Product Details</h1>" + "<div>Product Name: " + products[i].name + "</div>" + "<div>Product Price: " + products[i].price + "</div>"; } document.getElementById("productContainer").innerHTML = productsHTML; In the code above, an array of products is displayed by creating a for..next loop which loops through each element in the array. A string which represents a list of products is built through concatenation. The code above is a designer’s nightmare. You cannot modify the appearance of the list of products without modifying the JavaScript code. A much better approach is to use a template like this: <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> A template is simply a fragment of HTML that contains placeholders. Instead of displaying a list of products by concatenating together a string, you can render a template for each product. Creating a Simple Template Let’s start by using a template to render a single product. The following HTML page contains a template and a placeholder for rendering the template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> In the page above, the template is defined in a DIV element with the id productTemplate. The contents of the productTemplate are not displayed when the page is opened in the browser. The contents of a template are automatically hidden when you convert the productTemplate into a template in your JavaScript code. Notice that the template uses data-win-bind attributes to display the product name and price properties. You can use both data-win-bind and data-win-bindsource attributes within a template. To learn more about these attributes, see my earlier blog post on WinJS data binding: http://stephenwalther.com/blog/archive/2012/02/26/windows-web-applications-declarative-data-binding.aspx The page above also includes a DIV element named productContainer. The rendered template is added to this element. Here’s the code for the default.js script which creates and renders the template: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var product = { name: "Tesla", price: 80000 }; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); productTemplate.render(product, document.getElementById("productContainer")); } }; app.start(); })(); In the code above, a single product object is created with the following line of code: var product = { name: "Tesla", price: 80000 }; Next, the productTemplate element from the page is converted into an actual WinJS template with the following line of code: var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); The template is rendered to the templateContainer element with the following line of code: productTemplate.render(product, document.getElementById("productContainer")); The result of this work is that the product details are displayed: Notice that you do not need to call WinJS.Binding.processAll(). The Template render() method takes care of the binding for you. Displaying an Array in a Template If you want to display an array of products using a template then you simply need to create a for..next loop and iterate through the array calling the Template render() method for each element. (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); After each product in the array is rendered with the template, the result is appended to the productContainer element. No changes need to be made to the HTML page discussed in the previous section to display an array of products instead of a single product. The same product template can be used in both scenarios. Rendering an HTML TABLE with a Template When using the WinJS library, you create a template by creating an HTML element in your page. One drawback to this approach of creating templates is that your templates are part of your HTML page. In order for your HTML page to validate, the HTML within your templates must also validate. This means, for example, that you cannot enclose a single HTML table row within a template. The following HTML is invalid because you cannot place a TR element directly within the body of an HTML document:   <!-- Product Template --> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> This template won’t validate because, in a valid HTML5 document, a TR element must appear within a THEAD or TBODY element. Instead, you must create the entire TABLE element in the template. The following HTML page illustrates how you can create a template which contains a TR element: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> <!-- Place where Product Template is Rendered --> <table> <thead> <tr> <th>Name</th><th>Price</th> </tr> </thead> <tbody id="productContainer"> </tbody> </table> </body> </html>   In the HTML page above, the product template includes TABLE and TBODY elements: <!-- Product Template --> <div id="productTemplate"> <table> <tbody> <tr> <td data-win-bind="innerText:name"></td> <td data-win-bind="innerText:price"></td> </tr> </tbody> </table> </div> We discard these elements when we render the template. The only reason that we include the TABLE and THEAD elements in the template is to make the HTML page validate as valid HTML5 markup. Notice that the productContainer (the target of the template) in the page above is a TBODY element. We want to add the rows rendered by the template to the TBODY element in the page. The productTemplate is rendered in the default.js file: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(document.getElementById("productTemplate")); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); } } }; app.start(); })(); When the product template is rendered, the TR element is extracted from the rendered template by using the WinJS.Utilities.query() method. Next, only the TR element is added to the productContainer: productTemplate.render(product).then(function (result) { row = WinJS.Utilities.query("tr", result).get(0); productContainer.appendChild(row); }); I discuss the WinJS.Utilities.query() method in depth in a previous blog entry: http://stephenwalther.com/blog/archive/2012/02/23/windows-web-applications-query-selectors.aspx When everything gets rendered, the products are displayed in an HTML table: You can see the actual HTML rendered by looking at the Visual Studio DOM Explorer window:   Loading an External Template Instead of embedding a template in an HTML page, you can place your template in an external HTML file. It makes sense to create a template in an external file when you need to use the same template in multiple pages. For example, you might need to use the same product template in multiple pages in your application. The following HTML page does not contain a template. It only contains a container that will act as a target for the rendered template: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>Application1</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- Application1 references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> </head> <body> <!-- Place where Product Template is Rendered --> <div id="productContainer"></div> </body> </html> The template is contained in a separate file located at the path /templates/productTemplate.html:   Here’s the contents of the productTemplate.html file: <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> Notice that the template file only contains the template and not the standard opening and closing HTML elements. It is an HTML fragment. If you prefer, you can include all of the standard opening and closing HTML elements in your external template – these elements get stripped away automatically: <html> <head><title>product template</title></head> <body> <!-- Product Template --> <div id="productTemplate"> <h1>Product Details</h1> <div> Product Name: <span data-win-bind="innerText:name"></span> </div> <div> Product Price: <span data-win-bind="innerText:price"></span> </div> </div> </body> </html> Either approach – using a fragment or using a full HTML document  — works fine. Finally, the following default.js file loads the external template, renders the template for each product, and appends the result to the product container: (function () { "use strict"; var app = WinJS.Application; app.onactivated = function (eventObject) { if (eventObject.detail.kind === Windows.ApplicationModel.Activation.ActivationKind.launch) { var products = [ { name: "Tesla", price: 80000 }, { name: "VW Rabbit", price: 200 }, { name: "BMW", price: 60000 } ]; var productTemplate = new WinJS.Binding.Template(null, { href: "/templates/productTemplate.html" }); var productContainer = document.getElementById("productContainer"); var i, product, row; for (i = 0; i < products.length; i++) { product = products[i]; productTemplate.render(product, productContainer); } } }; app.start(); })(); The path to the external template is passed to the constructor for the Template class as one of the options: var productTemplate = new WinJS.Binding.Template(null, {href:"/templates/productTemplate.html"}); When a template is contained in a page then you use the first parameter of the WinJS.Binding.Template constructor to represent the template – instead of null, you pass the element which contains the template. When a template is located in an external file, you pass the href for the file as part of the second parameter for the WinJS.Binding.Template constructor. Summary The goal of this blog entry was to describe how you can use WinJS templates to render either a single item or an array of items to a page. We also explored two advanced topics. You learned how to render an HTML table by extracting the TR element from a template. You also learned how to place a template in an external file.

    Read the article

  • Handling Trailing Delimiters in HL7 Messages

    - by Thomas Canter
    Applies to: BizTalk Server 2006 with the HL7 1.3 Accelerator Outline of the problem Trailing Delimiters are empty values at the end of an object in a HL7 ER7 formatted message. Examples: Empty Field NTE|P| NTE|P|| Empty component ORC|1|725^ Empty Subcomponent ORC|1|||||27& Empty repeat OBR|1||||||||027~ Trailing delimiters indicate the following object exists and is empty, which is quite different from null, null is an explicit value indicated by a pair of double quotes -> "". The BizTalk HL7 Accelerator by default does not allow trailing delimiters. There are three methods to allow trailing delimiters. NOTE: All Schemas always allow trailing delimiters in the MSH Segment Using party identifiers MSH3.1 – Receive/inbound processing, using this value as a party allows you to configure the system to allow inbound trailing delimiters. MSH5.1 – Send/outbound processing, using this value as a party allows you to configure the system to allow outbound trailing delimiters. Generally, if you allow inbound trailing delimiters, unless you are willing to programmatically remove all trailing delimiters, then you need to configure the send to allow trailing delimiters. Add the appropriate parties to the BizTalk Parties list from these two fields in your message stream. Open the BizTalk HL7 Configuration tool and for each party check the "Allow trailing delimiters (separators)" check box on the Validation tab. Disadvantage – Each MSH3.1 and MSH5.1 value must be represented in the parties list and configured. Advantage – granular control over system behavior for each inbound/outbound system. Using instance properties of a pipeline used in a send port or receive location. Open the BizTalk Server Administration console locate the send port or receive location that contains the BTAHL72XReceivePipeline or BTAHL72XSendPipeline pipeline. Open the properties To the right of the pipeline selected locate the […] ellipses button In the property list, locate the "TrailingDelimiterAllowed" property and set it to True. Advantage – All messages through a particular Send Port or Receive Location will allow trailing delimiters. Disadvantage – Must configure each Send Port or Receive Location. No granular control over which remote parties will send or receive messages with trailing delimiters. Using a custom pipeline that uses a pre-configured BTA HL7 Pipeline component. Use Visual Studio to construct a custom receive and send pipeline using the appropriate assembler or dissasembler. Set the component property to "TrailingDelimitersAllowed" to True Compile and deploy the custom pipeline Use the custom pipeline instead of the standard pipeline for all HL7 message processing Advantage – All messages using the custom pipeline will automatically allow trailing delimiters. Disadvantage – Requires custom coding and development to create and deploy the custom pipeline. No granular control over which remote parties will send or receive messages with trailing delimiters. What does a Trailing Delimiter do to the XML Schema? Allowing trailing delimiters does not have the impact often expected in the actual XML Schema.The Schema reproduces the message with no data loss.Thus, the message when represented in XML must contain the extra fields, in order to reproduce the outbound message.Thus, a trialing delimiter results in an empty XML field.Trailing Delmiters are not stripped from the inbound message. Example:<PID_21>44172</PID_21><PID_21>9257</PID_21> -> the original maximum number of repeats<PID_21></PID_21> -> The empty repeated field Allowing trailing delimiters not remove the trailing delimiters from the message, it simply suppresses the check that will cause the message to fail parse with trailing delimiters. When can you not fix the problem by enabling trailing delimiters Each object in a message must have a location in the target BTAHL7 schema for its content to reside.If you have more objects in the message than are contained at that location, then enabling trailing delimiters will not resolve the problem. The schema must be extended to accommodate the empty message content.Examples: Extra Field NTE|P||||Only 4 fields in NTE Segment, the 4th field exists, but is empty. Extra component PID|1|1523|47^^^^^^^Only 5 components in a CX data type, the 5th component exists, but is empty Extra subcomponent ORC|1|||||27&&Only 2 subcomponents in a CQ data type, the 3rd subcomponent is empty, but exists. Extra Repeat PID|1||||||||||||||||||||4419~5217~Only 2 repeats allowed for the field "Mother's identifier", the repeat is empty, but exists. In each of these cases, you must locate the failing object and extend the type to allow an additional object of that type. FieldAdd a field of ST to the end of the segment with a suitable name in the segments_nnn.xsd Component Create a new Custom CX data type (i.e. CX_XtraComp) in the datatypes_nnn.xsd and add a new component to the custom CX data type. Update the field in the segments_nnn.xsd file to use the custom data type instead of the standard datatype. Subcomponent Create a new Custom CQ data type that accepts an additional TS value at the end of the data type. Create a custom TQ data type that uses the new custom CQ data type as the first subcomponent. Modify the ORC segment to use the new CQ data type at ORC.7 instead of the standard CQ data type. RepeatModify the Field definition for PID.21 in the segments_nnn.xsd to allow more repeats in the field.

    Read the article

  • TDD and WCF behavior

    - by Frederic Hautecoeur
    Some weeks ago I wanted to develop a WCF behavior using TDD. I have lost some time trying to use mocks. After a while i decided to just use a host and a client. I don’t like this approach but so far I haven’t found a good and fast solution to use Unit Test for testing a WCF behavior. To Implement my solution I had to : Create a Dummy Service Definition; Create the Dummy Service Implementation; Create a host; Create a client in my test; Create and Add the behavior; Dummy Service Definition This is just a simple service, composed of an Interface and a simple implementation. The structure is aimed to be easily customizable for my future needs.   Using Clauses : 1: using System.Runtime.Serialization; 2: using System.ServiceModel; 3: using System.ServiceModel.Channels; The DataContract: 1: [DataContract()] 2: public class MyMessage 3: { 4: [DataMember()] 5: public string MessageString; 6: } The request MessageContract: 1: [MessageContract()] 2: public class RequestMessage 3: { 4: [MessageHeader(Name = "MyHeader", Namespace = "http://dummyservice/header", Relay = true)] 5: public string myHeader; 6:  7: [MessageBodyMember()] 8: public MyMessage myRequest; 9: } The response MessageContract: 1: [MessageContract()] 2: public class ResponseMessage 3: { 4: [MessageHeader(Name = "MyHeader", Namespace = "http://dummyservice/header", Relay = true)] 5: public string myHeader; 6:  7: [MessageBodyMember()] 8: public MyMessage myResponse; 9: } The ServiceContract: 1: [ServiceContract(Name="DummyService", Namespace="http://dummyservice",SessionMode=SessionMode.Allowed )] 2: interface IDummyService 3: { 4: [OperationContract(Action="Perform", IsOneWay=false, ProtectionLevel=System.Net.Security.ProtectionLevel.None )] 5: ResponseMessage DoThis(RequestMessage request); 6: } Dummy Service Implementation 1: public class DummyService:IDummyService 2: { 3: #region IDummyService Members 4: public ResponseMessage DoThis(RequestMessage request) 5: { 6: ResponseMessage response = new ResponseMessage(); 7: response.myHeader = "Response"; 8: response.myResponse = new MyMessage(); 9: response.myResponse.MessageString = 10: string.Format("Header:<{0}> and Request was <{1}>", 11: request.myHeader, request.myRequest.MessageString); 12: return response; 13: } 14: #endregion 15: } Host Creation The most simple host implementation using a Named Pipe binding. The GetBinding method will create a binding for the host and can be used to create the same binding for the client. 1: public static class TestHost 2: { 3: 4: internal static string hostUri = "net.pipe://localhost/dummy"; 5:  6: // Create Host method. 7: internal static ServiceHost CreateHost() 8: { 9: ServiceHost host = new ServiceHost(typeof(DummyService)); 10:  11: // Creating Endpoint 12: Uri namedPipeAddress = new Uri(hostUri); 13: host.AddServiceEndpoint(typeof(IDummyService), GetBinding(), namedPipeAddress); 14:  15: return host; 16: } 17:  18: // Binding Creation method. 19: internal static Binding GetBinding() 20: { 21: NamedPipeTransportBindingElement namedPipeTransport = new NamedPipeTransportBindingElement(); 22: TextMessageEncodingBindingElement textEncoding = new TextMessageEncodingBindingElement(); 23:  24: return new CustomBinding(textEncoding, namedPipeTransport); 25: } 26:  27: // Close Method. 28: internal static void Close(ServiceHost host) 29: { 30: if (null != host) 31: { 32: host.Close(); 33: host = null; 34: } 35: } 36: } Checking the service A simple test tool check the plumbing. 1: [TestMethod] 2: public void TestService() 3: { 4: using (ServiceHost host = TestHost.CreateHost()) 5: { 6: host.Open(); 7:  8: using (ChannelFactory<IDummyService> channel = 9: new ChannelFactory<IDummyService>(TestHost.GetBinding() 10: , new EndpointAddress(TestHost.hostUri))) 11: { 12: IDummyService svc = channel.CreateChannel(); 13: try 14: { 15: RequestMessage request = new RequestMessage(); 16: request.myHeader = Guid.NewGuid().ToString(); 17: request.myRequest = new MyMessage(); 18: request.myRequest.MessageString = "I want some beer."; 19:  20: ResponseMessage response = svc.DoThis(request); 21: } 22: catch (Exception ex) 23: { 24: Assert.Fail(ex.Message); 25: } 26: } 27: host.Close(); 28: } 29: } Running the service should show that the client and the host are running fine. So far so good. Adding the Behavior Add a reference to the Behavior project and add the using entry in the test class. We just need to add the behavior to the service host : 1: [TestMethod] 2: public void TestService() 3: { 4: using (ServiceHost host = TestHost.CreateHost()) 5: { 6: host.Description.Behaviors.Add(new MyBehavior()); 7: host.Open();¨ 8: …  If you set a breakpoint in your behavior and run the test in debug mode, you will hit the breakpoint. In this case I used a ServiceBehavior. To add an Endpoint behavior you have to add it to the endpoints. 1: host.Description.Endpoints[0].Behaviors.Add(new MyEndpointBehavior()) To add a contract or an operation behavior a custom attribute should work on the service contract definition. I haven’t tried that yet.   All the code provided in this blog and in the following files are for sample use. Improvements I don’t like to instantiate a client and a service to test my behaviors. But so far I have' not found an easy way to do it. Today I am passing a type of endpoint to the host creator and it creates the right binding type. This allows me to easily switch between bindings at will. I have used the same approach to test Mex Endpoints, another post should come later for this. Enjoy !

