Search Results

Search found 10543 results on 422 pages for 'big bang theory'.

Page 35/422 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Given a number N, find the number of ways to write it as a sum of two or more consecutive integers

    - by hilal
    Here is the problem (Given a number N, find the number of ways to write it as a sum of two or more consecutive integers) and example 15 = 7+8, 1+2+3+4+5, 4+5+6 I solved with math like that : a + (a + 1) + (a + 2) + (a + 3) + ... + (a + k) = N (k + 1)*a + (1 + 2 + 3 + ... + k) = N (k + 1)a + k(k+1)/2 = N (k + 1)*(2*a + k)/2 = N Then check that if N divisible by (k+1) and (2*a+k) then I can find answer in O(N) time Here is my question how can you solve this by dynamic-programming ? and what is the complexity (O) ? P.S : excuse me, if it is a duplicate question. I searched but I can find

    Read the article

  • Python: (sampling with replacement): efficient algorithm to extract the set of UNIQUE N-tuples from a set

    - by Homunculus Reticulli
    I have a set of items, from which I want to select DISSIMILAR tuples (more on the definition of dissimilar touples later). The set could contain potentially several thousand items, although typically, it would contain only a few hundreds. I am trying to write a generic algorithm that will allow me to select N items to form an N-tuple, from the original set. The new set of selected N-tuples should be DISSIMILAR. A N-tuple A is said to be DISSIMILAR to another N-tuple B if and only if: Every pair (2-tuple) that occurs in A DOES NOT appear in B Note: For this algorithm, A 2-tuple (pair) is considered SIMILAR/IDENTICAL if it contains the same elements, i.e. (x,y) is considered the same as (y,x). This is a (possible variation on the) classic Urn Problem. A trivial (pseudocode) implementation of this algorithm would be something along the lines of def fetch_unique_tuples(original_set, tuple_size): while True: # randomly select [tuple_size] items from the set to create first set # create a key or hash from the N elements and store in a set # store selected N-tuple in a container if end_condition_met: break I don't think this is the most efficient way of doing this - and though I am no algorithm theorist, I suspect that the time for this algorithm to run is NOT O(n) - in fact, its probably more likely to be O(n!). I am wondering if there is a more efficient way of implementing such an algo, and preferably, reducing the time to O(n). Actually, as Mark Byers pointed out there is a second variable m, which is the size of the number of elements being selected. This (i.e. m) will typically be between 2 and 5. Regarding examples, here would be a typical (albeit shortened) example: original_list = ['CAGG', 'CTTC', 'ACCT', 'TGCA', 'CCTG', 'CAAA', 'TGCC', 'ACTT', 'TAAT', 'CTTG', 'CGGC', 'GGCC', 'TCCT', 'ATCC', 'ACAG', 'TGAA', 'TTTG', 'ACAA', 'TGTC', 'TGGA', 'CTGC', 'GCTC', 'AGGA', 'TGCT', 'GCGC', 'GCGG', 'AAAG', 'GCTG', 'GCCG', 'ACCA', 'CTCC', 'CACG', 'CATA', 'GGGA', 'CGAG', 'CCCC', 'GGTG', 'AAGT', 'CCAC', 'AACA', 'AATA', 'CGAC', 'GGAA', 'TACC', 'AGTT', 'GTGG', 'CGCA', 'GGGG', 'GAGA', 'AGCC', 'ACCG', 'CCAT', 'AGAC', 'GGGT', 'CAGC', 'GATG', 'TTCG'] Select 3-tuples from the original list should produce a list (or set) similar to: [('CAGG', 'CTTC', 'ACCT') ('CAGG', 'TGCA', 'CCTG') ('CAGG', 'CAAA', 'TGCC') ('CAGG', 'ACTT', 'ACCT') ('CAGG', 'CTTG', 'CGGC') .... ('CTTC', 'TGCA', 'CAAA') ] [[Edit]] Actually, in constructing the example output, I have realized that the earlier definition I gave for UNIQUENESS was incorrect. I have updated my definition and have introduced a new metric of DISSIMILARITY instead, as a result of this finding.

