Search Results

Search found 3000 results on 120 pages for 'computing capacity'.

Page 36/120 | < Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >

  • Why is shrink_to_fit non-binding?

    - by Roger Pate
    The C++0x FCD states in 23.3.6.2 vector capacity: void shrink_to_fit(); Remarks: shrink_to_fit is a non-binding request to reduce capacity() to size(). [Note: The request is non-binding to allow latitude for implementation-specific optimizations. —end note] Why is it non-binding, and what optimizations are intended to be allowed?

    Read the article

  • Convert NSData into Hex NSString

    - by Dawson
    With reference to the following question: Convert NSData into HEX NSSString I have solved the problem using the solution provided by Erik Aigner which is: NSData *data = ...; NSUInteger capacity = [data length] * 2; NSMutableString *stringBuffer = [NSMutableString stringWithCapacity:capacity]; const unsigned char *dataBuffer = [data bytes]; NSInteger i; for (i=0; i<[data length]; ++i) { [stringBuffer appendFormat:@"%02X", (NSUInteger)dataBuffer[i]]; } However, there is one small problem in that if there are extra zeros at the back, the string value would be different. For eg. if the hexa data is of a string @"3700000000000000", when converted using a scanner to integer: unsigned result = 0; NSScanner *scanner = [NSScanner scannerWithString:stringBuffer]; [scanner scanHexInt:&result]; NSLog(@"INTEGER: %u",result); The result would be 4294967295, which is incorrect. Shouldn't it be 55 as only the hexa 37 is taken? So how do I get rid of the zeros? EDIT: (In response to CRD) Hi, thanks for clarifying my doubts. So what you're doing is to actually read the 64-bit integer directly from a byte pointer right? However I have another question. How do you actually cast NSData to a byte pointer? To make it easier for you to understand, I'll explain what I did originally. Firstly, what I did was to display the data of the file which I have (data is in hexadecimal) NSData *file = [NSData dataWithContentsOfFile:@"file path here"]; NSLog(@"Patch File: %@",file); Output: Next, what I did was to read and offset the first 8 bytes of the file and convert them into a string. // 0-8 bytes [file seekToFileOffset:0]; NSData *b = [file readDataOfLength:8]; NSUInteger capacity = [b length] * 2; NSMutableString *stringBuffer = [NSMutableString stringWithCapacity:capacity]; const unsigned char *dataBuffer = [b bytes]; NSInteger i; for (i=0; i<[b length]; ++i) { [stringBuffer appendFormat:@"%02X", (NSUInteger)dataBuffer[i]]; } NSLog(@"0-8 bytes HEXADECIMAL: %@",stringBuffer); As you can see, 0x3700000000000000 is the next 8 bytes. The only changes I would have to make to access the next 8 bytes would be to change the value of SeekFileToOffset to 8, so as to access the next 8 bytes of data. All in all, the solution you gave me is useful, however it would not be practical to enter the hexadecimal values manually. If formatting the bytes as a string and then parsing them is not the way to do it, then how do I access the first 8 bytes of the data directly and cast them into a byte pointer?

    Read the article

  • using dictionaries with WebServices

    - by umit-alba
    Hi! I tried to pass a dictionary via WebServices. However it is not serializeable. So i wrote an Own Class that makes it serializeable: using System; using System.Net; using System.Windows; using System.Collections.Generic; using System.Xml.Serialization; using System.Xml; using System.Xml.Schema; namespace Platform { public class SaDictionary<TKey, TValue> : Dictionary<TKey, TValue>, IXmlSerializable { #region Constructors public SaDictionary() : base() { } public SaDictionary(IDictionary<TKey, TValue> dictionary) : base(dictionary) { } public SaDictionary(IEqualityComparer<TKey> comparer) : base(comparer) { } public SaDictionary(int capacity) : base(capacity) { } public SaDictionary(IDictionary<TKey, TValue> dictionary, IEqualityComparer<TKey> comparer) : base(dictionary, comparer) { } public SaDictionary(int capacity, IEqualityComparer<TKey> comparer) : base(capacity, comparer) { } //protected SaDictionary(SerializationInfo info, StreamingContext context) // : base(info, context) //{ //} #endregion public XmlSchema GetSchema() { return null; } public void ReadXml(XmlReader reader) { XmlSerializer keySerializer = new XmlSerializer(typeof(TKey)); XmlSerializer valueSerializer = new XmlSerializer(typeof(TValue)); bool wasEmpty = reader.IsEmptyElement; reader.Read(); if (wasEmpty) return; while (reader.NodeType != XmlNodeType.EndElement) { reader.ReadStartElement("item"); reader.ReadStartElement("key"); TKey key = (TKey)keySerializer.Deserialize(reader); reader.ReadEndElement(); //key reader.ReadStartElement("value"); TValue value = (TValue)valueSerializer.Deserialize(reader); reader.ReadEndElement(); //value this.Add(key, value); reader.ReadEndElement(); //item // reader.MoveToContent(); } reader.ReadEndElement(); } public void WriteXml(XmlWriter writer) { XmlSerializer keySerializer = new XmlSerializer(typeof(TKey)); XmlSerializer valueSerializer = new XmlSerializer(typeof(TValue)); foreach (TKey key in this.Keys) { writer.WriteStartElement("item"); writer.WriteStartElement("key"); keySerializer.Serialize(writer, key); writer.WriteEndElement(); //key writer.WriteStartElement("value"); TValue value = this[key]; valueSerializer.Serialize(writer, value); writer.WriteEndElement(); //value writer.WriteEndElement(); //item } } } } However i get an ArrayOfXElement back. Is there a way to cast it back to a Dictionary? greets

    Read the article

  • inline and member initializers

    - by Alexander
    When should I inline a member function and when should I use member initializers? My code is below.. I would like to modify it so I could make use some inline when appropriate and member initializers: #include "Books.h" Book::Book(){ nm = (char*)""; thck = 0; wght = 0; } Book::Book(const char *name, int thickness, int weight){ nm = strdup(name); thck = thickness; wght = weight; } Book::~Book(){ } const char* Book::name(){ return nm; } int Book::thickness(){ return thck; } int Book::weight(){ return wght; } // // Prints information about the book using this format: // "%s (%d mm, %d dg)\n" // void Book::print(){ printf("%s (%d mm, %d dg)\n", nm, thck, wght); } Bookcase::Bookcase(int id){ my_id = id; no_shelf = 0; } int Bookcase::id(){ return my_id; } Bookcase::~Bookcase(){ for (int i = 0; i < no_shelf; i++) delete my_shelf[i]; } bool Bookcase::addShelf(int width, int capacity){ if(no_shelf == 10) return false; else{ my_shelf[no_shelf] = new Shelf(width, capacity); no_shelf++; return true; } } bool Bookcase::add(Book *bp){ int index = -1; int temp_space = -1; for (int i = 0; i < no_shelf; i++){ if (bp->weight() + my_shelf[i]->curCapacity() <= my_shelf[i]->capacity()){ if (bp->thickness() + my_shelf[i]->curWidth() <= my_shelf[i]->width() && temp_space < (my_shelf[i]->width() - my_shelf[i]->curWidth())){ temp_space = (my_shelf[i]->width()- my_shelf[i]->curWidth()); index = i; } } } if (index != -1){ my_shelf[index]->add(bp); return true; }else return false; } void Bookcase::print(){ printf("Bookcase #%d\n", my_id); for (int i = 0; i < no_shelf; i++){ printf("--- Shelf (%d mm, %d dg) ---\n", my_shelf[i]->width(), my_shelf[i]->capacity()); my_shelf[i]->print(); } }

    Read the article

  • Calling a Add-in function from Excel's VBA

    - by graham
    I am using an Excel Add-in for an Erlangs: http://abstractmicro.com/erlang/helppages/ref-erlbblockage.htm I try to call the Erlang-B function within the Add-in from within VBA thus: Function Erl(Erlangs As Double, Capacity As Double) Erl = Application.WorksheetFunction.ErlbBlockage(Capacity, Erlangs) End Function ...but it doesn't work. I get #VALUE! returned in the Excel cell. I think it is because the function is not part of standard Excel (it is in the Add-in). So how do I call it?

    Read the article

  • c++ thread running time

    - by chnet
    I want to know whether I can calculate the running time for each thread. I implement a multithread program in C++ using pthread. As we know, each thread will compete the CPU. Can I use clock() function to calculate the actual number of CPU clocks each thread consumes? my program looks like: Class Thread () { Start(); Run(); Computing(); }; Start() is to start multiple threads. Then each thread will run Computing function to do something. My question is how I can calculate the running time of each thread for Computing function

    Read the article

  • The Benefits of Smart Grid Business Software

    - by Sylvie MacKenzie, PMP
    Smart Grid Background What Are Smart Grids?Smart Grids use computer hardware and software, sensors, controls, and telecommunications equipment and services to: Link customers to information that helps them manage consumption and use electricity wisely. Enable customers to respond to utility notices in ways that help minimize the duration of overloads, bottlenecks, and outages. Provide utilities with information that helps them improve performance and control costs. What Is Driving Smart Grid Development? Environmental ImpactSmart Grid development is picking up speed because of the widespread interest in reducing the negative impact that energy use has on the environment. Smart Grids use technology to drive efficiencies in transmission, distribution, and consumption. As a result, utilities can serve customers’ power needs with fewer generating plants, fewer transmission and distribution assets,and lower overall generation. With the possible exception of wind farm sprawl, landscape preservation is one obvious benefit. And because most generation today results in greenhouse gas emissions, Smart Grids reduce air pollution and the potential for global climate change.Smart Grids also more easily accommodate the technical difficulties of integrating intermittent renewable resources like wind and solar into the grid, providing further greenhouse gas reductions. CostsThe ability to defer the cost of plant and grid expansion is a major benefit to both utilities and customers. Utilities do not need to use as many internal resources for traditional infrastructure project planning and management. Large T&D infrastructure expansion costs are not passed on to customers.Smart Grids will not eliminate capital expansion, of course. Transmission corridors to connect renewable generation with customers will require major near-term expenditures. Additionally, in the future, electricity to satisfy the needs of population growth and additional applications will exceed the capacity reductions available through the Smart Grid. At that point, expansion will resume—but with greater overall T&D efficiency based on demand response, load control, and many other Smart Grid technologies and business processes. Energy efficiency is a second area of Smart Grid cost saving of particular relevance to customers. The timely and detailed information Smart Grids provide encourages customers to limit waste, adopt energy-efficient building codes and standards, and invest in energy efficient appliances. Efficiency may or may not lower customer bills because customer efficiency savings may be offset by higher costs in generation fuels or carbon taxes. It is clear, however, that bills will be lower with efficiency than without it. Utility Operations Smart Grids can serve as the central focus of utility initiatives to improve business processes. Many utilities have long “wish lists” of projects and applications they would like to fund in order to improve customer service or ease staff’s burden of repetitious work, but they have difficulty cost-justifying the changes, especially in the short term. Adding Smart Grid benefits to the cost/benefit analysis frequently tips the scales in favor of the change and can also significantly reduce payback periods.Mobile workforce applications and asset management applications work together to deploy assets and then to maintain, repair, and replace them. Many additional benefits result—for instance, increased productivity and fuel savings from better routing. Similarly, customer portals that provide customers with near-real-time information can also encourage online payments, thus lowering billing costs. Utilities can and should include these cost and service improvements in the list of Smart Grid benefits. What Is Smart Grid Business Software? Smart Grid business software gathers data from a Smart Grid and uses it improve a utility’s business processes. Smart Grid business software also helps utilities provide relevant information to customers who can then use it to reduce their own consumption and improve their environmental profiles. Smart Grid Business Software Minimizes the Impact of Peak Demand Utilities must size their assets to accommodate their highest peak demand. The higher the peak rises above base demand: The more assets a utility must build that are used only for brief periods—an inefficient use of capital. The higher the utility’s risk profile rises given the uncertainties surrounding the time needed for permitting, building, and recouping costs. The higher the costs for utilities to purchase supply, because generators can charge more for contracts and spot supply during high-demand periods. Smart Grids enable a variety of programs that reduce peak demand, including: Time-of-use pricing and critical peak pricing—programs that charge customers more when they consume electricity during peak periods. Pilot projects indicate that these programs are successful in flattening peaks, thus ensuring better use of existing T&D and generation assets. Direct load control, which lets utilities reduce or eliminate electricity flow to customer equipment (such as air conditioners). Contracts govern the terms and conditions of these turn-offs. Indirect load control, which signals customers to reduce the use of on-premises equipment for contractually agreed-on time periods. Smart Grid business software enables utilities to impose penalties on customers who do not comply with their contracts. Smart Grids also help utilities manage peaks with existing assets by enabling: Real-time asset monitoring and control. In this application, advanced sensors safely enable dynamic capacity load limits, ensuring that all grid assets can be used to their maximum capacity during peak demand periods. Real-time asset monitoring and control applications also detect the location of excessive losses and pinpoint need for mitigation and asset replacements. As a result, utilities reduce outage risk and guard against excess capacity or “over-build”. Better peak demand analysis. As a result: Distribution planners can better size equipment (e.g. transformers) to avoid over-building. Operations engineers can identify and resolve bottlenecks and other inefficiencies that may cause or exacerbate peaks. As above, the result is a reduction in the tendency to over-build. Supply managers can more closely match procurement with delivery. As a result, they can fine-tune supply portfolios, reducing the tendency to over-contract for peak supply and reducing the need to resort to spot market purchases during high peaks. Smart Grids can help lower the cost of remaining peaks by: Standardizing interconnections for new distributed resources (such as electricity storage devices). Placing the interconnections where needed to support anticipated grid congestion. Smart Grid Business Software Lowers the Cost of Field Services By processing Smart Grid data through their business software, utilities can reduce such field costs as: Vegetation management. Smart Grids can pinpoint momentary interruptions and tree-caused outages. Spatial mash-up tools leverage GIS models of tree growth for targeted vegetation management. This reduces the cost of unnecessary tree trimming. Service vehicle fuel. Many utility service calls are “false alarms.” Checking meter status before dispatching crews prevents many unnecessary “truck rolls.” Similarly, crews use far less fuel when Smart Grid sensors can pinpoint a problem and mobile workforce applications can then route them directly to it. Smart Grid Business Software Ensures Regulatory Compliance Smart Grids can ensure compliance with private contracts and with regional, national, or international requirements by: Monitoring fulfillment of contract terms. Utilities can use one-hour interval meters to ensure that interruptible (“non-core”) customers actually reduce or eliminate deliveries as required. They can use the information to levy fines against contract violators. Monitoring regulations imposed on customers, such as maximum use during specific time periods. Using accurate time-stamped event history derived from intelligent devices distributed throughout the smart grid to monitor and report reliability statistics and risk compliance. Automating business processes and activities that ensure compliance with security and reliability measures (e.g. NERC-CIP 2-9). Grid Business Software Strengthens Utilities’ Connection to Customers While Reducing Customer Service Costs During outages, Smart Grid business software can: Identify outages more quickly. Software uses sensors to pinpoint outages and nested outage locations. They also permit utilities to ensure outage resolution at every meter location. Size outages more accurately, permitting utilities to dispatch crews that have the skills needed, in appropriate numbers. Provide updates on outage location and expected duration. This information helps call centers inform customers about the timing of service restoration. Smart Grids also facilitates display of outage maps for customer and public-service use. Smart Grids can significantly reduce the cost to: Connect and disconnect customers. Meters capable of remote disconnect can virtually eliminate the costs of field crews and vehicles previously required to change service from the old to the new residents of a metered property or disconnect customers for nonpayment. Resolve reports of voltage fluctuation. Smart Grids gather and report voltage and power quality data from meters and grid sensors, enabling utilities to pinpoint reported problems or resolve them before customers complain. Detect and resolve non-technical losses (e.g. theft). Smart Grids can identify illegal attempts to reconnect meters or to use electricity in supposedly vacant premises. They can also detect theft by comparing flows through delivery assets with billed consumption. Smart Grids also facilitate outreach to customers. By monitoring and analyzing consumption over time, utilities can: Identify customers with unusually high usage and contact them before they receive a bill. They can also suggest conservation techniques that might help to limit consumption. This can head off “high bill” complaints to the contact center. Note that such “high usage” or “additional charges apply because you are out of range” notices—frequently via text messaging—are already common among mobile phone providers. Help customers identify appropriate bill payment alternatives (budget billing, prepayment, etc.). Help customers find and reduce causes of over-consumption. There’s no waiting for bills in the mail before they even understand there is a problem. Utilities benefit not just through improved customer relations but also through limiting the size of bills from customers who might struggle to pay them. Where permitted, Smart Grids can open the doors to such new utility service offerings as: Monitoring properties. Landlords reduce costs of vacant properties when utilities notify them of unexpected energy or water consumption. Utilities can perform similar services for owners of vacation properties or the adult children of aging parents. Monitoring equipment. Power-use patterns can reveal a need for equipment maintenance. Smart Grids permit utilities to alert owners or managers to a need for maintenance or replacement. Facilitating home and small-business networks. Smart Grids can provide a gateway to equipment networks that automate control or let owners access equipment remotely. They also facilitate net metering, offering some utilities a path toward involvement in small-scale solar or wind generation. Prepayment plans that do not need special meters. Smart Grid Business Software Helps Customers Control Energy Costs There is no end to the ways Smart Grids help both small and large customers control energy costs. For instance: Multi-premises customers appreciate having all meters read on the same day so that they can more easily compare consumption at various sites. Customers in competitive regions can match their consumption profile (detailed via Smart Grid data) with specific offerings from competitive suppliers. Customers seeing inexplicable consumption patterns and power quality problems may investigate further. The result can be discovery of electrical problems that can be resolved through rewiring or maintenance—before more serious fires or accidents happen. Smart Grid Business Software Facilitates Use of Renewables Generation from wind and solar resources is a popular alternative to fossil fuel generation, which emits greenhouse gases. Wind and solar generation may also increase energy security in regions that currently import fossil fuel for use in generation. Utilities face many technical issues as they attempt to integrate intermittent resource generation into traditional grids, which traditionally handle only fully dispatchable generation. Smart Grid business software helps solves many of these issues by: Detecting sudden drops in production from renewables-generated electricity (wind and solar) and automatically triggering electricity storage and smart appliance response to compensate as needed. Supporting industry-standard distributed generation interconnection processes to reduce interconnection costs and avoid adding renewable supplies to locations already subject to grid congestion. Facilitating modeling and monitoring of locally generated supply from renewables and thus helping to maximize their use. Increasing the efficiency of “net metering” (through which utilities can use electricity generated by customers) by: Providing data for analysis. Integrating the production and consumption aspects of customer accounts. During non-peak periods, such techniques enable utilities to increase the percent of renewable generation in their supply mix. During peak periods, Smart Grid business software controls circuit reconfiguration to maximize available capacity. Conclusion Utility missions are changing. Yesterday, they focused on delivery of reasonably priced energy and water. Tomorrow, their missions will expand to encompass sustainable use and environmental improvement.Smart Grids are key to helping utilities achieve this expanded mission. But they come at a relatively high price. Utilities will need to invest heavily in new hardware, software, business process development, and staff training. Customer investments in home area networks and smart appliances will be large. Learning to change the energy and water consumption habits of a lifetime could ultimately prove even more formidable tasks.Smart Grid business software can ease the cost and difficulties inherent in a needed transition to a more flexible, reliable, responsive electricity grid. Justifying its implementation, however, requires a full understanding of the benefits it brings—benefits that can ultimately help customers, utilities, communities, and the world address global issues like energy security and climate change while minimizing costs and maximizing customer convenience. This white paper is available for download here. For further information about Oracle's Primavera Solutions for Utilities, please read our Utilities e-book.

    Read the article

  • Consolidate Data in Private Clouds, But Consider Security and Regulatory Issues

    - by Troy Kitch
    The January 13 webcast Security and Compliance for Private Cloud Consolidation will provide attendees with an overview of private cloud computing based on Oracle's Maximum Availability Architecture and how security and regulatory compliance affects implementations. Many organizations are taking advantage of Oracle's Maximum Availability Architecture to drive down the cost of IT by deploying private cloud computing environments that can support downtime and utilization spikes without idle redundancy. With two-thirds of sensitive and regulated data in organizations' databases private cloud database consolidation means organizations must be more concerned than ever about protecting their information and addressing new regulatory challenges. Join us for this webcast to learn about greater risks and increased threats to private cloud data and how Oracle Database Security Solutions can assist in securely consolidating data and meet compliance requirements. Register Now.

    Read the article

  • JavaOne in Brazil

    - by janice.heiss(at)oracle.com
    JavaOne in Brazil, currently taking place in Sao Paolo, is one event I'd love to attend. I once heard "father of Java" James Gosling talk about Java developers throughout the world. He observed that there were good developers everywhere. It was not the case, he said, that that the really good developers are in one place and the not-so-good developers are in another. He encountered excellent developers everywhere. Then he paused and said that the craziest developers were definitely the Brazilians. As anyone who knows James would realize, this was meant as high praise. He said the Brazilians would work through the night on projects and were very enthusiastic and spontaneous - features that Brazilian culture is known for. Brazilian developers are responsible for creating one of the most impressive uses of Java ever - the applications that run the Brazilian health services. Starting from scratch they created a system that enables an expert doctor in Rio to look at an X-Ray of a patient near the Amazon and offer advice. One of the main architects of this was Java Champion Fabinane Nardon the distinguished Brazilian Java architect and open-source evangelist. As she writes in her blog:"In 2003, I was invited to assemble a team and architect a Public Healthcare Information System for the city of São Paulo, the largest in Latin America, with 14 million inhabitants. The resulting software had 2.5 million of lines of code and it was created, from specification to production, in only 10 months. At the time, the software was considered the largest J2EE application in the world and was featured in several articles, as this one. As a result, we won the Duke's Choice Award in 2005 during JavaOne, the largest development conference in the world. At the time, Sun Microsystems make a short documentary about our work." "In 2007, a lightning struck twice and I was again invited to assemble a new team and architect an even larger information system for healthcare. And thus I became CTO and one of the founders of Zilics Healthcare Information Systems. "In 2010, I started to research and work on Cloud Computing technology and became leader of the LSI-TEC Cloud Computing group. LSI-TEC is a research laboratory in the University of Sao Paulo, one of the best in Brazil. Thus, I became one of the ghost writers behind the popular Cloud Computing Twitter @the_cloud."You can see and hear Nardon in a 4 minute documentary on Java and the Brazilian health care system produced by Sun Microsystems. And you can listen to a September 2010 podcast with Nardon and her fellow Brazilian Java Champion Bruno Souza (known in Brazil as "Java Man") here at 11:10 minutes into the podcast.Next year, I'll hope to be reporting in Brazil at JavaOne!

    Read the article

  • A few things I learned regarding Azure billing policies

    - by Vincent Grondin
    An hour of small computing time: 0,12$ per hour A Gig of storage in the cloud: 0,15$ per hour 1 Gig of relational database using Azure SQL: 9,99$  per month A Visual Studio Professional with MSDN Premium account: 2500$ per year Winning an MSDN Professional account that comes preloaded with 750 free hours of Azure per month:  PRICELESS !!!      But was it really free???? Hmmm… Let’s see.....   Here's a few things I learned regarding Azure billing policies when I attended a promotional training at Microsoft last week...   1)  An instance deployed in the cloud really means whatever you upload in there... it doesn't matter if it's in STAGING OR PRODUCTION!!!!   Your MSDN account comes with 750 free hours of small computing time per month which should be enough hours per month for one instance of one application deployed in the cloud...  So we're cool, the application you run in the cloud doesn't cost you a penny....  BUT the one that's in staging is still consuming time!!!   So if you don’t want to end up having to pay 42$ at the end of the month on your credit card like this happened to a friend of mine, DELETE them staging applications once you’ve put them in production! This also applies to the instance count you can modify in the configuration file… So stop and think before you decide you want to spawn 50 of those hello world apps  .     2) If you have an MSDN account, then you have the promotional 750 hours of Azure credits per month and can use the Azure credits to explore the Cloud! But be aware, this promotion ends in 8 months (maybe more like 7 now) and then you will most likely go back to the standard 250 hours of Azure credits. If you do not delete your applications by then, you’ll get billed for the extra hours, believe me…   There is a switch that you can toggle and which will STOP your automatic enrollment after the promotion and prevent you from renewing the Azure Account automatically. Yes the default setting is to automatically renew your account and remember, you entered your credit card information in the registration process so, yes, you WILL be billed…  Go disable that ASAP    Log into your account, go to “Windows Azure Platform” then click the “Subscriptions” tab and on the right side, you’ll see a drop down with different “Actions” into it… Choose “Opt out of auto renew” and, NOW you’re safe…   Still, this is a great offer by Microsoft and I think everyone that has a chance should play a bit with Azure to get to know this technology a bit more...     Happy Cloud Computing All

    Read the article

  • Windows Azure Use Case: Fast Acquisitions

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many organizations absorb, take over or merge with other organizations. In these cases, one of the most difficult parts of the process is the merging or changing of the IT systems that the employees use to do their work, process payments, and even get paid. Normally this means that the two companies have disparate systems, and several approaches can be used to have the two organizations use technology between them. An organization may choose to retain both systems, and manage them separately. The advantage here is speed, and keeping the profit/loss sheets separate. Another choice is to slowly “sunset” or stop using one organization’s system, and cutting to the other system immediately or at a later date. Although a popular choice, one of the most difficult methods is to extract data and processes from one system and import it into the other. Employees at the transitioning system have to be trained on the new one, the data must be examined and cleansed, and there is inevitable disruption when this happens. Still another option is to integrate the systems. This may prove to be as much work as a transitional strategy, but may have less impact on the users or the balance sheet. Implementation: A distributed computing paradigm can be a good strategic solution to most of these strategies. Retaining both systems is made more simple by allowing the users at the second organization immediate access to the new system, because security accounts can be created quickly inside an application. There is no need to set up a VPN or any other connections than just to the Internet. Having the users stop using one system and start with the other is also simple in Windows Azure for the same reason. Extracting data to Azure holds the same limitations as an on-premise system, and may even be more problematic because of the large data transfers that might be required. In a distributed environment, you pay for the data transfer, so a mixed migration strategy is not recommended. However, if the data is slowly migrated over time with a defined cutover, this can be an effective strategy. If done properly, an integration strategy works very well for a distributed computing environment like Windows Azure. If the Azure code is architected as a series of services, then endpoints can expose the service into and out of not only the Azure platform, but internally as well. This is a form of the Hybrid Application use-case documented here. References: Designing for Cloud Optimized Architecture: http://blogs.msdn.com/b/dachou/archive/2011/01/23/designing-for-cloud-optimized-architecture.aspx 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0

    Read the article

  • How could RDBMSes be considered a fad?

    - by StuperUser
    Completing my Computing A-level in 2003 and getting a degree in Computing in 2007, and learning my trade in a company with a lot of SQL usage, I was brought up on the idea of Relational Databases being used for storage. So, despite being relatively new to development, I was taken-aback to read a comment (on Is LinqPad site quote "Tired of querying in antiquated SQL?" accurate? ) that said: [Some devs] despise [SQL] and think that it and RDBMS are a fad Obviously, a competent dev will use the right tool for the right job and won't create a relational database when e.g. flat file or another solution for storage is appropriate, but RDBMs are useful in a massive number of circumstances, so how could they be considered a fad?

    Read the article

  • Book Review (Book 10) - The Information: A History, a Theory, a Flood

    - by BuckWoody
    This is a continuation of the books I challenged myself to read to help my career - one a month, for year. You can read my first book review here, and the entire list is here. The book I chose for March 2012 was: The Information: A History, a Theory, a Flood by James Gleick. I was traveling at the end of last month so I’m a bit late posting this review here. Why I chose this book: My personal belief about computing is this: All computing technology is simply re-arranging data. We take data in, we manipulate it, and we send it back out. That’s computing. I had heard from some folks about this book and it’s treatment of data. I heard that it dealt with the basics of data - and the semantics of data, information and so on. It also deals with the earliest forms of history of information, which fascinates me. It’s similar I was told, to GEB which a favorite book of mine as well, so that was a bonus. Some folks I talked to liked it, some didn’t - so I thought I would check it out. What I learned: I liked the book. It was longer than I thought - took quite a while to read, even though I tend to read quickly. This is the kind of book you take your time with. It does in fact deal with the earliest forms of human interaction and the basics of data. I learned, for instance, that the genesis of the binary communication system is based in the invention of telegraph (far-writing) codes, and that the earliest forms of communication were expensive. In fact, many ciphers were invented not to hide military secrets, but to compress information. A sort of early “lol-speak” to keep the cost of transmitting data low! I think the comparison with GEB is a bit over-reaching. GEB is far more specific, fanciful and so on. In fact, this book felt more like something fro Richard Dawkins, and tended to wander around the subject quite a bit. I imagine the author doing his research and writing each chapter as a book that followed on from the last one. This is what possibly bothered those who tended not to like it, I think. Towards the middle of the book, I think the author tended to be a bit too fragmented even for me. He began to delve into memes, biology and more - I think he might have been better off breaking that off into another work. The existentialism just seemed jarring. All in all, I liked the book. I recommend it to any technical professional, specifically ones involved with data technology in specific. And isn’t that all of us? :)

    Read the article

  • Don Knuth and MMIXAL vs. Chuck Moore and Forth -- Algorithms and Ideal Machines -- was there cross-pollination / influence in their ideas / work?

    - by AKE
    Question: To what extent is it known (or believed) that Chuck Moore and Don Knuth had influence on each other's thoughts on ideal machines, or their work on algorithms? I'm interested in citations, interviews, articles, links, or any other sort of evidence. It could also be evidence of the form of A and B here suggest that Moore might have borrowed or influenced C and D from Knuth here, or vice versa. (Opinions are of course welcome, but references / links would be better!) Context: Until fairly recently, I have been primarily familiar with Knuth's work on algorithms and computing models, mostly through TAOCP but also through his interviews and other writings. However, the more I have been using Forth, the more I am struck by both the power of a stack-based machine model, and the way in which the spareness of the model makes fundamental algorithmic improvements more readily apparent. A lot of what Knuth has done in fundamental analysis of algorithms has, it seems to me, a very similar flavour, and I can easily imagine that in a parallel universe, Knuth might perhaps have chosen Forth as his computing model. That's the software / algorithms / programming side of things. When it comes to "ideal computing machines", Knuth in the 70s came up with the MIX computer model, and then, collaborating with designers of state-of-the-art RISC chips through the 90s, updated this with the modern MMIX model and its attendant assembly language MMIXAL. Meanwhile, Moore, having been using and refining Forth as a language, but using it on top of whatever processor happened to be in the computer he was programming, began to imagine a world in which the efficiency and value of stack-based programming were reflected in hardware. So he went on in the 80s to develop his own stack-based hardware chips, defining the term MISC (Minimal Instruction Set Computers) along the way, and ending up eventually with the first Forth chip, the MuP21. Both are brilliant men with keen insight into the art of programming and algorithms, and both work at the intersection between algorithms, programs, and bare metal hardware (i.e. hardware without the clutter of operating systems). Which leads me to the headlined question... Question:To what extent is it known (or believed) that Chuck Moore and Don Knuth had influence on each other's thoughts on ideal machines, or their work on algorithms?

    Read the article

  • Azure Blob storage defrag

    - by kaleidoscope
    The Blob Storage is really handy for storing temporary data structures during a scaled-out distributed processing. Yet, the lifespan of those data structures should not exceed the one of the underlying operation, otherwise clutter and dead data could potentially start filling up your Blob Storage Temporary data in cloud computing is very similar to memory collection in object oriented languages, when it's not done automatically by the framework, temp data tends to leak. In particular, in cloud computing,  it's pretty easy to end up with storage leaks due to: Collection omission. App crash. Service interruption. All those events cause garbage to accumulate into your Blob Storage. Then, it must be noted that for most cloud apps, I/O costs are usually predominant compared to pure storage costs. Enumerating through your whole Blob Storage to clean the garbage is likely to be an expensive solution. Lokesh, M

    Read the article

  • Willkommen in der Cloud. Aber nur mit den richtigen Standards.

    - by A&C Redaktion
    Cloud Computing ist das „In"-Thema, über das Anwender, Partner und Anbieter gleichermaßen heiß diskutieren. Reinhard Arnhold, Director Channel Sales, ist ein echter Kenner der Materie und zeigt im Video die unterschiedlichen Perspektiven auf, die ein ISV einnehmen kann. Die Geschäftsmodelle erfahren durch die Möglichkeit des Cludcomputings eine neue Dimension. Für welches Modell sich ISVs hierbei auch entscheiden, den richtigen Standard bei der Lösungsarchitektur zu wählen, das ist, so Reinhard Arnhold, eine der wichtigsten Erfolgsvoraussetzungen. Für ISVs, die aktuell noch keine Cloud Computing-fähigen Anwendungen haben, hat Reinhard Arnhold eine gute Botschaft. Oracle ist vorbereitet, mit der standardisierten Oracle Architektur den ISVs den Weg in die Cloud zu bahnen. Erlauben Sie ein kleines Wortspiel: Das ist der „Stairway to heaven". Es kann also ganz einfach sein, den geschäftlichen Himmel durch die Cloud zu erreichen.

    Read the article

< Previous Page | 32 33 34 35 36 37 38 39 40 41 42 43  | Next Page >