    Read the article

  • The purpose of using a constants pool for immutable constants

    - by patstuart
    Originally posted at stackoverflow.com/q/23961260 I come across the following code with a lot of frequency: if (myArray.length == Constants.ZERO_INT) or if (myString != null && !myString.equals(Constants.EMPTY_STRING)) Neither of these makes much sense to me. Isn't the point of having a constant pool for ease of code appearance and to allow for modularity? In both of the above cases, it just looks like needless noise that accomplishes neither objective. My question: what is the purpose of using a constants pool for variables like this which will never change? Or is this just cargo cult programming? If so, then why does it seem to be prevalent in the industry? (I've noticed it with at least two different employers I've worked with).

    Read the article

  • Shell script issue: cron job script to Restart MySQL server when it stops accidentally

    - by Straw Hat
    I have this script, I am using it to setup CRON job to execute this script, so it can check if MySQL service is running; if not then it restart the MySQL service: #!/bin/bash service mysql status| grep 'mysql start/running' > /dev/null 2>&1 if [ $? != 0 ] then sudo service mysql restart fi I have setup cron job as. sudo crontab -e and then added, */1 * * * * /home/ubuntu/mysql-check.sh Problem is that it restart MySQL on every cron job execution.. even if server is running it restart the MySQL service what is correction in the script to do that.

    Read the article

  • Workarounds for supporting MVVM in the Silverlight TreeView Control

    - by cibrax
    MVVM (Model-View-ViewModel) is the pattern that you will typically choose for building testable user interfaces either in WPF or Silverlight. This pattern basically relies on the data binding support in those two technologies for mapping an existing model class (the view model) to the different parts of the UI or view. Unfortunately, MVVM was not threated as first citizen for some of controls released out of the box in the Silverlight runtime or the Silverlight toolkit. That means that using data binding for implementing MVVM is not always something trivial and usually requires some customization in the existing controls. In ran into different problems myself trying to fully support data binding in controls like the tree view or the context menu or things like drag & drop.  For that reason, I decided to write this post to show how the tree view control or the tree view items can be customized to support data binding in many of its properties. In first place, you will typically use a tree view for showing hierarchical data so the view model somehow must reflect that hierarchy. An easy way to implement hierarchy in a model is to use a base item element like this one, public abstract class TreeItemModel { public abstract IEnumerable<TreeItemModel> Children; } You can later derive your concrete model classes from that base class. For example, public class CustomerModel { public string FullName { get; set; } public string Address { get; set; } public IEnumerable<OrderModel> Orders { get; set; } }   public class CustomerTreeItemModel : TreeItemModel { public CustomerTreeItemModel(CustomerModel customer) { }   public override IEnumerable<TreeItemModel> Children { get { // Return orders } } } The Children property in the CustomerTreeItem model implementation can return for instance an ObservableCollection<TreeItemModel> with the orders, so the tree view will automatically subscribe to all the changes in the collection. You can bind this model to the tree view control in the UI by using a Hierarchical data template. <e:TreeView x:Name="TreeView" ItemsSource="{Binding Customers}"> <e:TreeView.ItemTemplate> <sdk:HierarchicalDataTemplate ItemsSource="{Binding Children}"> <!-- TEMPLATE --> </sdk:HierarchicalDataTemplate> </e:TreeView.ItemTemplate> </e:TreeView> An interesting behavior with the Children property and the Hierarchical data template is that the Children property is only invoked before the expansion, so you can use lazy load at this point (The tree view control will not expand the whole tree in the first expansion). The problem with using MVVM in this control is that you can not bind properties in model with specific properties of the TreeView item such as IsSelected or IsExpanded. Here is where you need to customize the existing tree view control to support data binding in tree items. public class CustomTreeView : TreeView { public CustomTreeView() { }   protected override DependencyObject GetContainerForItemOverride() { CustomTreeViewItem tvi = new CustomTreeViewItem(); Binding expandedBinding = new Binding("IsExpanded"); expandedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsExpandedProperty, expandedBinding); Binding selectedBinding = new Binding("IsSelected"); selectedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsSelectedProperty, selectedBinding); return tvi; } }   public class CustomTreeViewItem : TreeViewItem { public CustomTreeViewItem() { }   protected override DependencyObject GetContainerForItemOverride() { CustomTreeViewItem tvi = new CustomTreeViewItem(); Binding expandedBinding = new Binding("IsExpanded"); expandedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsExpandedProperty, expandedBinding); Binding selectedBinding = new Binding("IsSelected"); selectedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsSelectedProperty, selectedBinding); return tvi; } } You basically need to derive the TreeView and TreeViewItem controls to manually add a binding for the properties you need. In the example above, I am adding a binding for the “IsExpanded” and “IsSelected” properties in the items. The model for the tree items now needs to be extended to support those properties as well, public abstract class TreeItemModel : INotifyPropertyChanged { bool isExpanded = false; bool isSelected = false;   public abstract IEnumerable<TreeItemModel> Children { get; }   public bool IsExpanded { get { return isExpanded; } set { isExpanded = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("IsExpanded")); } }   public bool IsSelected { get { return isSelected; } set { isSelected = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("IsSelected")); } }   public event PropertyChangedEventHandler PropertyChanged; } However, as soon as you use this custom tree view control, you lose all the automatic styles from the built-in toolkit themes because they are tied to the control type (TreeView in this case).  The only ugly workaround I found so far for this problem is to copy the styles from the Toolkit source code and reuse them in the application.

    Read the article

  • SQL SERVER – SSMS: Top Object and Batch Execution Statistics Reports

    - by Pinal Dave
    The month of June till mid of July has been the fever of sports. First, it was Wimbledon Tennis and then the Soccer fever was all over. There is a huge number of fan followers and it is great to see the level at which people sometimes worship these sports. Being an Indian, I cannot forget to mention the India tour of England later part of July. Following these sports and as the events unfold to the finals, there are a number of ways the statisticians can slice and dice the numbers. Cue from soccer I can surely say there is a team performance against another team and then there is individual member fairs against a particular opponent. Such statistics give us a fair idea to how a team in the past or in the recent past has fared against each other, head-to-head stats during World cup and during other neutral venue games. All these statistics are just pointers. In reality, they don’t reflect the calibre of the current team because the individuals who performed in each of these games are totally different (Typical example being the Brazil Vs Germany semi-final match in FIFA 2014). So at times these numbers are misleading. It is worth investigating and get the next level information. Similar to these statistics, SQL Server Management studio is also equipped with a number of reports like a) Object Execution Statistics report and b) Batch Execution Statistics reports. As discussed in the example, the team scorecard is like the Batch Execution statistics and individual stats is like Object Level statistics. The analogy can be taken only this far, trust me there is no correlation between SQL Server functioning and playing sports – It is like I think about diet all the time except while I am eating. Performance – Batch Execution Statistics Let us view the first report which can be invoked from Server Node -> Reports -> Standard Reports -> Performance – Batch Execution Statistics. Most of the values that are displayed in this report come from the DMVs sys.dm_exec_query_stats and sys.dm_exec_sql_text(sql_handle). This report contains 3 distinctive sections as outline below.   Section 1: This is a graphical bar graph representation of Average CPU Time, Average Logical reads and Average Logical Writes for individual batches. The Batch numbers are indicative and the details of individual batch is available in section 3 (detailed below). Section 2: This represents a Pie chart of all the batches by Total CPU Time (%) and Total Logical IO (%) by batches. This graphical representation tells us which batch consumed the highest CPU and IO since the server started, provided plan is available in the cache. Section 3: This is the section where we can find the SQL statements associated with each of the batch Numbers. This also gives us the details of Average CPU / Average Logical Reads and Average Logical Writes in the system for the given batch with object details. Expanding the rows, I will also get the # Executions and # Plans Generated for each of the queries. Performance – Object Execution Statistics The second report worth a look is Object Execution statistics. This is a similar report as the previous but turned on its head by SQL Server Objects. The report has 3 areas to look as above. Section 1 gives the Average CPU, Average IO bar charts for specific objects. The section 2 is a graphical representation of Total CPU by objects and Total Logical IO by objects. The final section details the various objects in detail with the Avg. CPU, IO and other details which are self-explanatory. At a high-level both the reports are based on queries on two DMVs (sys.dm_exec_query_stats and sys.dm_exec_sql_text) and it builds values based on calculations using columns in them: SELECT * FROM    sys.dm_exec_query_stats s1 CROSS APPLY sys.dm_exec_sql_text(sql_handle) AS s2 WHERE   s2.objectid IS NOT NULL AND DB_NAME(s2.dbid) IS NOT NULL ORDER BY  s1.sql_handle; This is one of the simplest form of reports and in future blogs we will look at more complex reports. I truly hope that these reports can give DBAs and developers a hint about what is the possible performance tuning area. As a closing point I must emphasize that all above reports pick up data from the plan cache. If a particular query has consumed a lot of resources earlier, but plan is not available in the cache, none of the above reports would show that bad query. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL Tagged: SQL Reports

    Read the article

  • How to retrieve the Identity (@@IDENTITY) of a record you just inserted into a table.

