Search Results

Search found 10369 results on 415 pages for 'png 24'.

Page 355/415 | < Previous Page | 351 352 353 354 355 356 357 358 359 360 361 362  | Next Page >

  • Creating a bare bone web-browser: After the html parser, javascript parser, etc have done their work, how do I display the content of the webpage?

    - by aste123
    This is a personal project to learn computer programming. I took a look at this: https://www.udacity.com/course/viewer#!/c-cs262 The following is the approach taken in it: Abstract Syntax Tree is created. But javascript is still not completely broken down in order not to confuse with the html tags. Then the javascript interpreter is called on it. Javascript interpreter stores the text from the write() and document.write() to be used later. Then a graphics library in Python is called which will convert everything to a pdf file and then we convert it into png or jpeg and then display it. My Question: I want to display the actual text in a window (which I will design later) like firefox or chrome does instead of image files so that the data can be selected, copied, etc by the user of the browser. How do I accomplish this? In other words, what are the other elements of a bare bone web browser that I am missing? I would prefer to implement most of the stuff in C++ although if things seem too complicated I might go with Python to save time and create a prototype and later creating another bare bone browser in C++ and add more features. This is a project to learn more. I do realize we already have lots of reliable browsers like firefox, etc. The way I feel it is done: I think after all the broken down contents have been created by the parsers and interpreters, I will need to access them individually from within the window's code (like qt) and then decide upon a good way to display them. I am not sure if it is the way this should be done. Additions after useful comment by Kilian Foth: I found this page: http://friendlybit.com/css/rendering-a-web-page-step-by-step/ 14. A DOM tree is built out of the broken HTML 15. New requests are made to the server for each new resource that is found in the HTML source (typically images, style sheets, and JavaScript files). Go back to step 3 and repeat for each resource. 16. Stylesheets are parsed, and the rendering information in each gets attached to the matching node in the DOM tree 17. Javascript is parsed and executed, and DOM nodes are moved and style information is updated accordingly 18. The browser renders the page on the screen according to the DOM tree and the style information for each node 19. You see the page on the screen I need help with step 18. How do I do that? How much work do Webkit and Gecko do? I want to use a readymade layout renderer for step number 18 and not for anything that comes before that.

    Read the article

  • Slide Men&uacute; con Jquery &amp; Asp.net

    - by Jason Ulloa
    En este post, trabajaremos una parte que en ocasiones se nos hace un “mundo”, la creación de menús en nuestras aplicaciones web. Nuestro objetivo será evitar la utilización de elementos que puedan ocasionar que la página se vuelva un poco lenta, para ello utilizaremos jquery que viene siendo una herramienta muy semejante a ajax para crear nuestro menú. Para crear nuestro menús de ejemplo necesitaremos de tres elementos: 1. CSS, para aplicar los estilos. 2. Jquery para realizar las animaciones. 3. Imágenes para armar los menús. Nuestro primer Paso: Será agregar la referencias a nuestra página, para incluir los CSS y los Scripts. 1: <link rel="stylesheet" type="text/css" href="Styles/jquery.hrzAccordion.defaults.css" /> 2: <link rel="stylesheet" type="text/css" href="Styles/jquery.hrzAccordion.examples.css" /> 3: <script type="text/javascript" src="JS/jquery-1.3.2.js"></script> 1:  2: <script type="text/javascript" src="JS/jquery.easing.1.3.js"> 1: </script> 2: <script type="text/javascript" src="JS/jquery.hrzAccordion.js"> 1: </script> 2: <script type="text/javascript" src="JS/jquery.hrzAccordion.examples.js"> </script> Nuestro segundo paso: Será la definición del html que contendrá los elementos de tipo imagen y el texto. 1: <li> 2: <div class="handle"> 3: <img src="images/title1.png" /></div> 4: <img src="images/image_test.gif" align="left" /> 5: <h3> 6: Contenido 1</h3> 7: <p> 8: Contenido de Ejemplo 1.<br> 9: <br> 10: Agregue todo el contenido aquí</p> 11: </li> En el código anterior, hemos definido un elemento que contendrá una imagen que se mostrará dentro del menú una vez desplegado. Una etiqueta H3 de html que tendrá el Título y un elemento <p> para definir el parrado de texto. Como vemos es algo realmente sencillo. Si queremos agregar mas elementos, será nada mas copiar el div anterior y agregar nuevo contenido. Al final, nuestro menú debe lucir algo así: Por último, les dejo el ejemplo para descargar

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • Share Your Top 30 Visited Domains with Visitation Cloud for Firefox

    - by Asian Angel
    Curious about the domains that you visit most or perhaps you want a way to share that information on a social website? Now you can see and share the 30 most visited domains in your browser’s history with the Visitation Cloud extension. Accessing Visitation Cloud As soon as you install the extension you can get started using it. Depending on how your browser’s UI is set up there are three methods for accessing Visitation Cloud: a “Visitation Cloud Button” inserted at the end of your “Bookmarks Toolbar”, a menu listing in the “Tools Menu”, and a “Toolbar Button” (not shown here). Visitation Cloud in Action As soon as you activate Visitation Cloud a new window will appear with your top domains displayed in a cloud format. Keep in mind that this is more than just a static image…each listing is actually a clickable link. Clicking on any of the listings will open that domain in a new tab or window depending on your particular browser settings. If you feel that you have a great set of links and want to share it with your friends then that is easy to do. Right click anywhere within the Visitation Cloud Window and select “Save as…”. The “cloud image” can be saved in “.png, .jpg, or Scalable Vector Graphics (.svg)” format. For our example we chose the “.svg format”. Perhaps you love the set of links but not the layout…right click and select “Randomize” to change how the cloud looks. Here is our cloud after being “Randomized”. Things definitely got moved around… Accessing the Visitation Cloud Image in other Browsers Once you have your “cloud image” saved you can share it with friends or save it for your own future use in other browsers. Here is our “cloud image” open in Opera Browser with link opening in progress. The same “cloud image” open in Google Chrome. Very nice… Conclusion While this may not be something that everyone will use Visitation Cloud does make for a rather unique, interesting, & fun way to access and share your most visited domains. Links Download the Visitation Cloud extension (Mozilla Add-ons) Similar Articles Productive Geek Tips Fix "Security Error: Domain Name Mismatch" Warning in FirefoxAdd Variety to Your Searches with Search CloudletRestore Your Missing/Deleted Smart Bookmarks Folder in Firefox 3Blocking Spam from International Senders in Windows Vista MailSee Where a Package is Installed on Ubuntu TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Share High Res Photos using Divvyshot Draw Online using Harmony How to Browse Privately in Firefox Kill Processes Quickly with Process Assassin Need to Come Up with a Good Name? Try Wordoid StockFox puts a Lightweight Stock Ticker in your Statusbar

    Read the article

  • Create Custom Sized Thumbnail Images with Simple Image Resizer [Cross-Platform]

    - by Asian Angel
    Are you looking for an easy way to create custom sized thumbnail images for use in blog posts, photo albums, and more? Whether is it a single image or a CD full, Simple Image Resizer is the right app to get the job done for you. To add the new PPA for Simple Image Resizer open the Ubuntu Software Center, go to the Edit Menu, and select Software Sources. Access the Other Software Tab in the Software Sources Window and add the first of the PPAs shown below (outlined in red). The second PPA will be automatically added to your system. Once you have the new PPAs set up, go back to the Ubuntu Software Center and click on the PPA listing for Rafael Sachetto on the left (highlighted with red in the image). The listing for Simple Image Resizer will be right at the top…click Install to add the program to your system. After the installation is complete you can find Simple Image Resizer listed as Sir in the Graphics sub-menu. When you open Simple Image Resizer you will need to browse for the directory containing the images you want to work with, select a destination folder, choose a target format and prefix, enter the desired pixel size for converted images, and set the quality level. Convert your image(s) when ready… Note: You will need to determine the image size that best suits your needs before-hand. For our example we chose to convert a single image. A quick check shows our new “thumbnailed” image looking very nice. Simple Image Resizer can convert “into and from” the following image formats: .jpeg, .png, .bmp, .gif, .xpm, .pgm, .pbm, and .ppm Command Line Installation Note: For older Ubuntu systems (9.04 and previous) see the link provided below. sudo add-apt-repository ppa:rsachetto/ppa sudo apt-get update && sudo apt-get install sir Links Note: Simple Image Resizer is available for Ubuntu, Slackware Linux, and Windows. Simple Image Resizer PPA at Launchpad Simple Image Resizer Homepage Command Line Installation for Older Ubuntu Systems Bonus The anime wallpaper shown in the screenshots above can be found here: The end where it begins [DesktopNexus] Latest Features How-To Geek ETC Macs Don’t Make You Creative! So Why Do Artists Really Love Apple? MacX DVD Ripper Pro is Free for How-To Geek Readers (Time Limited!) HTG Explains: What’s a Solid State Drive and What Do I Need to Know? How to Get Amazing Color from Photos in Photoshop, GIMP, and Paint.NET Learn To Adjust Contrast Like a Pro in Photoshop, GIMP, and Paint.NET Have You Ever Wondered How Your Operating System Got Its Name? Create Shortcuts for Your Favorite or Most Used Folders in Ubuntu Create Custom Sized Thumbnail Images with Simple Image Resizer [Cross-Platform] Etch a Circuit Board using a Simple Homemade Mixture Sync Blocker Stops iTunes from Automatically Syncing The Journey to the Mystical Forest [Wallpaper] Trace Your Browser’s Roots on the Browser Family Tree [Infographic]

    Read the article

  • Certificate Revocation checking affecting system performance [migrated]

    - by Colm Clarke
    I have a .NET 3.5 desktop application that had been showing periodic slow downs in functionality whenever the test machine it was on was out of the office. I managed to replicate the error on a machine in the office without an internet connection, but it was only when i used ANTS performance profiler that i got a clearer picture of what was going on. In ANTS I saw a "Waiting for synchronization" taking up to 16 seconds that corresponded to the delay I could see in the application when NHibernate tried to load the System.Data.SqlServerCE.dll assembly. If I tried the action again immediately it would work with no delay but if I left it for 5 minutes then it would be slow to load again the next time I tried it. From my research so far it appears to be because the SqlServerCE dll is signed and so the system is trying to connect to get the certificate revocation lists and timing out. Disabling the "Automatically detect settings" setting in the Internet Options LAN settings makes the problem go away, as does disabling the "Check for publishers certificate revocation". But the admins where this application will be deployed are not going to be happy with the idea of disabling certificate checking on a per machine or per user basis so I really need to get the application level disabling of the CRL check working. There is the well documented bug in .net 2.0 which describes this behaviour, and offers a possible fix with a config file element. <?xml version="1.0" encoding="utf-8"?> <configuration> <runtime> <generatePublisherEvidence enabled="false"/> </runtime> </configuration> This is NOT working for me however even though I am using .net 3.5. The SQLServerCE dll is being loaded dynamically by NHibernate and I wonder if the fact that it's dynamic could somehow be why the setting isn't working, but I don't know how I could check that. Can anyone offer suggestions as to why the config setting might not work? Or is there another way I could disable the check at the application level, perhaps a CAS policy setting that I can use to set an exception for the application when it's installed? Or is there something I can change in the application to up the trust level or something like that? I have also tried using to no advantage ServicePointManager.CheckCertificateRevocationList = false; http://rusanu.com/2009/07/24/fix-slow-application-startup-due-to-code-sign-validation/ I have also tried those registry settings out and unfortunately they didn't help. The dlls that appear to be the cause of the hold up are native SQL Server CE dlls, and looking at the stack traces in ProcMon mscorwks.dll doesn't appear to be involved even though the checks on crypto and cert registry keys are being done under the .NET application. It's definitely still something to do with publisher certificate checking because unticking "Check for publisher revocation certificate" still works but something odd is going on.

    Read the article

  • How to share two keyboard on the same laptop, french iso layout and usa ansi layout keyboard with usb?

    - by reyman64
    I recently buy a "noppoo choc mini" with this specific ANSI US-INTERNATIONAL pc84 layout. This specific keyboard have only 84 key , a 60% (compact tenkeyless) reduced layout My problem is simple, there is no keyboard layout into Ubuntu 12.04 which correspond to this usa normal ansi layout ... so it's the same problem with reduced version and only 84 key .. I search a template of normal ANSI US-INTERNATIONAL for xmodmap/xkb, and after i can try to manually map the other key. I search on google, and i don't find any other user which have same problem, so it's seem i have not the good keywoard to search this information.. Edit 1 : Here you can see there is probably a bug in ubuntu, because the layout for USA with dead key is not correct ! I have this : http://minus.com/lEdKMrsNAwkVA And other users have this for the same layout : http://i.stack.imgur.com/p52XG.png EDIT 2 It seems after a "sudo dpkg-reconfigure keyboard-configuration" : french standard keyboard pc105 + precision M65 keyboard from dell laptop Now i can see the good us layout in parameters, but i cannot have the iso layout for french usage... EDIT 3 Ok, after reboot i understand the probleme, i explain. I have one laptop with integrated french keyboard, and i want to use my usb keyboard which use a usa ANSI layout. It seem it's impossible in ubuntu and "dpkg-reconfigure keyboard-configuration" to share two different physical layout (ANSI and EU ISO) on the same computer ... EDIT4 Ok, it seems i can switch the physical layout (ISO <- ANSI) with this command in terminal : setxkbmap -layout us setxkbmap -layout us -variant alt-intl an setxkbmap -layout fr It's very complicated qnd it seem ubuntu 12.04 have big problem with keyboard manager ... because all works great with these two commands, without ANY change into the system parameters keyboard !!! Second bug ? The image of the layout for fr is buggy, the layout is not ISO, but i can press on the letter "< " at the left of right shift without any problem ! You can see the image here (french alternative with ANSI layout ? it's crazy ?) : http: //minus.com/lXsDJwoeyWAfF Can you help me on this point ? I'm lost with xkb, and manual mapping is very complicated ... Thanks a lot, SR

    Read the article

  • First steps into css - aligning data insite one DIV [on hold]

    - by Andrew
    I am trying to move away from tables, and start doing CSS. Here is my HTML code that I currently trying to place into a nice looking container. <div> <div> <h2>ID: 4000 | SSN#: 4545</h2> </div> <div> <img src="./images/tenant/unknown.png"> </div> <div> <h3>Names Used</h3> Will Smith<br> Bill Smmith<br> John Smith<br> Will Smith<br> Bill Smmith<br> John Smith<br> Will Smith<br> Bill Smmith<br> John Smith<br> </div> <div> <h3>Phones Used</h3> 123456789<br> 123456789<br> 123456789<br> 123456789<br> 123456789<br> 123456789<br> 123456789<br> 123456789<br> </div> <div> <h3>Addresses Used</h3> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> 125 Main Evanston IL 60202<br> 465 Greenwood St. Schaumburg null 60108<br> </div> </div> I now understand now I create classes and assign classes to elements. I have no issues doing colors. But I am very confused with elements alignments. Could you suggest a nice way to pack it together with some CSS which I can analyze and take as a CSS starting learning point?

    Read the article

  • Web Application : How to upload multiple images at a time

    - by SAMIR BHOGAYTA
    //First add image control into the web form how many you want to upload images at a time //Add one button //Write the below code into the button_click event if (FileUpload1.HasFile) { string imagefile = FileUpload1.FileName; if (CheckFileType(imagefile) == true) { Random rndob = new Random(); int db = rndob.Next(1, 100); filename = System.IO.Path.GetFileNameWithoutExtension(imagefile) + db.ToString() + System.IO.Path.GetExtension(imagefile); String FilePath = "images/" + filename; FileUpload1.SaveAs(Server.MapPath(FilePath)); objimg.ImageName = filename; Image1(); if (Session["imagecount"].ToString() == "1") { Img1.ImageUrl = FilePath; ViewState["img1"] = FilePath; } else if (Session["imagecount"].ToString() == "2") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = FilePath; ViewState["img2"] = FilePath; } else if (Session["imagecount"].ToString() == "3") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = FilePath; ViewState["img3"] = FilePath; } else if (Session["imagecount"].ToString() == "4") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = ViewState["img3"].ToString(); Img4.ImageUrl = FilePath; ViewState["img4"] = FilePath; } else if (Session["imagecount"].ToString() == "5") { Img1.ImageUrl = ViewState["img1"].ToString(); Img2.ImageUrl = ViewState["img2"].ToString(); Img3.ImageUrl = ViewState["img3"].ToString(); Img4.ImageUrl = ViewState["img4"].ToString(); Img5.ImageUrl = FilePath; ViewState["img5"] = FilePath; } } } //execption handling else { lblErrMsg.Visible = true; lblErrMsg.Text = ""; lblErrMsg.Text = "please select a file"; } } //if file extension belongs to these list then only allowed public bool CheckFileType(string filename) { string ext; ext = System.IO.Path.GetExtension(filename); switch (ext.ToLower()) { case ".gif": return true; case ".jpeg": return true; case ".jpg": return true; case ".bmp": return true; case ".png": return true; default: return false; } }

    Read the article

  • Fluid VS Responsive Website Development Questions

    - by Aditya P
    As I understand these form the basis for targeting a wide array of devices based on the browser size, given it would be a time consuming to generate different layouts targeting different/specific devices and their resolutions. Questions: Firstly right to the jargon, is there any actual difference between the two or do they mean the same? Is it safe to classify the current development mainly a html5/css3 based one? What popular frameworks are available to easily implement this? What testing methods used in this regard? What are the most common compatibility issues in terms of different browser types? I understand there are methods like this http://css-tricks.com/resolution-specific-stylesheets/ which does this come under?. Are there any external browser detection methods besides the API calls specific to the browser that are employed in this regard? Points of interest [Prior Research before asking these questions] Why shouldn't "responsive" web design be a consideration? Responsive Web Design Tips, Best Practices and Dynamic Image Scaling Techniques A recent list of tutorials 30 Responsive Web Design and Development Tutorials by Eric Shafer on May 14, 2012 Update Ive been reading that the basic point of designing content for different layouts to facilitate a responsive web design is to present the most relevant information. now obviously between the smallest screen width and the highest we are missing out on design elements. I gather from here http://flashsolver.com/2012/03/24/5-top-commercial-responsive-web-designs/ The top of the line design layouts (widths) are desktop layout (980px) tablet layout (768px) smartphone layout – landscape (480px) smartphone layout – portrait (320px) Also we have a popular responsive website testing site http://resizemybrowser.com/ which lists different screen resolutions. I've also come across this while trying to find out the optimal highest layout size to account for http://stackoverflow.com/questions/10538599/default-web-page-width-1024px-or-980px which brings to light seemingly that 1366x768 is a popular web resolution. Is it safe to assume that just accounting for proper scaling from width 980px onwards to the maximum size would be sufficient to accommodate this? given we aren't presenting any new information for the new size. Does it make sense to have additional information ( which conflicts with purpose of responsive web design) to utilize the top size and beyond?

    Read the article

  • Live CD / Live USB much faster than full install

    - by user29347
    I've observed it on both laptops I own! HP Compaq nx6125 and Ubuntu 11.04 x64 - somewhat solved Lenovo Thinkpad T500 and Ubuntu 11.10 x64 - help needed! I'm still struggling with the Thinkpad to get performance level similar to that of 10 y.o. laptops... All in all a really serious issue with multiple versions of Ubuntu that renders computers with perfectly compatible hardware unusable, as far as out of the box experience is concerned. Troubleshooting resultant issues seems to be a hard case even for users with some experience with installing graphics drivers. EDIT: I can't really post additional details. Two different ubuntu versions, two laptops, two different set of graph. drivers (OS vs ATI prop.) - all with the same symptoms. Also I can't stress enough how massive the performance degradation is compared to a healthy system. For that reason I ask for input from people who may know roughly what are we dealing with here. I can post more details if we were to focus on my current Thinkpad T500. In that case my current system details: Lenovo Thinkpad T500 Ubuntu 11.10 x64 ATI Mobility Radeon HD 3650 (also see the "What I have already tried" section about Intel graphics tested) ATI Catalyst 11.10 drivers OCZ Agility 3 SSD but! same with the default driver for ATI the card same with the prop. driver for the ATI card from Jockey (Additional drivers applet) What I have already tried: 0. Switching to Intel integrated card (Intel GMA 4500M HD) with the default driver - same effects = may indicate not driver related problem but a problem with something of global influence like e.g. nomodeset or other I don't even know about. (What you can read above) ATI Catalyst 11.10 and radeon.modeset=0 boot parameter + disabled Wait for VBlank. Unity 2D Ubuntu 10.04 LTS tested (ubuntu-10.04.3-desktop-i386.iso): Both live USB and installed version blazing fast! (on the default drivers - without even installing the proprietary fglrx drivers). re2 a) seems to give me the only significant results (still poor) - perfect Unity elements performance with the same crawling stuttering/lagging when dragging windows around. re2 b) this happens often http://i17.photobucket.com/albums/b68/Bucic/ubuntuforumsorg/Screenshotat2011-10-28083140.png re2 c) Sometimes I am able to witness a normal performance when dragging a window around but only for a second or two. When I try to shake it longer it starts to lag and it will keep lagging like that with an increased probability of what you see in the sshot in point re2 b). re2 d) I can't establish the radeon.modeset=0 influence though. Once it seems to work be smooth with it, the other time - without it. Really can't tell.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Windows Azure Learning Plan - Architecture

    - by BuckWoody
    This is one in a series of posts on a Windows Azure Learning Plan. You can find the main post here. This one deals with what an Architect needs to know about Windows Azure.   General Architectural Guidance Overview and general  information about Azure - what it is, how it works, and where you can learn more. Cloud Computing, A Crash Course for Architects (Video) http://www.msteched.com/2010/Europe/ARC202 Patterns and Practices for Cloud Development http://msdn.microsoft.com/en-us/library/ff898430.aspx Design Patterns, Anti-Patterns and Windows Azure http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/27/design-patterns-anti-patterns-and-windows-azure.aspx Application Patterns for the Cloud http://blogs.msdn.com/b/kashif/archive/2010/08/07/application-patterns-for-the-cloud.aspx Architecting Applications for High Scalability (Video) http://www.msteched.com/2010/Europe/ARC309 David Aiken on Azure Architecture Patterns (Video) http://blogs.msdn.com/b/architectsrule/archive/2010/09/09/arcast-tv-david-aiken-on-azure-architecture-patterns.aspx Cloud Application Architecture Patterns (Video) http://blogs.msdn.com/b/bobfamiliar/archive/2010/10/19/cloud-application-architecture-patterns-by-david-platt.aspx 10 Things Every Architect Needs to Know about Windows Azure http://geekswithblogs.net/iupdateable/archive/2010/10/20/slides-and-links-for-windows-azure-platform-session-at-software.aspx Key Differences Between Public and Private Clouds http://blogs.msdn.com/b/kadriu/archive/2010/10/24/key-differences-between-public-and-private-clouds.aspx Microsoft Application Platform at a Glance http://blogs.msdn.com/b/jmeier/archive/2010/10/30/microsoft-application-platform-at-a-glance.aspx Windows Azure is not just about Roles http://vikassahni.wordpress.com/2010/11/17/windows-azure-is-not-just-about-roles/ Example Application for Windows Azure http://msdn.microsoft.com/en-us/library/ff966482.aspx Implementation Guidance Practical applications for the architect to consider 5 Enterprise steps for adopting a Platform as a Service http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0 Performance-Based Scaling in Windows Azure http://msdn.microsoft.com/en-us/magazine/gg232759.aspx Windows Azure Guidance for the Development Process http://blogs.msdn.com/b/eugeniop/archive/2010/04/01/windows-azure-guidance-development-process.aspx Microsoft Developer Guidance Maps http://blogs.msdn.com/b/jmeier/archive/2010/10/04/developer-guidance-ia-at-a-glance.aspx How to Build a Hybrid On-Premise/In Cloud Application http://blogs.msdn.com/b/ignitionshowcase/archive/2010/11/09/how-to-build-a-hybrid-on-premise-in-cloud-application.aspx A Common Scenario of Multi-instances in Windows Azure http://blogs.msdn.com/b/windows-azure-support/archive/2010/11/03/a-common-scenario-of-multi_2d00_instances-in-windows-azure-.aspx Slides and Links for Windows Azure Platform Best Practices http://geekswithblogs.net/iupdateable/archive/2010/09/29/slides-and-links-for-windows-azure-platform-best-practices-for.aspx AppFabric Architecture and Deployment Topologies guide http://blogs.msdn.com/b/appfabriccat/archive/2010/09/10/appfabric-architecture-and-deployment-topologies-guide-now-available-via-microsoft-download-center.aspx Windows Azure Platform Appliance http://www.microsoft.com/windowsazure/appliance/ Integrating Cloud Technologies into Your Organization Interoperability with Open Source and other applications; business and cost decisions Interoperability Labs at Microsoft http://www.interoperabilitybridges.com/ Windows Azure Service Level Agreements http://www.microsoft.com/windowsazure/sla/

    Read the article

  • What is hogging my connection?

    - by SF.
    At times it seems like dozens, if not hundreds of root-owned HTTP connections spring up. This is not much of a problem on LAN or WLAN as each of them seems to transfer very little, but if I use GPRS link, my ping times go into minutes (seriously, 80000ms is not infrequent!) and all connections grind to a halt waiting till these end. This usually lasts some 15 minutes and ends about when I start troubleshooting it for real. I've managed to capture a fragment of Nethogs output NetHogs version 0.8.0 PID USER PROGRAM DEV SENT RECEIVED ? root 37.209.147.180:59854-141.101.114.59:80 0.013 0.000 KB/sec ? root 37.209.147.180:59853-141.101.114.59:80 0.000 0.000 KB/sec ? root 37.209.147.180:52804-173.194.70.95:80 0.000 0.000 KB/sec 1954 bw /home/bw/.dropbox-dist/dropbox ppp0 0.000 0.000 KB/sec ? root 37.209.147.180:59851-141.101.114.59:80 0.000 0.000 KB/sec ? root 37.209.147.180:59850-141.101.114.59:80 0.000 0.000 KB/sec ? root 37.209.147.180:52801-173.194.70.95:80 0.000 0.000 KB/sec 13301 bw /usr/lib/firefox/firefox ppp0 0.000 0.000 KB/sec ? root unknown TCP 0.000 0.000 KB/sec Unfortunately, it doesn't display the owning process of these. Does anyone recognize these addresses or is able to suggest how to troubleshoot it further or disable it? Is it some automatic update or something like that? EDIT: per request; netstat -n, for obvious reason that normal netstat won't ever launch as all DNS requests are hogged just the same. netstat -n Active Internet connections (w/o servers) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 1 93.154.166.62:51314 198.252.206.16:80 FIN_WAIT1 tcp 0 1 37.209.147.180:44098 198.252.206.16:80 FIN_WAIT1 tcp 0 1 37.209.147.180:59855 141.101.114.59:80 FIN_WAIT1 tcp 1 0 192.168.43.224:38237 213.189.45.39:443 CLOSE_WAIT tcp 1 0 93.154.146.186:35167 75.101.152.29:80 CLOSE_WAIT tcp 1 0 192.168.43.224:32939 199.15.160.100:80 CLOSE_WAIT tcp 1 0 192.168.43.224:55619 63.245.217.207:443 CLOSE_WAIT tcp 1 0 93.154.146.186:60210 75.101.152.29:443 CLOSE_WAIT tcp 1 0 192.168.43.224:32944 199.15.160.100:80 CLOSE_WAIT tcp 0 1 37.209.147.180:52804 173.194.70.95:80 FIN_WAIT1 tcp 1 0 93.154.146.186:46606 23.21.151.181:80 CLOSE_WAIT tcp 1 0 93.154.146.186:52619 107.22.246.76:80 CLOSE_WAIT tcp 415 0 93.154.146.186:36156 82.112.106.104:80 CLOSE_WAIT tcp 1 0 93.154.146.186:50352 107.22.246.76:443 CLOSE_WAIT tcp 1 0 192.168.43.224:55000 213.189.45.44:443 CLOSE_WAIT tcp 0 1 37.209.147.180:59853 141.101.114.59:80 FIN_WAIT1 tcp 1 0 192.168.43.224:32937 199.15.160.100:80 CLOSE_WAIT tcp 1 0 192.168.43.224:56055 93.184.221.40:80 CLOSE_WAIT tcp 415 0 93.154.146.186:36155 82.112.106.104:80 CLOSE_WAIT tcp 0 1 37.209.147.180:44097 198.252.206.16:80 FIN_WAIT1 tcp 1 0 93.154.146.186:35166 75.101.152.29:80 CLOSE_WAIT tcp 1 0 192.168.43.224:32943 199.15.160.100:80 CLOSE_WAIT tcp 1 0 93.154.146.186:46607 23.21.151.181:80 CLOSE_WAIT tcp 1 0 93.154.146.186:36422 23.21.151.181:443 CLOSE_WAIT tcp 1 0 192.168.43.224:36081 93.184.220.148:80 CLOSE_WAIT tcp 1 0 192.168.43.224:44462 213.189.45.29:443 CLOSE_WAIT tcp 1 0 192.168.43.224:32938 199.15.160.100:80 CLOSE_WAIT tcp 1 0 93.154.146.186:36419 23.21.151.181:443 CLOSE_WAIT tcp 0 497 93.154.166.62:51313 198.252.206.16:80 FIN_WAIT1 tcp 0 1 37.209.147.180:59851 141.101.114.59:80 FIN_WAIT1 tcp 0 1 37.209.147.180:44095 198.252.206.16:80 FIN_WAIT1 tcp 1 0 93.154.146.186:46611 23.21.151.181:80 CLOSE_WAIT tcp 1 0 192.168.43.224:38236 213.189.45.39:443 CLOSE_WAIT tcp 0 171 37.209.147.180:45341 173.194.113.146:443 ESTABLISHED tcp 0 1 37.209.147.180:52801 173.194.70.95:80 FIN_WAIT1 tcp 1 0 192.168.43.224:36080 93.184.220.148:80 CLOSE_WAIT tcp 0 1 37.209.147.180:59856 141.101.114.59:80 FIN_WAIT1 tcp 0 1 37.209.147.180:44096 198.252.206.16:80 FIN_WAIT1 tcp 0 1 93.154.166.62:57471 108.160.162.49:80 FIN_WAIT1 tcp 0 1 37.209.147.180:59854 141.101.114.59:80 FIN_WAIT1 tcp 0 171 37.209.147.180:45340 173.194.113.146:443 ESTABLISHED tcp 0 168 37.209.147.180:45334 173.194.113.146:443 FIN_WAIT1 tcp 1 0 93.154.146.186:46609 23.21.151.181:80 CLOSE_WAIT tcp 0 1248 93.154.166.62:58270 64.251.23.59:443 FIN_WAIT1 tcp 0 1 37.209.147.180:59850 141.101.114.59:80 FIN_WAIT1 tcp 1 0 93.154.146.186:35181 75.101.152.29:80 CLOSE_WAIT tcp 232 0 93.154.172.168:46384 198.252.206.25:80 ESTABLISHED tcp 1 0 93.154.146.186:52618 107.22.246.76:80 CLOSE_WAIT tcp 1 0 93.154.172.168:36298 173.194.69.95:443 CLOSE_WAIT tcp 1 0 93.154.146.186:60209 75.101.152.29:443 CLOSE_WAIT tcp 0 168 37.209.147.180:45335 173.194.113.146:443 FIN_WAIT1 tcp 415 0 93.154.146.186:36157 82.112.106.104:80 CLOSE_WAIT tcp 1 0 192.168.43.224:36082 93.184.220.148:80 CLOSE_WAIT tcp 1 0 192.168.43.224:32942 199.15.160.100:80 CLOSE_WAIT tcp 1 0 93.154.146.186:50350 107.22.246.76:443 CLOSE_WAIT tcp 1 0 192.168.43.224:32941 199.15.160.100:80 CLOSE_WAIT tcp 0 534 37.209.147.180:44089 198.252.206.16:80 FIN_WAIT1 tcp 1 0 93.154.146.186:46608 23.21.151.181:80 CLOSE_WAIT tcp 1 0 93.154.146.186:46612 23.21.151.181:80 CLOSE_WAIT udp 0 0 37.209.147.180:49057 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:51631 193.41.112.18:53 ESTABLISHED udp 0 0 37.209.147.180:34827 193.41.112.18:53 ESTABLISHED udp 0 0 37.209.147.180:35908 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:44106 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:42184 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:54485 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:42216 193.41.112.18:53 ESTABLISHED udp 0 0 37.209.147.180:51961 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:48412 193.41.112.14:53 ESTABLISHED The interesting lines from ping got lost, but the summary over past few hours is: --- 8.8.8.8 ping statistics --- 107459 packets transmitted, 104376 received, +22 duplicates, 2% packet loss, time 195427362ms rtt min/avg/max/mdev = 24.822/528.132/90538.257/2519.263 ms, pipe 90 EDIT: Per request: Happened again, reboot didn't help but cleaned up all "hanging" processes. Currently netstat shows: bw@pony:/var/log$ netstat -n -t Active Internet connections (w/o servers) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 0 93.154.188.68:42767 74.125.239.143:443 TIME_WAIT tcp 0 0 93.154.188.68:50270 173.194.69.189:443 ESTABLISHED tcp 0 0 93.154.188.68:45250 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:53488 173.194.32.198:80 ESTABLISHED tcp 0 0 93.154.188.68:53490 173.194.32.198:80 ESTABLISHED tcp 0 159 93.154.188.68:42741 74.125.239.143:443 LAST_ACK tcp 0 0 93.154.188.68:45808 198.252.206.25:80 ESTABLISHED tcp 0 0 93.154.188.68:52449 173.194.32.199:443 ESTABLISHED tcp 0 0 93.154.188.68:52600 173.194.32.199:443 TIME_WAIT tcp 0 0 93.154.188.68:50300 173.194.69.189:443 TIME_WAIT tcp 0 0 93.154.188.68:45253 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:46252 173.194.32.204:443 ESTABLISHED tcp 0 0 93.154.188.68:45246 190.93.244.58:80 ESTABLISHED tcp 0 0 93.154.188.68:47064 173.194.113.143:443 ESTABLISHED tcp 0 0 93.154.188.68:34484 173.194.69.95:443 ESTABLISHED tcp 0 0 93.154.188.68:45252 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:54290 173.194.32.202:443 ESTABLISHED tcp 0 0 93.154.188.68:47063 173.194.113.143:443 ESTABLISHED tcp 0 0 93.154.188.68:53469 173.194.32.198:80 TIME_WAIT tcp 0 0 93.154.188.68:45242 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:53468 173.194.32.198:80 ESTABLISHED tcp 0 0 93.154.188.68:50299 173.194.69.189:443 TIME_WAIT tcp 0 0 93.154.188.68:42764 74.125.239.143:443 TIME_WAIT tcp 0 0 93.154.188.68:45256 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:58047 108.160.162.105:80 ESTABLISHED tcp 0 0 93.154.188.68:45249 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:50297 173.194.69.189:443 TIME_WAIT tcp 0 0 93.154.188.68:53470 173.194.32.198:80 ESTABLISHED tcp 0 0 93.154.188.68:34100 68.232.35.121:443 ESTABLISHED tcp 0 0 93.154.188.68:42758 74.125.239.143:443 ESTABLISHED tcp 0 0 93.154.188.68:42765 74.125.239.143:443 TIME_WAIT tcp 0 0 93.154.188.68:39000 173.194.69.95:80 TIME_WAIT tcp 0 0 93.154.188.68:50296 173.194.69.189:443 TIME_WAIT tcp 0 0 93.154.188.68:53467 173.194.32.198:80 ESTABLISHED tcp 0 0 93.154.188.68:42766 74.125.239.143:443 TIME_WAIT tcp 0 0 93.154.188.68:45251 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:45248 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:45247 190.93.244.58:80 ESTABLISHED tcp 0 159 93.154.188.68:50254 173.194.69.189:443 LAST_ACK tcp 0 0 93.154.188.68:34483 173.194.69.95:443 ESTABLISHED Output of ps: USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.8 0.0 3628 2092 ? Ss 16:52 0:03 /sbin/init root 2 0.0 0.0 0 0 ? S 16:52 0:00 [kthreadd] root 3 0.1 0.0 0 0 ? S 16:52 0:00 [ksoftirqd/0] root 4 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/0:0] root 6 0.0 0.0 0 0 ? S 16:52 0:00 [migration/0] root 7 0.0 0.0 0 0 ? S 16:52 0:00 [watchdog/0] root 8 0.0 0.0 0 0 ? S 16:52 0:00 [migration/1] root 10 0.1 0.0 0 0 ? S 16:52 0:00 [ksoftirqd/1] root 11 0.0 0.0 0 0 ? S 16:52 0:00 [watchdog/1] root 12 0.0 0.0 0 0 ? S 16:52 0:00 [migration/2] root 14 0.1 0.0 0 0 ? S 16:52 0:00 [ksoftirqd/2] root 15 0.0 0.0 0 0 ? S 16:52 0:00 [watchdog/2] root 16 0.0 0.0 0 0 ? S 16:52 0:00 [migration/3] root 17 0.0 0.0 0 0 ? S 16:52 0:00 [kworker/3:0] root 18 0.1 0.0 0 0 ? S 16:52 0:00 [ksoftirqd/3] root 19 0.0 0.0 0 0 ? S 16:52 0:00 [watchdog/3] root 20 0.0 0.0 0 0 ? S< 16:52 0:00 [cpuset] root 21 0.0 0.0 0 0 ? S< 16:52 0:00 [khelper] root 22 0.0 0.0 0 0 ? S 16:52 0:00 [kdevtmpfs] root 23 0.0 0.0 0 0 ? S< 16:52 0:00 [netns] root 24 0.0 0.0 0 0 ? S 16:52 0:00 [sync_supers] root 25 0.0 0.0 0 0 ? S 16:52 0:00 [bdi-default] root 26 0.0 0.0 0 0 ? S< 16:52 0:00 [kintegrityd] root 27 0.0 0.0 0 0 ? S< 16:52 0:00 [kblockd] root 28 0.0 0.0 0 0 ? S< 16:52 0:00 [ata_sff] root 29 0.0 0.0 0 0 ? S 16:52 0:00 [khubd] root 30 0.0 0.0 0 0 ? S< 16:52 0:00 [md] root 42 0.0 0.0 0 0 ? S 16:52 0:00 [khungtaskd] root 43 0.0 0.0 0 0 ? S 16:52 0:00 [kswapd0] root 44 0.0 0.0 0 0 ? SN 16:52 0:00 [ksmd] root 45 0.0 0.0 0 0 ? SN 16:52 0:00 [khugepaged] root 46 0.0 0.0 0 0 ? S 16:52 0:00 [fsnotify_mark] root 47 0.0 0.0 0 0 ? S 16:52 0:00 [ecryptfs-kthrea] root 48 0.0 0.0 0 0 ? S< 16:52 0:00 [crypto] root 59 0.0 0.0 0 0 ? S< 16:52 0:00 [kthrotld] root 70 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/2:1] root 71 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_0] root 72 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_1] root 73 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_2] root 74 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_3] root 75 0.0 0.0 0 0 ? S 16:52 0:00 [kworker/u:2] root 76 0.0 0.0 0 0 ? S 16:52 0:00 [kworker/u:3] root 79 0.0 0.0 0 0 ? S 16:52 0:00 [kworker/1:1] root 99 0.0 0.0 0 0 ? S< 16:52 0:00 [deferwq] root 100 0.0 0.0 0 0 ? S< 16:52 0:00 [charger_manager] root 101 0.0 0.0 0 0 ? S< 16:52 0:00 [devfreq_wq] root 102 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/2:2] root 106 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_4] root 107 0.0 0.0 0 0 ? S 16:52 0:00 [usb-storage] root 108 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_5] root 109 0.0 0.0 0 0 ? S 16:52 0:00 [usb-storage] root 271 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/1:2] root 316 0.0 0.0 0 0 ? S 16:52 0:00 [jbd2/sda1-8] root 317 0.0 0.0 0 0 ? S< 16:52 0:00 [ext4-dio-unwrit] root 440 0.1 0.0 2820 608 ? S 16:52 0:00 upstart-udev-bridge --daemon root 478 0.0 0.0 3460 1648 ? Ss 16:52 0:00 /sbin/udevd --daemon root 632 0.0 0.0 3348 1336 ? S 16:52 0:00 /sbin/udevd --daemon root 633 0.0 0.0 3348 1204 ? S 16:52 0:00 /sbin/udevd --daemon root 782 0.0 0.0 2816 596 ? S 16:52 0:00 upstart-socket-bridge --daemon root 822 0.0 0.0 6684 2400 ? Ss 16:52 0:00 /usr/sbin/sshd -D 102 834 0.2 0.0 4064 1864 ? Ss 16:52 0:01 dbus-daemon --system --fork root 857 0.0 0.1 7420 3380 ? Ss 16:52 0:00 /usr/sbin/modem-manager root 858 0.0 0.0 4784 1636 ? Ss 16:52 0:00 /usr/sbin/bluetoothd syslog 860 0.0 0.0 31068 1496 ? Sl 16:52 0:00 rsyslogd -c5 root 869 0.1 0.1 24280 5564 ? Ssl 16:52 0:00 NetworkManager avahi 883 0.0 0.0 3448 1488 ? S 16:52 0:00 avahi-daemon: running [pony.local] avahi 884 0.0 0.0 3448 436 ? S 16:52 0:00 avahi-daemon: chroot helper root 885 0.0 0.0 0 0 ? S< 16:52 0:00 [kpsmoused] root 892 0.0 0.1 25696 4140 ? Sl 16:52 0:00 /usr/lib/policykit-1/polkitd --no-debug root 923 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_6] root 959 0.0 0.0 0 0 ? S< 16:52 0:00 [krfcommd] root 970 0.0 0.1 7536 3120 ? Ss 16:52 0:00 /usr/sbin/cupsd -F colord 976 0.1 0.3 55080 10396 ? Sl 16:52 0:00 /usr/lib/i386-linux-gnu/colord/colord root 979 0.0 0.0 4632 872 tty4 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty4 root 987 0.0 0.0 4632 884 tty5 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty5 root 994 0.0 0.0 4632 884 tty2 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty2 root 995 0.0 0.0 4632 868 tty3 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty3 root 998 0.0 0.0 4632 876 tty6 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty6 root 1022 0.0 0.0 2176 680 ? Ss 16:52 0:00 acpid -c /etc/acpi/events -s /var/run/acpid.socket root 1029 0.0 0.0 3632 664 ? Ss 16:52 0:00 /usr/sbin/irqbalance daemon 1030 0.0 0.0 2476 120 ? Ss 16:52 0:00 atd root 1031 0.0 0.0 2620 880 ? Ss 16:52 0:00 cron root 1061 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/3:2] root 1064 0.0 1.0 34116 31072 ? SLsl 16:52 0:00 lightdm root 1076 13.4 1.2 118688 37920 tty7 Ssl+ 16:52 0:55 /usr/bin/X :0 -core -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswit root 1085 0.0 0.0 0 0 ? S 16:52 0:00 [rts_pstor] root 1087 0.0 0.0 0 0 ? S 16:52 0:00 [rtsx-polling] root 1095 0.0 0.0 0 0 ? S< 16:52 0:00 [cfg80211] root 1127 0.0 0.0 0 0 ? S 16:52 0:00 [flush-8:0] root 1130 0.0 0.0 6136 1824 ? Ss 16:52 0:00 /sbin/wpa_supplicant -B -P /run/sendsigs.omit.d/wpasupplicant.pid -u -s -O /va root 1137 0.0 0.1 24604 3164 ? Sl 16:52 0:00 /usr/lib/accountsservice/accounts-daemon root 1140 0.0 0.0 0 0 ? S< 16:52 0:00 [hd-audio0] root 1188 0.0 0.1 34308 3420 ? Sl 16:52 0:00 /usr/sbin/console-kit-daemon --no-daemon root 1425 0.0 0.0 4632 872 tty1 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty1 root 1443 0.1 0.1 29460 4664 ? Sl 16:52 0:00 /usr/lib/upower/upowerd root 1579 0.0 0.1 16540 3272 ? Sl 16:53 0:00 lightdm --session-child 12 19 bw 1623 0.0 0.0 2232 644 ? Ss 16:53 0:00 /bin/sh /usr/bin/startkde bw 1672 0.0 0.0 4092 204 ? Ss 16:53 0:00 /usr/bin/ssh-agent /usr/bin/gpg-agent --daemon --sh --write-env-file=/home/bw/ bw 1673 0.0 0.0 5492 384 ? Ss 16:53 0:00 /usr/bin/gpg-agent --daemon --sh --write-env-file=/home/bw/.gnupg/gpg-agent-in bw 1676 0.0 0.0 3848 792 ? S 16:53 0:00 /usr/bin/dbus-launch --exit-with-session /usr/bin/startkde bw 1677 0.5 0.0 5384 2180 ? Ss 16:53 0:02 //bin/dbus-daemon --fork --print-pid 5 --print-address 7 --session root 1704 0.3 0.1 25348 3600 ? Sl 16:53 0:01 /usr/lib/udisks/udisks-daemon root 1705 0.0 0.0 6620 728 ? S 16:53 0:00 udisks-daemon: not polling any devices bw 1736 0.0 0.0 2008 64 ? S 16:53 0:00 /usr/lib/kde4/libexec/start_kdeinit +kcminit_startup bw 1737 0.0 0.5 115200 15588 ? Ss 16:53 0:00 kdeinit4: kdeinit4 Running... bw 1738 0.1 0.2 116756 8728 ? S 16:53 0:00 kdeinit4: klauncher [kdeinit] --fd=9 bw 1740 0.6 1.0 340524 31264 ? Sl 16:53 0:02 kdeinit4: kded4 [kdeinit] bw 1742 0.0 0.0 8944 2144 ? S 16:53 0:00 /usr/lib/i386-linux-gnu/gconf/gconfd-2 bw 1746 0.2 0.4 92028 14688 ? S 16:53 0:00 /usr/bin/kglobalaccel bw 1748 0.0 0.4 90804 13500 ? S 16:53 0:00 /usr/bin/kwalletd bw 1752 0.1 0.5 103764 15152 ? S 16:53 0:00 /usr/bin/kactivitymanagerd bw 1758 0.0 0.0 2144 280 ? S 16:53 0:00 kwrapper4 ksmserver bw 1759 0.1 0.5 150016 16088 ? Sl 16:53 0:00 kdeinit4: ksmserver [kdeinit] bw 1763 2.2 1.0 178492 32100 ? Sl 16:53 0:08 kwin bw 1772 0.2 0.5 106292 16340 ? Sl 16:53 0:00 /usr/bin/knotify4 bw 1777 0.9 1.1 246120 32912 ? Sl 16:53 0:03 /usr/bin/krunner bw 1778 6.3 2.7 389884 80216 ? Sl 16:53 0:23 /usr/bin/plasma-desktop bw 1785 0.0 0.0 2844 1208 ? S 16:53 0:00 ksysguardd bw 1789 0.1 0.4 82036 14176 ? S 16:53 0:00 /usr/bin/kuiserver bw 1805 0.3 0.1 61560 5612 ? Sl 16:53 0:01 /usr/bin/akonadi_control root 1806 0.0 0.0 0 0 ? S 16:53 0:00 [kworker/0:2] bw 1808 0.1 0.2 211852 8460 ? Sl 16:53 0:00 akonadiserver bw 1810 0.4 0.8 244116 25360 ? Sl 16:53 0:01 /usr/sbin/mysqld --defaults-file=/home/bw/.local/share/akonadi/mysql.conf --da bw 1874 0.0 0.0 35284 2956 ? Sl 16:53 0:00 /usr/bin/xsettings-kde bw 1876 0.0 0.3 68776 9488 ? Sl 16:53 0:00 /usr/bin/nepomukserver bw 1884 0.4 0.9 173876 29240 ? SNl 16:53 0:01 /usr/bin/nepomukservicestub nepomukstorage bw 1902 6.1 2.1 451512 63924 ? Sl 16:53 0:21 /home/bw/.dropbox-dist/dropbox bw 1906 3.8 1.0 142368 32376 ? Rl 16:53 0:13 /usr/bin/yakuake bw 1933 0.0 0.1 54636 4680 ? Sl 16:53 0:00 /usr/bin/zeitgeist-datahub bw 1943 0.5 1.5 164836 46836 ? Sl 16:53 0:01 python /usr/bin/printer-applet bw 1945 0.1 0.1 99636 5048 ? S<l 16:53 0:00 /usr/bin/pulseaudio --start --log-target=syslog rtkit 1947 0.0 0.0 21336 1248 ? SNl 16:53 0:00 /usr/lib/rtkit/rtkit-daemon bw 1958 0.0 0.1 44204 3792 ? Sl 16:53 0:00 /usr/bin/zeitgeist-daemon bw 1972 0.0 0.0 27008 2684 ? Sl 16:53 0:00 /usr/lib/gvfs/gvfsd bw 1974 0.1 0.5 90480 16660 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_akonotes_resource akonadi_akonotes_res bw 1984 0.1 0.5 90472 16636 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_akonotes_resource akonadi_akonotes_res bw 1985 0.3 0.9 148800 28304 ? S 16:53 0:01 /usr/bin/akonadi_archivemail_agent --identifier akonadi_archivemail_agent bw 1992 0.1 0.5 90020 16148 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_contacts_resource akonadi_contacts_res bw 1993 0.1 0.5 90132 16452 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_contacts_resource akonadi_contacts_res bw 1994 0.1 0.5 90564 16332 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_ical_resource akonadi_ical_resource_0 bw 1995 0.1 0.5 90676 16732 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_ical_resource akonadi_ical_resource_1 bw 1996 0.1 0.5 90468 16800 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_maildir_resource akonadi_maildir_resou bw 1999 0.2 0.6 99324 19276 ? S 16:53 0:00 /usr/bin/akonadi_maildispatcher_agent --identifier akonadi_maildispatcher_agen bw 2006 0.3 0.9 148808 28332 ? S 16:53 0:01 /usr/bin/akonadi_mailfilter_agent --identifier akonadi_mailfilter_agent bw 2017 0.0 0.1 50256 4716 ? Sl 16:53 0:00 /usr/lib/zeitgeist/zeitgeist-fts bw 2024 0.2 0.6 103632 18376 ? Sl 16:53 0:00 /usr/bin/akonadi_nepomuk_feeder --identifier akonadi_nepomuk_feeder bw 2043 0.0 0.0 4484 280 ? S 16:53 0:00 /bin/cat bw 2101 0.2 0.7 113600 22396 ? Sl 16:53 0:00 /usr/lib/kde4/libexec/polkit-kde-authentication-agent-1 bw 2105 0.2 0.7 114196 22072 ? Sl 16:53 0:00 /usr/bin/nepomukcontroller bw 2156 0.3 1.0 333188 31244 ? Sl 16:54 0:01 /usr/bin/kmix bw 2167 0.0 0.0 6548 2724 pts/2 Ss 16:54 0:00 /bin/bash bw 2177 0.2 0.7 113496 22960 ? Sl 16:54 0:00 /usr/bin/klipper bw 2394 3.5 1.2 52932 35596 ? SNl 16:54 0:11 /usr/bin/virtuoso-t +foreground +configfile /tmp/virtuoso_hX1884.ini +wait root 2460 0.0 0.0 6184 1876 pts/2 S 16:54 0:00 sudo -s root 2500 0.0 0.0 6528 2700 pts/2 S 16:54 0:00 /bin/bash root 2599 0.0 0.0 5444 1280 pts/2 S+ 16:54 0:00 /bin/bash bin/aero root 2606 0.1 0.0 9836 2500 pts/2 S+ 16:54 0:00 wvdial aero2 root 2619 0.0 0.0 3504 1280 pts/2 S 16:54 0:00 /usr/sbin/pppd 57600 modem crtscts defaultroute usehostname -detach user aero bw 2653 0.0 0.0 6600 2880 pts/3 Ss 16:54 0:00 /bin/bash bw 2676 0.4 0.8 130296 24016 ? SNl 16:54 0:01 /usr/bin/nepomukservicestub nepomukfilewatch bw 2679 0.1 0.7 101636 22252 ? SNl 16:54 0:00 /usr/bin/nepomukservicestub nepomukqueryservice bw 2681 0.2 0.8 109836 24280 ? SNl 16:54 0:00 /usr/bin/nepomukservicestub nepomukbackupsync bw 3833 46.0 9.7 829272 288012 ? Rl 16:55 1:46 /usr/lib/firefox/firefox bw 3903 0.0 0.0 35128 2804 ? Sl 16:55 0:00 /usr/lib/at-spi2-core/at-spi-bus-launcher bw 4708 0.1 0.0 6564 2736 pts/4 Ss 16:56 0:00 /bin/bash root 5210 0.0 0.0 0 0 ? S 16:57 0:00 [kworker/u:0] root 6140 0.2 0.0 0 0 ? S 16:58 0:00 [kworker/0:1] root 6371 0.5 0.0 6184 1868 pts/4 S+ 16:59 0:00 sudo nethogs ppp0 root 6411 17.7 0.2 8616 6144 pts/4 S+ 16:59 0:05 nethogs ppp0 bw 6787 0.0 0.0 5464 1220 pts/3 R+ 16:59 0:00 ps auxw

    Read the article

  • How can I get my progress reviewed as a solo junior developer

    - by Oliver Hyde
    I am currently working for a 2 person company, as the solo primary developer. My boss gets the clients, mocks up some png design templates and hands them over to me. This system has been working fine and i'm really enjoying it. The types of projects I work on are for small - medium sized businesses and they usually want a CMS system. Developed from scratch i'll build a customised backend for the client to add/edit/remove categories, tags, products etc and then output them to the front end according to the design template handed to me. As time has gone on, the projects have increased in complexity, with shopping cart / ordering features and other common e-commerce type features. Again, this system has been working fine and i'm really enjoying it. My issue is my personal development as a programmer. I spend a lot of my spare time reading programming blogs, checking through stackexchange, reading suggested programming books (currently on 'The Pragmatic Programmer', really good so far), doing brain exercises (lumosity.com and khanacademy math problems), doing lots of physical exercise and other personal development type activities. I can't help but feel though, that I'm missing out on feedback, critique. My boss is great and never holds back on praise in regards to my work, but he unfortunately is either to busy to check my code, or to be honest, I don't think it's one of his specialties and so can't provide feedback. I want to know what i'm doing wrong and what i'm doing right. Should I be putting that much logic in the controller, am I modulating my code enough etc. So what I have done is developed a little 'Family Budgeting' app and tried to do it as cleanly and effectively as I currently know how. What i'm wanting to know is, is there somewhere I can submit this app, and have some seasoned developers provide feedback. It's not just a subsection of my code like 'codereview.stackexchange' appears to require, it's my entire workflow that I want critiqued. I know this is a lot to ask, and I expect the main advice given will be to look for a job within a team, which is certainly something I will look into later down the track, but for now I want to persist with my current employment situation, but just don't want to develop too many bad habits. Let me know if I can provide any further information to help clarify, or if this isn't the right place for this type of question I apologise in advance. Didn't want to use reddit as I felt this community fosters more well thought out responses.

    Read the article

  • Create Your CRM Style

    - by Ruth
    Company branding can create a sense of spirit, belonging, familiarity, and fun. CRM On Demand has long offered company branding options, but now, with Release 17, those options have become quicker, easier, and more flexible. Themes (also known as Skins) allow you to customize the appearance of the CRM On Demand application for your entire company, or for individual roles. Users may also select the theme that works best for them. You can create a new theme in 5 minutes or less, but if you're anything like me, you may enjoy tinkering with it for a while longer. Before you begin tinkering, I recommend spending a few moments coming up with a design plan. If you have specific colors or logos you want for your theme, gather those first...that will move the process along much faster. If you want to match the color of an existing Web site or application, you can use tools, like Pixie, to match the HEX/HTML color values. Logos must be in a JPEG, JPG, PNG, or GIF file format. Header logos must be approximately 70 pixels high by 1680 pixels wide. Footer logos must be no more than 200 pixels wide. And, of course, you must have permission to use the images that you upload for your theme. Creating the theme itself is the simple part. Here are a few simple steps. Note: You must have the Manage Themes privilege to create custom themes. Click the Admin global link. Navigate to Application Customization Themes. Click New. Note: You may also choose to copy and edit and existing theme. Enter information for the following fields: Theme Name - Enter a name for your new theme. Show Default Help Link - Online help holds valuable information for all users, so I recommend selecting this check box. Show Default Training and Support Link - The Training and Support Center holds valuable information for all users, so I recommend selecting this check box. Description - Enter a description for your new theme. Click Save. Once you click Save, the Theme Detail page opens. From there, you can design your theme. The preview shows the Home, Detail, and List pages, with the new theme applied. For more detailed information about themes, click the Help link from any page in CRM On Demand Release 17, then search or browse to find the Creating New Themes page (Administering CRM On Demand Application Customization Creating New Themes). Click the Show Me link on that Help page to access the Creating Custom Themes quick guide. This quick guide shows how each of the page elements are defined.

    Read the article

  • ASP.Net 4.5 Garbage Collection Improvement

    - by Aligned
    Originally posted on: http://geekswithblogs.net/Aligned/archive/2013/06/24/asp.net-4.5-garbage-collection-improvement.aspxI just read Five Great .NET Framework 4.5 Features on CodeProject by Shivprasad koirala. Feature 5 in his article mentions the GC background cleanup and has a good explanation of the work the GC has to do for ASP.Net on the server. “Garbage collector is one real heavy task in a .NET application. And it becomes heavier when it is an ASP.NET application. ASP.NET applications run on the server and a lot of clients send requests to the server thus creating loads of objects, making the GC really work hard for cleaning up unwanted objects.” “To overcome the above problem, server GC was introduced. In server GC there is one more thread created which runs in the background. This thread works in the background and keeps cleaning…objects thus minimizing the load on the main GC thread. Due to double GC threads running, the main application threads are less suspended, thus increasing application throughput. To enable server GC, we need to use the gcServer XML tag and enable it to true.” <configuration> <runtime> <gcServer enabled="true"/> </runtime> </configuration> This is not done by default. The MSDN information page says “There are only two garbage collection options, workstation or server. For single-processor computers, the default workstation garbage collection should be the fastest option. Either workstation or server can be used for two-processor computers. Server garbage collection should be the fastest option for more than two processors. Use the GCSettingsIsServerGC property to determine if server garbage collection is enabled.” “In the .NET Framework 4 and earlier versions, concurrent garbage collection is not available when server garbage collection is enabled. Starting with the .NET Framework 4.5, server garbage collection is concurrent. To use non-concurrent server garbage collection, set the <gcServer> element to true and the <gcConcurrent> element to false. “ So if you’re using ASP.Net 4.5 and have a multi-core server, you should try turning on the Server Garbage Collection and do some profiling to see if it improves the performance of your site.

    Read the article

  • Slow Firefox Javascript Canvas Performance?

    - by jujumbura
    As a followup from a previous post, I have been trying to track down some slowdown I am having when drawing a scene using Javascript and the canvas element. I decided to narrow down my focus to a REALLY barebones animation that only clears the canvas and draws a single image, once per-frame. This of course runs silky smooth in Chrome, but it still stutters in Firefox. I added a simple FPS calculator, and indeed it appears that my page is typically getting an FPS in the 50's when running Firefox. This doesn't seem right to me, I must be doing something wrong here. Can anybody see anything I might be doing that is causing this drop in FPS? <!DOCTYPE HTML> <html> <head> </head> <body bgcolor=silver> <canvas id="myCanvas" width="600" height="400"></canvas> <img id="myHexagon" src="Images/Hexagon.png" style="display: none;"> <script> window.requestAnimFrame = (function(callback) { return window.requestAnimationFrame || window.webkitRequestAnimationFrame || window.mozRequestAnimationFrame || window.oRequestAnimationFrame || window.msRequestAnimationFrame || function(callback) { window.setTimeout(callback, 1000 / 60); }; })(); var animX = 0; var frameCounter = 0; var fps = 0; var time = new Date(); function animate() { var canvas = document.getElementById("myCanvas"); var context = canvas.getContext("2d"); context.clearRect(0, 0, canvas.width, canvas.height); animX += 1; if (animX == canvas.width) { animX = 0; } var image = document.getElementById("myHexagon"); context.drawImage(image, animX, 128); context.lineWidth=1; context.fillStyle="#000000"; context.lineStyle="#ffffff"; context.font="18px sans-serif"; context.fillText("fps: " + fps, 20, 20); ++frameCounter; var currentTime = new Date(); var elapsedTimeMS = currentTime - time; if (elapsedTimeMS >= 1000) { fps = frameCounter; frameCounter = 0; time = currentTime; } // request new frame requestAnimFrame(function() { animate(); }); } window.onload = function() { animate(); }; </script> </body> </html>

    Read the article

  • iOS - pass UIImage to shader as texture

    - by martin pilch
    I am trying to pass UIImage to GLSL shader. The fragment shader is: varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; uniform sampler2D inputImageTexture2; void main() { highp vec4 color = texture2D(inputImageTexture, textureCoordinate); highp vec4 color2 = texture2D(inputImageTexture2, textureCoordinate); gl_FragColor = color * color2; } What I want to do is send images from camera and do multiply blend with texture. When I just send data from camera, everything is fine. So problem should be with sending another texture to shader. I am doing it this way: - (void)setTexture:(UIImage*)image forUniform:(NSString*)uniform { CGSize sizeOfImage = [image size]; CGFloat scaleOfImage = [image scale]; CGSize pixelSizeOfImage = CGSizeMake(scaleOfImage * sizeOfImage.width, scaleOfImage * sizeOfImage.height); //create context GLubyte * spriteData = (GLubyte *)malloc(pixelSizeOfImage.width * pixelSizeOfImage.height * 4 * sizeof(GLubyte)); CGContextRef spriteContext = CGBitmapContextCreate(spriteData, pixelSizeOfImage.width, pixelSizeOfImage.height, 8, pixelSizeOfImage.width * 4, CGImageGetColorSpace(image.CGImage), kCGImageAlphaPremultipliedLast); //draw image into context CGContextDrawImage(spriteContext, CGRectMake(0.0, 0.0, pixelSizeOfImage.width, pixelSizeOfImage.height), image.CGImage); //get uniform of texture GLuint uniformIndex = glGetUniformLocation(__programPointer, [uniform UTF8String]); //generate texture GLuint textureIndex; glGenTextures(1, &textureIndex); glBindTexture(GL_TEXTURE_2D, textureIndex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //create texture glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, pixelSizeOfImage.width, pixelSizeOfImage.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, spriteData); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, textureIndex); //"send" to shader glUniform1i(uniformIndex, 1); free(spriteData); CGContextRelease(spriteContext); } Uniform for texture is fine, glGetUniformLocation function do not returns -1. The texture is PNG file of resolution 2000x2000 pixels. PROBLEM: When the texture is passed to shader, I have got "black screen". Maybe problem are parameters of the CGContext or parameters of the function glTexImage2D Thank you

    Read the article

  • What constitutes a "substantial, good-faith effort to remove the links"

    - by Luke McCallum
    We engaged the services of a 3rd party SEO consultant to assist us in managing our Meta data and to write regular blogs on our site http://cyberdesignworks.com.au Without our authorisation, the SEO also ran a link building campaign which has seen us Penguin slapped and we no longer appear in Google for a number of our core keywords. Since notification by Google that we have "unnatural links" back in March we have undertaken a significant campaign to rid ourselves of these dodgy backlinks by a number of methods. I have just received feedback on my 4th or 5th resubmission which is still advising that we need to make a "substantial, good-faith effort to remove the links" before Google will reconsider us for inclusion. After the effort that I have gone through to get links removed, I am now at a loss as to what else I can do to demonstrate "substantial, good-faith effort to remove the links". Below is a summary of the actions that we have taken to date. According to http://removem.com we had about 5584 back-linking domains. Of those we have successfully contacted and had removed links from 344 domains We ignored links from 625 domains as they were either legitimate press releases, natural backlinks or client websites containing an attribution link in the footer that points back to us. Due to our efforts, or the sites simply becoming defunct, removem.com reports that links from 3262 domains have been removed. We have contacted but are yet to receive feedback from 1666 domains so we can assume that the backlinks remain. We have configured an automatic 301 redirect for each of the links from these 1666 domains to point to http://redirects.sanscode.com/ which we are calling our Bad Link Catcher (a stroke of genius I thought). i.e http://www.mysimplewebdesign.com/create-a-perfect-webpage-with-four-important-tips-from-sydney-web-development-service-companies.php As we are a web design agency, we have a large number of client websites which contain an attribution link in their footer which points back to us. We have gone through the vast majority of these and updated these links to replace anchor text with an image and rel="nofollow" link. i.e <a rel="nofollow" target="_blank" href="http://www.cyberdesignworks.com.au/"><img src="https://sessions.sanscode.com/site/assets/media/badges/Badge_CDW_SANSCODE.png"></a> See http://www.milkatwork.com.au/ An export from http://removem.com detailing the number of times we have contacted each link and whether it is still found or not was also supplied with each resubmission. The total back links reported in Google Web Master Tools has dropped from over 100K to 87K and I expect it to drop significantly lower once Google re-crawls each back-linking page. Based on all of the above, I am not sure what else I can do to to demonstrate a "substantial, good-faith effort to remove the links". I would sincerely appreciate any feedback or suggestions that you may have as I am out of ideas.

    Read the article

  • When to use HTTP status code 404 in an API

    - by Sybiam
    I am working on a project and after arguing with people at work for about more than a hour. I decided to know what people on stack-exchange might say. We're writing an API for a system, there is a query that should return a tree of Organization or a tree of Goals. The tree of Organization is the organization in which the user is present, In other words, this tree should always exists. In the organization, a tree of goal should be always present. (that's where the argument started). In case where the tree doesn't exist, my co-worker decided that it would be right to answer response with status code 200. And then started asking me to fix my code because the application was falling apart when there is no tree. I'll try to spare flames and fury. I suggested to raise a 404 error when there is no tree. It would at least let me know that something is wrong. When using 200, I have to add special check to my response in the success callback to handle errors. I'm expecting to receive an object, but I may actually receive an empty response because nothing is found. It sounds totally fair to mark the response as a 404. And then war started and I got the message that I didn't understand HTTP status code schema. So I'm here and asking what's wrong with 404 in this case? I even got the argument "It found nothing, so it's right to return 200". I believe that it's wrong since the tree should be always present. If we found nothing and we are expecting something, it should be a 404. More info, I forgot to add the urls that are fetched. Organizations /OrgTree/Get Goals /GoalTree/GetByDate?versionDate=... /GoalTree/GetById?versionId=... My mistake, both parameters are required. If any versionDate that can be parsed to a date is provided, it will return the closes revision. If you enter something in the past, it will return the first revision. If by Id with a id that doesn't exists, I suspect it's going to return an empty response with 200. Extra Also, I believe the best answer to the problem is to create default objects when organizations are created, having no tree shouldn't be a valid case and should be seen as an undefined behavior. There is no way an account can be used without both trees. For that reasons, they should be always present. also I got linked this (one similar but I can't find it) http://viswaug.files.wordpress.com/2008/11/http-headers-status1.png

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Windows 7 - traceroute hop with high latency! [closed]

    - by Mac
    I've been experiencing this problem for quite a while, and it's quite frustrating. I'll do a traceroute, to www.l.google.com, for example. This is the result (please note: I will replace some parts of personal information with text - i.e. ISP.IP is in reality an actual IP address, and ISPNAME replaces the actual ISP name): Tracing route to www.l.google.com [173.194.34.212] over a maximum of 30 hops: 1 1 ms 1 ms <1 ms 192.168.1.1 2 9 ms 8 ms 10 ms ISP.EXCHANGE.NAME [ISP.IP.172.205] 3 161 ms 171 ms 177 ms host-ISP.IP.215.246.ISPNAME.net [ISP.IP.215.246] 4 12 ms 9 ms 10 ms host-ISP.IP.215.246.ISPNAME.net [ISP.IP.215.246] 5 10 ms 9 ms 17 ms host-ISP.IP.224.165.ISPNAME.net [ISP.IP.224.165] 6 10 ms 9 ms 10 ms 10.42.0.3 7 9 ms 9 ms 10 ms host-ISP.IP.202.129.ISPNAME.net [ISP.IP.202.129] 8 10 ms 9 ms 9 ms host-ISP.IP.209.33.ISPNAME.net [ISP.IP.209.33] 9 77 ms 129 ms 164 ms host-ISP.IP.198.162.ISPNAME.net [ISP.IP.198.162] 10 43 ms 42 ms 43 ms 72.14.212.13 11 42 ms 42 ms 42 ms 209.85.252.36 12 59 ms 59 ms 59 ms 209.85.241.210 13 60 ms 76 ms 68 ms 72.14.237.124 14 59 ms 59 ms 58 ms mad01s08-in-f20.1e100.net [173.194.34.212] Trace complete. Notice that there is a spike on the 3rd hop, but also notice that the 3rd and 4th hop are to the exact same destination. Furthermore, when I ping the offended hop separately, I get the low latency I would expect to that server: Pinging ISP.IP.215.246 with 32 bytes of data: Reply from ISP.IP.215.246: bytes=32 time=10ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=9ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=12ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=9ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=10ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=9ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=10ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=9ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=10ms TTL=253 Reply from ISP.IP.215.246: bytes=32 time=10ms TTL=253 Ping statistics for ISP.IP.215.246: Packets: Sent = 10, Received = 10, Lost = 0 (0% loss), Approximate round trip times in milli-seconds: Minimum = 9ms, Maximum = 12ms, Average = 9ms I'm baffled as to why or how this is happening, and it seems to "fix itself" at random times. Here is an example of where it was working as expected: http://i.imgur.com/bysno.png Notice how many fewer hops were taken. Please note that all the posted results occurred within 10 minutes of testing. I've tried contacting my ISP, and they seem clueless; in their eyes, as long as "the download speed is not slow", then they're doing everything right. Any insight would be very much appreciated, and thanks in advanced!

    Read the article

  • Hostapd - WLAN as AP

    - by BBK
    I'm trying to start hostapd but without success. I'm using Headless Ubuntu 11.10 oneiric 3.0.0-16-server x86_64. WLAN driver is rt2800usb and my wireless nic card TP-Link TL-WN727N supports AP mode as shows below: us0# ifconfig wlan0 wlan0 Link encap:Ethernet HWaddr 00:27:19:be:cd:b6 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) us0# lsusb Bus 003 Device 003: ID 148f:3070 Ralink Technology, Corp. RT2870/RT3070 Wireless Adapter us0# lshw -C network *-network:3 description: Wireless interface physical id: 4 bus info: usb@3:2 logical name: wlan0 serial: 00:27:19:be:cd:b6 capabilities: ethernet physical wireless configuration: broadcast=yes driver=rt2800usb driverversion=3.0.0-16-server firmware=0.29 link=no multicast=yes wireless=IEEE 802.11bgn us0# hostapd /etc/hostapd/hostapd.conf Configuration file: /etc/hostapd/hostapd.conf Could not read interface wlan0 # The int flags: No such device nl80211 driver initialization failed. ELOOP: remaining socket: sock=4 eloop_data=0xd3e4a0 user_data=0xd3ecc0 handler=0x433880 ELOOP: remaining socket: sock=6 eloop_data=0xd411f0 user_data=(nil) handler=0x43cc10 us0# cat /etc/hostapd/hostapd.conf ssid=Home interface=wlan0 # The interface name of the card #driver=rt2800usb driver=nl80211 macaddr_acl=0 ieee80211n=1 channel=1 hw_mode=g auth_algs=1 ignore_broadcast_ssid=0 wpa=2 wpa_passphrase=88888888 wpa_key_mgmt=WPA-PSK wpa_pairwise=TKIP rsn_pairwise=CCMP us0# iw list Wiphy phy0 Band 1: Capabilities: 0x172 HT20/HT40 Static SM Power Save RX Greenfield RX HT20 SGI RX HT40 SGI RX STBC 1-stream Max AMSDU length: 7935 bytes No DSSS/CCK HT40 Maximum RX AMPDU length 65535 bytes (exponent: 0x003) Minimum RX AMPDU time spacing: 2 usec (0x04) HT RX MCS rate indexes supported: 0-7, 32 TX unequal modulation not supported HT TX Max spatial streams: 1 HT TX MCS rate indexes supported may differ Frequencies: * 2412 MHz [1] (20.0 dBm) * 2417 MHz [2] (20.0 dBm) * 2422 MHz [3] (20.0 dBm) * 2427 MHz [4] (20.0 dBm) * 2432 MHz [5] (20.0 dBm) * 2437 MHz [6] (20.0 dBm) * 2442 MHz [7] (20.0 dBm) * 2447 MHz [8] (20.0 dBm) * 2452 MHz [9] (20.0 dBm) * 2457 MHz [10] (20.0 dBm) * 2462 MHz [11] (20.0 dBm) * 2467 MHz [12] (20.0 dBm) (passive scanning, no IBSS) * 2472 MHz [13] (20.0 dBm) (passive scanning, no IBSS) * 2484 MHz [14] (20.0 dBm) (passive scanning, no IBSS) Bitrates (non-HT): * 1.0 Mbps * 2.0 Mbps (short preamble supported) * 5.5 Mbps (short preamble supported) * 11.0 Mbps (short preamble supported) * 6.0 Mbps * 9.0 Mbps * 12.0 Mbps * 18.0 Mbps * 24.0 Mbps * 36.0 Mbps * 48.0 Mbps * 54.0 Mbps max # scan SSIDs: 4 Supported interface modes: * IBSS * managed * AP * AP/VLAN * WDS * monitor * mesh point Supported commands: * new_interface * set_interface * new_key * new_beacon * new_station * new_mpath * set_mesh_params * set_bss * authenticate * associate * deauthenticate * disassociate * join_ibss * Unknown command (68) * Unknown command (55) * Unknown command (57) * Unknown command (59) * Unknown command (67) * set_wiphy_netns * Unknown command (65) * Unknown command (66) * connect * disconnect The question is: Why the hostapd not starting?

    Read the article

  • Torchlight Black Screen and doesn't show up

    - by Lelouch Reyiz
    When I open it in full screen I get a black screen that covers whole screen,in windowed mode middle of screen.Here is a video: https://copy.com/fvrGw7QIJ8Z0 Terminal Output: alperen@alperen-Inspiron-N5010 /usr/local/games/Torchlight $ ./Torchlight.bin.x86_64 Creating resource group General Creating resource group Internal Creating resource group Autodetect SceneManagerFactory for type 'DefaultSceneManager' registered. Registering ResourceManager for type Material Registering ResourceManager for type Mesh Registering ResourceManager for type Skeleton MovableObjectFactory for type 'ParticleSystem' registered. OverlayElementFactory for type Panel registered. OverlayElementFactory for type BorderPanel registered. OverlayElementFactory for type TextArea registered. Registering ResourceManager for type Font ArchiveFactory for archive type FileSystem registered. ArchiveFactory for archive type Zip registered. FreeImage version: 3.13.1 This program uses FreeImage, a free, open source image library supporting all common bitmap formats. See http://freeimage.sourceforge.net for details Supported formats: bmp,ico,jpg,jif,jpeg,jpe,jng,koa,iff,lbm,mng,pbm,pbm,pcd,pcx,pgm,pgm,png,ppm,ppm,ras,tga,targa,tif,tiff,wap,wbmp,wbm,psd,cut,xbm,xpm,gif,hdr,g3,sgi,exr,j2k,j2c,jp2,pfm,pct,pict,pic,bay,bmq,cr2,crw,cs1,dc2,dcr,dng,erf,fff,hdr,k25,kdc,mdc,mos,mrw,nef,orf,pef,pxn,raf,raw,rdc,sr2,srf,arw,3fr,cine,ia,kc2,mef,nrw,qtk,rw2,sti,drf,dsc,ptx,cap,iiq,rwz DDS codec registering Registering ResourceManager for type HighLevelGpuProgram Registering ResourceManager for type Compositor MovableObjectFactory for type 'Entity' registered. MovableObjectFactory for type 'Light' registered. MovableObjectFactory for type 'BillboardSet' registered. MovableObjectFactory for type 'ManualObject' registered. MovableObjectFactory for type 'BillboardChain' registered. MovableObjectFactory for type 'RibbonTrail' registered. Loading library lib64/OGRE/RenderSystem_GL Installing plugin: GL RenderSystem OpenGL Rendering Subsystem created. Plugin successfully installed Loading library lib64/OGRE/Plugin_ParticleFX Installing plugin: ParticleFX Particle Emitter Type 'Point' registered Particle Emitter Type 'Box' registered Particle Emitter Type 'Ellipsoid' registered Particle Emitter Type 'Cylinder' registered Particle Emitter Type 'Ring' registered Particle Emitter Type 'HollowEllipsoid' registered Particle Affector Type 'LinearForce' registered Particle Affector Type 'ColourFader' registered Particle Affector Type 'ColourFader2' registered Particle Affector Type 'ColourImage' registered Particle Affector Type 'ColourInterpolator' registered Particle Affector Type 'Scaler' registered Particle Affector Type 'Rotator' registered Particle Affector Type 'DirectionRandomiser' registered Particle Affector Type 'DeflectorPlane' registered Plugin successfully installed Loading library lib64/OGRE/Plugin_OctreeSceneManager Installing plugin: Octree & Terrain Scene Manager Plugin successfully installed *-*-* OGRE Initialising *-*-* Version 1.6.5 (Shoggoth) terminate called after throwing an instance of 'std::out_of_range' what(): basic_string::substr Error: signal: 6 ./Torchlight.bin.x86_64(_ZN10LinuxUtils13crash_handlerEi+0x25)[0x17eb6f5] /lib/x86_64-linux-gnu/libc.so.6(+0x37000)[0x7fc647877000] /lib/x86_64-linux-gnu/libc.so.6(gsignal+0x39)[0x7fc647876f89] /lib/x86_64-linux-gnu/libc.so.6(abort+0x148)[0x7fc64787a398] /usr/lib/x86_64-linux-gnu/libstdc++.so.6(_ZN9__gnu_cxx27__verbose_terminate_handlerEv+0x155)[0x7fc6481826b5] /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0x5e836)[0x7fc648180836] /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0x5e863)[0x7fc648180863] /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0x5eaa2)[0x7fc648180aa2] /usr/lib/x86_64-linux-gnu/libstdc++.so.6(_ZSt20__throw_out_of_rangePKc+0x67)[0x7fc6481d25d7] /usr/lib/x86_64-linux-gnu/libstdc++.so.6(+0xbe3d3)[0x7fc6481e03d3] ./Torchlight.bin.x86_64(_ZN11CFileSystem21buildMassiveDataGroupEv+0x453)[0x1617805] ./Torchlight.bin.x86_64(_ZN11CFileSystemC1Eb+0x14be)[0x16145ae] ./Torchlight.bin.x86_64(_ZN22CMasterResourceManagerC1EP9CSettings+0x41a)[0xfe1d0a] ./Torchlight.bin.x86_64(_ZN5CGame5setupEb+0x79a)[0x73ceaa] ./Torchlight.bin.x86_64(_ZN5CGame5beginEPv+0x28d)[0x73b839] ./Torchlight.bin.x86_64(main+0x649)[0x146dbe4] /lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf5)[0x7fc647861ec5] ./Torchlight.bin.x86_64[0x739ca9]

    Read the article

< Previous Page | 351 352 353 354 355 356 357 358 359 360 361 362  | Next Page >