    Read the article

  • Fast path cache generation for a connected node graph

    - by Sukasa
    I'm trying to get a faster pathfinding mechanism in place in a game I'm working on for a connected node graph. The nodes are classed into two types, "Networks" and "Routers." In this picture, the blue circles represent routers and the grey rectangles networks. Each network keeps a list of which routers it is connected to, and vice-versa. Routers cannot connect directly to other routers, and networks cannot connect directly to other networks. Networks list which routers they're connected to Routers do the same I need to get an algorithm that will map out a path, measured in the number of networks crossed, for each possible source and destination network excluding paths where the source and destination are the same network. I have one right now, however it is unusably slow, taking about two seconds to map the paths, which becomes incredibly noticeable for all connected players. The current algorithm is a depth-first brute-force search (It was thrown together in about an hour to just get the path caching working) which returns an array of networks in the order they are traversed, which explains why it's so slow. Are there any algorithms that are more efficient? As a side note, while these example graphs have four networks, the in-practice graphs have 55 networks and about 20 routers in use. Paths which are not possible also can occur, and as well at any time the network/router graph topography can change, requiring the path cache to be rebuilt. What approach/algorithm would likely provide the best results for this type of a graph?

    Read the article

  • Purpose of singletons in programming

    - by thecoshman
    This is admittedly a rather loose question. My current understanding of singletons is that they are a class that you set up in such a way that only one instance is ever created. This sounds a lot like a static class to me. The main differnce being that with a static class you don't / can't instance it, you just use it such as Math.pi(). With a singletong class, you would still need to do something like singleton mySingleton = new singleton(); mysingleton.set_name("foo"); singleton otherSingleton = new singleton(); // correct me if i am wrong, but mysingleton == othersingleton right now, yes? // this the following should happen? otherSingleston.set_name("bar"); mysingleton.report_name(); // will output "bar" won't it? Please note, I am asking this language independently, more about the concept. So I am not so worried about actually how to coed such a class, but more why you would wan't to and what thing you would need to consider.

    Read the article

  • Link failure with either abnormal memory consumption or LNK1106 in Visual Studio 2005.

    - by Corvin
    Hello, I am trying to build a solution for windows XP in Visual Studio 2005. This solution contains 81 projects (static libs, exe's, dlls) and is being successfully used by our partners. I copied the solution bundle from their repository and tried setting it up on 3 similar machines of people in our group. I was successful on two machines and the solution failed to build on my machine. The build on my machine encountered two problems: During a simple build creation of the biggest static library (about 522Mb in debug mode) would fail with the message "13libd\ui1d.lib : fatal error LNK1106: invalid file or disk full: cannot seek to 0x20101879" Full solution rebuild creates this library, however when it comes to linking the library to main .exe file, devenv.exe spawns link.exe which consumes about 80Mb of physical memory and 250MB of virtual and spawns another link.exe, which does the same. This goes on until the system runs out of memory. On PCs of my colleagues where successful build could be performed, there is only one link.exe process which uses all the memory required for linking (about 500Mb physical). There is a plenty of hard drive space on my machine and the file system is NTFS. All three of our systems are similar - Core2Quad processors, 4Gb of RAM, Windows XP SP3. We are using Visual studio installed from the same source. I tried using a different RAM and CPU, using dedicated graphics adapter to eliminate possibility of video memory sharing influencing the build, putting solution files to different location, using different versions of VS 2005 (Professional, Standard and Team Suite), changing the amount of available virtual memory, running memtest86 and building the project from scratch (i.e. a clean bundle). I have read what MSDN says about LNK1106, none of the cases apply to me except for maybe "out of heap space", however I am not sure how I should fight this. The only idea that I have left is reinstalling the OS, however I am not sure that it would help and I am not sure that my situation wouldn't repeat itself on a different machine. Would anyone have any sort of advice for me? Thanks

    Read the article

  • Python: (sampling with replacement): efficient algorithm to extract the set of DISSIMILAR N-tuples from a set