    - by Edward Boyle
    SELECT @@IDENTITY will retrive that last generated @@IDENTITY from the current connection. int thisid = (int)cmd.ExecuteScalar("SELECT @@IDENTITY",conn); If there is another write in another connection you do not have to worry. Again, @@IDENTITY will retrieve last generated @@IDENTITY from the current connection. Null if no @@IDENTITY was generated on this connection. Another method is to append ;SELECT @@IDENTITY to your SQL Insert and use ExecuteScalar() What was: INSERT INTO STUFF(Field) VALUES(1) ... cmd.ExecuteNonQuery(); Becomes: string cstring= "INSERT INTO STUFF(Field) VALUES(1);SELECT @@IDENTITY"; int thisid = (int)cmd.ExecuteScalar(cstring, conn); In SQL Server Compact Edition you must send your commands in one at a time, you can not append ;SELECT @@IDENTITY to an insert.

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • Alien deletes .deb when converting from .rpm

    - by Stann
    I'm trying to convert .rpm to .deb using alien. sudo alien -k libtetra-1.0.0-2.i386.rpm Alien says that: libtetra-1.0.0-2.i386.deb generated But when I check the folder - there is just original .rpm and no .deb. Also - I can see that for a split second there is a .deb file in a folder. so it looks like alien create .deb and deletes it right away. I suspect that it's maybe because I run 64 bit os and package is 32? Can somebody explain why alien deletes .deb automatically? Verbose output: LANG=C rpm -qp --queryformat %{NAME} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{VERSION} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{RELEASE} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{ARCH} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{CHANGELOGTEXT} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{SUMMARY} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{DESCRIPTION} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{PREFIXES} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{POSTIN} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{POSTUN} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{PREUN} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{LICENSE} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qp --queryformat %{PREIN} libtetra-1.0.0-2.i386.rpm LANG=C rpm -qcp libtetra-1.0.0-2.i386.rpm rpm -qpi libtetra-1.0.0-2.i386.rpm LANG=C rpm -qpl libtetra-1.0.0-2.i386.rpm mkdir libtetra-1.0.0 chmod 755 libtetra-1.0.0 rpm2cpio libtetra-1.0.0-2.i386.rpm | lzma -t -q > /dev/null 2>&1 rpm2cpio libtetra-1.0.0-2.i386.rpm | (cd libtetra-1.0.0; cpio --extract --make-directories --no-absolute-filenames --preserve-modification-time) 2>&1 chmod 755 libtetra-1.0.0/./ chmod 755 libtetra-1.0.0/./usr chmod 755 libtetra-1.0.0/./usr/lib chown 0:0 libtetra-1.0.0//usr/lib/libtetra.so.1.0.0 chmod 755 libtetra-1.0.0//usr/lib/libtetra.so.1.0.0 mkdir libtetra-1.0.0/debian date -R date -R chmod 755 libtetra-1.0.0/debian/rules debian/rules binary 2>&1 libtetra_1.0.0-3_i386.deb generated find libtetra-1.0.0 -type d -exec chmod 755 {} ; rm -rf libtetra-1.0.0 Very Verbose output LANG=C rpm -qp --queryformat %{NAME} libtetra-1.0.0-2.i386.rpm libtetra LANG=C rpm -qp --queryformat %{VERSION} libtetra-1.0.0-2.i386.rpm 1.0.0 LANG=C rpm -qp --queryformat %{RELEASE} libtetra-1.0.0-2.i386.rpm 2 LANG=C rpm -qp --queryformat %{ARCH} libtetra-1.0.0-2.i386.rpm i386 LANG=C rpm -qp --queryformat %{CHANGELOGTEXT} libtetra-1.0.0-2.i386.rpm - First RPM Package LANG=C rpm -qp --queryformat %{SUMMARY} libtetra-1.0.0-2.i386.rpm Panasonic KX-MC6000 series Printer Driver for Linux. LANG=C rpm -qp --queryformat %{DESCRIPTION} libtetra-1.0.0-2.i386.rpm This software is Panasonic KX-MC6000 series Printer Driver for Linux. You can print from applications by using CUPS(Common Unix Printing System) which is the printing system for Linux. Other functions for KX-MC6000 series are not supported by this software. LANG=C rpm -qp --queryformat %{PREFIXES} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qp --queryformat %{POSTIN} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qp --queryformat %{POSTUN} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qp --queryformat %{PREUN} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qp --queryformat %{LICENSE} libtetra-1.0.0-2.i386.rpm GPL and LGPL (Version2) LANG=C rpm -qp --queryformat %{PREIN} libtetra-1.0.0-2.i386.rpm (none) LANG=C rpm -qcp libtetra-1.0.0-2.i386.rpm rpm -qpi libtetra-1.0.0-2.i386.rpm Name : libtetra Relocations: (not relocatable) Version : 1.0.0 Vendor: Panasonic Communications Co., Ltd. Release : 2 Build Date: Tue 27 Apr 2010 05:16:40 AM EDT Install Date: (not installed) Build Host: localhost.localdomain Group : System Environment/Daemons Source RPM: libtetra-1.0.0-2.src.rpm Size : 31808 License: GPL and LGPL (Version2) Signature : (none) URL : http://panasonic.net/pcc/support/fax/world.htm Summary : Panasonic KX-MC6000 series Printer Driver for Linux. Description : This software is Panasonic KX-MC6000 series Printer Driver for Linux. You can print from applications by using CUPS(Common Unix Printing System) which is the printing system for Linux. Other functions for KX-MC6000 series are not supported by this software. LANG=C rpm -qpl libtetra-1.0.0-2.i386.rpm /usr/lib/libtetra.so /usr/lib/libtetra.so.1.0.0 mkdir libtetra-1.0.0 chmod 755 libtetra-1.0.0 rpm2cpio libtetra-1.0.0-2.i386.rpm | lzma -t -q > /dev/null 2>&1 rpm2cpio libtetra-1.0.0-2.i386.rpm | (cd libtetra-1.0.0; cpio --extract --make-directories --no-absolute-filenames --preserve-modification-time) 2>&1 63 blocks chmod 755 libtetra-1.0.0/./ chmod 755 libtetra-1.0.0/./usr chmod 755 libtetra-1.0.0/./usr/lib chown 0:0 libtetra-1.0.0//usr/lib/libtetra.so.1.0.0 chmod 755 libtetra-1.0.0//usr/lib/libtetra.so.1.0.0 mkdir libtetra-1.0.0/debian date -R Mon, 07 Feb 2011 11:03:58 -0500 date -R Mon, 07 Feb 2011 11:03:58 -0500 chmod 755 libtetra-1.0.0/debian/rules debian/rules binary 2>&1 dh_testdir dh_testdir dh_testroot dh_clean -k -d dh_clean: No packages to build. dh_installdirs dh_installdocs dh_installchangelogs find . -maxdepth 1 -mindepth 1 -not -name debian -print0 | \ xargs -0 -r -i cp -a {} debian/ dh_compress dh_makeshlibs dh_installdeb dh_shlibdeps dh_gencontrol dh_md5sums dh_builddeb libtetra_1.0.0-2_i386.deb generated find libtetra-1.0.0 -type d -exec chmod 755 {} ; rm -rf libtetra-1.0.0 Resolution Oh well. It looks like it's perhaps a bug? or I don't know. I simply installed 32-bit version of Ubuntu in VirtualBox and converted package there. For some reason I couldn't convert 32-bit package in 64 OS. and that is that. If someone ever finds the reason ffor this behavior - plz. post somewhere in comments. Thanks

    Read the article

  • Slow boot on Ubuntu 12.04

    - by Hailwood
    My Ubuntu is booting really slow (Windows is booting faster...). I am using Ubuntu a Dell Inspiron 1545 Pentium(R) Dual-Core CPU T4300 @ 2.10GHz, 4GB Ram, 500GB HDD running Ubuntu 12.04 with gnome-shell 3.4.1. After running dmesg the culprit seems to be this section, in particular the last three lines: [26.557659] ADDRCONF(NETDEV_UP): eth0: link is not ready [26.565414] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.355355] Console: switching to colour frame buffer device 170x48 [27.362346] fb0: radeondrmfb frame buffer device [27.362347] drm: registered panic notifier [27.362357] [drm] Initialized radeon 2.12.0 20080528 for 0000:01:00.0 on minor 0 [27.617435] init: udev-fallback-graphics main process (1049) terminated with status 1 [30.064481] init: plymouth-stop pre-start process (1500) terminated with status 1 [51.708241] CE: hpet increased min_delta_ns to 20113 nsec [59.448029] eth2: no IPv6 routers present But I have no idea how to start debugging this. sudo lshw -C video $ sudo lshw -C video *-display description: VGA compatible controller product: RV710 [Mobility Radeon HD 4300 Series] vendor: Hynix Semiconductor (Hyundai Electronics) physical id: 0 bus info: pci@0000:01:00.0 version: 00 width: 32 bits clock: 33MHz capabilities: pm pciexpress msi vga_controller bus_master cap_list rom configuration: driver=fglrx_pci latency=0 resources: irq:48 memory:e0000000-efffffff ioport:de00(size=256) memory:f6df0000-f6dfffff memory:f6d00000-f6d1ffff After loading the propriety driver my new dmesg log is below (starting from the first major time gap): [2.983741] EXT4-fs (sda6): mounted filesystem with ordered data mode. Opts: (null) [25.094327] ADDRCONF(NETDEV_UP): eth0: link is not ready [25.119737] udevd[520]: starting version 175 [25.167086] lp: driver loaded but no devices found [25.215341] fglrx: module license 'Proprietary. (C) 2002 - ATI Technologies, Starnberg, GERMANY' taints kernel. [25.215345] Disabling lock debugging due to kernel taint [25.231924] wmi: Mapper loaded [25.318414] lib80211: common routines for IEEE802.11 drivers [25.318418] lib80211_crypt: registered algorithm 'NULL' [25.331631] [fglrx] Maximum main memory to use for locked dma buffers: 3789 MBytes. [25.332095] [fglrx] vendor: 1002 device: 9552 count: 1 [25.334206] [fglrx] ioport: bar 1, base 0xde00, size: 0x100 [25.334229] pci 0000:01:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16 [25.334235] pci 0000:01:00.0: setting latency timer to 64 [25.337109] [fglrx] Kernel PAT support is enabled [25.337140] [fglrx] module loaded - fglrx 8.96.4 [Mar 12 2012] with 1 minors [25.342803] Adding 4189180k swap on /dev/sda7. Priority:-1 extents:1 across:4189180k [25.364031] type=1400 audit(1338241723.027:2): apparmor="STATUS" operation="profile_load" name="/sbin/dhclient" pid=606 comm="apparmor_parser" [25.364491] type=1400 audit(1338241723.031:3): apparmor="STATUS" operation="profile_load" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=606 comm="apparmor_parser" [25.364760] type=1400 audit(1338241723.031:4): apparmor="STATUS" operation="profile_load" name="/usr/lib/connman/scripts/dhclient-script" pid=606 comm="apparmor_parser" [25.394328] wl 0000:0c:00.0: PCI INT A -> GSI 17 (level, low) -> IRQ 17 [25.394343] wl 0000:0c:00.0: setting latency timer to 64 [25.415531] acpi device:36: registered as cooling_device2 [25.416688] input: Video Bus as /devices/LNXSYSTM:00/device:00/PNP0A03:00/device:34/LNXVIDEO:00/input/input6 [25.416795] ACPI: Video Device [VID] (multi-head: yes rom: no post: no) [25.416865] [Firmware Bug]: Duplicate ACPI video bus devices for the same VGA controller, please try module parameter "video.allow_duplicates=1"if the current driver doesn't work. [25.425133] lib80211_crypt: registered algorithm 'TKIP' [25.448058] snd_hda_intel 0000:00:1b.0: PCI INT A -> GSI 21 (level, low) -> IRQ 21 [25.448321] snd_hda_intel 0000:00:1b.0: irq 47 for MSI/MSI-X [25.448353] snd_hda_intel 0000:00:1b.0: setting latency timer to 64 [25.738867] eth1: Broadcom BCM4315 802.11 Hybrid Wireless Controller 5.100.82.38 [25.761213] input: HDA Intel Mic as /devices/pci0000:00/0000:00:1b.0/sound/card0/input7 [25.761406] input: HDA Intel Headphone as /devices/pci0000:00/0000:00:1b.0/sound/card0/input8 [25.783432] dcdbas dcdbas: Dell Systems Management Base Driver (version 5.6.0-3.2) [25.908318] EXT4-fs (sda6): re-mounted. Opts: errors=remount-ro [25.928155] input: Dell WMI hotkeys as /devices/virtual/input/input9 [25.960561] udevd[543]: renamed network interface eth1 to eth2 [26.285688] init: failsafe main process (835) killed by TERM signal [26.396426] input: PS/2 Mouse as /devices/platform/i8042/serio2/input/input10 [26.423108] input: AlpsPS/2 ALPS GlidePoint as /devices/platform/i8042/serio2/input/input11 [26.511297] Bluetooth: Core ver 2.16 [26.511383] NET: Registered protocol family 31 [26.511385] Bluetooth: HCI device and connection manager initialized [26.511388] Bluetooth: HCI socket layer initialized [26.511391] Bluetooth: L2CAP socket layer initialized [26.512079] Bluetooth: SCO socket layer initialized [26.530164] Bluetooth: BNEP (Ethernet Emulation) ver 1.3 [26.530168] Bluetooth: BNEP filters: protocol multicast [26.553893] type=1400 audit(1338241724.219:5): apparmor="STATUS" operation="profile_replace" name="/sbin/dhclient" pid=928 comm="apparmor_parser" [26.554860] Bluetooth: RFCOMM TTY layer initialized [26.554866] Bluetooth: RFCOMM socket layer initialized [26.554868] Bluetooth: RFCOMM ver 1.11 [26.557910] type=1400 audit(1338241724.223:6): apparmor="STATUS" operation="profile_load" name="/usr/lib/lightdm/lightdm/lightdm-guest-session-wrapper" pid=927 comm="apparmor_parser" [26.559166] type=1400 audit(1338241724.223:7): apparmor="STATUS" operation="profile_replace" name="/usr/lib/NetworkManager/nm-dhcp-client.action" pid=928 comm="apparmor_parser" [26.559574] type=1400 audit(1338241724.223:8): apparmor="STATUS" operation="profile_replace" name="/usr/lib/connman/scripts/dhclient-script" pid=928 comm="apparmor_parser" [26.575519] type=1400 audit(1338241724.239:9): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/mission-control-5" pid=931 comm="apparmor_parser" [26.581100] type=1400 audit(1338241724.247:10): apparmor="STATUS" operation="profile_load" name="/usr/lib/telepathy/telepathy-*" pid=931 comm="apparmor_parser" [26.582794] type=1400 audit(1338241724.247:11): apparmor="STATUS" operation="profile_load" name="/usr/bin/evince" pid=929 comm="apparmor_parser" [26.605672] ppdev: user-space parallel port driver [27.592475] sky2 0000:09:00.0: eth0: enabling interface [27.604329] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.606962] ADDRCONF(NETDEV_UP): eth0: link is not ready [27.852509] vesafb: mode is 1024x768x32, linelength=4096, pages=0 [27.852513] vesafb: scrolling: redraw [27.852515] vesafb: Truecolor: size=0:8:8:8, shift=0:16:8:0 [27.852523] mtrr: type mismatch for e0000000,400000 old: write-back new: write-combining [27.852527] mtrr: type mismatch for e0000000,200000 old: write-back new: write-combining [27.852531] mtrr: type mismatch for e0000000,100000 old: write-back new: write-combining [27.852534] mtrr: type mismatch for e0000000,80000 old: write-back new: write-combining [27.852538] mtrr: type mismatch for e0000000,40000 old: write-back new: write-combining [27.852541] mtrr: type mismatch for e0000000,20000 old: write-back new: write-combining [27.852544] mtrr: type mismatch for e0000000,10000 old: write-back new: write-combining [27.852548] mtrr: type mismatch for e0000000,8000 old: write-back new: write-combining [27.852551] mtrr: type mismatch for e0000000,4000 old: write-back new: write-combining [27.852554] mtrr: type mismatch for e0000000,2000 old: write-back new: write-combining [27.852558] mtrr: type mismatch for e0000000,1000 old: write-back new: write-combining [27.853154] vesafb: framebuffer at 0xe0000000, mapped to 0xffffc90005580000, using 3072k, total 3072k [27.853405] Console: switching to colour frame buffer device 128x48 [27.853426] fb0: VESA VGA frame buffer device [28.539800] fglrx_pci 0000:01:00.0: irq 48 for MSI/MSI-X [28.540552] [fglrx] Firegl kernel thread PID: 1168 [28.540679] [fglrx] Firegl kernel thread PID: 1169 [28.540789] [fglrx] Firegl kernel thread PID: 1170 [28.540932] [fglrx] IRQ 48 Enabled [29.845620] [fglrx] Gart USWC size:1236 M. [29.845624] [fglrx] Gart cacheable size:489 M. [29.845629] [fglrx] Reserved FB block: Shared offset:0, size:1000000 [29.845632] [fglrx] Reserved FB block: Unshared offset:fc21000, size:3df000 [29.845635] [fglrx] Reserved FB block: Unshared offset:1fffb000, size:5000 [59.700023] eth2: no IPv6 routers present

    Read the article

  • Why do we keep using CSV?

    - by Stephen
    Why do we keep using CSV? I recently made a shift to working the health domain and despite the wonderful work in data transfer standards, all data transfer is in CSV, both for reporting to external organisations, and for data migrations when implementing new systems. Unfortunately the use of CSV is the cause of the endless repetition of the same stupid errors, with the same waste of developer time. (bad escaping, failing to handle null fields etc.) I know we can do better, and anything between JSON and XML (depending on the instance) would be fine. (Most of the time this is data going from one MS SQLserver 2005 to another!) I feel as if each time I see this happening I am literally watching one developer waste anothers time. So why do we keep shafting each other? When will we stop?

    Read the article

  • Implementing an Interceptor Using NHibernate’s Built In Dynamic Proxy Generator

    - by Ricardo Peres
    NHibernate 3.2 came with an included proxy generator, which means there is no longer the need – or the possibility, for that matter – to choose Castle DynamicProxy, LinFu or Spring. This is actually a good thing, because it means one less assembly to deploy. Apparently, this generator was based, at least partially, on LinFu. As there are not many tutorials out there demonstrating it’s usage, here’s one, for demonstrating one of the most requested features: implementing INotifyPropertyChanged. This interceptor, of course, will still feature all of NHibernate’s functionalities that you are used to, such as lazy loading, and such. We will start by implementing an NHibernate interceptor, by inheriting from the base class NHibernate.EmptyInterceptor. This class does not do anything by itself, but it allows us to plug in behavior by overriding some of its methods, in this case, Instantiate: 1: public class NotifyPropertyChangedInterceptor : EmptyInterceptor 2: { 3: private ISession session = null; 4:  5: private static readonly ProxyFactory factory = new ProxyFactory(); 6:  7: public override void SetSession(ISession session) 8: { 9: this.session = session; 10: base.SetSession(session); 11: } 12:  13: public override Object Instantiate(String clazz, EntityMode entityMode, Object id) 14: { 15: Type entityType = Type.GetType(clazz); 16: IProxy proxy = factory.CreateProxy(entityType, new _NotifyPropertyChangedInterceptor(), typeof(INotifyPropertyChanged)) as IProxy; 17: 18: _NotifyPropertyChangedInterceptor interceptor = proxy.Interceptor as _NotifyPropertyChangedInterceptor; 19: interceptor.Proxy = this.session.SessionFactory.GetClassMetadata(entityType).Instantiate(id, entityMode); 20:  21: this.session.SessionFactory.GetClassMetadata(entityType).SetIdentifier(proxy, id, entityMode); 22:  23: return (proxy); 24: } 25: } Then we need a class that implements the NHibernate dynamic proxy behavior, let’s place it inside our interceptor, because it will only need to be used there: 1: class _NotifyPropertyChangedInterceptor : NHibernate.Proxy.DynamicProxy.IInterceptor 2: { 3: private PropertyChangedEventHandler changed = delegate { }; 4:  5: public Object Proxy 6: { 7: get; 8: set;} 9:  10: #region IInterceptor Members 11:  12: public Object Intercept(InvocationInfo info) 13: { 14: Boolean isSetter = info.TargetMethod.Name.StartsWith("set_") == true; 15: Object result = null; 16:  17: if (info.TargetMethod.Name == "add_PropertyChanged") 18: { 19: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 20: this.changed += propertyChangedEventHandler; 21: } 22: else if (info.TargetMethod.Name == "remove_PropertyChanged") 23: { 24: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 25: this.changed -= propertyChangedEventHandler; 26: } 27: else 28: { 29: result = info.TargetMethod.Invoke(this.Proxy, info.Arguments); 30: } 31:  32: if (isSetter == true) 33: { 34: String propertyName = info.TargetMethod.Name.Substring("set_".Length); 35: this.changed(this.Proxy, new PropertyChangedEventArgs(propertyName)); 36: } 37:  38: return (result); 39: } 40:  41: #endregion 42: } What this does for every interceptable method (those who are either virtual or from the INotifyPropertyChanged) is: For methods that came from the INotifyPropertyChanged interface, add_PropertyChanged and remove_PropertyChanged (yes, events are methods ), we add an implementation that adds or removes the event handlers to the delegate which we declared as changed; For all the others, we direct them to the place where they are actually implemented, which is the Proxy field; If the call is setting a property, it fires afterwards the PropertyChanged event. In order to use this, we need to add the interceptor to the Configuration before building the ISessionFactory: 1: using (ISessionFactory factory = cfg.SetInterceptor(new NotifyPropertyChangedInterceptor()).BuildSessionFactory()) 2: { 3: using (ISession session = factory.OpenSession()) 4: using (ITransaction tx = session.BeginTransaction()) 5: { 6: Customer customer = session.Get<Customer>(100); //some id 7: INotifyPropertyChanged inpc = customer as INotifyPropertyChanged; 8: inpc.PropertyChanged += delegate(Object sender, PropertyChangedEventArgs e) 9: { 10: //fired when a property changes 11: }; 12: customer.Address = "some other address"; //will raise PropertyChanged 13: customer.RecentOrders.ToList(); //will trigger the lazy loading 14: } 15: } Any problems, questions, do drop me a line!

    Read the article

  • Shadow-mapping xna

    - by Kurt Ricci
    I've been trying to implement shadows in my game and I've been following quite a few tutorials online, mainly Riemers, but I'm always getting the same 2 errors when I'm drawing my models and setting the parameters from the effect file. The errors are: This method does not accept null for this parameter. Parameter name: value and Object reference not set to an instance of an object. So I've then downloaded a sample and just replaced my model with the one found in the sample and the same errors occur. I this find very strange as it works with his model. I'm wondering if the problem is with my models (I made them myself). Here's the code where the errors occur (they start to occur after the second foreach loop). Any help would be greatly appreciated, thanks.

    Read the article

  • [Windows 8] Application bar popup button

    - by Benjamin Roux
    Here is a small control to create an application bar button which will display a content in a popup when the button is clicked. Visually it gives this So how to create this? First you have to use the AppBarPopupButton control below.   namespace Indeed.Controls { public class AppBarPopupButton : Button { public FrameworkElement PopupContent { get { return (FrameworkElement)GetValue(PopupContentProperty); } set { SetValue(PopupContentProperty, value); } } public static readonly DependencyProperty PopupContentProperty = DependencyProperty.Register("PopupContent", typeof(FrameworkElement), typeof(AppBarPopupButton), new PropertyMetadata(null, (o, e) => (o as AppBarPopupButton).CreatePopup())); private Popup popup; private SerialDisposable sizeChanged = new SerialDisposable(); protected override void OnTapped(Windows.UI.Xaml.Input.TappedRoutedEventArgs e) { base.OnTapped(e); if (popup != null) { var transform = this.TransformToVisual(Window.Current.Content); var offset = transform.TransformPoint(default(Point)); sizeChanged.Disposable = PopupContent.ObserveSizeChanged().Do(_ => popup.VerticalOffset = offset.Y - (PopupContent.ActualHeight + 20)).Subscribe(); popup.HorizontalOffset = offset.X + 24; popup.DataContext = this.DataContext; popup.IsOpen = true; } } private void CreatePopup() { popup = new Popup { IsLightDismissEnabled = true }; popup.Closed += (o, e) => this.GetParentOfType<AppBar>().IsOpen = false; popup.ChildTransitions = new Windows.UI.Xaml.Media.Animation.TransitionCollection(); popup.ChildTransitions.Add(new Windows.UI.Xaml.Media.Animation.PopupThemeTransition()); var container = new Grid(); container.Children.Add(PopupContent); popup.Child = container; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The ObserveSizeChanged method is just an extension method which observe the SizeChanged event (using Reactive Extensions - Rx-Metro package in Nuget). If you’re not familiar with Rx, you can replace this line (and the SerialDisposable stuff) by a simple subscription to the SizeChanged event (using +=) but don’t forget to unsubscribe to it ! public static IObservable<Unit> ObserveSizeChanged(this FrameworkElement element) { return Observable.FromEventPattern<SizeChangedEventHandler, SizeChangedEventArgs>( o => element.SizeChanged += o, o => element.SizeChanged -= o) .Select(_ => Unit.Default); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The GetParentOfType extension method just retrieve the first parent of type (it’s a common extension method that every Windows 8 developer should have created !). You can of course tweak to control (for example if you want to center the content to the button or anything else) to fit your needs. How to use this control? It’s very simple, in an AppBar control just add it and define the PopupContent property. <ic:AppBarPopupButton Style="{StaticResource RefreshAppBarButtonStyle}" HorizontalAlignment="Left"> <ic:AppBarPopupButton.PopupContent> <Grid> [...] </Grid> </ic:AppBarPopupButton.PopupContent> </ic:AppBarPopupButton> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } When the button is clicked the popup is displayed. When the popup is closed, the app bar is closed too. I hope this will help you !

    Read the article

  • SQL SERVER – Pending IO request in SQL Server – DMV

    - by pinaldave
    I received following question: “How do we know how many pending IO requests are there for database files (.mdf, .ldf) individually?” Very interesting question and indeed answer is very interesting as well. Here is the quick script which I use to find the same. It has to be run in the context of the database for which you want to know pending IO statistics. USE DATABASE GO SELECT vfs.database_id, df.name, df.physical_name ,vfs.FILE_ID, ior.io_pending FROM sys.dm_io_pending_io_requests ior INNER JOIN sys.dm_io_virtual_file_stats (DB_ID(), NULL) vfs ON (vfs.file_handle = ior.io_handle) INNER JOIN sys.database_files df ON (df.FILE_ID = vfs.FILE_ID) I keep this script handy as it works like magic every time. If you use any other script please post here and I will post it with due credit. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL DMV, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • How to install new Intel Ethernet driver

    - by Alex Farber
    Ubuntu 12.04 x64 doesn't recognize newest Intel Ethernet adapter on my desktop (Intel Ethernet Connection i217-V). I downloaded required driver from Intel and compiled it using make. Now I have: alex@alex64-six:~$ find / -name 'e1000e.ko' 2>/dev/null /home/alex/Documents/IntelEthernetDriver/e1000e-3.0.4/src/e1000e.ko /lib/modules/3.2.0-64-generic/kernel/drivers/net/ethernet/intel/e1000e/e1000e.ko The first line is new driver compiled from Intel sources. The second line is probably existing driver from Ubuntu distribution, which doesn't recognize new Ethernet adapter. How can I apply the new driver instead of existing one? Any other solution is welcome. For now, I cannot upgrade to latest Ubuntu release, because I use some third-party products.

    Read the article

  • Import and Export data from SQL Server 2005 to XL Sheet

    - by SAMIR BHOGAYTA
    For uploading the data from Excel Sheet to SQL Server and viceversa, we need to create a linked server in SQL Server. Expample linked server creation: Before you executing the below command the excel sheet should be created in the specified path and it should contain the name of the columns. EXEC sp_addlinkedserver 'ExcelSource2', 'Jet 4.0', 'Microsoft.Jet.OLEDB.4.0', 'C:\Srinivas\Vdirectory\Testing\Marks.xls', NULL, 'Excel 5.0' Once you executed above query it will crate linked server in SQL Server 2005. The following are the Query from sending the data from Excel sheet to SQL Server 2005. INSERT INTO emp SELECT * from OPENROWSET('Microsoft.Jet.OLEDB.4.0', 'Excel 8.0;Database=C:\text.xls','SELECT * FROM [sheet1$]') The following query is for sending the data from SQL Server 2005 to Excel Sheet. insert into OPENROWSET('Microsoft.Jet.OLEDB.4.0', 'Excel 8.0;Database=c:\text.xls;', 'SELECT * FROM [sheet1$]') select * from emp

    Read the article

  • .NET Security Part 2

    - by Simon Cooper
    So, how do you create partial-trust appdomains? Where do you come across them? There are two main situations in which your assembly runs as partially-trusted using the Microsoft .NET stack: Creating a CLR assembly in SQL Server with anything other than the UNSAFE permission set. The permissions available in each permission set are given here. Loading an assembly in ASP.NET in any trust level other than Full. Information on ASP.NET trust levels can be found here. You can configure the specific permissions available to assemblies using ASP.NET policy files. Alternatively, you can create your own partially-trusted appdomain in code and directly control the permissions and the full-trust API available to the assemblies you load into the appdomain. This is the scenario I’ll be concentrating on in this post. Creating a partially-trusted appdomain There is a single overload of AppDomain.CreateDomain that allows you to specify the permissions granted to assemblies in that appdomain – this one. This is the only call that allows you to specify a PermissionSet for the domain. All the other calls simply use the permissions of the calling code. If the permissions are restricted, then the resulting appdomain is referred to as a sandboxed domain. There are three things you need to create a sandboxed domain: The specific permissions granted to all assemblies in the domain. The application base (aka working directory) of the domain. The list of assemblies that have full-trust if they are loaded into the sandboxed domain. The third item is what allows us to have a fully-trusted API that is callable by partially-trusted code. I’ll be looking at the details of this in a later post. Granting permissions to the appdomain Firstly, the permissions granted to the appdomain. This is encapsulated in a PermissionSet object, initialized either with no permissions or full-trust permissions. For sandboxed appdomains, the PermissionSet is initialized with no permissions, then you add permissions you want assemblies loaded into that appdomain to have by default: PermissionSet restrictedPerms = new PermissionSet(PermissionState.None); // all assemblies need Execution permission to run at all restrictedPerms.AddPermission( new SecurityPermission(SecurityPermissionFlag.Execution)); // grant general read access to C:\config.xml restrictedPerms.AddPermission( new FileIOPermission(FileIOPermissionAccess.Read, @"C:\config.xml")); // grant permission to perform DNS lookups restrictedPerms.AddPermission( new DnsPermission(PermissionState.Unrestricted)); It’s important to point out that the permissions granted to an appdomain, and so to all assemblies loaded into that appdomain, are usable without needing to go through any SafeCritical code (see my last post if you’re unsure what SafeCritical code is). That is, partially-trusted code loaded into an appdomain with the above permissions (and so running under the Transparent security level) is able to create and manipulate a FileStream object to read from C:\config.xml directly. It is only for operations requiring permissions that are not granted to the appdomain that partially-trusted code is required to call a SafeCritical method that then asserts the missing permissions and performs the operation safely on behalf of the partially-trusted code. The application base of the domain This is simply set as a property on an AppDomainSetup object, and is used as the default directory assemblies are loaded from: AppDomainSetup appDomainSetup = new AppDomainSetup { ApplicationBase = @"C:\temp\sandbox", }; If you’ve read the documentation around sandboxed appdomains, you’ll notice that it mentions a security hole if this parameter is set correctly. I’ll be looking at this, and other pitfalls, that will break the sandbox when using sandboxed appdomains, in a later post. Full-trust assemblies in the appdomain Finally, we need the strong names of the assemblies that, when loaded into the appdomain, will be run as full-trust, irregardless of the permissions specified on the appdomain. These assemblies will contain methods and classes decorated with SafeCritical and Critical attributes. I’ll be covering the details of creating full-trust APIs for partial-trust appdomains in a later post. This is how you get the strongnames of an assembly to be executed as full-trust in the sandbox: // get the Assembly object for the assembly Assembly assemblyWithApi = ... // get the StrongName from the assembly's collection of evidence StrongName apiStrongName = assemblyWithApi.Evidence.GetHostEvidence<StrongName>(); Creating the sandboxed appdomain So, putting these three together, you create the appdomain like so: AppDomain sandbox = AppDomain.CreateDomain( "Sandbox", null, appDomainSetup, restrictedPerms, apiStrongName); You can then load and execute assemblies in this appdomain like any other. For example, to load an assembly into the appdomain and get an instance of the Sandboxed.Entrypoint class, implementing IEntrypoint, you do this: IEntrypoint o = (IEntrypoint)sandbox.CreateInstanceFromAndUnwrap( "C:\temp\sandbox\SandboxedAssembly.dll", "Sandboxed.Entrypoint"); // call method the Execute method on this object within the sandbox o.Execute(); The second parameter to CreateDomain is for security evidence used in the appdomain. This was a feature of the .NET 2 security model, and has been (mostly) obsoleted in the .NET 4 model. Unless the evidence is needed elsewhere (eg. isolated storage), you can pass in null for this parameter. Conclusion That’s the basics of sandboxed appdomains. The most important object is the PermissionSet that defines the permissions available to assemblies running in the appdomain; it is this object that defines the appdomain as full or partial-trust. The appdomain also needs a default directory used for assembly lookups as the ApplicationBase parameter, and you can specify an optional list of the strongnames of assemblies that will be given full-trust permissions if they are loaded into the sandboxed appdomain. Next time, I’ll be looking closer at full-trust assemblies running in a sandboxed appdomain, and what you need to do to make an API available to partial-trust code.

    Read the article

  • Using TPL and PLINQ to raise performance of feed aggregator

    - by DigiMortal
    In this posting I will show you how to use Task Parallel Library (TPL) and PLINQ features to boost performance of simple RSS-feed aggregator. I will use here only very basic .NET classes that almost every developer starts from when learning parallel programming. Of course, we will also measure how every optimization affects performance of feed aggregator. Feed aggregator Our feed aggregator works as follows: Load list of blogs Download RSS-feed Parse feed XML Add new posts to database Our feed aggregator is run by task scheduler after every 15 minutes by example. We will start our journey with serial implementation of feed aggregator. Second step is to use task parallelism and parallelize feeds downloading and parsing. And our last step is to use data parallelism to parallelize database operations. We will use Stopwatch class to measure how much time it takes for aggregator to download and insert all posts from all registered blogs. After every run we empty posts table in database. Serial aggregation Before doing parallel stuff let’s take a look at serial implementation of feed aggregator. All tasks happen one after other. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();           for (var index = 0; index <blogs.Count; index++)         {              ImportFeed(blogs[index]);         }     }       private void ImportFeed(BlogDto blog)     {         if(blog == null)             return;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                 }       private void ImportRssFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = RssFeed.Create(uri);           foreach (var item in feed.Channel.Items)         {             SaveRssFeedItem(item, blog.Id, blog.CreatedById);         }     }       private void ImportAtomFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           foreach (var item in feed.Entries)         {             SaveAtomFeedEntry(item, blog.Id, blog.CreatedById);         }     } } Serial implementation of feed aggregator downloads and inserts all posts with 25.46 seconds. Task parallelism Task parallelism means that separate tasks are run in parallel. You can find out more about task parallelism from MSDN page Task Parallelism (Task Parallel Library) and Wikipedia page Task parallelism. Although finding parts of code that can run safely in parallel without synchronization issues is not easy task we are lucky this time. Feeds import and parsing is perfect candidate for parallel tasks. We can safely parallelize feeds import because importing tasks doesn’t share any resources and therefore they don’t also need any synchronization. After getting the list of blogs we iterate through the collection and start new TPL task for each blog feed aggregation. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();                var tasks = new Task[blogs.Count];           for (var index = 0; index <blogs.Count; index++)         {             tasks[index] = new Task(ImportFeed, blogs[index]);             tasks[index].Start();         }           Task.WaitAll(tasks);     }       private void ImportFeed(object blogObject)     {         if(blogObject == null)             return;         var blog = (BlogDto)blogObject;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                }       private void ImportRssFeed(BlogDto blog)     {          var uri = new Uri(blog.RssUrl);          var feed = RssFeed.Create(uri);           foreach (var item in feed.Channel.Items)          {              SaveRssFeedItem(item, blog.Id, blog.CreatedById);          }     }     private void ImportAtomFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           foreach (var item in feed.Entries)         {             SaveAtomFeedEntry(item, blog.Id, blog.CreatedById);         }     } } You should notice first signs of the power of TPL. We made only minor changes to our code to parallelize blog feeds aggregating. On my machine this modification gives some performance boost – time is now 17.57 seconds. Data parallelism There is one more way how to parallelize activities. Previous section introduced task or operation based parallelism, this section introduces data based parallelism. By MSDN page Data Parallelism (Task Parallel Library) data parallelism refers to scenario in which the same operation is performed concurrently on elements in a source collection or array. In our code we have independent collections we can process in parallel – imported feed entries. As checking for feed entry existence and inserting it if it is missing from database doesn’t affect other entries the imported feed entries collection is ideal candidate for parallelization. internal class FeedClient {     private readonly INewsService _newsService;     private const int FeedItemContentMaxLength = 255;       public FeedClient()     {          ObjectFactory.Initialize(container =>          {              container.PullConfigurationFromAppConfig = true;          });           _newsService = ObjectFactory.GetInstance<INewsService>();     }       public void Execute()     {         var blogs = _newsService.ListPublishedBlogs();                var tasks = new Task[blogs.Count];           for (var index = 0; index <blogs.Count; index++)         {             tasks[index] = new Task(ImportFeed, blogs[index]);             tasks[index].Start();         }           Task.WaitAll(tasks);     }       private void ImportFeed(object blogObject)     {         if(blogObject == null)             return;         var blog = (BlogDto)blogObject;         if (string.IsNullOrEmpty(blog.RssUrl))             return;           var uri = new Uri(blog.RssUrl);         SyndicationContentFormat feedFormat;           feedFormat = SyndicationDiscoveryUtility.SyndicationContentFormatGet(uri);           if (feedFormat == SyndicationContentFormat.Rss)             ImportRssFeed(blog);         if (feedFormat == SyndicationContentFormat.Atom)             ImportAtomFeed(blog);                }       private void ImportRssFeed(BlogDto blog)     {         var uri = new Uri(blog.RssUrl);         var feed = RssFeed.Create(uri);           feed.Channel.Items.AsParallel().ForAll(a =>         {             SaveRssFeedItem(a, blog.Id, blog.CreatedById);         });      }        private void ImportAtomFeed(BlogDto blog)      {         var uri = new Uri(blog.RssUrl);         var feed = AtomFeed.Create(uri);           feed.Entries.AsParallel().ForAll(a =>         {              SaveAtomFeedEntry(a, blog.Id, blog.CreatedById);         });      } } We did small change again and as the result we parallelized checking and saving of feed items. This change was data centric as we applied same operation to all elements in collection. On my machine I got better performance again. Time is now 11.22 seconds. Results Let’s visualize our measurement results (numbers are given in seconds). As we can see then with task parallelism feed aggregation takes about 25% less time than in original case. When adding data parallelism to task parallelism our aggregation takes about 2.3 times less time than in original case. More about TPL and PLINQ Adding parallelism to your application can be very challenging task. You have to carefully find out parts of your code where you can safely go to parallel processing and even then you have to measure the effects of parallel processing to find out if parallel code performs better. If you are not careful then troubles you will face later are worse than ones you have seen before (imagine error that occurs by average only once per 10000 code runs). Parallel programming is something that is hard to ignore. Effective programs are able to use multiple cores of processors. Using TPL you can also set degree of parallelism so your application doesn’t use all computing cores and leaves one or more of them free for host system and other processes. And there are many more things in TPL that make it easier for you to start and go on with parallel programming. In next major version all .NET languages will have built-in support for parallel programming. There will be also new language constructs that support parallel programming. Currently you can download Visual Studio Async to get some idea about what is coming. Conclusion Parallel programming is very challenging but good tools offered by Visual Studio and .NET Framework make it way easier for us. In this posting we started with feed aggregator that imports feed items on serial mode. With two steps we parallelized feed importing and entries inserting gaining 2.3 times raise in performance. Although this number is specific to my test environment it shows clearly that parallel programming may raise the performance of your application significantly.

    Read the article

  • Gtk warning when opening Gedit in terminal

    - by dellphi
    Previously, I need to clear documents history, so I Googled and found this: http://www.watchingthenet.com/ubuntu-tip-clear-disable-recent-documents.html I did the step, and then when I opened gedit in root terminal, I've got this: root@dellph1-desktop:/# gedit (gedit:8224): GLib-CRITICAL **: g_bookmark_file_load_from_data: assertion `length != 0' failed (gedit:8224): Gtk-WARNING **: Attempting to store changes into `/root/.recently-used.xbel', but failed: Failed to rename file '/root/.recently-used.xbel.FP7PPV' to '/root/.recently-used.xbel': g_rename() failed: Operation not permitted (gedit:8224): Gtk-WARNING **: Attempting to set the permissions of `/root/.recently-used.xbel', but failed: Operation not permitted root@dellph1-desktop:/# And it's happpened in user terminal: dellph1@dellph1-desktop:~$ gedit (gedit:9408): Gtk-CRITICAL **: gtk_accel_label_set_accel_closure: assertion `gtk_accel_group_from_accel_closure (accel_closure) != NULL' failed dellph1@dellph1-desktop:~$ I really hope someone helps in this case, thank you.

    Read the article

< Previous Page | 343 344 345 346 347 348 349 350 351 352 353 354  | Next Page >