Search Results

Search found 3826 results on 154 pages for 'graph theory'.

Page 35/154 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Finding perfect numbers in C# (optimization)

    - by paradox
    I coded up a program in C# to find perfect numbers within a certain range as part of a programming challenge . However, I realized it is very slow when calculating perfect numbers upwards of 10000. Are there any methods of optimization that exist for finding perfect numbers? My code is as follows: using System; using System.Collections.Generic; using System.Linq; namespace ConsoleTest { class Program { public static List<int> FindDivisors(int inputNo) { List<int> Divisors = new List<int>(); for (int i = 1; i<inputNo; i++) { if (inputNo%i==0) Divisors.Add(i); } return Divisors; } public static void Main(string[] args) { const int limit = 100000; List<int> PerfectNumbers = new List<int>(); List<int> Divisors=new List<int>(); for (int i=1; i<limit; i++) { Divisors = FindDivisors(i); if (i==Divisors.Sum()) PerfectNumbers.Add(i); } Console.Write("Output ="); for (int i=0; i<PerfectNumbers.Count; i++) { Console.Write(" {0} ",PerfectNumbers[i]); } Console.Write("\n\n\nPress any key to continue . . . "); Console.ReadKey(true); } } }

    Read the article

  • Data validation best practices: how can I better construct user feedback?

    - by Cory Larson
    Data validation, whether it be domain object, form, or any other type of input validation, could theoretically be part of any development effort, no matter its size or complexity. I sometimes find myself writing informational or error messages that might seem harsh or demanding to unsuspecting users, and frankly I feel like there must be a better way to describe the validation problem to the user. I know that this topic is subjective and argumentative. StackOverflow might not be the proper channel for diving into this subject, but like I've mentioned, we all run into this at some point or another. There are so many StackExchange sites now; if there is a better one, feel free to share! Basically, I'm looking for good resources on data validation and user feedback that results from it at a theoretical level. Topics and questions I'm interested in are: Content Should I be describing what the user did correctly or incorrectly, or simply what was expected? How much detail can the user read before they get annoyed? (e.g. Is "Username cannot exceed 20 characters." enough, or should it be described more fully, such as "The username cannot be empty, and must be at least 6 characters but cannot exceed 30 characters."?) Grammar How do I decide between phrases like "must not," "may not," or "cannot"? Delivery This can depend on the project, but how should the information be delivered to the user? Should it be obtrusive (e.g. JavaScript alerts) or friendly? Should they be displayed prominently? Immediately (i.e. without confirmation steps, etc.)? Logging Do you bother logging validation errors? Internationalization Some cultures prefer or better understand directness over subtlety and vice-versa (e.g. "Don't do that!" vs. "Please check what you've done."). How do I cater to the majority of users? I may edit this list as I think more about the topic, but I'm genuinely interest in proper user feedback techniques. I'm looking for things like research results, poll results, etc. I've developed and refined my own techniques over the years that users seem to be okay with, but I work in an environment where the users prefer to adapt to what you give them over speaking up about things they don't like. I'm interested in hearing your experiences in addition to any resources to which you may be able to point me.

    Read the article

  • How are hash functions like MD5 unique?

    - by Aly
    Im aware that MD5 has had some collisions but this is more of a high level question about hashing functions. If MD5 hashes any arbitrary string into a 32-digit hex value, then according to the Pigeonhole Principle surely this can not be unique as there are more unique arbitrary strings than there are unique 32-digit hex values

    Read the article

  • identation control while developing a small python like language

    - by sap
    Hello, Im developing a small python like language using flex, byacc (for lexical and parsing) and C++, but i have a few questions regarding scope control. just as python it uses white spaces (or tabs) for identation, not only that but i want to implement index breaking like for instance if you type "break 2" inside a while loop thats inside another while loop it would not only break from the last one but from the first loop as well (hence the number 2 after break) and so on. example: while 1 while 1 break 2 end end #after break 2 it would jump right here but since i dont have an "anti" tab character to check when a scope ends (like C for example i would just use the '}' char) i was wondering if this method would the the best: i would define a global variable, like "int tabIndex" on my yacc file that i would access in my lex file using extern. then everytime i find a tab character on my lex file i would increment that variable by 1. when parsing on my yacc file if i find a "break" keyword i would decrement by the amount typed after it from the tabIndex variable, and when i reach and EOF after compiling and i get a tabIndex != 0 i would output compilation error. now the problem is, whats the best way to see if the identation got reduced, should i read \b (backspace) chars from lex and then reduce the tabIndex variable (when the user doesnt use break)? another method to achieve this? also just another small question, i want every executable to have its starting point on the function called start() should i hardcode this onto my yacc file? sorry for the long question any help is greatly appretiated. also if someone can provide an yacc file for python would be nice as a guideline (tried looking on google and had no luck). thanks in advance.

    Read the article

  • Strategy and AI for the game 'Proximity'

    - by smci
    'Proximity' is a strategy game of territorial domination similar to Othello, Go and Risk. Two players, uses a 10x12 hex grid. Game invented by Brian Cable in 2007. Seems to be a worthy game for discussing a) optimal strategy then b) how to build an AI Strategies are going to be probabilistic or heuristic-based, due to the randomness factor, and the high branching factor (starts out at 120). So it will be kind of hard to compare objectively. A compute time limit of 5s per turn seems reasonable. Game: Flash version here and many copies elsewhere on the web Rules: here Object: to have control of the most armies after all tiles have been placed. Each turn you received a randomly numbered tile (value between 1 and 20 armies) to place on any vacant board space. If this tile is adjacent to any ally tiles, it will strengthen each tile's defenses +1 (up to a max value of 20). If it is adjacent to any enemy tiles, it will take control over them if its number is higher than the number on the enemy tile. Thoughts on strategy: Here are some initial thoughts; setting the computer AI to Expert will probably teach a lot: minimizing your perimeter seems to be a good strategy, to prevent flips and minimize worst-case damage like in Go, leaving holes inside your formation is lethal, only more so with the hex grid because you can lose armies on up to 6 squares in one move low-numbered tiles are a liability, so place them away from your main territory, near the board edges and scattered. You can also use low-numbered tiles to plug holes in your formation, or make small gains along the perimeter which the opponent will not tend to bother attacking. a triangle formation of three pieces is strong since they mutually reinforce, and also reduce the perimeter Each tile can be flipped at most 6 times, i.e. when its neighbor tiles are occupied. Control of a formation can flow back and forth. Sometimes you lose part of a formation and plug any holes to render that part of the board 'dead' and lock in your territory/ prevent further losses. Low-numbered tiles are obvious-but-low-valued liabilities, but high-numbered tiles can be bigger liabilities if they get flipped (which is harder). One lucky play with a 20-army tile can cause a swing of 200 (from +100 to -100 armies). So tile placement will have both offensive and defensive considerations. Comment 1,2,4 seem to resemble a minimax strategy where we minimize the maximum expected possible loss (modified by some probabilistic consideration of the value ß the opponent can get from 1..20 i.e. a structure which can only be flipped by a ß=20 tile is 'nearly impregnable'.) I'm not clear what the implications of comments 3,5,6 are for optimal strategy. Interested in comments from Go, Chess or Othello players. (The sequel ProximityHD for XBox Live, allows 4-player -cooperative or -competitive local multiplayer increases the branching factor since you now have 5 tiles in your hand at any given time, of which you can only play one. Reinforcement of ally tiles is increased to +2 per ally.)

    Read the article

  • cleaning up noise in an edge detection algoritum

    - by Faken
    I recently wrote an extremely basic edge detection algorithm that works on an array of chars. The program was meant to detect the edges of blobs of a single particular value on the array and worked by simply looking left, right, up and down on the array element and checking if one of those values is not the same as the value it was currently looking at. The goal was not to produce a mathematical line but rather a set of ordered points that represented a descritized closed loop edge. The algorithm works perfectly fine, except that my data contained a bit of noise hence would randomly produce edges where there should be no edges. This in turn wreaked havoc on some of my other programs down the line. There is two types of noise that the data contains. The first type is fairly sparse and somewhat random. The second type is a semi continuous straight line on the x=y axis. I know the source of the first type of noise, its a feature of the data and there is nothing i can do about it. As for the second type, i know it's my program's fault for causing it...though i haven't a hot clue exactly what is causing it. My question is: How should I go about removing the noise completely? I know that the correct data has points that are always beside each other and is very compact and ordered (with no gaps) and is a closed loop or multiple loops. The first type of noise is usually sparse and random, that could be easily taken care of by checking if any edges is next that noise point is also counted as an edge. If not, then the point is most defiantly noise and should be removed. However, the second type of noise, where we have a semi continuous line about x=y poses more of a problem. The line is sometimes continuous for random lengths (the longest was it went half way across my entire array unbroken). It is even possible for it to intersect the actual edge. Any ideas on how to do this?

    Read the article

  • C or C++ to write a compiler?

    - by H.Josef
    I want to write a compiler for a custom markup language, I want to get optimum performance and I also want to have a good scalable design. Multi-paradigm programming language (C++) is more suitable to implement modern design patterns, but I think that will degrade performance a little bit (think of RTTI for example) which more or less might make C a better choice. I wonder what is the best language (C, C++ or even objective C) if someone wants to create a modern compiler (in the sense of complying to modern software engineering principles as a software) that is fast, efficient, and well designed.

    Read the article

  • P6 Architecture - Register renaming aside, does the limited user registers result in more ops spent

    - by mrjoltcola
    I'm studying JIT design with regard to dynamic languages VM implementation. I haven't done much Assembly since the 8086/8088 days, just a little here or there, so be nice if I'm out of sorts. As I understand it, the x86 (IA-32) architecture still has the same basic limited register set today that it always did, but the internal register count has grown tremendously, but these internal registers are not generally available and are used with register renaming to achieve parallel pipelining of code that otherwise could not be parallelizable. I understand this optimization pretty well, but my feeling is, while these optimizations help in overall throughput and for parallel algorithms, the limited register set we are still stuck with results in more register spilling overhead such that if x86 had double, or quadruple the registers available to us, there may be significantly less push/pop opcodes in a typical instruction stream? Or are there other processor optmizations that also optimize this away that I am unaware of? Basically if I've a unit of code that has 4 registers to work with for integer work, but my unit has a dozen variables, I've got potentially a push/pop for every 2 or so instructions. Any references to studies, or better yet, personal experiences?

    Read the article

  • why cacti is showing empty graph.??.even if rrd file created..

    - by Divya mohan Singh
    hii, i have develop my own snmp service..and i want to plot a graph of an OID provided. so, i have create graph in cacti. -) Its is showing device up. -) It is creating rrd file.(RRDTool says OK). -) showing the graph but its empty. but when i check it say rrdtool fetch AVERAGE it showing me all the values nan only..the monitored OID is having value 47 and i have set min=0 and max=100 i am using cacti appliance by rpath http://www.rpath.org/ui/#/appliances?id=http://www.rpath.org/api/products/cacti-appliance still i can show value on graph.. where is the problem??can anyone plz tell me??

    Read the article

  • Find optimal strategy and AI for the game 'Proximity'?

    - by smci
    'Proximity' is a strategy game of territorial domination similar to Othello, Go and Risk. Two players, uses a 10x12 hex grid. Game invented by Brian Cable in 2007. Seems to be a worthy game for discussing a) optimal algorithm then b) how to build an AI. Strategies are going to be probabilistic or heuristic-based, due to the randomness factor, and the insane branching factor (20^120). So it will be kind of hard to compare objectively. A compute time limit of 5s per turn seems reasonable. Game: Flash version here and many copies elsewhere on the web Rules: here Object: to have control of the most armies after all tiles have been placed. Each turn you received a randomly numbered tile (value between 1 and 20 armies) to place on any vacant board space. If this tile is adjacent to any ally tiles, it will strengthen each tile's defenses +1 (up to a max value of 20). If it is adjacent to any enemy tiles, it will take control over them if its number is higher than the number on the enemy tile. Thoughts on strategy: Here are some initial thoughts; setting the computer AI to Expert will probably teach a lot: minimizing your perimeter seems to be a good strategy, to prevent flips and minimize worst-case damage like in Go, leaving holes inside your formation is lethal, only more so with the hex grid because you can lose armies on up to 6 squares in one move low-numbered tiles are a liability, so place them away from your main territory, near the board edges and scattered. You can also use low-numbered tiles to plug holes in your formation, or make small gains along the perimeter which the opponent will not tend to bother attacking. a triangle formation of three pieces is strong since they mutually reinforce, and also reduce the perimeter Each tile can be flipped at most 6 times, i.e. when its neighbor tiles are occupied. Control of a formation can flow back and forth. Sometimes you lose part of a formation and plug any holes to render that part of the board 'dead' and lock in your territory/ prevent further losses. Low-numbered tiles are obvious-but-low-valued liabilities, but high-numbered tiles can be bigger liabilities if they get flipped (which is harder). One lucky play with a 20-army tile can cause a swing of 200 (from +100 to -100 armies). So tile placement will have both offensive and defensive considerations. Comment 1,2,4 seem to resemble a minimax strategy where we minimize the maximum expected possible loss (modified by some probabilistic consideration of the value ß the opponent can get from 1..20 i.e. a structure which can only be flipped by a ß=20 tile is 'nearly impregnable'.) I'm not clear what the implications of comments 3,5,6 are for optimal strategy. Interested in comments from Go, Chess or Othello players. (The sequel ProximityHD for XBox Live, allows 4-player -cooperative or -competitive local multiplayer increases the branching factor since you now have 5 tiles in your hand at any given time, of which you can only play one. Reinforcement of ally tiles is increased to +2 per ally.)

    Read the article

  • Write a compiler for a language that looks ahead and multiple files?

    - by acidzombie24
    In my language I can use a class variable in my method when the definition appears below the method. It can also call methods below my method and etc. There are no 'headers'. Take this C# example. class A { public void callMethods() { print(); B b; b.notYetSeen(); public void print() { Console.Write("v = {0}", v); } int v=9; } class B { public void notYetSeen() { Console.Write("notYetSeen()\n"); } } How should I compile that? what i was thinking is: pass1: convert everything to an AST pass2: go through all classes and build a list of define classes/variable/etc pass3: go through code and check if there's any errors such as undefined variable, wrong use etc and create my output But it seems like for this to work I have to do pass 1 and 2 for ALL files before doing pass3. Also it feels like a lot of work to do until I find a syntax error (other than the obvious that can be done at parse time such as forgetting to close a brace or writing 0xLETTERS instead of a hex value). My gut says there is some other way. Note: I am using bison/flex to generate my compiler.

    Read the article

  • A Turing Machine Question

    - by Hellnar
    Greetings, I have been struggling to find a question regarding this theoretical question, even tho it is not directly a programming question, I believe it is really related. Assume a type of Turing machine which cannot have more than 1000 squares. What would be the relationship between the set of such type of recognizable languages and set of normal recognizable languages.

    Read the article

  • integer division properties

    - by aaa
    hi. does the following integer arithmetic property hold? (m/n)/l == m/(n*l) At first I thought I knew answer (does not hold), but now am not sure. Does it hold for all numbers or only for certain conditions, i.e. n > l?

    Read the article

  • Amazing families of algorithms over implicit graphs

    - by Diego de Estrada
    Dynamic programming is, almost by definition, to find a shortest/longest path on an implicit dag. Every DP algorithm just does this. An Holographic algorithm can be loosely described as something that counts perfect matchings in implicit planar graphs. So, my question is: are there any other families of algorithms that use well-known algorithms over implicit graphs to achieve a considerable speedup?

    Read the article

  • What is the exact problem with multiple inheritance?

    - by Totophil
    I can see people asking all the time whether multiple inheritance should be included into the next version of C# or Java and C++ folks, who are fortunate enough to have this ability, say that this is like giving someone a rope to eventually hang themselves. What’s the matter with the multiple inheritance? Are there any concrete samples?

    Read the article

  • Find optimal/good-enough strategy and AI for the game 'Proximity'?

    - by smci
    'Proximity' is a strategy game of territorial domination similar to Othello, Go and Risk. Two players, uses a 10x12 hex grid. Game invented by Brian Cable in 2007. Seems to be a worthy game for discussing a) optimal algorithm then b) how to build an AI. Strategies are going to be probabilistic or heuristic-based, due to the randomness factor, and the insane branching factor (20^120). So it will be kind of hard to compare objectively. A compute time limit of 5s per turn seems reasonable. Game: Flash version here and many copies elsewhere on the web Rules: here Object: to have control of the most armies after all tiles have been placed. Each turn you received a randomly numbered tile (value between 1 and 20 armies) to place on any vacant board space. If this tile is adjacent to any ally tiles, it will strengthen each tile's defenses +1 (up to a max value of 20). If it is adjacent to any enemy tiles, it will take control over them if its number is higher than the number on the enemy tile. Thoughts on strategy: Here are some initial thoughts; setting the computer AI to Expert will probably teach a lot: minimizing your perimeter seems to be a good strategy, to prevent flips and minimize worst-case damage like in Go, leaving holes inside your formation is lethal, only more so with the hex grid because you can lose armies on up to 6 squares in one move low-numbered tiles are a liability, so place them away from your main territory, near the board edges and scattered. You can also use low-numbered tiles to plug holes in your formation, or make small gains along the perimeter which the opponent will not tend to bother attacking. a triangle formation of three pieces is strong since they mutually reinforce, and also reduce the perimeter Each tile can be flipped at most 6 times, i.e. when its neighbor tiles are occupied. Control of a formation can flow back and forth. Sometimes you lose part of a formation and plug any holes to render that part of the board 'dead' and lock in your territory/ prevent further losses. Low-numbered tiles are obvious-but-low-valued liabilities, but high-numbered tiles can be bigger liabilities if they get flipped (which is harder). One lucky play with a 20-army tile can cause a swing of 200 (from +100 to -100 armies). So tile placement will have both offensive and defensive considerations. Comment 1,2,4 seem to resemble a minimax strategy where we minimize the maximum expected possible loss (modified by some probabilistic consideration of the value ß the opponent can get from 1..20 i.e. a structure which can only be flipped by a ß=20 tile is 'nearly impregnable'.) I'm not clear what the implications of comments 3,5,6 are for optimal strategy. Interested in comments from Go, Chess or Othello players. (The sequel ProximityHD for XBox Live, allows 4-player -cooperative or -competitive local multiplayer increases the branching factor since you now have 5 tiles in your hand at any given time, of which you can only play one. Reinforcement of ally tiles is increased to +2 per ally.)

    Read the article

  • Big O complexity of simple for not always linear?

    - by i30817
    I'm sure most of you know that a nested loop has O(n^2) complexity if the function input size is n for(int i = 0; i < n; i++){ for(int j = 0; j < n; j++){ ... } } I think that this is similar, by a analogous argument, but i'm not sure can anyone confirm? for(int i = 0, max = n*n; i < max; i++{ ... } If so i guess that there is some kinds of code whose big O mapping is not immediately obvious besides recursion and subroutines.

    Read the article

  • Calculate shortest path through a grocery store

    - by Bart
    Hi, I'm trying to find a way to find the shortest path through a grocery store, visiting a list of locations (shopping list). The path should start at a specified startposition and can end at multiple endpositions (there are multiple checkout counters). Also, I have some predefined constraints on the path, such as "item x on the shopping list needs to be the last, second last, or third last item on the path". There is a function that will return true or false for a given path. Finally, this needs to be calculated with limited cpu power (on a smartphone) and within a second or so. If this isn't possible, then an approximation to the optimal path is also ok. Is this possible? So far I think I need to start by calculating the distance between every item on the list using something like A* or Dijkstra's. After that, should I treat it like the travelling salesman problem? Because in my problem there is a specified startnode, specified endnodes, and some constraints, which are not in the travelling salesman problem. Any help would be appreciated :)

    Read the article

  • Finding the Reachability Count for all vertices of a DAG

    - by ChrisH
    I am trying to find a fast algorithm with modest space requirements to solve the following problem. For each vertex of a DAG find the sum of its in-degree and out-degree in the DAG's transitive closure. Given this DAG: I expect the following result: Vertex # Reacability Count Reachable Vertices in closure 7 5 (11, 8, 2, 9, 10) 5 4 (11, 2, 9, 10) 3 3 (8, 9, 10) 11 5 (7, 5, 2, 9, 10) 8 3 (7, 3, 9) 2 3 (7, 5, 11) 9 5 (7, 5, 11, 8, 3) 10 4 (7, 5, 11, 3) It seems to me that this should be possible without actually constructing the transitive closure. I haven't been able to find anything on the net that exactly describes this problem. I've got some ideas about how to do this, but I wanted to see what the SO crowd could come up with.

    Read the article

  • Can you find a pattern to sync files knowing only dates and filenames?

    - by Robert MacLean
    Imagine if you will a operating system that had the following methods for files Create File: Creates (writes) a new file to disk. Calling this if a file exists causes a fault. Update File: Updates an existing file. Call this if a file doesn't exist causes a fault. Read File: Reads data from a file. Enumerate files: Gets all files in a folder. Files themselves in this operating system only have the following meta data: Created Time: The original date and time the file was created, by the Create File method. Modified Time: The date and time the file was last modified by the Update File method. If the file has never been modified, this will equal the Create Time. You have been given the task of writing an application which will sync the files between two directories (lets call them bill and ted) on a machine. However it is not that simple, the client has required that The application never faults (see methods above). That while the application is running the users can add and update files and those will be sync'd next time the application runs. Files can be added to either the ted or bill directories. File names cannot be altered. The application will perform one sync per time it is run. The application must be almost entirely in memory, in other words you cannot create a log of filenames and write that to disk and then check that the next time. The exception to point 6 is that you can store date and times between runs. Each date/time is associated with a key labeled A through J (so you have 10 to use) so you can compare keys between runs. There is no way to catch exceptions in the application. Answer will be accepted based on the following conditions: First answer to meet all requirements will be accepted. If there is no way to meet all requirements, the answer which ensures the smallest amount of missed changes per sync will be accepted. A bounty will be created (100 points) as soon as possible for the prize. The winner will be selected one day before the bounty ends. Please ask questions in the comments and I will gladly update and refine the question on those.

    Read the article

  • 3d symmetry search algorithm

    - by aaa
    this may be more appropriate for math overflow, but nevertheless: Given 3d structure (for example molecule), what is a good approach/algorithm to find symmetry (rotational/reflection/inversion/etc.)? I came up with brute force naive algorithm, but it seems there should be better approach. I am not so much interested in genetic algorithms as I would like best symmetry rather then almost the best symmetry link to website/paper would be great. thanks

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >