Search Results

Search found 74197 results on 2968 pages for 'part time'.

Page 35/2968 | < Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Google I/O 2010 - Make your app real-time with PubSubHubbub

    Google I/O 2010 - Make your app real-time with PubSubHubbub Google I/O 2010 - Make your application real-time with PubSubHubbub Social Web 201 Brett Slatkin This session will go over how to add support for the PubSubHubbub protocol to your website. You'll learn how to turn Atom and RSS feeds into real-time streams. We'll go over how to consume real-time data streams and how to make your website reactive to what's happening on the web right now. For all I/O 2010 sessions, please go to code.google.com From: GoogleDevelopers Views: 5 0 ratings Time: 55:46 More in Science & Technology

    Read the article

  • How to display time in the top panel?

    - by Mörre
    I thought I already had the time up there in the top bar, and it may have been so in previous Ubuntu versions (don't remember, my Ubuntu laptop is just one of three computers I use). Only that I just noticed - me being someone who never wears a watch, has the cellphone turned off 95% of the time and relying on the computer to tell the time - that there is no time being displayed anywhere, and I had expected it in the top bar on the Unity desktop. I searched around but found no obvious solution, but I'm sure someone immediately knows how I can get my time (back?) into the top bar?

    Read the article

  • Why does my MacBook Pro have long ping times over Wi-Fi?

    - by randynov
    I have been having problems connecting with my Wi-Fi. It is weird, the ping times to the router (<30 feet away) seem to surge, often getting over 10 seconds before slowly coming back down. You can see the trend below. I'm on a MacBook Pro and have done the normal stuff (reset the PRAM and SMC, changed wireless channels, etc.). It happens across different routers, so I think it must be my laptop, but I don't know what it could be. The RSSI value hovers around -57, but I've seen the transmit rate flip between 0, 48 and 54. The signal strength is ~60% with 9% noise. Currently, there are 17 other wireless networks in range, but only one in the same channel. 1 - How can I figure out what's going on? 2 - How can I correct the situation? PING 192.168.1.1 (192.168.1.1): 56 data bytes 64 bytes from 192.168.1.1: icmp_seq=0 ttl=254 time=781.107 ms 64 bytes from 192.168.1.1: icmp_seq=1 ttl=254 time=681.551 ms 64 bytes from 192.168.1.1: icmp_seq=2 ttl=254 time=610.001 ms 64 bytes from 192.168.1.1: icmp_seq=3 ttl=254 time=544.915 ms 64 bytes from 192.168.1.1: icmp_seq=4 ttl=254 time=547.622 ms 64 bytes from 192.168.1.1: icmp_seq=5 ttl=254 time=468.914 ms 64 bytes from 192.168.1.1: icmp_seq=6 ttl=254 time=237.368 ms 64 bytes from 192.168.1.1: icmp_seq=7 ttl=254 time=229.902 ms 64 bytes from 192.168.1.1: icmp_seq=8 ttl=254 time=11754.151 ms 64 bytes from 192.168.1.1: icmp_seq=9 ttl=254 time=10753.943 ms 64 bytes from 192.168.1.1: icmp_seq=10 ttl=254 time=9754.428 ms 64 bytes from 192.168.1.1: icmp_seq=11 ttl=254 time=8754.199 ms 64 bytes from 192.168.1.1: icmp_seq=12 ttl=254 time=7754.138 ms 64 bytes from 192.168.1.1: icmp_seq=13 ttl=254 time=6754.159 ms 64 bytes from 192.168.1.1: icmp_seq=14 ttl=254 time=5753.991 ms 64 bytes from 192.168.1.1: icmp_seq=15 ttl=254 time=4754.068 ms 64 bytes from 192.168.1.1: icmp_seq=16 ttl=254 time=3753.930 ms 64 bytes from 192.168.1.1: icmp_seq=17 ttl=254 time=2753.768 ms 64 bytes from 192.168.1.1: icmp_seq=18 ttl=254 time=1753.866 ms 64 bytes from 192.168.1.1: icmp_seq=19 ttl=254 time=753.592 ms 64 bytes from 192.168.1.1: icmp_seq=20 ttl=254 time=517.315 ms 64 bytes from 192.168.1.1: icmp_seq=37 ttl=254 time=1.315 ms 64 bytes from 192.168.1.1: icmp_seq=38 ttl=254 time=1.035 ms 64 bytes from 192.168.1.1: icmp_seq=39 ttl=254 time=4.597 ms 64 bytes from 192.168.1.1: icmp_seq=21 ttl=254 time=18010.681 ms 64 bytes from 192.168.1.1: icmp_seq=22 ttl=254 time=17010.449 ms 64 bytes from 192.168.1.1: icmp_seq=23 ttl=254 time=16010.430 ms 64 bytes from 192.168.1.1: icmp_seq=24 ttl=254 time=15010.540 ms 64 bytes from 192.168.1.1: icmp_seq=25 ttl=254 time=14010.450 ms 64 bytes from 192.168.1.1: icmp_seq=26 ttl=254 time=13010.175 ms 64 bytes from 192.168.1.1: icmp_seq=27 ttl=254 time=12010.282 ms 64 bytes from 192.168.1.1: icmp_seq=28 ttl=254 time=11010.265 ms 64 bytes from 192.168.1.1: icmp_seq=29 ttl=254 time=10010.285 ms 64 bytes from 192.168.1.1: icmp_seq=30 ttl=254 time=9010.235 ms 64 bytes from 192.168.1.1: icmp_seq=31 ttl=254 time=8010.399 ms 64 bytes from 192.168.1.1: icmp_seq=32 ttl=254 time=7010.144 ms 64 bytes from 192.168.1.1: icmp_seq=33 ttl=254 time=6010.113 ms 64 bytes from 192.168.1.1: icmp_seq=34 ttl=254 time=5010.025 ms 64 bytes from 192.168.1.1: icmp_seq=35 ttl=254 time=4009.966 ms 64 bytes from 192.168.1.1: icmp_seq=36 ttl=254 time=3009.825 ms 64 bytes from 192.168.1.1: icmp_seq=40 ttl=254 time=16000.676 ms 64 bytes from 192.168.1.1: icmp_seq=41 ttl=254 time=15000.477 ms 64 bytes from 192.168.1.1: icmp_seq=42 ttl=254 time=14000.388 ms 64 bytes from 192.168.1.1: icmp_seq=43 ttl=254 time=13000.549 ms 64 bytes from 192.168.1.1: icmp_seq=44 ttl=254 time=12000.469 ms 64 bytes from 192.168.1.1: icmp_seq=45 ttl=254 time=11000.332 ms 64 bytes from 192.168.1.1: icmp_seq=46 ttl=254 time=10000.339 ms 64 bytes from 192.168.1.1: icmp_seq=47 ttl=254 time=9000.338 ms 64 bytes from 192.168.1.1: icmp_seq=48 ttl=254 time=8000.198 ms 64 bytes from 192.168.1.1: icmp_seq=49 ttl=254 time=7000.388 ms 64 bytes from 192.168.1.1: icmp_seq=50 ttl=254 time=6000.217 ms 64 bytes from 192.168.1.1: icmp_seq=51 ttl=254 time=5000.084 ms 64 bytes from 192.168.1.1: icmp_seq=52 ttl=254 time=3999.920 ms 64 bytes from 192.168.1.1: icmp_seq=53 ttl=254 time=3000.010 ms 64 bytes from 192.168.1.1: icmp_seq=54 ttl=254 time=1999.832 ms 64 bytes from 192.168.1.1: icmp_seq=55 ttl=254 time=1000.072 ms 64 bytes from 192.168.1.1: icmp_seq=58 ttl=254 time=1.125 ms 64 bytes from 192.168.1.1: icmp_seq=59 ttl=254 time=1.070 ms 64 bytes from 192.168.1.1: icmp_seq=60 ttl=254 time=2.515 ms

    Read the article

  • Why does my macbook pro have long ping times over wifi?

    - by randynov
    I have been having problems connecting with my wifi. It is weird, the ping times to the router (<30 feet away) seem to surge, often getting over 10s before slowly coming back down. You can see the trend below. I'm on a macbook pro and have done the normal stuff (reset the pram and smc, changed wireless channels, etc.). It happens across different routers, so I think it must be my laptop, but I don't know what it could be. The RSSI value hovers around -57, but I've seen the transmit rate flip between 0, 48 & 54. The signal strength is ~60% with 9% noise. Currently, there are 17 other wireless networks in range, but only one in the same channel. 1 - How can I figure out what's going on? 2 - How can I correct the situation? TIA! Randall PING 192.168.1.1 (192.168.1.1): 56 data bytes 64 bytes from 192.168.1.1: icmp_seq=0 ttl=254 time=781.107 ms 64 bytes from 192.168.1.1: icmp_seq=1 ttl=254 time=681.551 ms 64 bytes from 192.168.1.1: icmp_seq=2 ttl=254 time=610.001 ms 64 bytes from 192.168.1.1: icmp_seq=3 ttl=254 time=544.915 ms 64 bytes from 192.168.1.1: icmp_seq=4 ttl=254 time=547.622 ms 64 bytes from 192.168.1.1: icmp_seq=5 ttl=254 time=468.914 ms 64 bytes from 192.168.1.1: icmp_seq=6 ttl=254 time=237.368 ms 64 bytes from 192.168.1.1: icmp_seq=7 ttl=254 time=229.902 ms 64 bytes from 192.168.1.1: icmp_seq=8 ttl=254 time=11754.151 ms 64 bytes from 192.168.1.1: icmp_seq=9 ttl=254 time=10753.943 ms 64 bytes from 192.168.1.1: icmp_seq=10 ttl=254 time=9754.428 ms 64 bytes from 192.168.1.1: icmp_seq=11 ttl=254 time=8754.199 ms 64 bytes from 192.168.1.1: icmp_seq=12 ttl=254 time=7754.138 ms 64 bytes from 192.168.1.1: icmp_seq=13 ttl=254 time=6754.159 ms 64 bytes from 192.168.1.1: icmp_seq=14 ttl=254 time=5753.991 ms 64 bytes from 192.168.1.1: icmp_seq=15 ttl=254 time=4754.068 ms 64 bytes from 192.168.1.1: icmp_seq=16 ttl=254 time=3753.930 ms 64 bytes from 192.168.1.1: icmp_seq=17 ttl=254 time=2753.768 ms 64 bytes from 192.168.1.1: icmp_seq=18 ttl=254 time=1753.866 ms 64 bytes from 192.168.1.1: icmp_seq=19 ttl=254 time=753.592 ms 64 bytes from 192.168.1.1: icmp_seq=20 ttl=254 time=517.315 ms 64 bytes from 192.168.1.1: icmp_seq=37 ttl=254 time=1.315 ms 64 bytes from 192.168.1.1: icmp_seq=38 ttl=254 time=1.035 ms 64 bytes from 192.168.1.1: icmp_seq=39 ttl=254 time=4.597 ms 64 bytes from 192.168.1.1: icmp_seq=21 ttl=254 time=18010.681 ms 64 bytes from 192.168.1.1: icmp_seq=22 ttl=254 time=17010.449 ms 64 bytes from 192.168.1.1: icmp_seq=23 ttl=254 time=16010.430 ms 64 bytes from 192.168.1.1: icmp_seq=24 ttl=254 time=15010.540 ms 64 bytes from 192.168.1.1: icmp_seq=25 ttl=254 time=14010.450 ms 64 bytes from 192.168.1.1: icmp_seq=26 ttl=254 time=13010.175 ms 64 bytes from 192.168.1.1: icmp_seq=27 ttl=254 time=12010.282 ms 64 bytes from 192.168.1.1: icmp_seq=28 ttl=254 time=11010.265 ms 64 bytes from 192.168.1.1: icmp_seq=29 ttl=254 time=10010.285 ms 64 bytes from 192.168.1.1: icmp_seq=30 ttl=254 time=9010.235 ms 64 bytes from 192.168.1.1: icmp_seq=31 ttl=254 time=8010.399 ms 64 bytes from 192.168.1.1: icmp_seq=32 ttl=254 time=7010.144 ms 64 bytes from 192.168.1.1: icmp_seq=33 ttl=254 time=6010.113 ms 64 bytes from 192.168.1.1: icmp_seq=34 ttl=254 time=5010.025 ms 64 bytes from 192.168.1.1: icmp_seq=35 ttl=254 time=4009.966 ms 64 bytes from 192.168.1.1: icmp_seq=36 ttl=254 time=3009.825 ms 64 bytes from 192.168.1.1: icmp_seq=40 ttl=254 time=16000.676 ms 64 bytes from 192.168.1.1: icmp_seq=41 ttl=254 time=15000.477 ms 64 bytes from 192.168.1.1: icmp_seq=42 ttl=254 time=14000.388 ms 64 bytes from 192.168.1.1: icmp_seq=43 ttl=254 time=13000.549 ms 64 bytes from 192.168.1.1: icmp_seq=44 ttl=254 time=12000.469 ms 64 bytes from 192.168.1.1: icmp_seq=45 ttl=254 time=11000.332 ms 64 bytes from 192.168.1.1: icmp_seq=46 ttl=254 time=10000.339 ms 64 bytes from 192.168.1.1: icmp_seq=47 ttl=254 time=9000.338 ms 64 bytes from 192.168.1.1: icmp_seq=48 ttl=254 time=8000.198 ms 64 bytes from 192.168.1.1: icmp_seq=49 ttl=254 time=7000.388 ms 64 bytes from 192.168.1.1: icmp_seq=50 ttl=254 time=6000.217 ms 64 bytes from 192.168.1.1: icmp_seq=51 ttl=254 time=5000.084 ms 64 bytes from 192.168.1.1: icmp_seq=52 ttl=254 time=3999.920 ms 64 bytes from 192.168.1.1: icmp_seq=53 ttl=254 time=3000.010 ms 64 bytes from 192.168.1.1: icmp_seq=54 ttl=254 time=1999.832 ms 64 bytes from 192.168.1.1: icmp_seq=55 ttl=254 time=1000.072 ms 64 bytes from 192.168.1.1: icmp_seq=58 ttl=254 time=1.125 ms 64 bytes from 192.168.1.1: icmp_seq=59 ttl=254 time=1.070 ms 64 bytes from 192.168.1.1: icmp_seq=60 ttl=254 time=2.515 ms

    Read the article

  • PASS Summit 2011 &ndash; Part IV

    - by Tara Kizer
    This is the final blog for my PASS Summit 2011 series.  Well okay, a mini-series, I guess. On the last day of the conference, I attended Keith Elmore’ and Boris Baryshnikov’s (both from Microsoft) “Introducing the Microsoft SQL Server Code Named “Denali” Performance Dashboard Reports, Jeremiah Peschka’s (blog|twitter) “Rewrite your T-SQL for Great Good!”, and Kimberly Tripp’s (blog|twitter) “Isolated Disasters in VLDBs”. Keith and Boris talked about the lifecycle of a session, figuring out the running time and the waiting time.  They pointed out the transient nature of the reports.  You could be drilling into it to uncover a problem, but the session may have ended by the time you’ve drilled all of the way down.  Also, the reports are for troubleshooting live problems and not historical ones.  You can use Management Data Warehouse for historical troubleshooting.  The reports provide similar benefits to the Activity Monitor, however Activity Monitor doesn’t provide context sensitive drill through. One thing I learned in Keith’s and Boris’ session was that the buffer cache hit ratio should really never be below 87% due to the read-ahead mechanism in SQL Server.  When a page is read, it will read the entire extent.  So for every page read, you get 7 more read.  If you need any of those 7 extra pages, well they are already in cache.  I had a lot of fun in Jeremiah’s session about refactoring code plus I learned a lot.  His slides were visually presented in a fun way, which just made for a more upbeat presentation.  Jeremiah says that before you start refactoring, you should look at your system.  Investigate missing or too many indexes, out-of-date statistics, and other areas that could be leading to your code running slow.  He talked about code standards.  He suggested using common abbreviations for aliases instead of one-letter aliases.  I’m a big offender of one-letter aliases, but he makes a good point.  He said that join order does not matter to the optimizer, but it does matter to those who have to read your code.  Now let’s get into refactoring! Eliminate useless things – useless/unneeded joins and columns.  If you don’t need it, get rid of it! Instead of using DISTINCT/JOIN, replace with EXISTS Simplify your conditions; use UNION or better yet UNION ALL instead of OR to avoid a scan and use indexes for each union query Branching logic – instead of IF this, IF that, and on and on…use dynamic SQL (sp_executesql, please!) or use a parameterized query in the application Correlated subqueries – YUCK! Replace with a join Eliminate repeated patterns Last, but certainly not least, was Kimberly’s session.  Kimberly is my favorite speaker.  I attended her two-day pre-conference seminar at PASS Summit 2005 as well as a SQL Immersion Event last December.  Did I mention she’s my favorite speaker?  Okay, enough of that. Kimberly’s session was packed with demos.  I had seen some of it in the SQL Immersion Event, but it was very nice to get a refresher on these, especially since I’ve got a VLDB with some growing pains.  One key takeaway from her session is the idea to use a log shipping solution with a load delay, such as 6, 8, or 24 hours behind the primary.  In the case of say an accidentally dropped table in a VLDB, we could retrieve it from the secondary database rather than waiting an eternity for a restore to complete.  Kimberly let us know that in SQL Server 2012 (it finally has a name!), online rebuilds are supported even if there are LOB columns in your table.  This will simplify custom code that intelligently figures out if an online rebuild is possible. There was actually one last time slot for sessions that day, but I had an airplane to catch and my kids to see!

    Read the article

  • Parallelism in .NET – Part 10, Cancellation in PLINQ and the Parallel class

    - by Reed
    Many routines are parallelized because they are long running processes.  When writing an algorithm that will run for a long period of time, its typically a good practice to allow that routine to be cancelled.  I previously discussed terminating a parallel loop from within, but have not demonstrated how a routine can be cancelled from the caller’s perspective.  Cancellation in PLINQ and the Task Parallel Library is handled through a new, unified cooperative cancellation model introduced with .NET 4.0. Cancellation in .NET 4 is based around a new, lightweight struct called CancellationToken.  A CancellationToken is a small, thread-safe value type which is generated via a CancellationTokenSource.  There are many goals which led to this design.  For our purposes, we will focus on a couple of specific design decisions: Cancellation is cooperative.  A calling method can request a cancellation, but it’s up to the processing routine to terminate – it is not forced. Cancellation is consistent.  A single method call requests a cancellation on every copied CancellationToken in the routine. Let’s begin by looking at how we can cancel a PLINQ query.  Supposed we wanted to provide the option to cancel our query from Part 6: double min = collection .AsParallel() .Min(item => item.PerformComputation()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } We would rewrite this to allow for cancellation by adding a call to ParallelEnumerable.WithCancellation as follows: var cts = new CancellationTokenSource(); // Pass cts here to a routine that could, // in parallel, request a cancellation try { double min = collection .AsParallel() .WithCancellation(cts.Token) .Min(item => item.PerformComputation()); } catch (OperationCanceledException e) { // Query was cancelled before it finished } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Here, if the user calls cts.Cancel() before the PLINQ query completes, the query will stop processing, and an OperationCanceledException will be raised.  Be aware, however, that cancellation will not be instantaneous.  When cts.Cancel() is called, the query will only stop after the current item.PerformComputation() elements all finish processing.  cts.Cancel() will prevent PLINQ from scheduling a new task for a new element, but will not stop items which are currently being processed.  This goes back to the first goal I mentioned – Cancellation is cooperative.  Here, we’re requesting the cancellation, but it’s up to PLINQ to terminate. If we wanted to allow cancellation to occur within our routine, we would need to change our routine to accept a CancellationToken, and modify it to handle this specific case: public void PerformComputation(CancellationToken token) { for (int i=0; i<this.iterations; ++i) { // Add a check to see if we've been canceled // If a cancel was requested, we'll throw here token.ThrowIfCancellationRequested(); // Do our processing now this.RunIteration(i); } } With this overload of PerformComputation, each internal iteration checks to see if a cancellation request was made, and will throw an OperationCanceledException at that point, instead of waiting until the method returns.  This is good, since it allows us, as developers, to plan for cancellation, and terminate our routine in a clean, safe state. This is handled by changing our PLINQ query to: try { double min = collection .AsParallel() .WithCancellation(cts.Token) .Min(item => item.PerformComputation(cts.Token)); } catch (OperationCanceledException e) { // Query was cancelled before it finished } PLINQ is very good about handling this exception, as well.  There is a very good chance that multiple items will raise this exception, since the entire purpose of PLINQ is to have multiple items be processed concurrently.  PLINQ will take all of the OperationCanceledException instances raised within these methods, and merge them into a single OperationCanceledException in the call stack.  This is done internally because we added the call to ParallelEnumerable.WithCancellation. If, however, a different exception is raised by any of the elements, the OperationCanceledException as well as the other Exception will be merged into a single AggregateException. The Task Parallel Library uses the same cancellation model, as well.  Here, we supply our CancellationToken as part of the configuration.  The ParallelOptions class contains a property for the CancellationToken.  This allows us to cancel a Parallel.For or Parallel.ForEach routine in a very similar manner to our PLINQ query.  As an example, we could rewrite our Parallel.ForEach loop from Part 2 to support cancellation by changing it to: try { var cts = new CancellationTokenSource(); var options = new ParallelOptions() { CancellationToken = cts.Token }; Parallel.ForEach(customers, options, customer => { // Run some process that takes some time... DateTime lastContact = theStore.GetLastContact(customer); TimeSpan timeSinceContact = DateTime.Now - lastContact; // Check for cancellation here options.CancellationToken.ThrowIfCancellationRequested(); // If it's been more than two weeks, send an email, and update... if (timeSinceContact.Days > 14) { theStore.EmailCustomer(customer); customer.LastEmailContact = DateTime.Now; } }); } catch (OperationCanceledException e) { // The loop was cancelled } Notice that here we use the same approach taken in PLINQ.  The Task Parallel Library will automatically handle our cancellation in the same manner as PLINQ, providing a clean, unified model for cancellation of any parallel routine.  The TPL performs the same aggregation of the cancellation exceptions as PLINQ, as well, which is why a single exception handler for OperationCanceledException will cleanly handle this scenario.  This works because we’re using the same CancellationToken provided in the ParallelOptions.  If a different exception was thrown by one thread, or a CancellationToken from a different CancellationTokenSource was used to raise our exception, we would instead receive all of our individual exceptions merged into one AggregateException.

    Read the article

  • Creating a dynamic proxy generator with c# – Part 3 – Creating the constructors

    - by SeanMcAlinden
    Creating a dynamic proxy generator with c# – Part 1 – Creating the Assembly builder, Module builder and caching mechanism Creating a dynamic proxy generator with c# – Part 2 – Interceptor Design For the latest code go to http://rapidioc.codeplex.com/ When building our proxy type, the first thing we need to do is build the constructors. There needs to be a corresponding constructor for each constructor on the passed in base type. We also want to create a field to store the interceptors and construct this list within each constructor. So assuming the passed in base type is a User<int, IRepository> class, were looking to generate constructor code like the following:   Default Constructor public User`2_RapidDynamicBaseProxy() {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }     Parameterised Constructor public User`2_RapidDynamicBaseProxy(IRepository repository1) : base(repository1) {     this.interceptors = new List<IInterceptor<User<int, IRepository>>>();     DefaultInterceptor<User<int, IRepository>> item = new DefaultInterceptor<User<int, IRepository>>();     this.interceptors.Add(item); }   As you can see, we first populate a field on the class with a new list of the passed in base type. Construct our DefaultInterceptor class. Add the DefaultInterceptor instance to our interceptor collection. Although this seems like a relatively small task, there is a fair amount of work require to get this going. Instead of going through every line of code – please download the latest from http://rapidioc.codeplex.com/ and debug through. In this post I’m going to concentrate on explaining how it works. TypeBuilder The TypeBuilder class is the main class used to create the type. You instantiate a new TypeBuilder using the assembly module we created in part 1. /// <summary> /// Creates a type builder. /// </summary> /// <typeparam name="TBase">The type of the base class to be proxied.</typeparam> public static TypeBuilder CreateTypeBuilder<TBase>() where TBase : class {     TypeBuilder typeBuilder = DynamicModuleCache.Get.DefineType         (             CreateTypeName<TBase>(),             TypeAttributes.Class | TypeAttributes.Public,             typeof(TBase),             new Type[] { typeof(IProxy) }         );       if (typeof(TBase).IsGenericType)     {         GenericsHelper.MakeGenericType(typeof(TBase), typeBuilder);     }       return typeBuilder; }   private static string CreateTypeName<TBase>() where TBase : class {     return string.Format("{0}_RapidDynamicBaseProxy", typeof(TBase).Name); } As you can see, I’ve create a new public class derived from TBase which also implements my IProxy interface, this is used later for adding interceptors. If the base type is generic, the following GenericsHelper.MakeGenericType method is called. GenericsHelper using System; using System.Reflection.Emit; namespace Rapid.DynamicProxy.Types.Helpers {     /// <summary>     /// Helper class for generic types and methods.     /// </summary>     internal static class GenericsHelper     {         /// <summary>         /// Makes the typeBuilder a generic.         /// </summary>         /// <param name="concrete">The concrete.</param>         /// <param name="typeBuilder">The type builder.</param>         public static void MakeGenericType(Type baseType, TypeBuilder typeBuilder)         {             Type[] genericArguments = baseType.GetGenericArguments();               string[] genericArgumentNames = GetArgumentNames(genericArguments);               GenericTypeParameterBuilder[] genericTypeParameterBuilder                 = typeBuilder.DefineGenericParameters(genericArgumentNames);               typeBuilder.MakeGenericType(genericTypeParameterBuilder);         }           /// <summary>         /// Gets the argument names from an array of generic argument types.         /// </summary>         /// <param name="genericArguments">The generic arguments.</param>         public static string[] GetArgumentNames(Type[] genericArguments)         {             string[] genericArgumentNames = new string[genericArguments.Length];               for (int i = 0; i < genericArguments.Length; i++)             {                 genericArgumentNames[i] = genericArguments[i].Name;             }               return genericArgumentNames;         }     } }       As you can see, I’m getting all of the generic argument types and names, creating a GenericTypeParameterBuilder and then using the typeBuilder to make the new type generic. InterceptorsField The interceptors field will store a List<IInterceptor<TBase>>. Fields are simple made using the FieldBuilder class. The following code demonstrates how to create the interceptor field. FieldBuilder interceptorsField = typeBuilder.DefineField(     "interceptors",     typeof(System.Collections.Generic.List<>).MakeGenericType(typeof(IInterceptor<TBase>)),       FieldAttributes.Private     ); The field will now exist with the new Type although it currently has no data – we’ll deal with this in the constructor. Add method for interceptorsField To enable us to add to the interceptorsField list, we are going to utilise the Add method that already exists within the System.Collections.Generic.List class. We still however have to create the methodInfo necessary to call the add method. This can be done similar to the following: Add Interceptor Field MethodInfo addInterceptor = typeof(List<>)     .MakeGenericType(new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) })     .GetMethod     (        "Add",        BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic,        null,        new Type[] { typeof(IInterceptor<>).MakeGenericType(typeof(TBase)) },        null     ); So we’ve create a List<IInterceptor<TBase>> type, then using the type created a method info called Add which accepts an IInterceptor<TBase>. Now in our constructor we can use this to call this.interceptors.Add(// interceptor); Building the Constructors This will be the first hard-core part of the proxy building process so I’m going to show the class and then try to explain what everything is doing. For a clear view, download the source from http://rapidioc.codeplex.com/, go to the test project and debug through the constructor building section. Anyway, here it is: DynamicConstructorBuilder using System; using System.Collections.Generic; using System.Reflection; using System.Reflection.Emit; using Rapid.DynamicProxy.Interception; using Rapid.DynamicProxy.Types.Helpers; namespace Rapid.DynamicProxy.Types.Constructors {     /// <summary>     /// Class for creating the proxy constructors.     /// </summary>     internal static class DynamicConstructorBuilder     {         /// <summary>         /// Builds the constructors.         /// </summary>         /// <typeparam name="TBase">The base type.</typeparam>         /// <param name="typeBuilder">The type builder.</param>         /// <param name="interceptorsField">The interceptors field.</param>         public static void BuildConstructors<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 MethodInfo addInterceptor             )             where TBase : class         {             ConstructorInfo interceptorsFieldConstructor = CreateInterceptorsFieldConstructor<TBase>();               ConstructorInfo defaultInterceptorConstructor = CreateDefaultInterceptorConstructor<TBase>();               ConstructorInfo[] constructors = typeof(TBase).GetConstructors();               foreach (ConstructorInfo constructorInfo in constructors)             {                 CreateConstructor<TBase>                     (                         typeBuilder,                         interceptorsField,                         interceptorsFieldConstructor,                         defaultInterceptorConstructor,                         addInterceptor,                         constructorInfo                     );             }         }           #region Private Methods           private static void CreateConstructor<TBase>             (                 TypeBuilder typeBuilder,                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ConstructorInfo defaultInterceptorConstructor,                 MethodInfo AddDefaultInterceptor,                 ConstructorInfo constructorInfo             ) where TBase : class         {             Type[] parameterTypes = GetParameterTypes(constructorInfo);               ConstructorBuilder constructorBuilder = CreateConstructorBuilder(typeBuilder, parameterTypes);               ILGenerator cIL = constructorBuilder.GetILGenerator();               LocalBuilder defaultInterceptorMethodVariable =                 cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase)));               ConstructInterceptorsField(interceptorsField, interceptorsFieldConstructor, cIL);               ConstructDefaultInterceptor(defaultInterceptorConstructor, cIL, defaultInterceptorMethodVariable);               AddDefaultInterceptorToInterceptorsList                 (                     interceptorsField,                     AddDefaultInterceptor,                     cIL,                     defaultInterceptorMethodVariable                 );               CreateConstructor(constructorInfo, parameterTypes, cIL);         }           private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         }           private static void AddDefaultInterceptorToInterceptorsList             (                 FieldBuilder interceptorsField,                 MethodInfo AddDefaultInterceptor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Ldfld, interceptorsField);             cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);             cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor);         }           private static void ConstructDefaultInterceptor             (                 ConstructorInfo defaultInterceptorConstructor,                 ILGenerator cIL,                 LocalBuilder defaultInterceptorMethodVariable             )         {             cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);             cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable);         }           private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         }           private static ConstructorBuilder CreateConstructorBuilder(TypeBuilder typeBuilder, Type[] parameterTypes)         {             return typeBuilder.DefineConstructor                 (                     MethodAttributes.Public | MethodAttributes.SpecialName | MethodAttributes.RTSpecialName                     | MethodAttributes.HideBySig, CallingConventions.Standard, parameterTypes                 );         }           private static Type[] GetParameterTypes(ConstructorInfo constructorInfo)         {             ParameterInfo[] parameterInfoArray = constructorInfo.GetParameters();               Type[] parameterTypes = new Type[parameterInfoArray.Length];               for (int p = 0; p < parameterInfoArray.Length; p++)             {                 parameterTypes[p] = parameterInfoArray[p].ParameterType;             }               return parameterTypes;         }           private static ConstructorInfo CreateInterceptorsFieldConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(List<>),                     new Type[] { typeof(IInterceptor<TBase>) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           private static ConstructorInfo CreateDefaultInterceptorConstructor<TBase>() where TBase : class         {             return ConstructorHelper.CreateGenericConstructorInfo                 (                     typeof(DefaultInterceptor<>),                     new Type[] { typeof(TBase) },                     BindingFlags.Instance | BindingFlags.Public | BindingFlags.NonPublic                 );         }           #endregion     } } So, the first two tasks within the class should be fairly clear, we are creating a ConstructorInfo for the interceptorField list and a ConstructorInfo for the DefaultConstructor, this is for instantiating them in each contructor. We then using Reflection get an array of all of the constructors in the base class, we then loop through the array and create a corresponding proxy contructor. Hopefully, the code is fairly easy to follow other than some new types and the dreaded Opcodes. ConstructorBuilder This class defines a new constructor on the type. ILGenerator The ILGenerator allows the use of Reflection.Emit to create the method body. LocalBuilder The local builder allows the storage of data in local variables within a method, in this case it’s the constructed DefaultInterceptor. Constructing the interceptors field The first bit of IL you’ll come across as you follow through the code is the following private method used for constructing the field list of interceptors. private static void ConstructInterceptorsField             (                 FieldBuilder interceptorsField,                 ConstructorInfo interceptorsFieldConstructor,                 ILGenerator cIL             )         {             cIL.Emit(OpCodes.Ldarg_0);             cIL.Emit(OpCodes.Newobj, interceptorsFieldConstructor);             cIL.Emit(OpCodes.Stfld, interceptorsField);         } The first thing to know about generating code using IL is that you are using a stack, if you want to use something, you need to push it up the stack etc. etc. OpCodes.ldArg_0 This opcode is a really interesting one, basically each method has a hidden first argument of the containing class instance (apart from static classes), constructors are no different. This is the reason you can use syntax like this.myField. So back to the method, as we want to instantiate the List in the interceptorsField, first we need to load the class instance onto the stack, we then load the new object (new List<TBase>) and finally we store it in the interceptorsField. Hopefully, that should follow easily enough in the method. In each constructor you would now have this.interceptors = new List<User<int, IRepository>>(); Constructing and storing the DefaultInterceptor The next bit of code we need to create is the constructed DefaultInterceptor. Firstly, we create a local builder to store the constructed type. Create a local builder LocalBuilder defaultInterceptorMethodVariable =     cIL.DeclareLocal(typeof(DefaultInterceptor<>).MakeGenericType(typeof(TBase))); Once our local builder is ready, we then need to construct the DefaultInterceptor<TBase> and store it in the variable. Connstruct DefaultInterceptor private static void ConstructDefaultInterceptor     (         ConstructorInfo defaultInterceptorConstructor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Newobj, defaultInterceptorConstructor);     cIL.Emit(OpCodes.Stloc, defaultInterceptorMethodVariable); } As you can see, using the ConstructorInfo named defaultInterceptorConstructor, we load the new object onto the stack. Then using the store local opcode (OpCodes.Stloc), we store the new object in the local builder named defaultInterceptorMethodVariable. Add the constructed DefaultInterceptor to the interceptors field collection Using the add method created earlier in this post, we are going to add the new DefaultInterceptor object to the interceptors field collection. Add Default Interceptor private static void AddDefaultInterceptorToInterceptorsList     (         FieldBuilder interceptorsField,         MethodInfo AddDefaultInterceptor,         ILGenerator cIL,         LocalBuilder defaultInterceptorMethodVariable     ) {     cIL.Emit(OpCodes.Ldarg_0);     cIL.Emit(OpCodes.Ldfld, interceptorsField);     cIL.Emit(OpCodes.Ldloc, defaultInterceptorMethodVariable);     cIL.Emit(OpCodes.Callvirt, AddDefaultInterceptor); } So, here’s whats going on. The class instance is first loaded onto the stack using the load argument at index 0 opcode (OpCodes.Ldarg_0) (remember the first arg is the hidden class instance). The interceptorsField is then loaded onto the stack using the load field opcode (OpCodes.Ldfld). We then load the DefaultInterceptor object we stored locally using the load local opcode (OpCodes.Ldloc). Then finally we call the AddDefaultInterceptor method using the call virtual opcode (Opcodes.Callvirt). Completing the constructor The last thing we need to do is complete the constructor. Complete the constructor private static void CreateConstructor(ConstructorInfo constructorInfo, Type[] parameterTypes, ILGenerator cIL)         {             cIL.Emit(OpCodes.Ldarg_0);               if (parameterTypes.Length > 0)             {                 LoadParameterTypes(parameterTypes, cIL);             }               cIL.Emit(OpCodes.Call, constructorInfo);             cIL.Emit(OpCodes.Ret);         }           private static void LoadParameterTypes(Type[] parameterTypes, ILGenerator cIL)         {             for (int i = 1; i <= parameterTypes.Length; i++)             {                 cIL.Emit(OpCodes.Ldarg_S, i);             }         } So, the first thing we do again is load the class instance using the load argument at index 0 opcode (OpCodes.Ldarg_0). We then load each parameter using OpCode.Ldarg_S, this opcode allows us to specify an index position for each argument. We then setup calling the base constructor using OpCodes.Call and the base constructors ConstructorInfo. Finally, all methods are required to return, even when they have a void return. As there are no values on the stack after the OpCodes.Call line, we can safely call the OpCode.Ret to give the constructor a void return. If there was a value, we would have to pop the value of the stack before calling return otherwise, the method would try and return a value. Conclusion This was a slightly hardcore post but hopefully it hasn’t been too hard to follow. The main thing is that a number of the really useful opcodes have been used and now the dynamic proxy is capable of being constructed. If you download the code and debug through the tests at http://rapidioc.codeplex.com/, you’ll be able to create proxies at this point, they cannon do anything in terms of interception but you can happily run the tests, call base methods and properties and also take a look at the created assembly in Reflector. Hope this is useful. The next post should be up soon, it will be covering creating the private methods for calling the base class methods and properties. Kind Regards, Sean.

    Read the article

  • SQLAuthority News – Pluralsight Course Review – Practices for Software Startups – Part 1 of 2

    - by pinaldave
    This is first part of the two part series of Practices for Software Startup Pluralsight Course. The course is written by Stephen Forte (Blog | Twitter). Stephen Forte is the Chief Strategy Officer of the venture backed company, Telerik, a leading vendor of developer and team productivity tools. Stephen is also a Certified Scrum Master, Certified Scrum Professional, PMP, and also speaks regularly at industry conferences around the world. He has written several books on application and database development.  Stephen is also a board member of the Scrum Alliance. Startups – Everybodies Dream Start-up companies are an important topic right now – everyone wants to start their own business.  It is also important to remember that all companies were a start up at one point – from your corner store to the giants like Microsoft and Apple.  Research proves that not every start-up succeeds, in fact, most will fail before their first year.  There are many reasons for this, and this could be due to the fact that there are many stages to a start-up company, and stumbling at any of these stages can lead to failure.  It is important to understand what makes a start-up company succeed at all its hurdles to become successful.  It is even important to define success.  For most start-ups this would mean becoming their own independently functioning company or to be bought out for a hefty profit by a larger company.  The idea of making a hefty profit by living your dream is extremely important, and you can even think of start-ups as the new craze.  That’s why studying them is so important – they are very popular, but things have changed a lot since their inception. Starting the Startups Beginning a start-up company used to be difficult, but now facilities and information is widely available, and it is much easier.  But that means it is much easier to fail, also.  Previously to start your own company, everything was planned and organized, resources were ensured and backed up before beginning; even the idea of starting your own business was a big thing.  Now anybody can do it, and the steps are simple and outlines everywhere – you can get online software and easily outsource , cloud source, or crowdsource a lot of your material.  But without the type of planning previously required, things can often go badly. New Products – New Ideas – New World There are so many fantastic new products, but they don’t reach success all the time.  I find start-up companies very interesting, and whenever I meet someone who is interested in the subject or already starting their own company, I always ask what they are doing, their plans, goals, market, etc.  I am sorry to say that in most cases, they cannot answer my questions.  It is true that many fantastic ideas fail because of bad decisions.  These bad decisions were not made intentionally, but people were simply unaware of what they should be doing.  This will always lead to failure.  But I am happy to say that all these issues can be gone because Pluralsight is now offering a course all about start-ups by Stephen Forte.  Stephen is a start up leader.  He has successfully started many companies and most are still going strong, or have gone on to even bigger and better things. Beginning Course on Startup I have always thought start-ups are a fascinating subject, and decided to take his course, but it is three hours long.  This would be hard to fit into my busy work day all at once, so I decided to do half of his course before my daughter wakes up, and the other half after she goes to sleep.  The course is divided into six modules, so this would be easy to do.  I began the first chapter early in the morning, at 5 am.  Stephen jumped right into the middle of the subject in the very first module – designing your business plan.  The first question you will have to answer to yourself, to others, and to investors is: What is your product and when will we be able to see it?  So a very important concept is a “minimal viable product.”  This means setting goals for yourself and your product.  We all have large dreams, but your minimal viable product doesn’t have to be your final vision at the very first.  For example: Apple is a giant company, but it is still evolving.  Steve Jobs didn’t envision the iPhone 6 at the very beginning.  He had to start at the first iPhone and do his market research, and the idea evolved into the technology you see now.  So for yourself, you should decide a beginning and stop point.  Do your market research.  Determine who you want to reach, what audience you want for your product.  You can have a great idea that simply will not work in the market, do need, bottlenecks, lack of resources, or competition.  There is a lot of research that needs to be done before you even write a business plan, and Stephen covers it in the very first chapter. The Team – Unique Key to Success After jumping right into the subject in the very first module, I wondered what Stephen could have in store for me for the rest of the course.  Chapter number two is building a team.  Having a team is important regardless of what your startup is.  You can be a true visionary with endless ideas and energy, but one person can still not do everything.  It is important to decide from the very beginning if you will have cofounders, team leaders, and how many employees you’ll need.  Even more important, you’ll need to decide what kind of team you want – what personalities, skills, and type of energy you want each of your employees to bring.  Do you want to have an A+ team with a B- idea, or do you have a B- idea that needs an A+ team to sell it?  Stephen asks all the hard questions!  I was especially impressed by his insight on developing.  You have to decide if you need developers, how many, and what their skills should be. I found this insight extremely useful for everyday usage, not just for start-up companies.  I would apply this kind of information in management at any position.  An amazing team will build an amazing product – and that doesn’t matter if you’re a start-up company or a small team working for a much larger business. Customer Development – The Ultimate Obective Chapter three was about customer development. According to Stephen, there are four different steps to develop a customer base.  The first question to ask yourself is if you are envisioning a large customer base buying a few products each, or a small, dedicated base that buys a lot of your product – quantity vs. Quality.  He also discusses how to earn, retain, and get more customers.  He also says that each customer should be placed in a different role – some will be like investors, who regularly spend with you and invest their money in your business.  It is then your job to take that investment and turn it into a better product in the future.  You need to deal with their money properly – think of it is as theirs as investors, not yours as profit.  At the end of this module I felt that only Stephen could provide this kind of insight, and then he listed all the resources he took his information from.  I have never seen a group of people so passionate about their customers. It was indeed a long day for me. In tomorrow’s part 2 we will discuss rest of the three module and also will see a quick video of the Practices for Software Startup Pluralsight Course. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Best Practices, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Google Chrome Extensions: Launch Event (part 5)

    Google Chrome Extensions: Launch Event (part 5) Video Footage from the Google Chrome Extensions launch event on 12/09/09. Xmarks, ebay and Google Translate present their experience developing an extension for Google Chrome. From: GoogleDevelopers Views: 3037 18 ratings Time: 10:30 More in Science & Technology

    Read the article

  • Google Chrome Extensions: Launch Event (part 6)

    Google Chrome Extensions: Launch Event (part 6) Video Footage from the Google Chrome Extensions launch event on 12/09/09. Nick Baum, product manager for Google Chrome's extension system presents the gallery approval process, gives tips to extensions developers on how to make their extension successful and discusses the team's short term plans. From: GoogleDevelopers Views: 5659 17 ratings Time: 08:42 More in Science & Technology

    Read the article

  • Quirks in .NET – Part 3 Marshalling Numbers

    - by thycotic
    Kevin has posted about marshalling numbers in the 3rd part of his ongoing blog series.   Jonathan Cogley is the CEO of Thycotic Software, an agile software services and product development company based in Washington DC.  Secret Server is our flagship enterprise password management product.

    Read the article

  • Google Chrome Extensions: Launch Event (part 4)

    Google Chrome Extensions: Launch Event (part 4) Video Footage from the Google Chrome Extensions launch event on 12/09/09. Aaron Boodman and Erik Kay, technical leads for the Google Chrome extensions team discuss the UI surfaces of Google Chrome extensions and the team's content not chrome philosophy. They also highlight the smooth, frictionless install and uninstall process for Google Chrome's extensions system and present the team's initiatives in the space of security and performance. From: GoogleDevelopers Views: 2963 12 ratings Time: 15:44 More in Science & Technology

    Read the article

  • Bare Metal Restore Part 2

    - by GrumpyOldDBA
    I blogged previously about how Windows 2008 R2 has native "bare metal restore"   http://sqlblogcasts.com/blogs/grumpyolddba/archive/2011/05/13/windows-2008-r2-bare-metal-restore.aspx , see the Core Team's blog post here;  http://blogs.technet.com/b/askcore/archive/2011/05/12/bare-metal-restore.aspx Well since then I’ve actually had the chance not only to put the process to the test but to see if I could go one step further. I have a six identical IBM Servers, part of...(read more)

    Read the article

  • Microsoft Press Deal of the Day - 5/April/2012 - Windows® Internals, Part 1, Sixth Edition

    - by TATWORTH
    Today's Deal of the day from Microsoft Press at http://shop.oreilly.com/product/0790145305930.do is Windows® Internals, Part 1, Sixth Edition."Delve inside Windows architecture and internals—guided by a team of internationally renowned internals experts. Fully updated for Windows 7 and Windows Server 2008 R2, this classic guide delivers key architectural insights on system design, debugging, performance, and support—along with hands-on experiments to experience Windows internal behavior firsthand."

    Read the article

  • SQL University: Parallelism Week - Part 2, Query Processing

    - by Adam Machanic
    Welcome back for the second part of Parallelism Week here at SQL University . Get your pencils ready, and make sure to raise your hand if you have a question. Last time we covered the necessary background material to help you understand how the SQL Server Operating System schedules its many active threads, and the differences between its behavior and that of the Windows operating system's scheduler. We also discussed some of the variations on the theme of parallel processing. Today we'll take a look...(read more)

    Read the article

  • FREE eBook: .NET Performance Testing and Optimization (Part 1)

    In this this first part of complete guide to performance profiling, Paul Glavich and Chris Farrell explain why performance testing is a good idea and walk you through everything you need to know to set up a test environment. This comprehensive guide to getting started is an essential handbook to any programmer looking to set up a .NET testing environment and get the best results out of it. Download your free copy now span.fullpost {display:none;}

    Read the article

  • Google Chrome Extensions: Launch Event (part 2)

    Google Chrome Extensions: Launch Event (part 2) Video Footage from the Google Chrome Extensions launch event on 12/09/09. Aaron Boodman and Erik Kay technical leads for the Google Chrome extensions team present a quick history of the extensions system of Google Chrome and discuss its design principles, focusing on why extensions are webby. From: GoogleDevelopers Views: 3035 12 ratings Time: 05:25 More in Science & Technology

    Read the article

  • Google Chrome Extensions: Launch Event (part 3)

    Google Chrome Extensions: Launch Event (part 3) Video Footage from the Google Chrome Extensions launch event on 12/09/09. Erik Kay and Aaron Boodman, technical leads for the Google Chrome Extensions team demonstrate how to build, debug and share a Google Chrome extension. From: GoogleDevelopers Views: 2974 13 ratings Time: 08:28 More in Science & Technology

    Read the article

  • Workaround: XNA 4 importing only part of 3d model from FBX

    - by Vitus
    Recently I found a problem with importing 3D models from FBX files: it sometimes imported partly. That is when you draw a 3D model, loaded from FBX file, processed by content pipeline, you got only part of meshes. “Sometimes” means that you got this error only for some files. Results of my research below. For example, I have 10Mb binary FBX file with a model, looks like: And when I load it, result Model instance contains only part of meshes and looks like: Because models from other files imported normally, I think that it’s a “bad format” file. When you add FBX file to your XNA Content project and build it, imported file processing by XNA Fbx Importer & Processor. On MSDN I found that FbxImporter designed to work with 2006.11 version of FBX format. My file is FBX 2012 format. Ok, I need to convert it to 2006 format. It can be done by using Autodesk FBX Converter 2012.1. I tried to convert it to other versions of FBX formats, but without success. And I also tried to import my FBX file to 3D MAX, and it imported correctly. Then I export model using 3D MAX, and it generate me other FBX, which I add to my XNA project. After that I got full model, that rendered well! So, internal data structure of FBX file is more important for right XNA import, than it version! Unfortunately, Autodesk FBX is not an open file format. If you want to work with FBX, you should use Autodesk FBX SDK. This way you can manually read content of FBX file, and use it everyway. Then I tried to convert my source FBX file to DAE Collada, and result DAE file back to FBX, using FBX Converter (FBX –> DAE –> FBX). The result FBX file can be imported normally.   Conclusion: XNA FbxImporter correct work doesn't depend on version (2006, 2011, etc) and form (binary, ascii) of FBX file. Internal FBX data structure much more important. To make FBX "readable" for XNA Importer you can use double conversion like FBX -> Collada -> FBX You also can use FBX SDK to manually load data from FBX P.S. Autodesk FBX Converter 2012 is more, than simple converter. It provide you tools like: FBX Explorer, which show you structure of FBX file; FBX Viewer, which render content of FBX and provide basic intercation like model move and zoom; FBX Take Manager, which allow to work with embedded animations

    Read the article

  • SQL SERVER Subquery or Join Various Options SQL Server Engine Knows the Best Part 2

    This blog post is part 2 of the earlier written article SQL SERVER Subquery or Join Various Options SQL Server Engine knows the Best by Paulo R. Pereira. Paulo has left excellent comment to earlier article once again proving the point that SQL Server Engine is smart enough to figure out the [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Google Chrome Extensions: Launch Event (part 2)

    Google Chrome Extensions: Launch Event (part 2) Video Footage from the Google Chrome Extensions launch event on 12/09/09. Aaron Boodman and Erik Kay technical leads for the Google Chrome extensions team present a quick history of the extensions system of Google Chrome and discuss its design principles, focusing on why extensions are webby. From: GoogleDevelopers Views: 3036 12 ratings Time: 05:25 More in Science & Technology

    Read the article

< Previous Page | 31 32 33 34 35 36 37 38 39 40 41 42  | Next Page >