Search Results

Search found 35200 results on 1408 pages for 't string'.

Page 357/1408 | < Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >

  • Dependency injection with n-tier Entity Framework solution

    - by Matthew
    I am currently designing an n-tier solution which is using Entity Framework 5 (.net 4) as its data access strategy, but am concerned about how to incorporate dependency injection to make it testable / flexible. My current solution layout is as follows (my solution is called Alcatraz): Alcatraz.WebUI: An asp.net webform project, the front end user interface, references projects Alcatraz.Business and Alcatraz.Data.Models. Alcatraz.Business: A class library project, contains the business logic, references projects Alcatraz.Data.Access, Alcatraz.Data.Models Alcatraz.Data.Access: A class library project, houses AlcatrazModel.edmx and AlcatrazEntities DbContext, references projects Alcatraz.Data.Models. Alcatraz.Data.Models: A class library project, contains POCOs for the Alcatraz model, no references. My vision for how this solution would work is the web-ui would instantiate a repository within the business library, this repository would have a dependency (through the constructor) of a connection string (not an AlcatrazEntities instance). The web-ui would know the database connection strings, but not that it was an entity framework connection string. In the Business project: public class InmateRepository : IInmateRepository { private string _connectionString; public InmateRepository(string connectionString) { if (connectionString == null) { throw new ArgumentNullException("connectionString"); } EntityConnectionStringBuilder connectionBuilder = new EntityConnectionStringBuilder(); connectionBuilder.Metadata = "res://*/AlcatrazModel.csdl|res://*/AlcatrazModel.ssdl|res://*/AlcatrazModel.msl"; connectionBuilder.Provider = "System.Data.SqlClient"; connectionBuilder.ProviderConnectionString = connectionString; _connectionString = connectionBuilder.ToString(); } public IQueryable<Inmate> GetAllInmates() { AlcatrazEntities ents = new AlcatrazEntities(_connectionString); return ents.Inmates; } } In the Web UI: IInmateRepository inmateRepo = new InmateRepository(@"data source=MATTHEW-PC\SQLEXPRESS;initial catalog=Alcatraz;integrated security=True;"); List<Inmate> deathRowInmates = inmateRepo.GetAllInmates().Where(i => i.OnDeathRow).ToList(); I have a few related questions about this design. 1) Does this design even make sense in terms of Entity Frameworks capabilities? I heard that Entity framework uses the Unit-of-work pattern already, am I just adding another layer of abstract unnecessarily? 2) I don't want my web-ui to directly communicate with Entity Framework (or even reference it for that matter), I want all database access to go through the business layer as in the future I will have multiple projects using the same business layer (web service, windows application, etc.) and I want to have it easy to maintain / update by having the business logic in one central area. Is this an appropriate way to achieve this? 3) Should the Business layer even contain repositories, or should that be contained within the Access layer? If where they are is alright, is passing a connection string a good dependency to assume? Thanks for taking the time to read!

    Read the article

  • Sending Parameters with the BizTalk HTTP Adapter

    - by Christopher House
    I've never had occaison to use the BizTalk HTTP adapter since I've always needed SOAP rather than just POX (plain old XML).  Yesterday we decided that we're going to expose some data via a Java servlet that will accept an HTTP post and respond with POX.  I knew BizTalk had an HTTP adapter but I had no idea what it's capabilities were. After a quick read through the BizTalk docs, it was apparent that the HTTP send adapter does in fact do posts.  The concern I had though was how we were going to supply parameters to the servlet.  The examples I had seen using the HTTP adapter all involved posting an XML message to some HTTP location.  Our Java guy, however didn't want to take that approach.  He wanted us to provide a query string via post, much like you'd expect to see on an HTTP get.  I decided to put together a little test scenario and see what I could come up with.  We didn't have a test servlet I could go against and my Java experience is virtually nill, so I decided to put together an ASP.Net project to act as the servlet.  It didn't need to be fancy, just one HttpHandler that accepts a post, reads a parameter and returns XML.  With the HttpHandler done, I put together a simple orchestration to send a message to the handler.  I started by having the orch send a message of type System.String to see what it would look like when the handler received it. I set a breakpoint in my handler and kicked off the orchestration.  Below is what I saw: As I suspected, because of BizTalk's XML serialization, System.String was not going to work.  I thought back to my BizTalk 2004 days and I project I worked on that required sending HTML formatted emails via the SMTP adapter.  To acomplish that, I had used a .Net class with a custom serialization formatter that I got from a Microsoft sample.  The code for the class, RawString can be found here. I created a new class library with the RawString class as well as a static factory class, referenced that in my orchestration project and changed my message type from System.String to RawString.  Below is what the code in my message construction looks like: After deploying the updated orchestration, I fired it off again and checked the breakpoint in my HttpHandler.  This is what I saw: And there you have it.  The RawString message type allowed me to pass a query string in the HTTP post without wrapping it in XML.

    Read the article

  • Passing text message to web page from web user control

    - by Narendra Tiwari
    Here is a brief summary how we can send a text message to webpage by a web user control. Delegates is the slolution. There are many good articles on .net delegates you can refer some of them below. The scenario is we want to send a text message to the page on completion of some activity on webcontrol. 1/ Create a Base class for webcontrol (refer code below), assuming we are passing some text messages to page from web user control  - Declare a delegate  - Declare an event of type delegate using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; //Declaring delegate with message parameter public delegate void SendMessageToThePageHandler(string messageToThePage); public         } class ControlBase: System.Web.UI.UserControl { public ControlBase() { // TODO: Add constructor logic here }protected override void OnInit(EventArgs e) { base.OnInit(e); }private string strMessageToPass;/// <summary> /// MessageToPass - Property to pass text message to page /// </summary> public string MessageToPass { get { return strMessageToPass; } set { strMessageToPass = value; } }/// <summary> /// SendMessageToPage - Called from control to invoke the event /// </summary> /// <param name="strMessage">Message to pass</param> public void SendMessageToPage(string strMessage) {   if (this.sendMessageToThePage != null)       this.sendMessageToThePage(strMessage); } 2/ Register events on webpage on page Load eventthis.AddControlEventHandler((ControlBase)WebUserControl1); this.AddControlEventHandler((ControlBase)WebUserControl2); /// <summary> /// AddControlEventHandler- Hooking web user control event /// </summary> /// <param name="ctrl"></param> private void AddControlEventHandler(ControlBase ctrl) { ctrl.sendMessageToThePage += delegate(string strMessage) {   //display message   lblMessage.Text = strMessage; }; } References: http://www.akadia.com/services/dotnet_delegates_and_events.html     3/

    Read the article

  • ATI Radeon HD 4650 AGP Video card not recognized properly

    - by PastorLarry
    I have an ASUS ATI Radeon HD 4650 AGP in this system (yeah, I know how old it is). I've been on Ubuntu since 10.04, and the system has never properly recognized the card. I have always had the VESA drivers installed. Now that I have the time to address the problem, 12.04 was listing the card as "Unknown" under the System Settings. Meanwhile, Sysinfo recognizes the card as: Advanced Micro Devices [AMD] nee ATI RV730 Pro AGP [Radeon HD 4600 Series] (prog-if 00 [VGA controller]) Subsystem: ASUSTeK Computer Inc. Device 0028 So I know that this card should be using the radeon driver (or even the radeonhd driver). However, when I installed the mesa-utils package, the card is suddenly reported as: Gallium 0.4 on llvmpipe (LLVM 0x300) So now, I'm completely at a loss. It seems that the llvmpipe stuff has to do with OpenGL, but it still appears that I don't have the proper video driver installed. That being said, anyone know what I can do to force the system to recognize the card and use the radeon driver? [EDIT 05.28] I did look at some other information, including glxinfo and a couple of other commands (it was REALLY late, so I don't remember the other commands) and I got these: glxinfo | grep vendor: server glx vendor string: SGI client glx vendor string: Mesa Project and SGI OpenGL vendor string: X.org glxinfo | grep renderer: OpenGL renderer string: Gallium 0.4 on AMD RV730 One of the other commands gave a whole lot of info and near the end stated that the activation string for the radeon driver was "modprobe radeon". I've tried that from sudo and as root, but it doesn't seem to change anything. I'm at a complete loss. I've even added the xorg-edgers ppa to my Software Sources and updated and rebooted the system, but nothing has changed. Most of all, I can't seem to find any documentation on this issue, as it seems that it's assumed that the radeon driver will install automatically, no questions asked. I feel like such a newbie. Does anyone have any ideas on this? [edit 05.28] results of lsmod | grep radeon (in a more readable format than the comment below): radeon 733693 3 ttm 65344 1 radeon drm_kms_helper 45466 1 radeon drm 197692 5 radeon,ttm,drm_kms_helper i2c_algo_bit 13199 1 radeon [edit 05.29] This is my /etc/X11/xorg.conf: Section "ServerLayout" Identifier "aticonfig Layout" Screen 0 "aticonfig-Screen[0]-0" 0 0 EndSection Section "Module" EndSection Section "Monitor" Identifier "aticonfig-Monitor[0]-0" Option "VendorName" "ATI Proprietary Driver" Option "ModelName" "Generic Autodetecting Monitor" Option "DPMS" "true" EndSection Section "Device" Identifier "aticonfig-Device[0]-0" Driver "fglrx" BusID "PCI:1:0:0" EndSection Section "Screen" Identifier "aticonfig-Screen[0]-0" So here is my question. Can I simply change the name of the driver in the device section to "radeon" instead of "fglrx" and have the radeon driver work? Or is ther a way to use this as a tmeplate and change the appropriate lines and activate the radeon driver through this file?

    Read the article

  • Subterranean IL: Exception handler semantics

    - by Simon Cooper
    In my blog posts on fault and filter exception handlers, I said that the same behaviour could be replicated using normal catch blocks. Well, that isn't entirely true... Changing the handler semantics Consider the following: .try { .try { .try { newobj instance void [mscorlib]System.Exception::.ctor() // IL for: // e.Data.Add("DictKey", true) throw } fault { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } } filter { ldstr "2a: Filter logic" call void [mscorlib]System.Console::WriteLine(string) // IL for: // (bool)((Exception)e).Data["DictKey"] endfilter }{ ldstr "2b: Filter handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } } catch object { ldstr "3: Catch handler" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } Return: // rest of method If the filter handler is engaged (true is inserted into the exception dictionary) then the filter handler gets engaged, and the following gets printed to the console: 2a: Filter logic 1: Fault handler 2b: Filter handler and if the filter handler isn't engaged, then the following is printed: 2a:Filter logic 1: Fault handler 3: Catch handler Filter handler execution The filter handler is executed first. Hmm, ok. Well, what happens if we replaced the fault block with the C# equivalent (with the exception dictionary value set to false)? .try { // throw exception } catch object { ldstr "1: Fault handler" call void [mscorlib]System.Console::WriteLine(string) rethrow } we get this: 1: Fault handler 2a: Filter logic 3: Catch handler The fault handler is executed first, instead of the filter block. Eh? This change in behaviour is due to the way the CLR searches for exception handlers. When an exception is thrown, the CLR stops execution of the thread, and searches up the stack for an exception handler that can handle the exception and stop it propagating further - catch or filter handlers. It checks the type clause of catch clauses, and executes the code in filter blocks to see if the filter can handle the exception. When the CLR finds a valid handler, it saves the handler's location, then goes back to where the exception was thrown and executes fault and finally blocks between there and the handler location, discarding stack frames in the process, until it reaches the handler. So? By replacing a fault with a catch, we have changed the semantics of when the filter code is executed; by using a rethrow instruction, we've split up the exception handler search into two - one search to find the first catch, then a second when the rethrow instruction is encountered. This is only really obvious when mixing C# exception handlers with fault or filter handlers, so this doesn't affect code written only in C#. However it could cause some subtle and hard-to-debug effects with object initialization and ordering when using and calling code written in a language that can compile fault and filter handlers.

    Read the article

  • Subterranean IL: Fault exception handlers

    - by Simon Cooper
    Fault event handlers are one of the two handler types that aren't available in C#. It behaves exactly like a finally, except it is only run if control flow exits the block due to an exception being thrown. As an example, take the following method: .method public static void FaultExample(bool throwException) { .try { ldstr "Entering try block" call void [mscorlib]System.Console::WriteLine(string) ldarg.0 brfalse.s NormalReturn ThrowException: ldstr "Throwing exception" call void [mscorlib]System.Console::WriteLine(string) newobj void [mscorlib]System.Exception::.ctor() throw NormalReturn: ldstr "Leaving try block" call void [mscorlib]System.Console::WriteLine(string) leave.s Return } fault { ldstr "Fault handler" call void [mscorlib]System.Console::WriteLine(string) endfault } Return: ldstr "Returning from method" call void [mscorlib]System.Console::WriteLine(string) ret } If we pass true to this method the following gets printed: Entering try block Throwing exception Fault handler and the exception gets passed up the call stack. So, the exception gets thrown, the fault handler gets run, and the exception propagates up the stack afterwards in the normal way. If we pass false, we get the following: Entering try block Leaving try block Returning from method Because we are leaving the .try using a leave.s instruction, and not throwing an exception, the fault handler does not get called. Fault handlers and C# So why were these not included in C#? It seems a pretty simple feature; one extra keyword that compiles in exactly the same way, and with the same semantics, as a finally handler. If you think about it, the same behaviour can be replicated using a normal catch block: try { throw new Exception(); } catch { // fault code goes here throw; } The catch block only gets run if an exception is thrown, and the exception gets rethrown and propagates up the call stack afterwards; exactly like a fault block. The only complications that occur is when you want to add a fault handler to a try block with existing catch handlers. Then, you either have to wrap the try in another try: try { try { // ... } catch (DirectoryNotFoundException) { // ... // leave.s as normal... } catch (IOException) { // ... throw; } } catch { // fault logic throw; } or separate out the fault logic into another method and call that from the appropriate handlers: try { // ... } catch (DirectoryNotFoundException ) { // ... } catch (IOException ioe) { // ... HandleFaultLogic(); throw; } catch (Exception e) { HandleFaultLogic(); throw; } To be fair, the number of times that I would have found a fault handler useful is minimal. Still, it's quite annoying knowing such functionality exists, but you're not able to access it from C#. Fortunately, there are some easy workarounds one can use instead. Next time: filter handlers.

    Read the article

  • SCCM 2007 Collections per OU

    - by VirtualizeIT
    Recently I wanted to create our SCCM collections setup as our Active Directory structure. I finally figured out how to create collections per OU of the domain. I decided to create a simple tutorial that may help other IT professionals the steps to complete this task.   1. Open the ConfigMgr and navigation to the collections. To navigate to the collections go to Site Database>Computer Management>Collections. 2. In the ‘Collections’ right-click and select New Collections. Then it will pop up a Wizards so you can enter the name of the collection and any notes that you may want to add that is associated with the collection.                       3. Next, select the database icon. In the ‘Name’ textbox enter the name of the query. I named mine ‘Query’ just for simplicity sake. After you enter the name select ‘Edit Query Statement…’ 4. Select the ‘Criteria’ tab 5. Select the icon that looks like a sun. 6. At this point you should see a dialog box like this…                     7. Next, click the ‘select’ button. 8. Under the ‘Attribute class’ scroll through until you see ’System Resource’ and for the ‘Attribute"’ scroll through you see ‘System OU Name’. It should look something like this…                 9. After that select OK. 10. In the ‘Value’ textbox enter the string that is associated with the OU in your domain. NOTE: If you don’t know your string name for your OU you can simply go to “Active Directory Users and Computers” and right-click on the OU and select properties. In the ‘object’ tab you should see the string under the ‘Canonical name of object”. That is the string that you put in the ‘Value’ text box. 11. After you enter the OU string name press OK>OK>OK>NEXT>NEXT>FINISH.   That’s it!   I hope this tutorial has help you understand how to create a collection through your OU structure.

    Read the article

  • consume a .net webservice using jQuery

    - by Babunareshnarra
    Implementation shows the way to consume web service using jQuery. The client side AJAX with HTTP POST request is significant when it comes to loading speed and responsiveness.Following is the service created that return's string in JSON.[WebMethod][ScriptMethod(ResponseFormat = ResponseFormat.Json)]public string getData(string marks){    DataTable dt = retrieveDataTable("table", @"              SELECT * FROM TABLE WHERE MARKS='"+ marks.ToString() +"' ");    List<object> RowList = new List<object>();    foreach (DataRow dr in dt.Rows)    {        Dictionary<object, object> ColList = new Dictionary<object, object>();        foreach (DataColumn dc in dt.Columns)        {            ColList.Add(dc.ColumnName,            (string.Empty == dr[dc].ToString()) ? null : dr[dc]);        }        RowList.Add(ColList);    }    JavaScriptSerializer js = new JavaScriptSerializer();    string JSON = js.Serialize(RowList);    return JSON;}Consuming the webservice $.ajax({    type: "POST",    data: '{ "marks": "' + val + '"}', // This is required if we are using parameters    contentType: "application/json",    dataType: "json",    url: "/dataservice.asmx/getData",    success: function(response) {               RES = JSON.parse(response.d);        var obj = JSON.stringify(RES);     }     error: function (msg) {                    alert('failure');     }});Remember to reference jQuery library on the page.

    Read the article

  • Gettings Terms asscoiated to a Specific list item

    - by Gino Abraham
    I had a fancy requirement where i had to get all tags associated to a document set in a document library. The normal tag could webpart was not working when i add it to the document set home page, so planned a custom webpart. Was checking in net to find a straight forward way to achieve this, but was not lucky enough to get something. Since i didnt get any samples in net, i looked into Microsoft.Sharerpoint.Portal.Webcontrols and found a solution.The socialdataframemanager control in 14Hive/Template/layouts/SocialDataFrame.aspx directed me to the solution. You can get the dll from ISAPI folder. Following Code snippet can get all Terms associated to the List Item given that you have list name and id for the list item. using System; using System.Collections.Generic; using System.Linq; using System.Text; using Microsoft.SharePoint; using Microsoft.Office.Server.SocialData; namespace TagChecker { class Program { static void Main(string[] args) { // Your site url string siteUrl = http://contoso; // List Name string listName = "DocumentLibrary1"; // List Item Id for which you want to get all terms int listItemId = 35; using (SPSite site = new SPSite(siteUrl)) { using(SPWeb web = site.OpenWeb()) { SPListItem listItem = web.Lists[listName].GetItemById(listItemId); string url = string.Empty; // Based on the list type the url would be formed. Code Sniffed from Micosoft dlls :) if (listItem.ParentList.BaseType == SPBaseType.DocumentLibrary) { url = listItem.Web.Url.TrimEnd(new char[] { '/' }) + "/" + listItem.Url.TrimStart(new char[] { '/' }); } else if (SPFileSystemObjectType.Folder == listItem.FileSystemObjectType) { url = listItem.Web.Url.TrimEnd(new char[] { '/' }) + "/" + listItem.Folder.Url.TrimStart(new char[] { '/' }); } else { url = listItem.Web.Url.TrimEnd(new char[] { '/' }) + "/" + listItem.ParentList.Forms[PAGETYPE.PAGE_DISPLAYFORM].Url.TrimStart(new char[] { '/' }) + "?ID=" + listItem.ID.ToString(); } SPServiceContext serviceContext = SPServiceContext.GetContext(site); Uri uri = new Uri(url); SocialTagManager mgr = new SocialTagManager(serviceContext); SocialTerm[] terms = mgr.GetTerms(uri); foreach (SocialTerm term in terms) { Console.WriteLine(term.Term.Labels[0].Value ); } } } Console.Read(); } } } Reference dlls added are Microsoft.Sharepoint , Microsoft.Sharepoint.Taxonomy, Microsoft.office.server, Microsoft.Office.Server.UserProfiles from ISAPI folder. This logic can be used to make a custom tag cloud webpart by taking code from OOB tag cloud, so taht you can have you webpart anywhere in the site and still get Tags added to a specifc libdary/List. Hope this helps some one.

    Read the article

  • Download files from a SharePoint site using the RSSBus SSIS Components

    - by dataintegration
    In this article we will show how to use a stored procedure included in the RSSBus SSIS Components for SharePoint to download files from SharePoint. While the article uses the RSSBus SSIS Components for SharePoint, the same process will work for any of our SSIS Components. Step 1: Open Visual Studio and create a new Integration Services Project. Step 2: Add a new Data Flow Task to the Control Flow screen and open the Data Flow Task. Step 3: Add an RSSBus SharePoint Source to the Data Flow Task. Step 4: In the RSSBus SharePoint Source, add a new Connection Manager, and add your credentials for the SharePoint site. Step 5: Now from the Table or View dropdown, choose the name of the Document Library that you are going to back up and close the wizard. Step 6: Add a Script Component to the Data Flow Task and drag an output arrow from the 'RSSBus SharePoint Source' to it. Step 7: Open the Script Component, go to edit the Input Columns, and choose all the columns. Step 8: This will open a new Visual Studio instance, with a project in it. In this project add a reference to the RSSBus.SSIS2008.SharePoint assembly available in the RSSBus SSIS Components for SharePoint installation directory. Step 9: In the 'ScriptMain' class, add the System.Data.RSSBus.SharePoint namespace and go to the 'Input0_ProcessInputRow' method (this method's name may vary depending on the input name in the Script Component). Step 10: In the 'Input0_ProcessInputRow' method, you can add code to use the DownloadDocument stored procedure. Below we show the sample code: String connString = "Offline=False;Password=PASSWORD;User=USER;URL=SHAREPOINT-SITE"; String downloadDir = "C:\\Documents\\"; SharePointConnection conn = new SharePointConnection(connString); SharePointCommand comm = new SharePointCommand("DownloadDocument", conn); comm.CommandType = CommandType.StoredProcedure; comm.Parameters.Clear(); String file = downloadDir+Row.LinkFilenameNoMenu.ToString(); comm.Parameters.Add(new SharePointParameter("@File", file)); String list = Row.ServerUrl.ToString().Split('/')[1].ToString(); comm.Parameters.Add(new SharePointParameter("@Library", list)); String remoteFile = Row.LinkFilenameNoMenu.ToString(); comm.Parameters.Add(new SharePointParameter("@RemoteFile", remoteFile)); comm.ExecuteNonQuery(); After saving your changes to the Script Component, you can execute the project and find the downloaded files in the download directory. SSIS Sample Project To help you with getting started using the SharePoint Data Provider within SQL Server SSIS, download the fully functional sample package. You will also need the SharePoint SSIS Connector to make the connection. You can download a free trial here. Note: Before running the demo, you will need to change your connection details in both the 'Script Component' code and the 'Connection Manager'.

    Read the article

  • why client can not receive message from server (java) [migrated]

    - by user1745931
    I have just started learning java. I modified the client side code for a server/client communication program, by creating two threads for the client side, main thread for receiving user's input, and inputThread for receiving server's response. I am sure that server has sent the response to client, however, no response message is obtain at client. Here is my code. Can anyone help me to figure it out? Thanks package clientnio; import java.net.*; import java.nio.*; import java.io.*; import java.nio.channels.*; import java.util.Scanner; public class ClientNIO { public static int bufferLen = 50; public static SocketChannel client; public static ByteBuffer writeBuffer; public static ByteBuffer readBuffer; public static void main(String[] args) { writeBuffer = ByteBuffer.allocate(bufferLen); readBuffer = ByteBuffer.allocate(bufferLen); try { SocketAddress address = new InetSocketAddress("localhost",5505); System.out.println("Local address: "+ address); client=SocketChannel.open(address); client.configureBlocking(false); //readBuffer.flip(); new inputThread(readBuffer); /* String a="asdasdasdasddffasfas"; writeBuffer.put(a.getBytes()); writeBuffer.clear(); int d=client.write(writeBuffer); writeBuffer.flip(); */ while (true) { InputStream inStream = System.in; Scanner scan = new Scanner(inStream); if (scan.hasNext()==true) { String inputLine = scan.nextLine(); writeBuffer.put(inputLine.getBytes()); //writeBuffer.clear(); System.out.println(writeBuffer.remaining()); client.write(writeBuffer); System.out.println("Sending data: "+new String(writeBuffer.array())); writeBuffer.flip(); Thread.sleep(300); } } } catch(Exception e) { System.out.println(e); } } } class inputThread extends Thread { private ByteBuffer readBuffer; public inputThread(ByteBuffer readBuffer1) { System.out.println("Receiving thread starts."); this.readBuffer = readBuffer1; start(); } @Override public void run() { try { while (true) { readBuffer.flip(); int i=ClientNIO.client.read(readBuffer); if(i>0) { byte[] b=readBuffer.array(); System.out.println("Receiving data: "+new String(b)); //client.close(); //System.out.println("Connection closed."); //break; } Thread.sleep(100); } } catch (Exception e) { System.out.println(e); } } }

    Read the article

  • Do functional generics exist and what is the correct name for them if they do?

    - by voroninp
    Consider the following generic class: public class EntityChangeInfo<EntityType,TEntityKey> { ChangeTypeEnum ChangeType {get;} TEntityKeyType EntityKey {get;} } Here EntityType unambiguously defines TEntityKeyType. So it would be nice to have some kind of types' map: public class EntityChangeInfo<EntityType,TEntityKey> with map < [ EntityType : Person -> TEntityKeyType : int] [ EntityType : Car -> TEntityKeyType : CarIdType ]> { ChangeTypeEnum ChangeType {get;} TEntityKeyType EntityKey {get;} } Another one example is: public class Foo<TIn> with map < [TIn : Person -> TOut1 : string, TOut2 : int, ..., TOutN : double ] [TIn : Car -> TOut1 : int, TOut2 :int, ..., TOutN : Price ] > { TOut1 Prop1 {get;set;} TOut2 Prop2 {get;set;} ... TOutN PropN {get;set;} } The reasonable question: how can this be interpreted by the compiler? Well, for me it is just the shortcut for two structurally similar classes: public sealed class Foo<Person> { string Prop1 {get;set;} int Prop2 {get;set;} ... double PropN {get;set;} } public sealed class Foo<Car> { int Prop1 {get;set;} int Prop2 {get;set;} ... Price PropN {get;set;} } But besides this we could imaging some update of the Foo<>: public class Foo<TIn> with map < [TIn : Person -> TOut1 : string, TOut2 : int, ..., TOutN : double ] [TIn : Car -> TOut1 : int, TOut2 :int, ..., TOutN : Price ] > { TOut1 Prop1 {get;set;} TOut2 Prop2 {get;set;} ... TOutN PropN {get;set;} public override string ToString() { return string.Format("prop1={0}, prop2={1},...propN={N-1}, Prop1, Prop2,...,PropN); } } This all can seem quite superficial but the idea came when I was designing the messages for our system. The very first class. Many messages with the same structure should be discriminated by the EntityType. So the question is whether such construct exists in any programming language?

    Read the article

  • Do functional generics exist or what is the correct name for them if they do?

    - by voroninp
    Consider the following generic class public class EntityChangeInfo<EntityType,TEntityKey> { ChangeTypeEnum ChangeType {get;} TEntityKeyType EntityKey {get;} } Here EntityType unambiguously defines TEntityKeyType. So it would be nice to have some kind of types' map public class EntityChangeInfo<EntityType,TEntityKey> with map < [ EntityType : Person -> TEntityKeyType : int] [ EntityType : Car -> TEntityKeyType : CarIdType ]> { ChangeTypeEnum ChangeType {get;} TEntityKeyType EntityKey {get;} } Another one example is: public class Foo<TIn> with map < [TIn : Person -> TOut1 : string, TOut2 : int, ..., TOutN : double ] [TIn : Car -> TOut1 : int, TOut2 :int, ..., TOutN : Price ] > { TOut1 Prop1 {get;set;} TOut2 Prop2 {get;set;} ... TOutN PropN {get;set;} } The reasonable question how this can be interpreted by the compiler? Well, for me it is just the sortcut for two structurally similar classes: public sealed class Foo<Person> { string Prop1 {get;set;} int Prop2 {get;set;} ... double PropN {get;set;} } public sealed class Foo<Car> { int Prop1 {get;set;} int Prop2 {get;set;} ... Price PropN {get;set;} } But besides this we could imaging some update of the Foo<: public class Foo<TIn> with map < [TIn : Person -> TOut1 : string, TOut2 : int, ..., TOutN : double ] [TIn : Car -> TOut1 : int, TOut2 :int, ..., TOutN : Price ] > { TOut1 Prop1 {get;set;} TOut2 Prop2 {get;set;} ... TOutN PropN {get;set;} public override string ToString() { return string.Format("prop1={0}, prop2={1},...propN={N-1}, Prop1, Prop2,...,PropN); } } This all can seem quite superficial but the idea came when I was designing the messages for our system. The very first class. Many messages with the same structrue should be discriminated by the EntityType. So the question is whether such construct exist in any programming language?

    Read the article

  • Architecture or Pattern for handling properties with custom setter/getter?

    - by Shelby115
    Current Situation: I'm doing a simple MVC site for keeping journals as a personal project. My concern is I'm trying to keep the interaction between the pages and the classes simplistic. Where I run into issues is the password field. My setter encrypts the password, so the getter retrieves the encrypted password. public class JournalBook { private IEncryptor _encryptor { get; set; } private String _password { get; set; } public Int32 id { get; set; } public String name { get; set; } public String description { get; set; } public String password { get { return this._password; } set { this.setPassword(this._password, value, value); } } public List<Journal> journals { get; set; } public DateTime created { get; set; } public DateTime lastModified { get; set; } public Boolean passwordProtected { get { return this.password != null && this.password != String.Empty; } } ... } I'm currently using model-binding to submit changes or create new JournalBooks (like below). The problem arises that in the code below book.password is always null, I'm pretty sure this is because of the custom setter. [HttpPost] public ActionResult Create(JournalBook book) { // Create the JournalBook if not null. if (book != null) this.JournalBooks.Add(book); return RedirectToAction("Index"); } Question(s): Should I be handling this not in the property's getter/setter? Is there a pattern or architecture that allows for model-binding or another simple method when properties need to have custom getters/setters to manipulate the data? To summarize, how can I handle the password storing with encryption such that I have the following, Robust architecture I don't store the password as plaintext. Submitting a new or modified JournalBook is as easy as default model-binding (or close to it).

    Read the article

  • Struts 1 ActionForm - retrieving a collection from pure HTML

    - by Yaneeve
    Hi all I have (just like the rest) inherited some struts 1 code. I have had need to add a few more pages to this project. What I cannot figure out is how to map several distinct but similarly natured input elements to the my ActionForm. Let me elaborate. I create a new <Input> element dynamically as the user inputs more and more items (I use the YUI autocomplete form element and for each entered input I add it as an input element to my form and draw a new YUI autocomplete - complex sounding, I know) So... My form looks a bit like (... after some prettifying and some such...): <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="content-type" content="text/html; charset=utf-8"> <title>My Cool App - Test Case Builder</title> <link rel="stylesheet" type="text/css" href="../script/yui/fonts/fonts-min.css" /> <link rel="stylesheet" type="text/css" href="../skins/myCoolApp/button/button.css" /> <link rel="stylesheet" type="text/css" href="../script/yui/autocomplete/assets/skins/sam/autocomplete.css" /> <link rel="stylesheet" type="text/css" media="screen" href="../skins/myCoolApp/testcase.css" /> <!-- YUI JAVA SCRIPTS --> <script type="text/javascript" src="../script/yui/yahoo-dom-event/yahoo-dom-event.js"></script> <script type="text/javascript" src="../script/yui/element/element-min.js"></script> <script type="text/javascript" src="../script/yui/button/button-min.js"></script> <script type="text/javascript" src="../script/yui/datasource/datasource-min.js"></script> <script type="text/javascript" src="../script/yui/autocomplete/autocomplete-min.js"></script> <!-- APP JAVA SCRIPTS --> <script type="text/javascript" src="../script/myCoolApp/myCoolApp.js" ></script> <script type="text/javascript" src="../script/myCoolApp/stack.js" ></script> <script type="text/javascript" src="../script/myCoolApp/testcase/testcase.js"></script> <script type="text/javascript" src="../script/myCoolApp/testcase/default-data.js" ></script> <script type="text/javascript" src="../script/myCoolApp/testcase/data-structs.js" ></script> <script type="text/javascript" src="../script/myCoolApp/testcase/ui-elements.js" ></script> </head> <body class="cf010"> <div id="wrap"> <div id="header"> <div id="main-header"> COOL APP </div> </div> <div id="main-body"> <div id="content"> <div class="col main"> <div id="main"> <form method="post" id="testcaseForm" class="typea" action=""> <fieldset> <legend>Test Case Builder</legend> <div id="tk1" class="tabcontrol"> <ul class="tabs"> <li class="first active"> <a href="#"> <span>General</span> </a> </li> <li class="last"> <a href="#"> <span>Parameters</span> </a> </li> </ul> <div id="tab0" class="tc-panel"> <dl class="cls9"> <dt> <label for="scenario">Choose Scenario:</label> </dt> <dd> <input type="text" id="scenario" name="scenario" class="text" /> <span id="scenarioToggle"></span> <div class="auto-complete" id="scenarioContainer"></div> </dd> <dt> <label for="ruleID">Choose Rule ID:</label> </dt> <dd> <input type="text" id="ruleID" name="ruleID" class="text" /> <span id="ruleIDToggle"></span> <div class="auto-complete" id="ruleIDContainer"></div> </dd> <dt> <label for="Test Case Name" accesskey="t"><span class="accesskey">T</span>est Case Name:</label> </dt> <dd> <input type="text" id="testCaseName" name="testCaseName" class="text" /> </dd> </dl> </div> <div id="tab1" class="tc-panel hidden"> <div class="toolbar" id="action-bar"> <ul> <li class="first"> <a title="select all" href="#" id="btmSelectAll" class="button"> <span>select all</span> </a> </li> <li> <a title="remove row" href="#" id="btmRemove" class="button"> <span>remove row</span> </a> </li> <li> <a title="undo last" href="#" id="btmRollBack" class="button disabled"> <span>undo last</span> </a> </li> <li class="last"> <a title="accept row" href="#" id="btmAccept" class="button disabled"> <span>accept row</span> </a> </li> </ul> </div> <div id="param.list" class="gridclip"> <table id='param.list.tbl' class='grid modela' > <caption>Test Case Summary</caption> <col/><col/><col/> <thead> <tr> <th class='hl center first'> <input class='grid-select-all' type='checkbox' /> <th> <th scope='col'>Row</th> <th scope='col'>Parameter</th> <th scope='col' class='last'>Value</th> </tr> </thead> <tfoot> <tr> <th scope='row'>Total</th> <td colspan='3'>2 parameters as Test Case input</td> </tr> </tfoot> <tbody id='param.list.tbl.body'> <tr class='odd'> <td class='rowcheck center first'> <input value='param1###value1' id='cb1' name='SelectedRows' class='grid-select-row' type='checkbox'/> </td> <td class='id'>1</td> <td>param1</td> <td class='last'>value1</td> </tr> <tr class='even'> <td class='rowcheck center first'> <input value='param2###value2' id='cb1' name='SelectedRows' class='grid-select-row' type='checkbox'/> </td> <td class='id'>2</td> <td>param2</td> <td class='last'>value2</td> </tr> <tr class='odd'> <td class='rowcheck center first' /> <td class='id'><em>new</em></td> <td> <dl class='clsTable'> <dt> <input type='text' id='param' name='param' class='text paramInput' /> </dt> <dd> <span id='paramToggle' /> </dd> <div class='auto-complete' id='paramContainer' /> </dl> </td> <td class='last'> <dl class='clsTable'> <dt> <input type='text' id='value' name='value' class='text valueInput' /> </dt> </dl> </td> </tr> </tbody> </table> </div> </div> </div> <!-- tabcontrol --> </fieldset> <div class="submit-box"> <input type="submit" name="formRun" id="formRun" class="form-save" value="Execute" accesskey="x" title="Run: Press Alt + [Shift] + x" /> <input type="submit" name="formSave" id="formSave" value="Save" accesskey="s" title="Save: Press Alt + [Shift] + s" /> <input type="submit" name="formLoad" id="formLoad" value="Load" accesskey="l" title="Load: Press Alt + [Shift] + l" /> <input type="submit" name="formCancel" id="formCancel" class="form-cancel" value="Cancel" accesskey="c" title="Cancel: Press Alt + [Shift] + c" /> </div> </form> </div> </div> </div> </div> </div> </body> </html> As you can see the following is pretty much a duplicate: <tr class='odd'> <td class='rowcheck center first'> <input value='param1###value1' id='cb1' name='SelectedRows' class='grid-select-row' type='checkbox'/> </td> <td class='id'>1</td> <td>param1</td> <td class='last'>value1</td> </tr> <tr class='even'> <td class='rowcheck center first'> <input value='param2###value2' id='cb1' name='SelectedRows' class='grid-select-row' type='checkbox'/> </td> <td class='id'>2</td> <td>param2</td> <td class='last'>value2</td> </tr> The relevant part of my stuts-config.xml file is: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE struts-config PUBLIC "-//Apache Software Foundation//DTD Struts Configuration 1.2//EN" "http://struts.apache.org/dtds/struts-config_1_2.dtd"> <struts-config> <data-sources /> <form-beans> <form-bean name="TestCaseForm" type="com.blahblah.mycoolapp.forms.TestCaseForm" /> </form-beans> <action-mappings> <action path="/pages/SaveTestCase" name="TestCaseForm" type="org.springframework.web.struts.DelegatingActionProxy" scope="request"> </action> </action-mappings> <message-resources parameter="MessageResources" /> </struts-config> I also use spring 2.56 (The relevant part being): <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.5.xsd"> <bean name="/pages/SaveTestCase" class="com.blahblah.mycoolapp.actions.TestCaseBuilderSaveAction" /> </beans> My Java ActionForm class (from what I had learned off the net) is: package com.blahblah.mycoolapp.forms; import java.util.ArrayList; import java.util.List; import org.apache.struts.action.ActionForm; public class TestCaseForm extends ActionForm { private static final long serialVersionUID = 2352146257739099766L; private String scenario; private String ruleID; private String testCaseName; private List<String> SelectedRows = new ArrayList<String>() ; public String getScenario() { return scenario; } public void setScenario(String scenario) { this.scenario = scenario; } public String getRuleID() { return ruleID; } public void setRuleID(String ruleID) { this.ruleID = ruleID; } public String getTestCaseName() { return testCaseName; } public void setTestCaseName(String testCaseName) { this.testCaseName = testCaseName; } public List<String> getSelectedRows() { return SelectedRows; } public void setSelectedRows(int index, String value) { this.SelectedRows.add(value); } } The question is why do I get an empty SelectedRows in my TestCaseBuilderSave Action? Thanks all who have the patience to read such a long question... and (hopefully) thanks to all you potential saviors :)

    Read the article

  • Nullpointerexcption & abrupt IOStream closure with inheritence and subclasses

    - by user1401652
    A brief background before so we can communicate on the same wave length. I've had about 8-10 university courses on programming from data structure, to one on all languages, to specific ones such as java & c++. I'm a bit rusty because i usually take 2-3 month breaks from coding. This is a personal project that I started thinking of two years back. Okay down to the details, and a specific question, I'm having problems with my mutator functions. It seems to be that I am trying to access a private variable incorrectly. The question is, am I nesting my classes too much and trying to mutate a base class variable the incorrect way. If so point me in the way of the correct literature, or confirm this is my problem so I can restudy this information. Thanks package GroceryReceiptProgram; import java.io.*; import java.util.Vector; public class Date { private int hour, minute, day, month, year; Date() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What's the hour? (Use 1-24 military notation"); hour = Integer.parseInt(keyboard.readLine()); System.out.println("what's the minute? "); minute = Integer.parseInt(keyboard.readLine()); System.out.println("What's the day of the month?"); day = Integer.parseInt(keyboard.readLine()); System.out.println("Which month of the year is it, use an integer"); month = Integer.parseInt(keyboard.readLine()); System.out.println("What year is it?"); year = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (IOException e) { System.out.println("Yo houston we have a problem"); } } public void setHour(int hour) { this.hour = hour; } public void setHour() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What hour, use military notation?"); this.hour = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getHour() { return hour; } public void setMinute(int minute) { this.minute = minute; } public void setMinute() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What minute?"); this.minute = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ": doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": minute shall not cooperate"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in the setMinute function of the Date class"); } } public int getMinute() { return minute; } public void setDay(int day) { this.day = day; } public void setDay() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What day 0-6?"); this.day = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getDay() { return day; } public void setMonth(int month) { this.month = month; } public void setMonth() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What month 0-11?"); this.month = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getMonth() { return month; } public void setYear(int year) { this.year = year; } public void setYear() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What year?"); this.year = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getYear() { return year; } public void set() { setMinute(); setHour(); setDay(); setMonth(); setYear(); } public Vector<Integer> get() { Vector<Integer> holder = new Vector<Integer>(5); holder.add(hour); holder.add(minute); holder.add(month); holder.add(day); holder.add(year); return holder; } }; That is the Date class obviously, next is the other base class Location. package GroceryReceiptProgram; import java.io.*; import java.util.Vector; public class Location { String streetName, state, city, country; int zipCode, address; Location() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What is the street name"); streetName = keyboard.readLine(); System.out.println("Which state?"); state = keyboard.readLine(); System.out.println("Which city?"); city = keyboard.readLine(); System.out.println("Which country?"); country = keyboard.readLine(); System.out.println("Which zipcode?");//if not u.s. continue around this step zipCode = Integer.parseInt(keyboard.readLine()); System.out.println("What address?"); address = Integer.parseInt(keyboard.readLine()); } catch (IOException e) { System.out.println(e.toString()); } } public void setZipCode(int zipCode) { this.zipCode = zipCode; } public void setZipCode() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What zipCode?"); this.zipCode = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public void set() { setAddress(); setCity(); setCountry(); setState(); setStreetName(); setZipCode(); } public int getZipCode() { return zipCode; } public void setAddress(int address) { this.address = address; } public void setAddress() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.address = Integer.parseInt(keyboard.readLine()); keyboard.close(); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString()); } } public int getAddress() { return address; } public void setStreetName(String streetName) { this.streetName = streetName; } public void setStreetName() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.streetName = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getStreetName() { return streetName; } public void setState(String state) { this.state = state; } public void setState() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.state = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getState() { return state; } public void setCity(String city) { this.city = city; } public void setCity() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.city = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getCity() { return city; } public void setCountry(String country) { this.country = country; } public void setCountry() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.country = keyboard.readLine(); keyboard.close(); } catch (IOException e) { System.out.println(e.toString()); } } public String getCountry() { return country; } }; their parent(What is the proper name?) class package GroceryReceiptProgram; import java.io.*; public class FoodGroup { private int price, count; private Date purchaseDate, expirationDate; private Location location; private String name; public FoodGroup() { try { setPrice(); setCount(); expirationDate.set(); purchaseDate.set(); location.set(); } catch (NullPointerException e) { System.out.println(e.toString() + ": in the constructor of the FoodGroup class"); } } public void setPrice(int price) { this.price = price; } public void setPrice() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What Price?"); price = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": in the FoodGroup class, setPrice function"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in FoodGroup class. SetPrice()"); } } public int getPrice() { return price; } public void setCount(int count) { this.count = count; } public void setCount() { try (BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in))) { System.out.println("What count?"); count = Integer.parseInt(keyboard.readLine()); } catch (NumberFormatException e) { System.out.println(e.toString() + ":doesnt seem to be a number"); } catch (IOException e) { System.out.println(e.toString() + ": in the FoodGroup class, setCount()"); } catch (NullPointerException e) { System.out.println(e.toString() + ": in FoodGroup class, setCount"); } } public int getCount() { return count; } public void setName(String name) { this.name = name; } public void setName() { try { BufferedReader keyboard = new BufferedReader(new InputStreamReader(System.in)); System.out.println("What minute?"); this.name = keyboard.readLine(); } catch (IOException e) { System.out.println(e.toString()); } } public String getName() { return name; } public void setLocation(Location location) { this.location = location; } public Location getLocation() { return location; } public void setPurchaseDate(Date purchaseDate) { this.purchaseDate = purchaseDate; } public void setPurchaseDate() { this.purchaseDate.set(); } public Date getPurchaseDate() { return purchaseDate; } public void setExpirationDate(Date expirationDate) { this.expirationDate = expirationDate; } public void setExpirationDate() { this.expirationDate.set(); } public Date getExpirationDate() { return expirationDate; } } and finally the main class, so I can get access to all of this work. package GroceryReceiptProgram; public class NewMain { public static void main(String[] args) { FoodGroup test = new FoodGroup(); } } If anyone is further interested, here is a link the UML for this. https://www.dropbox.com/s/1weigjnxih70tbv/GRP.dia

    Read the article

  • How to compile a C++ source code written for Linux/Unix on Windows Vista (code given)

    - by HTMZ
    I have a c++ source code that was written in linux/unix environment by some other author. It gives me errors when i compile it in windows vista environment. I am using Bloodshed Dev C++ v 4.9. please help. #include <iostream.h> #include <map> #include <vector> #include <string> #include <string.h> #include <strstream> #include <unistd.h> #include <stdlib.h> using namespace std; template <class T> class PrefixSpan { private: vector < vector <T> > transaction; vector < pair <T, unsigned int> > pattern; unsigned int minsup; unsigned int minpat; unsigned int maxpat; bool all; bool where; string delimiter; bool verbose; ostream *os; void report (vector <pair <unsigned int, int> > &projected) { if (minpat > pattern.size()) return; // print where & pattern if (where) { *os << "<pattern>" << endl; // what: if (all) { *os << "<freq>" << pattern[pattern.size()-1].second << "</freq>" << endl; *os << "<what>"; for (unsigned int i = 0; i < pattern.size(); i++) *os << (i ? " " : "") << pattern[i].first; } else { *os << "<what>"; for (unsigned int i = 0; i < pattern.size(); i++) *os << (i ? " " : "") << pattern[i].first << delimiter << pattern[i].second; } *os << "</what>" << endl; // where *os << "<where>"; for (unsigned int i = 0; i < projected.size(); i++) *os << (i ? " " : "") << projected[i].first; *os << "</where>" << endl; *os << "</pattern>" << endl; } else { // print found pattern only if (all) { *os << pattern[pattern.size()-1].second; for (unsigned int i = 0; i < pattern.size(); i++) *os << " " << pattern[i].first; } else { for (unsigned int i = 0; i < pattern.size(); i++) *os << (i ? " " : "") << pattern[i].first << delimiter << pattern[i].second; } *os << endl; } } void project (vector <pair <unsigned int, int> > &projected) { if (all) report(projected); map <T, vector <pair <unsigned int, int> > > counter; for (unsigned int i = 0; i < projected.size(); i++) { int pos = projected[i].second; unsigned int id = projected[i].first; unsigned int size = transaction[id].size(); map <T, int> tmp; for (unsigned int j = pos + 1; j < size; j++) { T item = transaction[id][j]; if (tmp.find (item) == tmp.end()) tmp[item] = j ; } for (map <T, int>::iterator k = tmp.begin(); k != tmp.end(); ++k) counter[k->first].push_back (make_pair <unsigned int, int> (id, k->second)); } for (map <T, vector <pair <unsigned int, int> > >::iterator l = counter.begin (); l != counter.end (); ) { if (l->second.size() < minsup) { map <T, vector <pair <unsigned int, int> > >::iterator tmp = l; tmp = l; ++tmp; counter.erase (l); l = tmp; } else { ++l; } } if (! all && counter.size () == 0) { report (projected); return; } for (map <T, vector <pair <unsigned int, int> > >::iterator l = counter.begin (); l != counter.end(); ++l) { if (pattern.size () < maxpat) { pattern.push_back (make_pair <T, unsigned int> (l->first, l->second.size())); project (l->second); pattern.erase (pattern.end()); } } } public: PrefixSpan (unsigned int _minsup = 1, unsigned int _minpat = 1, unsigned int _maxpat = 0xffffffff, bool _all = false, bool _where = false, string _delimiter = "/", bool _verbose = false): minsup(_minsup), minpat (_minpat), maxpat (_maxpat), all(_all), where(_where), delimiter (_delimiter), verbose (_verbose) {}; ~PrefixSpan () {}; istream& read (istream &is) { string line; vector <T> tmp; T item; while (getline (is, line)) { tmp.clear (); istrstream istrs ((char *)line.c_str()); while (istrs >> item) tmp.push_back (item); transaction.push_back (tmp); } return is; } ostream& run (ostream &_os) { os = &_os; if (verbose) *os << transaction.size() << endl; vector <pair <unsigned int, int> > root; for (unsigned int i = 0; i < transaction.size(); i++) root.push_back (make_pair (i, -1)); project (root); return *os; } void clear () { transaction.clear (); pattern.clear (); } }; int main (int argc, char **argv) { extern char *optarg; unsigned int minsup = 1; unsigned int minpat = 1; unsigned int maxpat = 0xffffffff; bool all = false; bool where = false; string delimiter = "/"; bool verbose = false; string type = "string"; int opt; while ((opt = getopt(argc, argv, "awvt:M:m:L:d:")) != -1) { switch(opt) { case 'a': all = true; break; case 'w': where = true; break; case 'v': verbose = true; break; case 'm': minsup = atoi (optarg); break; case 'M': minpat = atoi (optarg); break; case 'L': maxpat = atoi (optarg); break; case 't': type = string (optarg); break; case 'd': delimiter = string (optarg); break; default: cout << "Usage: " << argv[0] << " [-m minsup] [-M minpat] [-L maxpat] [-a] [-w] [-v] [-t type] [-d delimiter] < data .." << endl; return -1; } } if (type == "int") { PrefixSpan<unsigned int> prefixspan (minsup, minpat, maxpat, all, where, delimiter, verbose); prefixspan.read (cin); prefixspan.run (cout); }else if (type == "short") { PrefixSpan<unsigned short> prefixspan (minsup, minpat, maxpat, all, where, delimiter, verbose); prefixspan.read (cin); prefixspan.run (cout); } else if (type == "char") { PrefixSpan<unsigned char> prefixspan (minsup, minpat, maxpat, all, where, delimiter, verbose); prefixspan.read (cin); prefixspan.run (cout); } else if (type == "string") { PrefixSpan<string> prefixspan (minsup, minpat, maxpat, all, where, delimiter, verbose); prefixspan.read (cin); prefixspan.run (cout); } else { cerr << "Unknown Item Type: " << type << " : choose from [string|int|short|char]" << endl; return -1; } return 0; }

    Read the article

  • Windows Phone 7 development: reading RSS feeds

    - by DigiMortal
    One limitation on Windows Phone 7 is related to System.Net namespace classes. There is no convenient way to read data from web. There is no WebClient class. There is no GetResponse() method – we have to do it all asynchronously because compact framework has limited set of classes we can use in our applications to communicate with internet. In this posting I will show you how to read RSS-feeds on Windows Phone 7. NB! This is my draft code and it may contain some design flaws and some questionable solutions. This code is intended to use as test-drive for Windows Phone 7 CTP developer tools and I don’t suppose you are going to use this code in production environment. Current state of my RSS-reader Currently my RSS-reader for Windows Phone 7 is very simple, primitive and uses almost all defaults that come out-of-box with Windows Phone 7 CTP developer tools. My first goal before going on with nicer user interface design was making RSS-reading work because instead of convenient classes from .NET Framework we have to use very limited classes from .NET Framework CE. This is why I took the reading of RSS-feeds as my first task. There are currently more things to solve regarding user-interface. As I am pretty new to all this Silverlight stuff I am not very sure if I can modify default controls easily or should I write my own controls that have better look and that work faster. The image on right shows you how my RSS-reader looks like right now. Upper side of screen is filled with list that shows headlines from this blog. The bottom part of screen is used to show description of selected posting. You can click on the image to see it in original size. In my next posting I will show you some improvements of my RSS-reader user interface that make it look nicer. But currently it is nice enough to make sure that RSS-feeds are read correctly. FeedItem class As this is most straight-forward part of the following code I will show you RSS-feed items class first. I think we have to stop on it because it is simple one. public class FeedItem {     public string Title { get; set; }     public string Description { get; set; }     public DateTime PublishDate { get; set; }     public List<string> Categories { get; set; }     public string Link { get; set; }       public FeedItem()     {         Categories = new List<string>();     } } RssClient RssClient takes feed URL and when asked it loads all items from feed and gives them back to caller through ItemsReceived event. Why it works this way? Because we can make responses only using asynchronous methods. I will show you in next section how to use this class. Although the code here is not very good but it works like expected. I will refactor this code later because it needs some more efforts and investigating. But let’s hope I find excellent solution. :) public class RssClient {     private readonly string _rssUrl;       public delegate void ItemsReceivedDelegate(RssClient client, IList<FeedItem> items);     public event ItemsReceivedDelegate ItemsReceived;       public RssClient(string rssUrl)     {         _rssUrl = rssUrl;     }       public void LoadItems()     {         var request = (HttpWebRequest)WebRequest.Create(_rssUrl);         var result = (IAsyncResult)request.BeginGetResponse(ResponseCallback, request);     }       void ResponseCallback(IAsyncResult result)     {         var request = (HttpWebRequest)result.AsyncState;         var response = request.EndGetResponse(result);           var stream = response.GetResponseStream();         var reader = XmlReader.Create(stream);         var items = new List<FeedItem>(50);           FeedItem item = null;         var pointerMoved = false;           while (!reader.EOF)         {             if (pointerMoved)             {                 pointerMoved = false;             }             else             {                 if (!reader.Read())                     break;             }               var nodeName = reader.Name;             var nodeType = reader.NodeType;               if (nodeName == "item")             {                 if (nodeType == XmlNodeType.Element)                     item = new FeedItem();                 else if (nodeType == XmlNodeType.EndElement)                     if (item != null)                     {                         items.Add(item);                         item = null;                     }                   continue;             }               if (nodeType != XmlNodeType.Element)                 continue;               if (item == null)                 continue;               reader.MoveToContent();             var nodeValue = reader.ReadElementContentAsString();             // we just moved internal pointer             pointerMoved = true;               if (nodeName == "title")                 item.Title = nodeValue;             else if (nodeName == "description")                 item.Description =  Regex.Replace(nodeValue,@"<(.|\n)*?>",string.Empty);             else if (nodeName == "feedburner:origLink")                 item.Link = nodeValue;             else if (nodeName == "pubDate")             {                 if (!string.IsNullOrEmpty(nodeValue))                     item.PublishDate = DateTime.Parse(nodeValue);             }             else if (nodeName == "category")                 item.Categories.Add(nodeValue);         }           if (ItemsReceived != null)             ItemsReceived(this, items);     } } This method is pretty long but it works. Now let’s try to use it in Windows Phone 7 application. Using RssClient And this is the fragment of code behing the main page of my application start screen. You can see how RssClient is initialized and how items are bound to list that shows them. public MainPage() {     InitializeComponent();       SupportedOrientations = SupportedPageOrientation.Portrait | SupportedPageOrientation.Landscape;     listBox1.Width = Width;       var rssClient = new RssClient("http://feedproxy.google.com/gunnarpeipman");     rssClient.ItemsReceived += new RssClient.ItemsReceivedDelegate(rssClient_ItemsReceived);     rssClient.LoadItems(); }   void rssClient_ItemsReceived(RssClient client, IList<FeedItem> items) {     Dispatcher.BeginInvoke(delegate()     {         listBox1.ItemsSource = items;     });            } Conclusion As you can see it was not very hard task to read RSS-feed and populate list with feed entries. Although we are not able to use more powerful classes that are part of full version on .NET Framework we can still live with limited set of classes that .NET Framework CE provides.

    Read the article

  • Windows Phone 7: Building a simple dictionary web client

    - by TechTwaddle
    Like I mentioned in this post a while back, I came across a dictionary web service called Aonaware that serves up word definitions from various dictionaries and is really easy to use. The services page on their website, http://services.aonaware.com/DictService/DictService.asmx, lists all the operations that are supported by the dictionary service. Here they are, Word Dictionary Web Service The following operations are supported. For a formal definition, please review the Service Description. Define Define given word, returning definitions from all dictionaries DefineInDict Define given word, returning definitions from specified dictionary DictionaryInfo Show information about the specified dictionary DictionaryList Returns a list of available dictionaries DictionaryListExtended Returns a list of advanced dictionaries (e.g. translating dictionaries) Match Look for matching words in all dictionaries using the given strategy MatchInDict Look for matching words in the specified dictionary using the given strategy ServerInfo Show remote server information StrategyList Return list of all available strategies on the server Follow the links above to get more information on each API. In this post we will be building a simple windows phone 7 client which uses this service to get word definitions for words entered by the user. The application will also allow the user to select a dictionary from all the available ones and look up the word definition in that dictionary. So of all the apis above we will be using only two, DictionaryList() to get a list of all supported dictionaries and DefineInDict() to get the word definition from a particular dictionary. Before we get started, a note to you all; I would have liked to implement this application using concepts from data binding, item templates, data templates etc. I have a basic understanding of what they are but, being a beginner, I am not very comfortable with those topics yet so I didn’t use them. I thought I’ll get this version out of the way and maybe in the next version I could give those a try. A somewhat scary mock-up of the what the final application will look like, Select Dictionary is a list picker control from the silverlight toolkit (you need to download and install the toolkit if you haven’t already). Below it is a textbox where the user can enter words to look up and a button beside it to fetch the word definition when clicked. Finally we have a textblock which occupies the remaining area and displays the word definition from the selected dictionary. Create a silverlight application for windows phone 7, AonawareDictionaryClient, and add references to the silverlight toolkit and the web service. From the solution explorer right on References and select Microsoft.Phone.Controls.Toolkit from under the .NET tab, Next, add a reference to the web service. Again right click on References and this time select Add Service Reference In the resulting dialog paste the service url in the Address field and press go, (url –> http://services.aonaware.com/DictService/DictService.asmx) once the service is discovered, provide a name for the NameSpace, in this case I’ve called it AonawareDictionaryService. Press OK. You can now use the classes and functions that are generated in the AonawareDictionaryClient.AonawareDictionaryService namespace. Let’s get the UI done now. In MainPage.xaml add a namespace declaration to use the toolkit controls, xmlns:toolkit="clr-namespace:Microsoft.Phone.Controls;assembly=Microsoft.Phone.Controls.Toolkit" the content of LayoutRoot is changed as follows, (sorry, no syntax highlighting in this post) <StackPanel x:Name="TitlePanel" Grid.Row="0" Margin="12,5,0,5">     <TextBlock x:Name="ApplicationTitle" Text="AONAWARE DICTIONARY CLIENT" Style="{StaticResource PhoneTextNormalStyle}"/>     <!--<TextBlock x:Name="PageTitle" Text="page name" Margin="9,-7,0,0" Style="{StaticResource PhoneTextTitle1Style}"/>--> </StackPanel> <!--ContentPanel - place additional content here--> <Grid x:Name="ContentPanel" Grid.Row="1" Margin="12,0,12,0">     <Grid.RowDefinitions>         <RowDefinition Height="Auto"/>         <RowDefinition Height="Auto"/>         <RowDefinition Height="*"/>     </Grid.RowDefinitions>     <toolkit:ListPicker Grid.Column="1" x:Name="listPickerDictionaryList"                         Header="Select Dictionary :">     </toolkit:ListPicker>     <Grid Grid.Row="1" Margin="0,5,0,0">         <Grid.ColumnDefinitions>             <ColumnDefinition Width="*"/>             <ColumnDefinition Width="Auto" />         </Grid.ColumnDefinitions>         <TextBox x:Name="txtboxInputWord" Grid.Column="0" GotFocus="OnTextboxInputWordGotFocus" />         <Button x:Name="btnGo" Grid.Column="1" Click="OnButtonGoClick" >             <Button.Content>                 <Image Source="/images/button-go.png"/>             </Button.Content>         </Button>     </Grid>     <ScrollViewer Grid.Row="2" x:Name="scrollViewer">         <TextBlock  Margin="12,5,12,5"  x:Name="txtBlockWordMeaning" HorizontalAlignment="Stretch"                    VerticalAlignment="Stretch" TextWrapping="Wrap"                    FontSize="26" />     </ScrollViewer> </Grid> I have commented out the PageTitle as it occupies too much valuable space, and the ContentPanel is changed to contain three rows. First row contains the list picker control, second row contains the textbox and the button, and the third row contains a textblock within a scroll viewer. The designer will now be showing the final ui, Now go to MainPage.xaml.cs, and add the following namespace declarations, using Microsoft.Phone.Controls; using AonawareDictionaryClient.AonawareDictionaryService; using System.IO.IsolatedStorage; A class called DictServiceSoapClient would have been created for you in the background when you added a reference to the web service. This class functions as a wrapper to the services exported by the web service. All the web service functions that we saw at the start can be access through this class, or more precisely through an object of this class. Create a data member of type DictServiceSoapClient in the Mainpage class, and a function which initializes it, DictServiceSoapClient DictSvcClient = null; private DictServiceSoapClient GetDictServiceSoapClient() {     if (null == DictSvcClient)     {         DictSvcClient = new DictServiceSoapClient();     }     return DictSvcClient; } We have two major tasks remaining. First, when the application loads we need to populate the list picker with all the supported dictionaries and second, when the user enters a word and clicks on the arrow button we need to fetch the word’s meaning. Populating the List Picker In the OnNavigatingTo event of the MainPage, we call the DictionaryList() api. This can also be done in the OnLoading event handler of the MainPage; not sure if one has an advantage over the other. Here’s the code for OnNavigatedTo, protected override void OnNavigatedTo(System.Windows.Navigation.NavigationEventArgs e) {     DictServiceSoapClient client = GetDictServiceSoapClient();     client.DictionaryListCompleted += new EventHandler<DictionaryListCompletedEventArgs>(OnGetDictionaryListCompleted);     client.DictionaryListAsync();     base.OnNavigatedTo(e); } Windows Phone 7 supports only async calls to web services. When we added a reference to the dictionary service, asynchronous versions of all the functions were generated automatically. So in the above function we register a handler to the DictionaryListCompleted event which will occur when the call to DictionaryList() gets a response from the server. Then we call the DictionaryListAsynch() function which is the async version of the DictionaryList() api. The result of this api will be sent to the handler OnGetDictionaryListCompleted(), void OnGetDictionaryListCompleted(object sender, DictionaryListCompletedEventArgs e) {     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     Dictionary[] listOfDictionaries;     if (e.Error == null)     {         listOfDictionaries = e.Result;         PopulateListPicker(listOfDictionaries, settings);     }     else if (settings.Contains("SavedDictionaryList"))     {         listOfDictionaries = settings["SavedDictionaryList"] as Dictionary[];         PopulateListPicker(listOfDictionaries, settings);     }     else     {         MessageBoxResult res = MessageBox.Show("An error occured while retrieving dictionary list, do you want to try again?", "Error", MessageBoxButton.OKCancel);         if (MessageBoxResult.OK == res)         {             GetDictServiceSoapClient().DictionaryListAsync();         }     }     settings.Save(); } I have used IsolatedStorageSettings to store a few things; the entire dictionary list and the dictionary that is selected when the user exits the application, so that the next time when the user starts the application the current dictionary is set to the last selected value. First we check if the api returned any error, if the error object is null e.Result will contain the list (actually array) of Dictionary type objects. If there was an error, we check the isolated storage settings to see if there is a dictionary list stored from a previous instance of the application and if so, we populate the list picker based on this saved list. Note that in this case there are chances that the dictionary list might be out of date if there have been changes on the server. Finally, if none of these cases are true, we display an error message to the user and try to fetch the list again. PopulateListPicker() is passed the array of Dictionary objects and the settings object as well, void PopulateListPicker(Dictionary[] listOfDictionaries, IsolatedStorageSettings settings) {     listPickerDictionaryList.Items.Clear();     foreach (Dictionary dictionary in listOfDictionaries)     {         listPickerDictionaryList.Items.Add(dictionary.Name);     }     settings["SavedDictionaryList"] = listOfDictionaries;     string savedDictionaryName;     if (settings.Contains("SavedDictionary"))     {         savedDictionaryName = settings["SavedDictionary"] as string;     }     else     {         savedDictionaryName = "WordNet (r) 2.0"; //default dictionary, wordnet     }     foreach (string dictName in listPickerDictionaryList.Items)     {         if (dictName == savedDictionaryName)         {             listPickerDictionaryList.SelectedItem = dictName;             break;         }     }     settings["SavedDictionary"] = listPickerDictionaryList.SelectedItem as string; } We first clear all the items from the list picker, add the dictionary names from the array and then create a key in the settings called SavedDictionaryList and store the dictionary list in it. We then check if there is saved dictionary available from a previous instance, if there is, we set it as the selected item in the list picker. And if not, we set “WordNet ® 2.0” as the default dictionary. Before returning, we save the selected dictionary in the “SavedDictionary” key of the isolated storage settings. Fetching word definitions Getting this part done is very similar to the above code. We get the input word from the textbox, call into DefineInDictAsync() to fetch the definition and when DefineInDictAsync completes, we get the result and display it in the textblock. Here is the handler for the button click, private void OnButtonGoClick(object sender, RoutedEventArgs e) {     txtBlockWordMeaning.Text = "Please wait..";     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     if (txtboxInputWord.Text.Trim().Length <= 0)     {         MessageBox.Show("Please enter a word in the textbox and press 'Go'");     }     else     {         Dictionary[] listOfDictionaries = settings["SavedDictionaryList"] as Dictionary[];         string selectedDictionary = listPickerDictionaryList.SelectedItem.ToString();         string dictId = "wn"; //default dictionary is wordnet (wn is the dict id)         foreach (Dictionary dict in listOfDictionaries)         {             if (dict.Name == selectedDictionary)             {                 dictId = dict.Id;                 break;             }         }         DictServiceSoapClient client = GetDictServiceSoapClient();         client.DefineInDictCompleted += new EventHandler<DefineInDictCompletedEventArgs>(OnDefineInDictCompleted);         client.DefineInDictAsync(dictId, txtboxInputWord.Text.Trim());     } } We validate the input and then select the dictionary id based on the currently selected dictionary. We need the dictionary id because the api DefineInDict() expects the dictionary identifier and not the dictionary name. We could very well have stored the dictionary id in isolated storage settings too. Again, same as before, we register a event handler for the DefineInDictCompleted event and call the DefineInDictAsync() method passing in the dictionary id and the input word. void OnDefineInDictCompleted(object sender, DefineInDictCompletedEventArgs e) {     WordDefinition wd = e.Result;     scrollViewer.ScrollToVerticalOffset(0.0f);     if (wd.Definitions.Length == 0)     {         txtBlockWordMeaning.Text = String.Format("No definitions were found for '{0}' in '{1}'", txtboxInputWord.Text.Trim(), listPickerDictionaryList.SelectedItem.ToString().Trim());     }     else     {         foreach (Definition def in wd.Definitions)         {             string str = def.WordDefinition;             str = str.Replace("  ", " "); //some formatting             txtBlockWordMeaning.Text = str;         }     } } When the api completes, e.Result will contain a WordDefnition object. This class is also generated in the background while adding the service reference. We check the word definitions within this class to see if any results were returned, if not, we display a message to the user in the textblock. If a definition was found the text on the textblock is set to display the definition of the word. Adding final touches, we now need to save the current dictionary when the application exits. A small but useful thing is selecting the entire word in the input textbox when the user selects it. This makes sure that if the user has looked up a definition for a really long word, he doesn’t have to press ‘clear’ too many times to enter the next word, protected override void OnNavigatingFrom(System.Windows.Navigation.NavigatingCancelEventArgs e) {     IsolatedStorageSettings settings = IsolatedStorageSettings.ApplicationSettings;     settings["SavedDictionary"] = listPickerDictionaryList.SelectedItem as string;     settings.Save();     base.OnNavigatingFrom(e); } private void OnTextboxInputWordGotFocus(object sender, RoutedEventArgs e) {     TextBox txtbox = sender as TextBox;     if (txtbox.Text.Trim().Length > 0)     {         txtbox.SelectionStart = 0;         txtbox.SelectionLength = txtbox.Text.Length;     } } OnNavigatingFrom() is called whenever you navigate away from the MainPage, since our application contains only one page that would mean that it is exiting. I leave you with a short video of the application in action, but before that if you have any suggestions on how to make the code better and improve it please do leave a comment. Until next time…

    Read the article

  • Windows Azure Service Bus Scatter-Gather Implementation

    - by Alan Smith
    One of the more challenging enterprise integration patterns that developers may wish to implement is the Scatter-Gather pattern. In this article I will show the basic implementation of a scatter-gather pattern using the topic-subscription model of the windows azure service bus. I’ll be using the implementation in demos, and also as a lab in my training courses, and the pattern will also be included in the next release of my free e-book the “Windows Azure Service Bus Developer Guide”. The Scatter-Gather pattern answers the following scenario. How do you maintain the overall message flow when a message needs to be sent to multiple recipients, each of which may send a reply? Use a Scatter-Gather that broadcasts a message to multiple recipients and re-aggregates the responses back into a single message. The Enterprise Integration Patterns website provides a description of the Scatter-Gather pattern here.   The scatter-gather pattern uses a composite of the publish-subscribe channel pattern and the aggregator pattern. The publish-subscribe channel is used to broadcast messages to a number of receivers, and the aggregator is used to gather the response messages and aggregate them together to form a single message. Scatter-Gather Scenario The scenario for this scatter-gather implementation is an application that allows users to answer questions in a poll based voting scenario. A poll manager application will be used to broadcast questions to users, the users will use a voting application that will receive and display the questions and send the votes back to the poll manager. The poll manager application will receive the users’ votes and aggregate them together to display the results. The scenario should be able to scale to support a large number of users.   Scatter-Gather Implementation The diagram below shows the overall architecture for the scatter-gather implementation.       Messaging Entities Looking at the scatter-gather pattern diagram it can be seen that the topic-subscription architecture is well suited for broadcasting a message to a number of subscribers. The poll manager application can send the question messages to a topic, and each voting application can receive the question message on its own subscription. The static limit of 2,000 subscriptions per topic in the current release means that 2,000 voting applications can receive question messages and take part in voting. The vote messages can then be sent to the poll manager application using a queue. The voting applications will send their vote messages to the queue, and the poll manager will receive and process the vote messages. The questions topic and answer queue are created using the Windows Azure Developer Portal. Each instance of the voting application will create its own subscription in the questions topic when it starts, allowing the question messages to be broadcast to all subscribing voting applications. Data Contracts Two simple data contracts will be used to serialize the questions and votes as brokered messages. The code for these is shown below.   [DataContract] public class Question {     [DataMember]     public string QuestionText { get; set; } }     To keep the implementation of the voting functionality simple and focus on the pattern implementation, the users can only vote yes or no to the questions.   [DataContract] public class Vote {     [DataMember]     public string QuestionText { get; set; }       [DataMember]     public bool IsYes { get; set; } }     Poll Manager Application The poll manager application has been implemented as a simple WPF application; the user interface is shown below. A question can be entered in the text box, and sent to the topic by clicking the Add button. The topic and subscriptions used for broadcasting the messages are shown in a TreeView control. The questions that have been broadcast and the resulting votes are shown in a ListView control. When the application is started any existing subscriptions are cleared form the topic, clients are then created for the questions topic and votes queue, along with background workers for receiving and processing the vote messages, and updating the display of subscriptions.   public MainWindow() {     InitializeComponent();       // Create a new results list and data bind it.     Results = new ObservableCollection<Result>();     lsvResults.ItemsSource = Results;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Clear out any old subscriptions.     NamespaceManager = new NamespaceManager(serviceBusUri, credentials);     IEnumerable<SubscriptionDescription> subs =         NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);     foreach (SubscriptionDescription sub in subs)     {         NamespaceManager.DeleteSubscription(sub.TopicPath, sub.Name);     }       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create the topic and queue clients.     ScatterGatherTopicClient =         factory.CreateTopicClient(AccountDetails.ScatterGatherTopic);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker threads.     VotesBackgroundWorker = new BackgroundWorker();     VotesBackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     VotesBackgroundWorker.RunWorkerAsync();       SubscriptionsBackgroundWorker = new BackgroundWorker();     SubscriptionsBackgroundWorker.DoWork += new DoWorkEventHandler(UpdateSubscriptions);     SubscriptionsBackgroundWorker.RunWorkerAsync(); }     When the poll manager user nters a question in the text box and clicks the Add button a question message is created and sent to the topic. This message will be broadcast to all the subscribing voting applications. An instance of the Result class is also created to keep track of the votes cast, this is then added to an observable collection named Results, which is data-bound to the ListView control.   private void btnAddQuestion_Click(object sender, RoutedEventArgs e) {     // Create a new result for recording votes.     Result result = new Result()     {         Question = txtQuestion.Text     };     Results.Add(result);       // Send the question to the topic     Question question = new Question()     {         QuestionText = result.Question     };     BrokeredMessage msg = new BrokeredMessage(question);     ScatterGatherTopicClient.Send(msg);       txtQuestion.Text = ""; }     The Results class is implemented as follows.   public class Result : INotifyPropertyChanged {     public string Question { get; set; }       private int m_YesVotes;     private int m_NoVotes;       public event PropertyChangedEventHandler PropertyChanged;       public int YesVotes     {         get { return m_YesVotes; }         set         {             m_YesVotes = value;             NotifyPropertyChanged("YesVotes");         }     }       public int NoVotes     {         get { return m_NoVotes; }         set         {             m_NoVotes = value;             NotifyPropertyChanged("NoVotes");         }     }       private void NotifyPropertyChanged(string prop)     {         if(PropertyChanged != null)         {             PropertyChanged(this, new PropertyChangedEventArgs(prop));         }     } }     The INotifyPropertyChanged interface is implemented so that changes to the number of yes and no votes will be updated in the ListView control. Receiving the vote messages from the voting applications is done asynchronously, using a background worker thread.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         // Receive a vote message from the queue         BrokeredMessage msg = ScatterGatherQueueClient.Receive();         if (msg != null)         {             // Deserialize the message.             Vote vote = msg.GetBody<Vote>();               // Update the results.             foreach (Result result in Results)             {                 if (result.Question.Equals(vote.QuestionText))                 {                     if (vote.IsYes)                     {                         result.YesVotes++;                     }                     else                     {                         result.NoVotes++;                     }                     break;                 }             }               // Mark the message as complete.             msg.Complete();         }       } }     When a vote message is received, the result that matches the vote question is updated with the vote from the user. The message is then marked as complete. A second background thread is used to update the display of subscriptions in the TreeView, with a dispatcher used to update the user interface. // This runs on a background worker. private void UpdateSubscriptions(object sender, DoWorkEventArgs e) {     while (true)     {         // Get a list of subscriptions.         IEnumerable<SubscriptionDescription> subscriptions =             NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);           // Update the user interface.         SimpleDelegate setQuestion = delegate()         {             trvSubscriptions.Items.Clear();             TreeViewItem topicItem = new TreeViewItem()             {                 Header = AccountDetails.ScatterGatherTopic             };               foreach (SubscriptionDescription subscription in subscriptions)             {                 TreeViewItem subscriptionItem = new TreeViewItem()                 {                     Header = subscription.Name                 };                 topicItem.Items.Add(subscriptionItem);             }             trvSubscriptions.Items.Add(topicItem);               topicItem.ExpandSubtree();         };         this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);           Thread.Sleep(3000);     } }       Voting Application The voting application is implemented as another WPF application. This one is more basic, and allows the user to vote “Yes” or “No” for the questions sent by the poll manager application. The user interface for that application is shown below. When an instance of the voting application is created it will create a subscription in the questions topic using a GUID as the subscription name. The application can then receive copies of every question message that is sent to the topic. Clients for the new subscription and the votes queue are created, along with a background worker to receive the question messages. The voting application is set to receiving mode, meaning it is ready to receive a question message from the subscription.   public MainWindow() {     InitializeComponent();       // Set the mode to receiving.     IsReceiving = true;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create a subcription for this instance     NamespaceManager mgr = new NamespaceManager(serviceBusUri, credentials);     string subscriptionName = Guid.NewGuid().ToString();     mgr.CreateSubscription(AccountDetails.ScatterGatherTopic, subscriptionName);       // Create the subscription and queue clients.     ScatterGatherSubscriptionClient = factory.CreateSubscriptionClient         (AccountDetails.ScatterGatherTopic, subscriptionName);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker thread.     BackgroundWorker = new BackgroundWorker();     BackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     BackgroundWorker.RunWorkerAsync(); }     I took the inspiration for creating the subscriptions in the voting application from the chat application that uses topics and subscriptions blogged by Ovais Akhter here. The method that receives the question messages runs on a background thread. If the application is in receive mode, a question message will be received from the subscription, the question will be displayed in the user interface, the voting buttons enabled, and IsReceiving set to false to prevent more questing from being received before the current one is answered.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         if (IsReceiving)         {             // Receive a question message from the topic.             BrokeredMessage msg = ScatterGatherSubscriptionClient.Receive();             if (msg != null)             {                 // Deserialize the message.                 Question question = msg.GetBody<Question>();                   // Update the user interface.                 SimpleDelegate setQuestion = delegate()                 {                     lblQuestion.Content = question.QuestionText;                     btnYes.IsEnabled = true;                     btnNo.IsEnabled = true;                 };                 this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);                 IsReceiving = false;                   // Mark the message as complete.                 msg.Complete();             }         }         else         {             Thread.Sleep(1000);         }     } }     When the user clicks on the Yes or No button, the btnVote_Click method is called. This will create a new Vote data contract with the appropriate question and answer and send the message to the poll manager application using the votes queue. The user voting buttons are then disabled, the question text cleared, and the IsReceiving flag set to true to allow a new message to be received.   private void btnVote_Click(object sender, RoutedEventArgs e) {     // Create a new vote.     Vote vote = new Vote()     {         QuestionText = (string)lblQuestion.Content,         IsYes = ((sender as Button).Content as string).Equals("Yes")     };       // Send the vote message.     BrokeredMessage msg = new BrokeredMessage(vote);     ScatterGatherQueueClient.Send(msg);       // Update the user interface.     lblQuestion.Content = "";     btnYes.IsEnabled = false;     btnNo.IsEnabled = false;     IsReceiving = true; }     Testing the Application In order to test the application, an instance of the poll manager application is started; the user interface is shown below. As no instances of the voting application have been created there are no subscriptions present in the topic. When an instance of the voting application is created the subscription will be displayed in the poll manager. Now that a voting application is subscribing, a questing can be sent from the poll manager application. When the message is sent to the topic, the voting application will receive the message and display the question. The voter can then answer the question by clicking on the appropriate button. The results of the vote are updated in the poll manager application. When two more instances of the voting application are created, the poll manager will display the new subscriptions. More questions can then be broadcast to the voting applications. As the question messages are queued up in the subscription for each voting application, the users can answer the questions in their own time. The vote messages will be received by the poll manager application and aggregated to display the results. The screenshots of the applications part way through voting are shown below. The messages for each voting application are queued up in sequence on the voting application subscriptions, allowing the questions to be answered at different speeds by the voters.

    Read the article

  • From HttpRuntime.Cache to Windows Azure Caching (Preview)

    - by Jeff
    I don’t know about you, but the announcement of Windows Azure Caching (Preview) (yes, the parentheses are apparently part of the interim name) made me a lot more excited about using Azure. Why? Because one of the great performance tricks of any Web app is to cache frequently used data in memory, so it doesn’t have to hit the database, a service, or whatever. When you run your Web app on one box, HttpRuntime.Cache is a sweet and stupid-simple solution. Somewhere in the data fetching pieces of your app, you can see if an object is available in cache, and return that instead of hitting the data store. I did this quite a bit in POP Forums, and it dramatically cuts down on the database chatter. The problem is that it falls apart if you run the app on many servers, in a Web farm, where one server may initiate a change to that data, and the others will have no knowledge of the change, making it stale. Of course, if you have the infrastructure to do so, you can use something like memcached or AppFabric to do a distributed cache, and achieve the caching flavor you desire. You could do the same thing in Azure before, but it would cost more because you’d need to pay for another role or VM or something to host the cache. Now, you can use a portion of the memory from each instance of a Web role to act as that cache, with no additional cost. That’s huge. So if you’re using a percentage of memory that comes out to 100 MB, and you have three instances running, that’s 300 MB available for caching. For the uninitiated, a Web role in Azure is essentially a VM that runs a Web app (worker roles are the same idea, only without the IIS part). You can spin up many instances of the role, and traffic is load balanced to the various instances. It’s like adding or removing servers to a Web farm all willy-nilly and at your discretion, and it’s what the cloud is all about. I’d say it’s my favorite thing about Windows Azure. The slightly annoying thing about developing for a Web role in Azure is that the local emulator that’s launched by Visual Studio is a little on the slow side. If you’re used to using the built-in Web server, you’re used to building and then alt-tabbing to your browser and refreshing a page. If you’re just changing an MVC view, you’re not even doing the building part. Spinning up the simulated Azure environment is too slow for this, but ideally you want to code your app to use this fantastic distributed cache mechanism. So first off, here’s the link to the page showing how to code using the caching feature. If you’re used to using HttpRuntime.Cache, this should be pretty familiar to you. Let’s say that you want to use the Azure cache preview when you’re running in Azure, but HttpRuntime.Cache if you’re running local, or in a regular IIS server environment. Through the magic of dependency injection, we can get there pretty quickly. First, design an interface to handle the cache insertion, fetching and removal. Mine looks like this: public interface ICacheProvider {     void Add(string key, object item, int duration);     T Get<T>(string key) where T : class;     void Remove(string key); } Now we’ll create two implementations of this interface… one for Azure cache, one for HttpRuntime: public class AzureCacheProvider : ICacheProvider {     public AzureCacheProvider()     {         _cache = new DataCache("default"); // in Microsoft.ApplicationServer.Caching, see how-to      }         private readonly DataCache _cache;     public void Add(string key, object item, int duration)     {         _cache.Add(key, item, new TimeSpan(0, 0, 0, 0, duration));     }     public T Get<T>(string key) where T : class     {         return _cache.Get(key) as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } public class LocalCacheProvider : ICacheProvider {     public LocalCacheProvider()     {         _cache = HttpRuntime.Cache;     }     private readonly System.Web.Caching.Cache _cache;     public void Add(string key, object item, int duration)     {         _cache.Insert(key, item, null, DateTime.UtcNow.AddMilliseconds(duration), System.Web.Caching.Cache.NoSlidingExpiration);     }     public T Get<T>(string key) where T : class     {         return _cache[key] as T;     }     public void Remove(string key)     {         _cache.Remove(key);     } } Feel free to expand these to use whatever cache features you want. I’m not going to go over dependency injection here, but I assume that if you’re using ASP.NET MVC, you’re using it. Somewhere in your app, you set up the DI container that resolves interfaces to concrete implementations (Ninject call is a “kernel” instead of a container). For this example, I’ll show you how StructureMap does it. It uses a convention based scheme, where if you need to get an instance of IFoo, it looks for a class named Foo. You can also do this mapping explicitly. The initialization of the container looks something like this: ObjectFactory.Initialize(x =>             {                 x.Scan(scan =>                         {                             scan.AssembliesFromApplicationBaseDirectory();                             scan.WithDefaultConventions();                         });                 if (Microsoft.WindowsAzure.ServiceRuntime.RoleEnvironment.IsAvailable)                     x.For<ICacheProvider>().Use<AzureCacheProvider>();                 else                     x.For<ICacheProvider>().Use<LocalCacheProvider>();             }); If you use Ninject or Windsor or something else, that’s OK. Conceptually they’re all about the same. The important part is the conditional statement that checks to see if the app is running in Azure. If it is, it maps ICacheProvider to AzureCacheProvider, otherwise it maps to LocalCacheProvider. Now when a request comes into your MVC app, and the chain of dependency resolution occurs, you can see to it that the right caching code is called. A typical design may have a call stack that goes: Controller –> BusinessLogicClass –> Repository. Let’s say your repository class looks like this: public class MyRepo : IMyRepo {     public MyRepo(ICacheProvider cacheProvider)     {         _context = new MyDataContext();         _cache = cacheProvider;     }     private readonly MyDataContext _context;     private readonly ICacheProvider _cache;     public SomeType Get(int someTypeID)     {         var key = "somename-" + someTypeID;         var cachedObject = _cache.Get<SomeType>(key);         if (cachedObject != null)         {             _context.SomeTypes.Attach(cachedObject);             return cachedObject;         }         var someType = _context.SomeTypes.SingleOrDefault(p => p.SomeTypeID == someTypeID);         _cache.Add(key, someType, 60000);         return someType;     } ... // more stuff to update, delete or whatever, being sure to remove // from cache when you do so  When the DI container gets an instance of the repo, it passes an instance of ICacheProvider to the constructor, which in this case will be whatever implementation was specified when the container was initialized. The Get method first tries to hit the cache, and of course doesn’t care what the underlying implementation is, Azure, HttpRuntime, or otherwise. If it finds the object, it returns it right then. If not, it hits the database (this example is using Entity Framework), and inserts the object into the cache before returning it. The important thing not pictured here is that other methods in the repo class will construct the key for the cached object, in this case “somename-“ plus the ID of the object, and then remove it from cache, in any method that alters or deletes the object. That way, no matter what instance of the role is processing the request, it won’t find the object if it has been made stale, that is, updated or outright deleted, forcing it to attempt to hit the database. So is this good technique? Well, sort of. It depends on how you use it, and what your testing looks like around it. Because of differences in behavior and execution of the two caching providers, for example, you could see some strange errors. For example, I immediately got an error indicating there was no parameterless constructor for an MVC controller, because the DI resolver failed to create instances for the dependencies it had. In reality, the NuGet packaged DI resolver for StructureMap was eating an exception thrown by the Azure components that said my configuration, outlined in that how-to article, was wrong. That error wouldn’t occur when using the HttpRuntime. That’s something a lot of people debate about using different components like that, and how you configure them. I kinda hate XML config files, and like the idea of the code-based approach above, but you should be darn sure that your unit and integration testing can account for the differences.

    Read the article

  • Android - How do I load a contact Photo?

    - by PaulH
    I'm having trouble loading a photo for a contact in Android. I've googled for an answer, but so far have come up empty. Does anyone have an example of querying for a Contact, then loading the Photo? So, given a contactUri which comes from an Activity result called using startActivityForResult(new Intent(Intent.ACTION_PICK,ContactsContract.CommonDataKinds.Phone.CONTENT_URI),PICK_CONTACT_REQUEST) is: content://com.android.contacts/data/1557 The loadContact(..) works fine. However when I call the getPhoto(...) method, I get a null value for the photo InputStream. It is also confusing because the URI values are different. The contactPhotoUri evaluates to: content://com.android.contacts/contacts/1557 See the comments inline in the code below. class ContactAccessor { /** * Retrieves the contact information. */ public ContactInfo loadContact(ContentResolver contentResolver, Uri contactUri) { //contactUri --> content://com.android.contacts/data/1557 ContactInfo contactInfo = new ContactInfo(); // Load the display name for the specified person Cursor cursor = contentResolver.query(contactUri, new String[]{Contacts._ID, Contacts.DISPLAY_NAME, Phone.NUMBER, Contacts.PHOTO_ID}, null, null, null); try { if (cursor.moveToFirst()) { contactInfo.setId(cursor.getLong(0)); contactInfo.setDisplayName(cursor.getString(1)); contactInfo.setPhoneNumber(cursor.getString(2)); } } finally { cursor.close(); } return contactInfo; // <-- returns info for contact } public Bitmap getPhoto(ContentResolver contentResolver, Long contactId) { Uri contactPhotoUri = ContentUris.withAppendedId(Contacts.CONTENT_URI, contactId); // contactPhotoUri --> content://com.android.contacts/contacts/1557 InputStream photoDataStream = Contacts.openContactPhotoInputStream(contentResolver,contactPhotoUri); // <-- always null Bitmap photo = BitmapFactory.decodeStream(photoDataStream); return photo; } public class ContactInfo { private long id; private String displayName; private String phoneNumber; private Uri photoUri; public void setDisplayName(String displayName) { this.displayName = displayName; } public String getDisplayName() { return displayName; } public void setPhoneNumber(String phoneNumber) { this.phoneNumber = phoneNumber; } public String getPhoneNumber() { return phoneNumber; } public Uri getPhotoUri() { return this.photoUri; } public void setPhotoUri(Uri photoUri) { this.photoUri = photoUri; } public long getId() { return this.id; } public void setId(long id) { this.id = id; } } } Clearly, I'm doing something wrong here, but I can't seem to figure out what the problem is. Thanks.

    Read the article

  • Json.Net Issues: StackOverflowException is thrown when serialising circular dependent ISerializable object with ReferenceLoopHandling.Ignore

    - by keyr
    I have a legacy application that used binary serialisation to persist the data. Now we wanted to use Json.net 4.5 to serialise the data without much changes to the existing classes. Things were working nice till we hit a circular dependent class. Is there any workaround to solve this problem? Sample code as shown below [Serializable] class Department : ISerializable { public Employee Manager { get; set; } public string Name { get; set; } public Department() { } public Department( SerializationInfo info, StreamingContext context ) { Manager = ( Employee )info.GetValue( "Manager", typeof( Employee ) ); Name = ( string )info.GetValue( "Name", typeof( string ) ); } public void GetObjectData( SerializationInfo info, StreamingContext context ) { info.AddValue( "Manager", Manager ); info.AddValue( "Name", Name ); } } [Serializable] class Employee : ISerializable { [NonSerialized] //This does not work [XmlIgnore]//This does not work private Department mDepartment; public Department Department { get { return mDepartment; } set { mDepartment = value; } } public string Name { get; set; } public Employee() { } public Employee( SerializationInfo info, StreamingContext context ) { Department = ( Department )info.GetValue( "Department", typeof( Department ) ); Name = ( string )info.GetValue( "Name", typeof( string ) ); } public void GetObjectData( SerializationInfo info, StreamingContext context ) { info.AddValue( "Department", Department ); info.AddValue( "Name", Name ); } } And the test code Department department = new Department(); department.Name = "Dept1"; Employee emp1 = new Employee { Name = "Emp1", Department = department }; department.Manager = emp1; Employee emp2 = new Employee() { Name = "Emp2", Department = department }; IList<Employee> employees = new List<Employee>(); employees.Add( emp1 ); employees.Add( emp2 ); var memoryStream = new MemoryStream(); var formatter = new BinaryFormatter(); formatter.Serialize( memoryStream, employees ); memoryStream.Seek( 0, SeekOrigin.Begin ); IList<Employee> deserialisedEmployees = formatter.Deserialize( memoryStream ) as IList<Employee>; //Works nicely JsonSerializerSettings jsonSS= new JsonSerializerSettings(); jsonSS.TypeNameHandling = TypeNameHandling.Objects; jsonSS.TypeNameAssemblyFormat = FormatterAssemblyStyle.Full; jsonSS.Formatting = Formatting.Indented; jsonSS.ReferenceLoopHandling = ReferenceLoopHandling.Ignore; //This is not working!! //jsonSS.ReferenceLoopHandling = ReferenceLoopHandling.Serialize; //This is also not working!! jsonSS.PreserveReferencesHandling = PreserveReferencesHandling.All; string jsonAll = JsonConvert.SerializeObject( employees, jsonSS ); //Throws stackoverflow exception Edit1: The issue has been reported to Json (http://json.codeplex.com/workitem/23668)

    Read the article

  • WIX installer with Custom Actions: "built by a runtime newer than the currently loaded runtime and cannot be loaded."

    - by Rimer
    I have a WIX installer that executes Custom Actions over the course of install. When I run the WIX installer, and it encounters its first Custom Action, the installer fails out, and I receive an error in the MSI log as follows: Action start 12:03:53: LoadBCAConfigDefaults. SFXCA: Extracting custom action to temporary directory: C:\DOCUME~1\ELOY06~1\LOCALS~1\Temp\MSI10C.tmp-\ SFXCA: Binding to CLR version v2.0.50727 Calling custom action WIXCustomActions!WIXCustomActions.CustomActions.LoadBCAConfigDefaults Error: could not load custom action class WIXCustomActions.CustomActions from assembly: WIXCustomActions System.BadImageFormatException: Could not load file or assembly 'WIXCustomActions' or one of its dependencies. This assembly is built by a runtime newer than the currently loaded runtime and cannot be loaded. File name: 'WIXCustomActions' at System.Reflection.Assembly._nLoad(AssemblyName fileName, String codeBase, Evidence assemblySecurity, Assembly locationHint, StackCrawlMark& stackMark, Boolean throwOnFileNotFound, Boolean forIntrospection) at System.Reflection.Assembly.nLoad(AssemblyName fileName, String codeBase, Evidence assemblySecurity, Assembly locationHint, StackCrawlMark& stackMark, Boolean throwOnFileNotFound, Boolean forIntrospection) at System.Reflection.Assembly.InternalLoad(AssemblyName assemblyRef, Evidence assemblySecurity, StackCrawlMark& stackMark, Boolean forIntrospection) at System.Reflection.Assembly.InternalLoad(String assemblyString, Evidence assemblySecurity, StackCrawlMark& stackMark, Boolean forIntrospection) at System.AppDomain.Load(String assemblyString) at Microsoft.Deployment.WindowsInstaller.CustomActionProxy.GetCustomActionMethod(Session session, String assemblyName, String className, String methodName) ... the specific problem from above is "System.BadImageFormatException: Could not load file or assembly 'WIXCustomActions' or one of its dependencies. This assembly is built by a runtime newer than the currently loaded runtime and cannot be loaded." The wordage of that error seems to indicate something like an incorrectly referenced .NET framework or something (I'm targeting 3.5 in both my custom actions and its dependencies), but I can't figure out where to make a change to address this problem. Any ideas? .... Not sure if this will help but it's the CustomActions package batch file I run to create the .dll package containing the custom action functions: =============== call "C:\Program Files\Microsoft Visual Studio 10.0\VC\vcvarsall.bat" @echo on cd "C:\development\trunk\PortalsDev\csharp\production\Installers\WIX\customactions\PAServicesWIXCustomActions" csc /target:library /r:"C:\program files\windows installer xml v3.6\sdk\microsoft.deployment.windowsinstaller.dll" /r:"C:\development\trunk\PortalsDev\csharp\production\Installers\WIX\customactions\PAServicesWIXCustomActions\bin\Debug\eLoyalty.PortalLib.dll" /out:"C:\development\trunk\PortalsDev\csharp\production\Installers\WIX\customactions\PAServicesWIXCustomActions\bin\Debug\WIXCustomActions.dll" CustomActions.cs cd "C:\Program Files\Windows Installer XML v3.6\SDK" makesfxca "C:\development\trunk\PortalsDev\csharp\production\Installers\WIX\customactions\PAServicesWIXCustomActions\bin\Debug\BatchCustomerAnalysisWIXCustomActionsPackage.dll" "c:\program files\windows installer xml v3.6\sdk\x86\sfxca.dll" "C:\development\trunk\PortalsDev\csharp\production\Installers\WIX\customactions\PAServicesWIXCustomActions\bin\Debug\WIXCustomActions.dll" customaction.config Microsoft.Deployment.WindowsInstaller.dll

    Read the article

  • Binding to a dictionary in Silverlight with INotifyPropertyChanged

    - by rip
    In silverlight, I can not get INotifyPropertyChanged to work like I want it to when binding to a dictionary. In the example below, the page binds to the dictionary okay but when I change the content of one of the textboxes the CustomProperties property setter is not called. The CustomProperties property setter is only called when CustomProperties is set and not when the values within it are set. I am trying to do some validation on the dictionary values and so am looking to run some code when each value within the dictionary is changed. Is there anything I can do here? C# public partial class MainPage : UserControl { public MainPage() { InitializeComponent(); MyEntity ent = new MyEntity(); ent.CustomProperties.Add("Title", "Mr"); ent.CustomProperties.Add("FirstName", "John"); ent.CustomProperties.Add("Name", "Smith"); this.DataContext = ent; } } public class MyEntity : INotifyPropertyChanged { public event PropertyChangedEventHandler System.ComponentModel.INotifyPropertyChanged.PropertyChanged; public delegate void PropertyChangedEventHandler(object sender, System.ComponentModel.PropertyChangedEventArgs e); private Dictionary<string, object> _customProps; public Dictionary<string, object> CustomProperties { get { if (_customProps == null) { _customProps = new Dictionary<string, object>(); } return _customProps; } set { _customProps = value; if (PropertyChanged != null) { PropertyChanged(this, new PropertyChangedEventArgs("CustomProperties")); } } } } VB Partial Public Class MainPage Inherits UserControl Public Sub New() InitializeComponent() Dim ent As New MyEntity ent.CustomProperties.Add("Title", "Mr") ent.CustomProperties.Add("FirstName", "John") ent.CustomProperties.Add("Name", "Smith") Me.DataContext = ent End Sub End Class Public Class MyEntity Implements INotifyPropertyChanged Public Event PropertyChanged(ByVal sender As Object, ByVal e As System.ComponentModel.PropertyChangedEventArgs) Implements System.ComponentModel.INotifyPropertyChanged.PropertyChanged Private _customProps As Dictionary(Of String, Object) Public Property CustomProperties As Dictionary(Of String, Object) Get If _customProps Is Nothing Then _customProps = New Dictionary(Of String, Object) End If Return _customProps End Get Set(ByVal value As Dictionary(Of String, Object)) _customProps = value RaiseEvent PropertyChanged(Me, New PropertyChangedEventArgs("CustomProperties")) End Set End Property End Class Xaml <TextBox Height="23" Name="TextBox1" Text="{Binding Path=CustomProperties[Title], Mode=TwoWay}" /> <TextBox Height="23" Name="TextBox2" Text="{Binding Path=CustomProperties[FirstName], Mode=TwoWay}" /> <TextBox Height="23" Name="TextBox3" Text="{Binding Path=CustomProperties[Name], Mode=TwoWay}" />

    Read the article

< Previous Page | 353 354 355 356 357 358 359 360 361 362 363 364  | Next Page >