    - by Homunculus Reticulli
    I have a set of items, from which I want to select DISSIMILAR tuples (more on the definition of dissimilar touples later). The set could contain potentially several thousand items, although typically, it would contain only a few hundreds. I am trying to write a generic algorithm that will allow me to select N items to form an N-tuple, from the original set. The new set of selected N-tuples should be DISSIMILAR. A N-tuple A is said to be DISSIMILAR to another N-tuple B if and only if: Every pair (2-tuple) that occurs in A DOES NOT appear in B Note: For this algorithm, A 2-tuple (pair) is considered SIMILAR/IDENTICAL if it contains the same elements, i.e. (x,y) is considered the same as (y,x). This is a (possible variation on the) classic Urn Problem. A trivial (pseudocode) implementation of this algorithm would be something along the lines of def fetch_unique_tuples(original_set, tuple_size): while True: # randomly select [tuple_size] items from the set to create first set # create a key or hash from the N elements and store in a set # store selected N-tuple in a container if end_condition_met: break I don't think this is the most efficient way of doing this - and though I am no algorithm theorist, I suspect that the time for this algorithm to run is NOT O(n) - in fact, its probably more likely to be O(n!). I am wondering if there is a more efficient way of implementing such an algo, and preferably, reducing the time to O(n). Actually, as Mark Byers pointed out there is a second variable m, which is the size of the number of elements being selected. This (i.e. m) will typically be between 2 and 5. Regarding examples, here would be a typical (albeit shortened) example: original_list = ['CAGG', 'CTTC', 'ACCT', 'TGCA', 'CCTG', 'CAAA', 'TGCC', 'ACTT', 'TAAT', 'CTTG', 'CGGC', 'GGCC', 'TCCT', 'ATCC', 'ACAG', 'TGAA', 'TTTG', 'ACAA', 'TGTC', 'TGGA', 'CTGC', 'GCTC', 'AGGA', 'TGCT', 'GCGC', 'GCGG', 'AAAG', 'GCTG', 'GCCG', 'ACCA', 'CTCC', 'CACG', 'CATA', 'GGGA', 'CGAG', 'CCCC', 'GGTG', 'AAGT', 'CCAC', 'AACA', 'AATA', 'CGAC', 'GGAA', 'TACC', 'AGTT', 'GTGG', 'CGCA', 'GGGG', 'GAGA', 'AGCC', 'ACCG', 'CCAT', 'AGAC', 'GGGT', 'CAGC', 'GATG', 'TTCG'] # Select 3-tuples from the original list should produce a list (or set) similar to: [('CAGG', 'CTTC', 'ACCT') ('CAGG', 'TGCA', 'CCTG') ('CAGG', 'CAAA', 'TGCC') ('CAGG', 'ACTT', 'ACCT') ('CAGG', 'CTTG', 'CGGC') .... ('CTTC', 'TGCA', 'CAAA') ] [[Edit]] Actually, in constructing the example output, I have realized that the earlier definition I gave for UNIQUENESS was incorrect. I have updated my definition and have introduced a new metric of DISSIMILARITY instead, as a result of this finding.

    Read the article

  • Nested loop with dependent bounds trip count

    - by aaa
    hello. just out of curiosity I tried to do the following, which turned out to be not so obvious to me; Suppose I have nested loops with runtime bounds, for example: t = 0 // trip count for l in 0:N for k in 0:N for j in max(l,k):N for i in k:j+1 t += 1 t is loop trip count is there a general algorithm/way (better than N^4 obviously) to calculate loop trip count? I am working on the assumption that the iteration bounds depend only on constant or previous loop variables.

    Read the article

  • Why should "miter" joints be slower than others?

    - by Hanno Fietz
    I'm having a graphics problem on drawing lines in Flash Player, where two lines drawn on top of each other with different thickness don't align properly if I use any other JointStyle than MITER. For pictures of the effect, and for the graphics oriented part of the question, see my post over on doctype. However, there's also a second angle on this problem, which is: why should drawing the "mitered" joints be so much slower than others? This seems to be a problem since at least FP 8, but I couldn't find any detailed info on what the problem might be. Is this just an ordinary bug that didn't get fixed yet, or is there something inherently slower about drawing these joints? For example, they seem to have something to do with square roots, but I seriously lack understanding of what this joint style thing is all about, technically. It just looks like some minor detail a graphic designer might worry about. I'm asking because I'm wondering if I can do something to mitergate, er, mitigate, the problem.

    Read the article

  • Using a user-defined type as a primary key

    - by Chris Kaminski
    Suppose I have a system where I have metadata such as: table: ====== key name address ... Then suppose I have a user-defined type described as so: datasource datasource-key A) are there systems where it's possible to have keys based on user-defined types? B) if so, how do you decompose the keys into a form suitable for querying? C) is this a case where I'm just better off with a composite primary key?

    Read the article

  • Algorithm to determine if array contains n...n+m?

    - by Kyle Cronin
    I saw this question on Reddit, and there were no positive solutions presented, and I thought it would be a perfect question to ask here. This was in a thread about interview questions: Write a method that takes an int array of size m, and returns (True/False) if the array consists of the numbers n...n+m-1, all numbers in that range and only numbers in that range. The array is not guaranteed to be sorted. (For instance, {2,3,4} would return true. {1,3,1} would return false, {1,2,4} would return false. The problem I had with this one is that my interviewer kept asking me to optimize (faster O(n), less memory, etc), to the point where he claimed you could do it in one pass of the array using a constant amount of memory. Never figured that one out. Along with your solutions please indicate if they assume that the array contains unique items. Also indicate if your solution assumes the sequence starts at 1. (I've modified the question slightly to allow cases where it goes 2, 3, 4...) edit: I am now of the opinion that there does not exist a linear in time and constant in space algorithm that handles duplicates. Can anyone verify this? The duplicate problem boils down to testing to see if the array contains duplicates in O(n) time, O(1) space. If this can be done you can simply test first and if there are no duplicates run the algorithms posted. So can you test for dupes in O(n) time O(1) space?

    Read the article

  • Is a server an infinite loop running as a background process?

    - by Tony
    Is a server essentially a background process running an infinite loop listening on a port? For example: while(1){ command = read(127.0.0.1:xxxx); if(command){ execute(command); } } When I say server, I obviously am not referring to a physical server (computer). I am referring to a MySQL server, or Apache, etc. Full disclosure - I haven't had time to poke through any source code. Actual code examples would be great!

    Read the article

  • Millionth number in the serie 2 3 4 6 9 13 19 28 42 63 ... ?

    - by HH
    It takes about minute to achieve 3000 in my comp but I need to know the millionth number in the serie. The definition is recursive so I cannot see any shortcuts except to calculate everything before the millionth number. How can you fast calculate millionth number in the serie? Serie Def n_{i+1} = \floor{ 3/2 * n_{i} } and n_{0}=2. Interestingly, only one site list the serie according to Goolge: this one. Too slow Bash code #!/bin/bash function serie { n=$( echo "3/2*$n" | bc -l | tr '\n' ' ' | sed -e 's@\\@@g' -e 's@ @@g' ); # bc gives \ at very large numbers, sed-tr for it n=$( echo $n/1 | bc ) #DUMMY FLOOR func } n=2 nth=1 while [ true ]; #$nth -lt 500 ]; do serie $n # n gets new value in the function throught global value echo $nth $n nth=$( echo $nth + 1 | bc ) #n++ done

    Read the article

  • do you call them functions, procedures or methods?

    - by lowlyintern
    consider a standard c# 'function' public void foo() { //some code } In c or c++ this is called a 'function' - even if taking no parameters and returning no value. In another language maybe it would be a 'procedure'. In object orientation speak it would be called a 'method' if a class member. What would be the correct term to use in c#?

    Read the article

  • Will a source-removal sort always return a maximal cycle?

    - by Jason Baker
    I wrote a source-removal algorithm to sort some dependencies between tables in our database, and it turns out we have a cycle. For simplicity, let's say we have tables A, B, C, and D. The edges are like this: (A, B) (B, A) (B, C) (C, D) (D, A) As you can see, there are two cycles here. One is between A and B and another is between all four of them. Will this type of sort always choke on the largest cycle? Or is that not necessarily the case?

    Read the article

  • What areas of computer science are particularly relevant to mobile development?

    - by MalcomTucker
    This isn't a platform specific question - rather I'm interested in the general platform independent areas of computer science that are particularly relevant to mobile applications development. For example, things like compression techniques, distributed synchronisation algorithims etc.. what theoretical concepts have you found relevant, useful or enabling when building mobile apps?

    Read the article

  • Floating point computer - Trouble with getting back correct results

    - by Francisco P.
    Having trouble with a challenge. Let's say I have a theoretical, base 10, floating point calculator with the following characteristics Only 3 digits for mantissa 1 digit for exponent Sign for mantissa and exponent How would this machine compute the following? 300 + \sum_{i=1}^{100} 0.2 The correct result is 320. The machine's result is 300. But why? Can't get where the 20 goes goes missing... Thanks for your time.

    Read the article

  • Can hash tables really be O(1)

    - by drawnonward
    It seems to be common knowledge that hash tables can achieve O(1) but that has never made sense to me. Can someone please explain it? A. The value is an int smaller than the size of the hash table, so the value is its own hash, so there is no hash table but if there was it would be O(1) and still be inefficient. B. You have to calculate the hash, so the order is O(n) for the size of the data being looked up. The lookup might be O(1) after you do O(n) work, but that still comes out to O(n) in my eyes. And unless you have a perfect hash or a large hash table there are probably several items per bucket so it devolves into a small linear search at some point anyway. I think hash tables are awesome, but I do not get the O(1) designation unless it is just supposed to be theoretical.

    Read the article

  • The Cash or Credit problem

    - by Josh K
    If you go to a store and ask "Cash or Credit?" they might simply say "Yes." This doesn't tell you anything as you posed an OR statement. if(cash || credit) With humans it's possible that they might respond "Both" to that question, or "Only {cash | credit}." Is there a way (or operator) to force the a statement to return the TRUE portions of a statement? For example: boolean cash = true; boolean credit = true; boolean cheque = false; if(cash || credit || cheque ) { // In here you would have an array with cash and credit in it because both of those are true }

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >