Search Results

Search found 58112 results on 2325 pages for 'ajax net'.

Page 35/2325 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • ASP.NET MVC Render Ajax / Standard View

    - by Wayne
    I am a little confused and making it alot more complicated than this needs to be! Here is what I have... A view which displays a drop down of US States. When the user chooses a state it loads a list of data from a database and returns the results (populates the View Model) and the View renders the information. What I wanted to do was have have the dropdown trigger an Ajax event which performs the data load, but also wanted it to depreciate if the user didn't have Javascript enabled. How would I go about rendering the view with AND without javascript / ajax? Hope that makes sense. Thanks for your help.

    Read the article

  • SEO dynamic / AJAX pages

    - by Andrew
    I have a very dynamic / ajax powered website which also includes iframes and due this reason I have a very bad SEO rank and it come in my mind to make one more additional version of the site (text based / no script) and serve it to the search engines based on the user agent . Please let me know if you think that is a feasible method and if it's not what else would you recommend me to do .. I don't want to loose any fancy ajax feature but I also need to keep the website on the google map :) thank you in advance for any answer ! btw the website is developed in asp.net c# .

    Read the article

  • Which one is better apporach comet or ajax?

    - by Rajesh Rolen- DotNet Developer
    i need to update client on any changes occurred on server. for that i found 2 approach. 1. using ajax which is also known as reverse ajax for this purpose. 2. using COMET. but i don't know exact difference in both. my site contains news content and i want that news to be automatically updates when new news is entered by my CMS application. i have got hundreds of concurrent users on my web application. please suggest me which approach should i use to get best solution. also please provide me good example's like for that so that i can implement it. NOTE: i am using .net framework 2.0 but if its not possible in 2.0 then can also move to 3.5 Thanks.

    Read the article

  • Using DataPager Control with AJAX and SEO

    - by Jonathan Wood
    I've just taken my first stab at making a ListView, ObjectDataSource, and DataPager run in an AJAX panel. I had trouble getting it to work until I removed the QueryStringField="page" attribute from the DataPager. This attribute causes the current page to be passed as a query argument in the URL. For obvious reasons, I guess that won't work when posting back using AJAX. Now my question is if this hurts my SEO. When I used QueryStringField, the page links appeared as regular links with various query arguments. But now the links are just javascript. Haven't I hurt a search engine's ability to scan related pages? Or is there another approach to this?

    Read the article

  • How can I ajax load new pages/views into MainContent when using a master page

    - by antevirus
    Hello. Instead of using Html.ActionLink to load subpages into MainContent, I would like to load them with ajax. For example (taken from Site.Master): <%= Ajax.ActionLink("HOME", "Index", "Home", new AjaxOptions() { UpdateTargetId = "main" })% <%= Ajax.ActionLink("ABOUT ME", "Index", "About", new AjaxOptions() { UpdateTargetId = "main" })% <%= Ajax.ActionLink("VIEW MY WORK", "Index", "Work", new AjaxOptions() { UpdateTargetId = "main" })% <%= Ajax.ActionLink("SERVICES", "Index", "Services", new AjaxOptions() { UpdateTargetId = "main" })% <%= Ajax.ActionLink("CONTACT", "Index", "Contact", new AjaxOptions() { UpdateTargetId = "main" })% This works, but when i click one of the links it seems to load the master page all over again. http://emma.jabit.se Click a link and see what happens. Any ideas how to solve this?

    Read the article

  • How will ASP.NET AJAX be licensed?

    - by hbb
    It would be very useful if somebody could indicate what the plans are for releasing and licensing the AJAX extensions. The EULA for Beta 2 states that the software may be used for development and for web site deployment only. Redistribution is explicitly forbidden. Does that imply that it is going to be released under terms different from the .NET framework and ASP.NET or is it just a precaution to prevent developers shipping the Beta? It seems too risky to include AJAX in new products before there is some indication what the model is going to be....

    Read the article

  • Client side validation script dissapears with $.ajax()

    - by boris callens
    In my javascript file I'm getting the content of a partial with the following call: $.ajax({ type: "GET", url: value.href.replace(actionType, actionType + 'Partial'), dataType: "html", success: function(result) { $("#DepartmentsAction").html(result); alert(result); } }); Because the partial has the call Html.EnableClientValidation() the resulting html has a static script in it. In the result variable in the ajax call this script is present. In the page where the html gets inserted (#DepartmentsAction) the script has dissapeared. What am I doing wrong?

    Read the article

  • Using AJAX to return SelectList selected value

    - by Adventure
    At risk of asking the obvious... I need to use AJax.ActionLink to send the current value of a SelectList back to my controller. How do I do that? Below is part of my current View. I need to replace "15" with the current value of the SelectList. <% If Model.ShoppingListNames IsNot Nothing Then%> <%: Html.DropDownList("ShoppingListNames", Model.ShoppingListNames)%> <%: Ajax.ActionLink("Add to List", "AdjustMaterials", "Docs", New With {.userDocId = 15, .prodId = Model.ID, .quantity = 1}, New AjaxOptions With {.OnSuccess = "handleUpdate"})%> <% End If%>

    Read the article

  • jQuery AJAX & an ASP.NET web service works locally but not remotely

    - by Alex
    Interesting one here. I have an ASP.NET 1.1 project that contains a web service in it. I'm using jQuery's AJAX functionality to call some services from the client. This is what my code looks like: $.ajax({ type: "POST", url: 'foo.asmx/functionName', data: 'foo1=' + foo1 + '&foo2=' + foo2, dataType: "xml", success: function(xml) { //do something with my xml data }, error: function(request, error){ //handle my error } }); This works great when I run the site from my IDE on localhost. However, when I deploy this site to any other server I get a parsererror error from jQuery. It does not appear to even call my service as I dropped in some code to write a log file to disk and it's not making it there. The same exact XML should be returned from both my localhost and the server I deployed to. Any ideas?

    Read the article

  • Parallelism in .NET – Part 20, Using Task with Existing APIs

    - by Reed
    Although the Task class provides a huge amount of flexibility for handling asynchronous actions, the .NET Framework still contains a large number of APIs that are based on the previous asynchronous programming model.  While Task and Task<T> provide a much nicer syntax as well as extending the flexibility, allowing features such as continuations based on multiple tasks, the existing APIs don’t directly support this workflow. There is a method in the TaskFactory class which can be used to adapt the existing APIs to the new Task class: TaskFactory.FromAsync.  This method provides a way to convert from the BeginOperation/EndOperation method pair syntax common through .NET Framework directly to a Task<T> containing the results of the operation in the task’s Result parameter. While this method does exist, it unfortunately comes at a cost – the method overloads are far from simple to decipher, and the resulting code is not always as easily understood as newer code based directly on the Task class.  For example, a single call to handle WebRequest.BeginGetResponse/EndGetReponse, one of the easiest “pairs” of methods to use, looks like the following: var task = Task.Factory.FromAsync<WebResponse>( request.BeginGetResponse, request.EndGetResponse, null); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The compiler is unfortunately unable to infer the correct type, and, as a result, the WebReponse must be explicitly mentioned in the method call.  As a result, I typically recommend wrapping this into an extension method to ease use.  For example, I would place the above in an extension method like: public static class WebRequestExtensions { public static Task<WebResponse> GetReponseAsync(this WebRequest request) { return Task.Factory.FromAsync<WebResponse>( request.BeginGetResponse, request.EndGetResponse, null); } } This dramatically simplifies usage.  For example, if we wanted to asynchronously check to see if this blog supported XHTML 1.0, and report that in a text box to the user, we could do: var webRequest = WebRequest.Create("http://www.reedcopsey.com"); webRequest.GetReponseAsync().ContinueWith(t => { using (var sr = new StreamReader(t.Result.GetResponseStream())) { string str = sr.ReadLine();; this.textBox1.Text = string.Format("Page at {0} supports XHTML 1.0: {1}", t.Result.ResponseUri, str.Contains("XHTML 1.0")); } }, TaskScheduler.FromCurrentSynchronizationContext());   By using a continuation with a TaskScheduler based on the current synchronization context, we can keep this request asynchronous, check based on the first line of the response string, and report the results back on our UI directly.

    Read the article

  • WCF REST Service Activation Errors when AspNetCompatibility is enabled

    - by Rick Strahl
    I’m struggling with an interesting problem with WCF REST since last night and I haven’t been able to track this down. I have a WCF REST Service set up and when accessing the .SVC file it crashes with a version mismatch for System.ServiceModel: Server Error in '/AspNetClient' Application. Could not load type 'System.ServiceModel.Activation.HttpHandler' from assembly 'System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'.Description: An unhandled exception occurred during the execution of the current web request. Please review the stack trace for more information about the error and where it originated in the code. Exception Details: System.TypeLoadException: Could not load type 'System.ServiceModel.Activation.HttpHandler' from assembly 'System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'.Source Error: An unhandled exception was generated during the execution of the current web request. Information regarding the origin and location of the exception can be identified using the exception stack trace below. Stack Trace: [TypeLoadException: Could not load type 'System.ServiceModel.Activation.HttpHandler' from assembly 'System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089'.] System.RuntimeTypeHandle.GetTypeByName(String name, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMarkHandle stackMark, Boolean loadTypeFromPartialName, ObjectHandleOnStack type) +0 System.RuntimeTypeHandle.GetTypeByName(String name, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMark& stackMark, Boolean loadTypeFromPartialName) +95 System.RuntimeType.GetType(String typeName, Boolean throwOnError, Boolean ignoreCase, Boolean reflectionOnly, StackCrawlMark& stackMark) +54 System.Type.GetType(String typeName, Boolean throwOnError, Boolean ignoreCase) +65 System.Web.Compilation.BuildManager.GetType(String typeName, Boolean throwOnError, Boolean ignoreCase) +69 System.Web.Configuration.HandlerFactoryCache.GetTypeWithAssert(String type) +38 System.Web.Configuration.HandlerFactoryCache.GetHandlerType(String type) +13 System.Web.Configuration.HandlerFactoryCache..ctor(String type) +19 System.Web.HttpApplication.GetFactory(String type) +81 System.Web.MaterializeHandlerExecutionStep.System.Web.HttpApplication.IExecutionStep.Execute() +223 System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean& completedSynchronously) +184 Version Information: Microsoft .NET Framework Version:4.0.30319; ASP.NET Version:4.0.30319.1 What’s really odd about this is that it crashes only if it runs inside of IIS (it works fine in Cassini) and only if ASP.NET Compatibility is enabled in web.config:<serviceHostingEnvironment aspNetCompatibilityEnabled="true" multipleSiteBindingsEnabled="true" /> Arrrgh!!!!! After some experimenting and some help from Glenn Block and his team mates I was able to track down the problem in ApplicationHost.config. Specifically the problem was that there were multiple *.svc mappings in the ApplicationHost.Config file and the older 2.0 runtime specific versions weren’t marked for the proper runtime. Because these handlers show up at the top of the list they execute first resulting in assembly load errors for the wrong version assembly. To fix this problem I ended up making a couple changes in applicationhost.config. On the machine level root’s Handler mappings I had an entry that looked like this:<add name="svc-Integrated" path="*.svc" verb="*" type="System.ServiceModel.Activation.HttpHandler, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" preCondition="integratedMode" /> and it needs to be changed to this:<add name="svc-Integrated" path="*.svc" verb="*" type="System.ServiceModel.Activation.HttpHandler, System.ServiceModel, Version=3.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" preCondition="integratedMode,runtimeVersionv2.0" />Notice the explicit runtime version assignment in the preCondition attribute which is key to keep ASP.NET 4.0 from executing that handler. The key here is that the runtime version needs to be set explicitly so that the various *.svc handlers don’t fire only in the order defined which in case of a .NET 4.0 app with the original setting would result in an incompatible version of System.ComponentModel to load.What was really hard to track this down is that even when looking in the debugger when launching the Web app, the AppDomain assembly loads showed System.ServiceModel V4.0 starting up just fine. Apparently the ASP.NET runtime load occurs at a different point and that’s when things break.So how did this break? According to the Microsoft folks it’s some older tools that got installed that change the default service handlers. There’s a blog entry that points at this problem with more detail:http://blogs.iis.net/webtopics/archive/2010/04/28/system-typeloadexception-for-system-servicemodel-activation-httpmodule-in-asp-net-4.aspxNote that I tried running aspnet_regiis and that did not fix the problem for me. I had to manually change the entries in applicationhost.config.   © Rick Strahl, West Wind Technologies, 2005-2011Posted in AJAX   ASP.NET  WCF  

    Read the article

  • Parallelism in .NET – Part 1, Decomposition

    - by Reed
    The first step in designing any parallelized system is Decomposition.  Decomposition is nothing more than taking a problem space and breaking it into discrete parts.  When we want to work in parallel, we need to have at least two separate things that we are trying to run.  We do this by taking our problem and decomposing it into parts. There are two common abstractions that are useful when discussing parallel decomposition: Data Decomposition and Task Decomposition.  These two abstractions allow us to think about our problem in a way that helps leads us to correct decision making in terms of the algorithms we’ll use to parallelize our routine. To start, I will make a couple of minor points. I’d like to stress that Decomposition has nothing to do with specific algorithms or techniques.  It’s about how you approach and think about the problem, not how you solve the problem using a specific tool, technique, or library.  Decomposing the problem is about constructing the appropriate mental model: once this is done, you can choose the appropriate design and tools, which is a subject for future posts. Decomposition, being unrelated to tools or specific techniques, is not specific to .NET in any way.  This should be the first step to parallelizing a problem, and is valid using any framework, language, or toolset.  However, this gives us a starting point – without a proper understanding of decomposition, it is difficult to understand the proper usage of specific classes and tools within the .NET framework. Data Decomposition is often the simpler abstraction to use when trying to parallelize a routine.  In order to decompose our problem domain by data, we take our entire set of data and break it into smaller, discrete portions, or chunks.  We then work on each chunk in the data set in parallel. This is particularly useful if we can process each element of data independently of the rest of the data.  In a situation like this, there are some wonderfully simple techniques we can use to take advantage of our data.  By decomposing our domain by data, we can very simply parallelize our routines.  In general, we, as developers, should be always searching for data that can be decomposed. Finding data to decompose if fairly simple, in many instances.  Data decomposition is typically used with collections of data.  Any time you have a collection of items, and you’re going to perform work on or with each of the items, you potentially have a situation where parallelism can be exploited.  This is fairly easy to do in practice: look for iteration statements in your code, such as for and foreach. Granted, every for loop is not a candidate to be parallelized.  If the collection is being modified as it’s iterated, or the processing of elements depends on other elements, the iteration block may need to be processed in serial.  However, if this is not the case, data decomposition may be possible. Let’s look at one example of how we might use data decomposition.  Suppose we were working with an image, and we were applying a simple contrast stretching filter.  When we go to apply the filter, once we know the minimum and maximum values, we can apply this to each pixel independently of the other pixels.  This means that we can easily decompose this problem based off data – we will do the same operation, in parallel, on individual chunks of data (each pixel). Task Decomposition, on the other hand, is focused on the individual tasks that need to be performed instead of focusing on the data.  In order to decompose our problem domain by tasks, we need to think about our algorithm in terms of discrete operations, or tasks, which can then later be parallelized. Task decomposition, in practice, can be a bit more tricky than data decomposition.  Here, we need to look at what our algorithm actually does, and how it performs its actions.  Once we have all of the basic steps taken into account, we can try to analyze them and determine whether there are any constraints in terms of shared data or ordering.  There are no simple things to look for in terms of finding tasks we can decompose for parallelism; every algorithm is unique in terms of its tasks, so every algorithm will have unique opportunities for task decomposition. For example, say we want our software to perform some customized actions on startup, prior to showing our main screen.  Perhaps we want to check for proper licensing, notify the user if the license is not valid, and also check for updates to the program.  Once we verify the license, and that there are no updates, we’ll start normally.  In this case, we can decompose this problem into tasks – we have a few tasks, but there are at least two discrete, independent tasks (check licensing, check for updates) which we can perform in parallel.  Once those are completed, we will continue on with our other tasks. One final note – Data Decomposition and Task Decomposition are not mutually exclusive.  Often, you’ll mix the two approaches while trying to parallelize a single routine.  It’s possible to decompose your problem based off data, then further decompose the processing of each element of data based on tasks.  This just provides a framework for thinking about our algorithms, and for discussing the problem.

    Read the article

  • Optional Parameters and Named Arguments in C# 4 (and a cool scenario w/ ASP.NET MVC 2)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] This is the seventeenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post covers two new language feature being added to C# 4.0 – optional parameters and named arguments – as well as a cool way you can take advantage of optional parameters (both in VB and C#) with ASP.NET MVC 2. Optional Parameters in C# 4.0 C# 4.0 now supports using optional parameters with methods, constructors, and indexers (note: VB has supported optional parameters for awhile). Parameters are optional when a default value is specified as part of a declaration.  For example, the method below takes two parameters – a “category” string parameter, and a “pageIndex” integer parameter.  The “pageIndex” parameter has a default value of 0, and as such is an optional parameter: When calling the above method we can explicitly pass two parameters to it: Or we can omit passing the second optional parameter – in which case the default value of 0 will be passed:   Note that VS 2010’s Intellisense indicates when a parameter is optional, as well as what its default value is when statement completion is displayed: Named Arguments and Optional Parameters in C# 4.0 C# 4.0 also now supports the concept of “named arguments”.  This allows you to explicitly name an argument you are passing to a method – instead of just identifying it by argument position.  For example, I could write the code below to explicitly identify the second argument passed to the GetProductsByCategory method by name (making its usage a little more explicit): Named arguments come in very useful when a method supports multiple optional parameters, and you want to specify which arguments you are passing.  For example, below we have a method DoSomething that takes two optional parameters: We could use named arguments to call the above method in any of the below ways: Because both parameters are optional, in cases where only one (or zero) parameters is specified then the default value for any non-specified arguments is passed. ASP.NET MVC 2 and Optional Parameters One nice usage scenario where we can now take advantage of the optional parameter support of VB and C# is with ASP.NET MVC 2’s input binding support to Action methods on Controller classes. For example, consider a scenario where we want to map URLs like “Products/Browse/Beverages” or “Products/Browse/Deserts” to a controller action method.  We could do this by writing a URL routing rule that maps the URLs to a method like so: We could then optionally use a “page” querystring value to indicate whether or not the results displayed by the Browse method should be paged – and if so which page of the results should be displayed.  For example: /Products/Browse/Beverages?page=2. With ASP.NET MVC 1 you would typically handle this scenario by adding a “page” parameter to the action method and make it a nullable int (which means it will be null if the “page” querystring value is not present).  You could then write code like below to convert the nullable int to an int – and assign it a default value if it was not present in the querystring: With ASP.NET MVC 2 you can now take advantage of the optional parameter support in VB and C# to express this behavior more concisely and clearly.  Simply declare the action method parameter as an optional parameter with a default value: C# VB If the “page” value is present in the querystring (e.g. /Products/Browse/Beverages?page=22) then it will be passed to the action method as an integer.  If the “page” value is not in the querystring (e.g. /Products/Browse/Beverages) then the default value of 0 will be passed to the action method.  This makes the code a little more concise and readable. Summary There are a bunch of great new language features coming to both C# and VB with VS 2010.  The above two features (optional parameters and named parameters) are but two of them.  I’ll blog about more in the weeks and months ahead. If you are looking for a good book that summarizes all the language features in C# (including C# 4.0), as well provides a nice summary of the core .NET class libraries, you might also want to check out the newly released C# 4.0 in a Nutshell book from O’Reilly: It does a very nice job of packing a lot of content in an easy to search and find samples format. Hope this helps, Scott

    Read the article

  • AspNetCompatibility in WCF Services &ndash; easy to trip up

    - by Rick Strahl
    This isn’t the first time I’ve hit this particular wall: I’m creating a WCF REST service for AJAX callbacks and using the WebScriptServiceHostFactory host factory in the service: <%@ ServiceHost Language="C#" Service="WcfAjax.BasicWcfService" CodeBehind="BasicWcfService.cs" Factory="System.ServiceModel.Activation.WebScriptServiceHostFactory" %>   to avoid all configuration. Because of the Factory that creates the ASP.NET Ajax compatible format via the custom factory implementation I can then remove all of the configuration settings that typically get dumped into the web.config file. However, I do want ASP.NET compatibility so I still leave in: <system.serviceModel> <serviceHostingEnvironment aspNetCompatibilityEnabled="true"/> </system.serviceModel> in the web.config file. This option allows you access to the HttpContext.Current object to effectively give you access to most of the standard ASP.NET request and response features. This is not recommended as a primary practice but it can be useful in some scenarios and in backwards compatibility scenerios with ASP.NET AJAX Web Services. Now, here’s where things get funky. Assuming you have the setting in web.config, If you now declare a service like this: [ServiceContract(Namespace = "DevConnections")] #if DEBUG [ServiceBehavior(IncludeExceptionDetailInFaults = true)] #endif public class BasicWcfService (or by using an interface that defines the service contract) you’ll find that the service will not work when an AJAX call is made against it. You’ll get a 500 error and a System.ServiceModel.ServiceActivationException System error. Worse even with the IncludeExceptionDetailInFaults enabled you get absolutely no indication from WCF what the problem is. So what’s the problem?  The issue is that once you specify aspNetCompatibilityEnabled=”true” in the configuration you *have to* specify the AspNetCompatibilityRequirements attribute and one of the modes that enables or at least allows for it. You need either Required or Allow: [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Required)] without it the service will simply fail without further warning. It will also fail if you set the attribute value to NotAllowed. The following also causes the service to fail as above: [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.NotAllowed)] This is not totally unreasonable but it’s a difficult issue to debug especially since the configuration setting is global – if you have more than one service and one requires traditional ASP.NET access and one doesn’t then both must have the attribute specified. This is one reason why you’d want to avoid using this functionality unless absolutely necessary. WCF REST provides some basic access to some of the HTTP features after all, although what’s there is severely limited. I also wish that ServiceActivation errors would provide more error information. Getting an Activation error without further info on what actually is wrong is pretty worthless especially when it is a technicality like a mismatched configuration/attribute setting like this.© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  WCF  AJAX  

    Read the article

  • IE9 RC fixed the “Internet Explorer cannot display the webpage” error when running an ASP.NET application in Visual Studio

    - by Jon Galloway
    One of the obstacles ASP.NET developers faced in using the Internet Explorer 9 Beta was the dreaded “Internet Explorer cannot display the webpage” error when running an ASP.NET application in Visual Studio. In the bug information on Connect (issue 601047), Eric Lawrence said that the problem was due to “caused by failure to failover from IPv6 to IPv4 when the connection is local.” Robert MacLean gives some more information as what was going wrong: “The problem is Windows, especially since it assumes IPv6 is better than IPv4. Note […] that when you ping localhost you get an IPv6 address. So what appears to be happening is when IE9 tries to go to localhost it uses IPv6, and the ASP.NET Development Server is IPv4 only and so nothing loads and we get the error.” The Simple Fix - Install IE 9 RC Internet Explorer 9 RC fixes this bug, so if you had tried IE 9 Beta and stopped using it due to problems with ASP.NET development, install the RC. The Workaround in IE 9 Beta If you're stuck on IE 9 Beta for some reason, you can follow Robert's workaround, which involves a one character edit to your hosts file. I've been using it for months, and it works great. Open notepad (running as administrator) and edit the hosts file (found in %systemroot%\system32\drivers\etc) Remove the # comment character before the line starting with 127.0.0.1 Save the file - if you have problems saving, it's probably because you weren't running as administrator When you're done, your hosts file will end with the following lines (assuming you were using a default hosts file setup beforehand): # localhost name resolution is handled within DNS itself.     127.0.0.1       localhost #    ::1             localhost Note: more information on editing your hosts file here. This causes Windows to default to IPv4 when resolving localhost, which will point to 127.0.0.1, which is right where Cassini - I mean the ASP.NET Web Development Server - is waiting for it.

    Read the article

  • Deploying ASP.NET Web Applications

    - by Ben Griswold
    In this episode, Noah and I explain how to use Web Deployment Projects to deploy your web application. This screencast will get you up and running, but in a future screencast, we discuss more advanced topics like excluding files, swapping out the right config files per environment, and alternate solution configurations.  This screencast (and the next) are based on a write-up I did about ASP.NET Web Application deployment with Web Deployment Projects a while back.  Multi-media knowledge sharing.  You have to love it! This is the first video hosted on Vimeo.  What do you think?

    Read the article

  • need explaination of jquery ajax.success paramters

    - by user1575229
    case 'ajax': busy = false; $.fancybox.showActivity(); selectedOpts.ajax.win = selectedOpts.ajax.success; ajaxLoader = $.ajax($.extend({}, selectedOpts.ajax, { url : href, data : selectedOpts.ajax.data || {}, error : function(XMLHttpRequest, textStatus, errorThrown) { if ( XMLHttpRequest.status > 0 ) { _error(); } }, success : function(data, textStatus, XMLHttpRequest) { var o = typeof XMLHttpRequest == 'object' ? XMLHttpRequest : ajaxLoader; if (o.status == 200) { if ( typeof selectedOpts.ajax.win == 'function' ) { ret = selectedOpts.ajax.win(href, data, textStatus, XMLHttpRequest); if (ret === false) { loading.hide(); return; } else if (typeof ret == 'string' || typeof ret == 'object') { data = ret; } } tmp.html( data ); _process_inline(); } } })); break; Can anyone please explain what is going on in this code selectedOpts.ajax.win = selectedOpts.ajax.success; what is happening here?and what is the usefulness? ret = selectedOpts.ajax.win(href, data, textStatus, XMLHttpRequest); what is happening here? what does the win() method call.

    Read the article

  • Call to CFC via Ajax-POST does not work

    - by Philipp
    We have the following problem: A CFC-method that is called from AJAX suddenly redirects the request to cfcexplorer instead of executing the request. The strange thing is, that the problem only occurs when we make the ajax call via "POST" method, like this: // This will return the HTTP Status header: // Location: http://url.to:80/CFIDE/componentutils/cfcexplorer.cfc?method=getcfcinhtml&name=web.ajax&path=/web/ajax.cfc $.post( "http://url.to/ajax.cfc", {method: "test"}, function(res) { alert("ajax.cfc POST return:" + res); } ); Making the same request as "GET" request works perfectly: // This will call the method "test" of web/ajax.cfc $.get( "http://url.to/ajax.cfc", {method: "test"}, function(res) { alert("ajax.cfc GET return:" + res); } ); This is the ajax.cfc file (dummy file): <cfcomponent> <cffunction name="test" access="remote" returntype="Any" returnformat="JSON"> <cfset j = {}> <cfset j.data = "this is the data"> <cfreturn serializeJson(j)> </cffunction> </cfcomponent> What really puzzles us is that the request did work in the past (we have a lot of code all making ajax calls via POST and CF-code that expects FORM-data to be present, so we cannot simply change the method to GET) Maybe there was some setting that has changed or similar...

    Read the article

  • Messagebox in ASP.NET 3.5 with AJAX

    - by Jim Beam
    I have a ASP.NET 3.5 web site with an AJAX update panel. I simply need to process some server side code and then issue a user prompt that says "Code processing complete". I know there is supposed to be support for Msgbox-esque methods in ASP.NET but I can't find them and any other JavaScript based solutions don't work effectively when you have an update panel. Help.

    Read the article

  • .NET: Interface Problem VB.net Getter Only Interface

    - by snmcdonald
    Why does an interface override a class definition and violate class encapsulation? I have included two samples below, one in C# and one in VB.net? VB.net Module Module1 Sub Main() Dim testInterface As ITest = New TestMe Console.WriteLine(testInterface.Testable) ''// Prints False testInterface.Testable = True ''// Access to Private!!! Console.WriteLine(testInterface.Testable) ''// Prints True Dim testClass As TestMe = New TestMe Console.WriteLine(testClass.Testable) ''// Prints False ''//testClass.Testable = True ''// Compile Error Console.WriteLine(testClass.Testable) ''// Prints False End Sub End Module Public Class TestMe : Implements ITest Private m_testable As Boolean = False Public Property Testable As Boolean Implements ITest.Testable Get Return m_testable End Get Private Set(ByVal value As Boolean) m_testable = value End Set End Property End Class Interface ITest Property Testable As Boolean End Interface C# using System; using System.Collections.Generic; using System.Linq; using System.Text; namespace InterfaceCSTest { class Program { static void Main(string[] args) { ITest testInterface = new TestMe(); Console.WriteLine(testInterface.Testable); testInterface.Testable = true; Console.WriteLine(testInterface.Testable); TestMe testClass = new TestMe(); Console.WriteLine(testClass.Testable); //testClass.Testable = true; Console.WriteLine(testClass.Testable); } } class TestMe : ITest { private bool m_testable = false; public bool Testable { get { return m_testable; } private set { m_testable = value; } } } interface ITest { bool Testable { get; set; } } } More Specifically How do I implement a interface in VB.net that will allow for a private setter. For example in C# I can declare: class TestMe : ITest { private bool m_testable = false; public bool Testable { get { return m_testable; } private set //No Compile Error here! { m_testable = value; } } } interface ITest { bool Testable { get; } } However, if I declare an interface property as readonly in VB.net I cannot create a setter. If I create a VB.net interface as just a plain old property then interface declarations will violate my encapsulation. Public Class TestMe : Implements ITest Private m_testable As Boolean = False Public ReadOnly Property Testable As Boolean Implements ITest.Testable Get Return m_testable End Get Private Set(ByVal value As Boolean) ''//Compile Error m_testable = value End Set End Property End Class Interface ITest ReadOnly Property Testable As Boolean End Interface So my question is, how do I define a getter only Interface in VB.net with proper encapsulation? I figured the first example would have been the best method. However, it appears as if interface definitions overrule class definitions. So I tried to create a getter only (Readonly) property like in C# but it does not work for VB.net. Maybe this is just a limitation of the language?

    Read the article

  • AJAX file upload

    - by farjimain
    I have a control for uploading an image and above it is an image control. When User clicks 'Upload' button, image turns to an animated image displaying 'WAIT' message, after the image is uploaded, the image source changes to that image. I want to do this using simple AJAX, JAVASCRIPT (xmlHTTP objects) , ASP.NET, VB.NET. Can anyone help me out??? Don't wanna use iframe or flash besides above four.

    Read the article

  • update datagridview using ajax in my asp.net without refreshing the page.(Display real time data)

    - by kurt_jackson19
    I need to display a real time data from MS SQL 2005. I saw some blogs that recommend Ajax to solve my problem. Basically, right now I have my default.aspx page only just for a workaround I could able to display the data from my DB. But once I add data manually to my DB there's no updating made. Any suggestions guys to fix this problem? I need to update datagridview with out refreshing the page. Here's my code on Default.aspx.cs using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; using System.Data.SqlClient; public partial class _Default : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { FillDataGridView(); } protected void up1_Load(object sender, EventArgs e) { FillDataGridView(); } protected void FillDataGridView() { DataSet objDs = new DataSet(); SqlConnection myConnection = new SqlConnection (ConfigurationManager.ConnectionStrings["MainConnStr"].ConnectionString); SqlDataAdapter myCommand; string select = "SELECT * FROM Categories"; myCommand = new SqlDataAdapter(select, myConnection); myCommand.SelectCommand.CommandType = CommandType.Text; myConnection.Open(); myCommand.Fill(objDs); GridView1.DataSource = objDs; GridView1.DataBind(); } } Code on my Default.aspx <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server"> <title>Ajax Sample</title> </head> <body> <form id="form1" runat="server"> <asp:ScriptManager ID="ScriptManager1" runat="server" EnablePageMethods="true"> <Scripts> <asp:ScriptReference Path="JScript.js" /> </Scripts> </asp:ScriptManager> <asp:UpdatePanel ID="UpdatePanel1" runat="server" OnLoad="up1_Load"> <ContentTemplate> <asp:GridView ID="GridView1" runat="server" Height="136px" Width="325px"/> </ContentTemplate> <Triggers> <asp:AsyncPostBackTrigger ControlID="GridView1" /> </Triggers> </asp:UpdatePanel> </form> </body> </html> My problem now is how to call or use the ajax.js and how to write a code to call the FillDataGridView() in my Default.aspx.cs page. Thank you guys, hope anyone can help me on this problem.

    Read the article

  • Parallelism in .NET – Part 10, Cancellation in PLINQ and the Parallel class

    - by Reed
    Many routines are parallelized because they are long running processes.  When writing an algorithm that will run for a long period of time, its typically a good practice to allow that routine to be cancelled.  I previously discussed terminating a parallel loop from within, but have not demonstrated how a routine can be cancelled from the caller’s perspective.  Cancellation in PLINQ and the Task Parallel Library is handled through a new, unified cooperative cancellation model introduced with .NET 4.0. Cancellation in .NET 4 is based around a new, lightweight struct called CancellationToken.  A CancellationToken is a small, thread-safe value type which is generated via a CancellationTokenSource.  There are many goals which led to this design.  For our purposes, we will focus on a couple of specific design decisions: Cancellation is cooperative.  A calling method can request a cancellation, but it’s up to the processing routine to terminate – it is not forced. Cancellation is consistent.  A single method call requests a cancellation on every copied CancellationToken in the routine. Let’s begin by looking at how we can cancel a PLINQ query.  Supposed we wanted to provide the option to cancel our query from Part 6: double min = collection .AsParallel() .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } We would rewrite this to allow for cancellation by adding a call to ParallelEnumerable.WithCancellation as follows: var cts = new CancellationTokenSource(); // Pass cts here to a routine that could, // in parallel, request a cancellation try { double min = collection .AsParallel() .WithCancellation(cts.Token) .Min(item => item.PerformComputation()); } catch (OperationCanceledException e) { // Query was cancelled before it finished } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, if the user calls cts.Cancel() before the PLINQ query completes, the query will stop processing, and an OperationCanceledException will be raised.  Be aware, however, that cancellation will not be instantaneous.  When cts.Cancel() is called, the query will only stop after the current item.PerformComputation() elements all finish processing.  cts.Cancel() will prevent PLINQ from scheduling a new task for a new element, but will not stop items which are currently being processed.  This goes back to the first goal I mentioned – Cancellation is cooperative.  Here, we’re requesting the cancellation, but it’s up to PLINQ to terminate. If we wanted to allow cancellation to occur within our routine, we would need to change our routine to accept a CancellationToken, and modify it to handle this specific case: public void PerformComputation(CancellationToken token) { for (int i=0; i<this.iterations; ++i) { // Add a check to see if we've been canceled // If a cancel was requested, we'll throw here token.ThrowIfCancellationRequested(); // Do our processing now this.RunIteration(i); } } With this overload of PerformComputation, each internal iteration checks to see if a cancellation request was made, and will throw an OperationCanceledException at that point, instead of waiting until the method returns.  This is good, since it allows us, as developers, to plan for cancellation, and terminate our routine in a clean, safe state. This is handled by changing our PLINQ query to: try { double min = collection .AsParallel() .WithCancellation(cts.Token) .Min(item => item.PerformComputation(cts.Token)); } catch (OperationCanceledException e) { // Query was cancelled before it finished } PLINQ is very good about handling this exception, as well.  There is a very good chance that multiple items will raise this exception, since the entire purpose of PLINQ is to have multiple items be processed concurrently.  PLINQ will take all of the OperationCanceledException instances raised within these methods, and merge them into a single OperationCanceledException in the call stack.  This is done internally because we added the call to ParallelEnumerable.WithCancellation. If, however, a different exception is raised by any of the elements, the OperationCanceledException as well as the other Exception will be merged into a single AggregateException. The Task Parallel Library uses the same cancellation model, as well.  Here, we supply our CancellationToken as part of the configuration.  The ParallelOptions class contains a property for the CancellationToken.  This allows us to cancel a Parallel.For or Parallel.ForEach routine in a very similar manner to our PLINQ query.  As an example, we could rewrite our Parallel.ForEach loop from Part 2 to support cancellation by changing it to: try { var cts = new CancellationTokenSource(); var options = new ParallelOptions() { CancellationToken = cts.Token }; Parallel.ForEach(customers, options, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // Check for cancellation here options.CancellationToken.ThrowIfCancellationRequested(); // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); } catch (OperationCanceledException e) { // The loop was cancelled } Notice that here we use the same approach taken in PLINQ.  The Task Parallel Library will automatically handle our cancellation in the same manner as PLINQ, providing a clean, unified model for cancellation of any parallel routine.  The TPL performs the same aggregation of the cancellation exceptions as PLINQ, as well, which is why a single exception handler for OperationCanceledException will cleanly handle this scenario.  This works because we’re using the same CancellationToken provided in the ParallelOptions.  If a different exception was thrown by one thread, or a CancellationToken from a different CancellationTokenSource was used to raise our exception, we would instead receive all of our individual exceptions merged into one AggregateException.

    Read the article

  • Parallelism in .NET – Part 15, Making Tasks Run: The TaskScheduler

    - by Reed
    In my introduction to the Task class, I specifically made mention that the Task class does not directly provide it’s own execution.  In addition, I made a strong point that the Task class itself is not directly related to threads or multithreading.  Rather, the Task class is used to implement our decomposition of tasks.  Once we’ve implemented our tasks, we need to execute them.  In the Task Parallel Library, the execution of Tasks is handled via an instance of the TaskScheduler class. The TaskScheduler class is an abstract class which provides a single function: it schedules the tasks and executes them within an appropriate context.  This class is the class which actually runs individual Task instances.  The .NET Framework provides two (internal) implementations of the TaskScheduler class. Since a Task, based on our decomposition, should be a self-contained piece of code, parallel execution makes sense when executing tasks.  The default implementation of the TaskScheduler class, and the one most often used, is based on the ThreadPool.  This can be retrieved via the TaskScheduler.Default property, and is, by default, what is used when we just start a Task instance with Task.Start(). Normally, when a Task is started by the default TaskScheduler, the task will be treated as a single work item, and run on a ThreadPool thread.  This pools tasks, and provides Task instances all of the advantages of the ThreadPool, including thread pooling for reduced resource usage, and an upper cap on the number of work items.  In addition, .NET 4 brings us a much improved thread pool, providing work stealing and reduced locking within the thread pool queues.  By using the default TaskScheduler, our Tasks are run asynchronously on the ThreadPool. There is one notable exception to my above statements when using the default TaskScheduler.  If a Task is created with the TaskCreationOptions set to TaskCreationOptions.LongRunning, the default TaskScheduler will generate a new thread for that Task, at least in the current implementation.  This is useful for Tasks which will persist for most of the lifetime of your application, since it prevents your Task from starving the ThreadPool of one of it’s work threads. The Task Parallel Library provides one other implementation of the TaskScheduler class.  In addition to providing a way to schedule tasks on the ThreadPool, the framework allows you to create a TaskScheduler which works within a specified SynchronizationContext.  This scheduler can be retrieved within a thread that provides a valid SynchronizationContext by calling the TaskScheduler.FromCurrentSynchronizationContext() method. This implementation of TaskScheduler is intended for use with user interface development.  Windows Forms and Windows Presentation Foundation both require any access to user interface controls to occur on the same thread that created the control.  For example, if you want to set the text within a Windows Forms TextBox, and you’re working on a background thread, that UI call must be marshaled back onto the UI thread.  The most common way this is handled depends on the framework being used.  In Windows Forms, Control.Invoke or Control.BeginInvoke is most often used.  In WPF, the equivelent calls are Dispatcher.Invoke or Dispatcher.BeginInvoke. As an example, say we’re working on a background thread, and we want to update a TextBlock in our user interface with a status label.  The code would typically look something like: // Within background thread work... string status = GetUpdatedStatus(); Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action( () => { statusLabel.Text = status; })); // Continue on in background method .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This works fine, but forces your method to take a dependency on WPF or Windows Forms.  There is an alternative option, however.  Both Windows Forms and WPF, when initialized, setup a SynchronizationContext in their thread, which is available on the UI thread via the SynchronizationContext.Current property.  This context is used by classes such as BackgroundWorker to marshal calls back onto the UI thread in a framework-agnostic manner. The Task Parallel Library provides the same functionality via the TaskScheduler.FromCurrentSynchronizationContext() method.  When setting up our Tasks, as long as we’re working on the UI thread, we can construct a TaskScheduler via: TaskScheduler uiScheduler = TaskScheduler.FromCurrentSynchronizationContext(); We then can use this scheduler on any thread to marshal data back onto the UI thread.  For example, our code above can then be rewritten as: string status = GetUpdatedStatus(); (new Task(() => { statusLabel.Text = status; })) .Start(uiScheduler); // Continue on in background method This is nice since it allows us to write code that isn’t tied to Windows Forms or WPF, but is still fully functional with those technologies.  I’ll discuss even more uses for the SynchronizationContext based TaskScheduler when I demonstrate task continuations, but even without continuations, this is a very useful construct. In addition to the two implementations provided by the Task Parallel Library, it is possible to implement your own TaskScheduler.  The ParallelExtensionsExtras project within the Samples for Parallel Programming provides nine sample TaskScheduler implementations.  These include schedulers which restrict the maximum number of concurrent tasks, run tasks on a single threaded apartment thread, use a new thread per task, and more.

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >