Search Results

Search found 34853 results on 1395 pages for 'object layout'.

Page 360/1395 | < Previous Page | 356 357 358 359 360 361 362 363 364 365 366 367  | Next Page >

  • AdvancedFormatProvider: Making string.format do more

    - by plblum
    When I have an integer that I want to format within the String.Format() and ToString(format) methods, I’m always forgetting the format symbol to use with it. That’s probably because its not very intuitive. Use {0:N0} if you want it with group (thousands) separators. text = String.Format("{0:N0}", 1000); // returns "1,000"   int value1 = 1000; text = value1.ToString("N0"); Use {0:D} or {0:G} if you want it without group separators. text = String.Format("{0:D}", 1000); // returns "1000"   int value2 = 1000; text2 = value2.ToString("D"); The {0:D} is especially confusing because Microsoft gives the token the name “Decimal”. I thought it reasonable to have a new format symbol for String.Format, "I" for integer, and the ability to tell it whether it shows the group separators. Along the same lines, why not expand the format symbols for currency ({0:C}) and percent ({0:P}) to let you omit the currency or percent symbol, omit the group separator, and even to drop the decimal part when the value is equal to the whole number? My solution is an open source project called AdvancedFormatProvider, a group of classes that provide the new format symbols, continue to support the rest of the native symbols and makes it easy to plug in additional format symbols. Please visit https://github.com/plblum/AdvancedFormatProvider to learn about it in detail and explore how its implemented. The rest of this post will explore some of the concepts it takes to expand String.Format() and ToString(format). AdvancedFormatProvider benefits: Supports {0:I} token for integers. It offers the {0:I-,} option to omit the group separator. Supports {0:C} token with several options. {0:C-$} omits the currency symbol. {0:C-,} omits group separators, and {0:C-0} hides the decimal part when the value would show “.00”. For example, 1000.0 becomes “$1000” while 1000.12 becomes “$1000.12”. Supports {0:P} token with several options. {0:P-%} omits the percent symbol. {0:P-,} omits group separators, and {0:P-0} hides the decimal part when the value would show “.00”. For example, 1 becomes “100 %” while 1.1223 becomes “112.23 %”. Provides a plug in framework that lets you create new formatters to handle specific format symbols. You register them globally so you can just pass the AdvancedFormatProvider object into String.Format and ToString(format) without having to figure out which plug ins to add. text = String.Format(AdvancedFormatProvider.Current, "{0:I}", 1000); // returns "1,000" text2 = String.Format(AdvancedFormatProvider.Current, "{0:I-,}", 1000); // returns "1000" text3 = String.Format(AdvancedFormatProvider.Current, "{0:C-$-,}", 1000.0); // returns "1000.00" The IFormatProvider parameter Microsoft has made String.Format() and ToString(format) format expandable. They each take an additional parameter that takes an object that implements System.IFormatProvider. This interface has a single member, the GetFormat() method, which returns an object that knows how to convert the format symbol and value into the desired string. There are already a number of web-based resources to teach you about IFormatProvider and the companion interface ICustomFormatter. I’ll defer to them if you want to dig more into the topic. The only thing I want to point out is what I think are implementation considerations. Why GetFormat() always tests for ICustomFormatter When you see examples of implementing IFormatProviders, the GetFormat() method always tests the parameter against the ICustomFormatter type. Why is that? public object GetFormat(Type formatType) { if (formatType == typeof(ICustomFormatter)) return this; else return null; } The value of formatType is already predetermined by the .net framework. String.Format() uses the StringBuilder.AppendFormat() method to parse the string, extracting the tokens and calling GetFormat() with the ICustomFormatter type. (The .net framework also calls GetFormat() with the types of System.Globalization.NumberFormatInfo and System.Globalization.DateTimeFormatInfo but these are exclusive to how the System.Globalization.CultureInfo class handles its implementation of IFormatProvider.) Your code replaces instead of expands I would have expected the caller to pass in the format string to GetFormat() to allow your code to determine if it handles the request. My vision would be to return null when the format string is not supported. The caller would iterate through IFormatProviders until it finds one that handles the format string. Unfortunatley that is not the case. The reason you write GetFormat() as above is because the caller is expecting an object that handles all formatting cases. You are effectively supposed to write enough code in your formatter to handle your new cases and call .net functions (like String.Format() and ToString(format)) to handle the original cases. Its not hard to support the native functions from within your ICustomFormatter.Format function. Just test the format string to see if it applies to you. If not, call String.Format() with a token using the format passed in. public string Format(string format, object arg, IFormatProvider formatProvider) { if (format.StartsWith("I")) { // handle "I" formatter } else return String.Format(formatProvider, "{0:" + format + "}", arg); } Formatters are only used by explicit request Each time you write a custom formatter (implementer of ICustomFormatter), it is not used unless you explicitly passed an IFormatProvider object that supports your formatter into String.Format() or ToString(). This has several disadvantages: Suppose you have several ICustomFormatters. In order to have all available to String.Format() and ToString(format), you have to merge their code and create an IFormatProvider to return an instance of your new class. You have to remember to utilize the IFormatProvider parameter. Its easy to overlook, especially when you have existing code that calls String.Format() without using it. Some APIs may call String.Format() themselves. If those APIs do not offer an IFormatProvider parameter, your ICustomFormatter will not be available to them. The AdvancedFormatProvider solves the first two of these problems by providing a plug-in architecture.

    Read the article

  • Why do I get a null pointer exception from TabWidget?

    - by rushinge
    I'm writing an android program in which I have an activity that uses tabs. The Activity public class UnitActivity extends TabActivity { @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); TabHost tabHost = getTabHost(); TabSpec spec; Resources res = getResources(); LayoutInflater.from(this).inflate(R.layout.unit_view, tabHost.getTabContentView(), true); spec = tabHost.newTabSpec("controls"); spec.setIndicator("Control", res.getDrawable(R.drawable.ic_tab_equalizer)); spec.setContent(R.id.txtview); tabHost.addTab(spec); } } The XML referenced by R.layout.unit_view <?xml version="1.0" encoding="utf-8"?> <TabHost xmlns:android="http://schemas.android.com/apk/res/android" android:id="@android:id/tabhost" android:layout_width="fill_parent" android:layout_height="fill_parent"> <LinearLayout android:layout_width="fill_parent" android:layout_height="fill_parent" android:padding="5dp"> <TabWidget android:id="@android:id/tabs" android:layout_width="fill_parent" android:layout_height="wrap_content"/> <FrameLayout android:id="@android:id/tabcontent" android:layout_width="fill_parent" android:layout_height="fill_parent" android:padding="5dp"> <TextView android:id="@+id/txtview" android:layout_width="fill_parent" android:layout_height="fill_parent" android:gravity="bottom" android:text="nullpointer this!" /> </FrameLayout> </LinearLayout> </TabHost> As far as I can see I'm doing the same thing I see in the tabs1 api sample from the android sdk. I've tried "getLayoutInflator()" instead of "LayoutInflator.from(this)" with the same result. If I replace the LayoutInflater line with "setContentView(R.layout.unit_view)" my program doesn't crash with a null pointer exception but my content is completely blank and empty. I get the tab and that's it. I've checked to make sure R.layout.unit_view and tabHost are not null when it runs the LayoutInflater line and they seem to be fine. They're defenitely not null. I've also checked to make sure LayoutInflater.from(this) returns a valid layout inflater object and it does. The logcat indicating the error says E/AndroidRuntime( 541): java.lang.NullPointerException E/AndroidRuntime( 541): at android.widget.TabWidget.dispatchDraw(TabWidget.java:206) E/AndroidRuntime( 541): at android.view.ViewGroup.drawChild(ViewGroup.java:1529) E/AndroidRuntime( 541): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1258) E/AndroidRuntime( 541): at android.view.ViewGroup.drawChild(ViewGroup.java:1529) E/AndroidRuntime( 541): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1258) E/AndroidRuntime( 541): at android.view.ViewGroup.drawChild(ViewGroup.java:1529) E/AndroidRuntime( 541): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1258) E/AndroidRuntime( 541): at android.view.ViewGroup.drawChild(ViewGroup.java:1529) E/AndroidRuntime( 541): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1258) E/AndroidRuntime( 541): at android.view.ViewGroup.drawChild(ViewGroup.java:1529) E/AndroidRuntime( 541): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1258) E/AndroidRuntime( 541): at android.view.ViewGroup.drawChild(ViewGroup.java:1529) E/AndroidRuntime( 541): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1258) E/AndroidRuntime( 541): at android.view.View.draw(View.java:6538) E/AndroidRuntime( 541): at android.widget.FrameLayout.draw(FrameLayout.java:352) E/AndroidRuntime( 541): at android.view.ViewGroup.drawChild(ViewGroup.java:1531) E/AndroidRuntime( 541): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1258) E/AndroidRuntime( 541): at android.view.ViewGroup.drawChild(ViewGroup.java:1529) E/AndroidRuntime( 541): at android.view.ViewGroup.dispatchDraw(ViewGroup.java:1258) E/AndroidRuntime( 541): at android.view.View.draw(View.java:6538) E/AndroidRuntime( 541): at android.widget.FrameLayout.draw(FrameLayout.java:352) E/AndroidRuntime( 541): at com.android.internal.policy.impl.PhoneWindow$DecorView.draw(PhoneWindow.java:1830) E/AndroidRuntime( 541): at android.view.ViewRoot.draw(ViewRoot.java:1349) E/AndroidRuntime( 541): at android.view.ViewRoot.performTraversals(ViewRoot.java:1114) E/AndroidRuntime( 541): at android.view.ViewRoot.handleMessage(ViewRoot.java:1633) E/AndroidRuntime( 541): at android.os.Handler.dispatchMessage(Handler.java:99) E/AndroidRuntime( 541): at android.os.Looper.loop(Looper.java:123) E/AndroidRuntime( 541): at android.app.ActivityThread.main(ActivityThread.java:4363) E/AndroidRuntime( 541): at java.lang.reflect.Method.invokeNative(Native Method) E/AndroidRuntime( 541): at java.lang.reflect.Method.invoke(Method.java:521) E/AndroidRuntime( 541): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:860) E/AndroidRuntime( 541): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:618) E/AndroidRuntime( 541): at dalvik.system.NativeStart.main(Native Method) I/Process ( 61): Sending signal. PID: 541 SIG: 3 I/dalvikvm( 541): threadid=7: reacting to signal 3 I/dalvikvm( 541): Wrote stack trace to '/data/anr/traces.txt' Anybody have any idea how I can get this content into a tab without crashing my application? My actual program is more complex and has more than one tab but I simplified it down to this in an attempt to find out why it's crashing but it still crashes and I don't know why. If I don't use LayoutInflator my program doesn't crash but I don't get any content either, just tabs.

    Read the article

  • Gnome Do not Launching

    - by PyRulez
    When I try running gnome do, I get this. chris@Chris-Ubuntu-Laptop:~$ gnome-do pgrep: invalid user name: -u and it is not writable Trying sudo: chris@Chris-Ubuntu-Laptop:~$ sudo gnome-do [NetworkService] Could not initialize Network Manager dbus: Unable to open the session message bus. [Error 17:54:30.122] [SystemService] Could not initialize dbus: Unable to open the session message bus. (Do:2401): Wnck-CRITICAL **: wnck_set_client_type got called multiple times. (Do:2401): libdo-WARNING **: Binding '<Super>space' failed! [Error 17:54:30.649] [AbstractKeyBindingService] Key "" is already mapped. Tomboy.NotesItemSource "Tomboy Notes" encountered an error in UpdateItems: System.TypeInitializationException: An exception was thrown by the type initializer for Tomboy.TomboyDBus ---> System.Exception: Unable to open the session message bus. ---> System.ArgumentNullException: Argument cannot be null. Parameter name: address at NDesk.DBus.Bus.Open (System.String address) [0x00000] in <filename unknown>:0 at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 at Tomboy.TomboyDBus..cctor () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at Tomboy.NotesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Firefox.PlacesItemSource "Firefox Places" encountered an error in UpdateItems: System.InvalidCastException: Cannot cast from source type to destination type. at Mono.Data.Sqlite.SqliteDataReader.VerifyType (Int32 i, DbType typ) [0x00000] in <filename unknown>:0 at Mono.Data.Sqlite.SqliteDataReader.GetString (Int32 i) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource+<LoadPlaceItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem].AddEnumerable (IEnumerable`1 enumerable) [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem]..ctor (IEnumerable`1 collection) [0x00000] in <filename unknown>:0 at System.Linq.Enumerable.ToArray[PlaceItem] (IEnumerable`1 source) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Do.Universe.Linux.GNOMESpecialLocationsItemSource "GNOME Special Locations" encountered an error in UpdateItems: System.IO.FileNotFoundException: Could not find file "/root/.gtk-bookmarks". File name: '/root/.gtk-bookmarks' at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize, Boolean anonymous, FileOptions options) [0x00000] in <filename unknown>:0 at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.FileStream:.ctor (string,System.IO.FileMode,System.IO.FileAccess,System.IO.FileShare) at System.IO.File.OpenRead (System.String path) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path, System.Text.Encoding encoding, Boolean detectEncodingFromByteOrderMarks, Int32 bufferSize) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.StreamReader:.ctor (string) at Do.Universe.Linux.GNOMESpecialLocationsItemSource+<ReadBookmarkItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at Do.Universe.Linux.GNOMESpecialLocationsItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . ^[^\Full thread dump: "<unnamed thread>" tid=0x0xb7570700 this=0x0x56f18 thread handle 0x403 state : not waiting owns () at (wrapper managed-to-native) Mono.Unix.Native.Syscall.read (int,intptr,ulong) <0xffffffff> at Mono.Unix.Native.Syscall.read (int,void*,ulong) <0x00023> at Mono.Unix.UnixStream.Read (byte[],int,int) <0x0008b> at NDesk.DBus.Connection.ReadMessage () <0x0003c> at NDesk.DBus.Connection.Iterate () <0x0001b> at NDesk.DBus.BusG/<Init>c__AnonStorey0.<>m__0 (intptr,NDesk.GLib.IOCondition,intptr) <0x00033> at (wrapper native-to-managed) NDesk.DBus.BusG/<Init>c__AnonStorey0.<>m__0 (intptr,NDesk.GLib.IOCondition,intptr) <0xffffffff> at (wrapper managed-to-native) Gtk.Clipboard.gtk_clipboard_wait_is_text_available (intptr) <0xffffffff> at Gtk.Clipboard.WaitIsTextAvailable () <0x00017> at Do.Universe.SelectedTextItem.UpdateSelection (object,System.EventArgs) <0x00027> at Do.Platform.AbstractApplicationService.OnSummoned () <0x00025> at Do.Platform.ApplicationService.<ApplicationService>m__31 (object,System.EventArgs) <0x00013> at Do.Core.Controller.OnSummoned () <0x00025> at Do.Core.Controller.Summon () <0x00027> at Do.Do.Main (string[]) <0x001eb> at (wrapper runtime-invoke) <Module>.runtime_invoke_void_object (object,intptr,intptr,intptr) <0xffffffff> "<unnamed thread>" tid=0x0xb2c81b40 this=0x0x194150 thread handle 0x412 state : interrupted state owns () at (wrapper managed-to-native) System.IO.InotifyWatcher.ReadFromFD (intptr,byte[],intptr) <0xffffffff> at System.IO.InotifyWatcher.Monitor () <0x0005f> at System.Threading.Thread.StartInternal () <0x00057> at (wrapper runtime-invoke) object.runtime_invoke_void__this__ (object,intptr,intptr,intptr) <0xffffffff> "Universe Update Dispatcher" tid=0x0xb29ffb40 this=0x0x569d8 thread handle 0x41b state : interrupted state owns () at (wrapper managed-to-native) System.Threading.WaitHandle.WaitOne_internal (System.Threading.WaitHandle,intptr,int,bool) <0xffffffff> at System.Threading.WaitHandle.WaitOne (System.TimeSpan,bool) <0x00133> at System.Threading.WaitHandle.WaitOne (System.TimeSpan) <0x00022> at Do.Core.UniverseManager.UniverseUpdateLoop () <0x0007a> at System.Threading.Thread.StartInternal () <0x00057> at (wrapper runtime-invoke) object.runtime_invoke_void__this__ (object,intptr,intptr,intptr) <0xffffffff> Tomboy.NotesItemSource "Tomboy Notes" encountered an error in UpdateItems: System.TypeInitializationException: An exception was thrown by the type initializer for Tomboy.TomboyDBus ---> System.Exception: Unable to open the session message bus. ---> System.ArgumentNullException: Argument cannot be null. Parameter name: address at NDesk.DBus.Bus.Open (System.String address) [0x00000] in <filename unknown>:0 at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at NDesk.DBus.Bus.get_Session () [0x00000] in <filename unknown>:0 at Tomboy.TomboyDBus..cctor () [0x00000] in <filename unknown>:0 --- End of inner exception stack trace --- at Tomboy.NotesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Firefox.PlacesItemSource "Firefox Places" encountered an error in UpdateItems: System.InvalidCastException: Cannot cast from source type to destination type. at Mono.Data.Sqlite.SqliteDataReader.VerifyType (Int32 i, DbType typ) [0x00000] in <filename unknown>:0 at Mono.Data.Sqlite.SqliteDataReader.GetString (Int32 i) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource+<LoadPlaceItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem].AddEnumerable (IEnumerable`1 enumerable) [0x00000] in <filename unknown>:0 at System.Collections.Generic.List`1[Firefox.PlaceItem]..ctor (IEnumerable`1 collection) [0x00000] in <filename unknown>:0 at System.Linq.Enumerable.ToArray[PlaceItem] (IEnumerable`1 source) [0x00000] in <filename unknown>:0 at Firefox.PlacesItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . Do.Universe.Linux.GNOMESpecialLocationsItemSource "GNOME Special Locations" encountered an error in UpdateItems: System.IO.FileNotFoundException: Could not find file "/root/.gtk-bookmarks". File name: '/root/.gtk-bookmarks' at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share, Int32 bufferSize, Boolean anonymous, FileOptions options) [0x00000] in <filename unknown>:0 at System.IO.FileStream..ctor (System.String path, FileMode mode, FileAccess access, FileShare share) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.FileStream:.ctor (string,System.IO.FileMode,System.IO.FileAccess,System.IO.FileShare) at System.IO.File.OpenRead (System.String path) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path, System.Text.Encoding encoding, Boolean detectEncodingFromByteOrderMarks, Int32 bufferSize) [0x00000] in <filename unknown>:0 at System.IO.StreamReader..ctor (System.String path) [0x00000] in <filename unknown>:0 at (wrapper remoting-invoke-with-check) System.IO.StreamReader:.ctor (string) at Do.Universe.Linux.GNOMESpecialLocationsItemSource+<ReadBookmarkItems>c__Iterator3.MoveNext () [0x00000] in <filename unknown>:0 at Do.Universe.Linux.GNOMESpecialLocationsItemSource.UpdateItems () [0x00000] in <filename unknown>:0 at Do.Universe.Safe.SafeItemSource.UpdateItems () [0x00000] in <filename unknown>:0 . It stops when I try my key combination, ctrl-alt-. It does not pop up though.

    Read the article

  • How accurate is "Business logic should be in a service, not in a model"?

    - by Jeroen Vannevel
    Situation Earlier this evening I gave an answer to a question on StackOverflow. The question: Editing of an existing object should be done in repository layer or in service? For example if I have a User that has debt. I want to change his debt. Should I do it in UserRepository or in service for example BuyingService by getting an object, editing it and saving it ? My answer: You should leave the responsibility of mutating an object to that same object and use the repository to retrieve this object. Example situation: class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } A comment I received: Business logic should really be in a service. Not in a model. What does the internet say? So, this got me searching since I've never really (consciously) used a service layer. I started reading up on the Service Layer pattern and the Unit Of Work pattern but so far I can't say I'm convinced a service layer has to be used. Take for example this article by Martin Fowler on the anti-pattern of an Anemic Domain Model: There are objects, many named after the nouns in the domain space, and these objects are connected with the rich relationships and structure that true domain models have. The catch comes when you look at the behavior, and you realize that there is hardly any behavior on these objects, making them little more than bags of getters and setters. Indeed often these models come with design rules that say that you are not to put any domain logic in the the domain objects. Instead there are a set of service objects which capture all the domain logic. These services live on top of the domain model and use the domain model for data. (...) The logic that should be in a domain object is domain logic - validations, calculations, business rules - whatever you like to call it. To me, this seemed exactly what the situation was about: I advocated the manipulation of an object's data by introducing methods inside that class that do just that. However I realize that this should be a given either way, and it probably has more to do with how these methods are invoked (using a repository). I also had the feeling that in that article (see below), a Service Layer is more considered as a façade that delegates work to the underlying model, than an actual work-intensive layer. Application Layer [his name for Service Layer]: Defines the jobs the software is supposed to do and directs the expressive domain objects to work out problems. The tasks this layer is responsible for are meaningful to the business or necessary for interaction with the application layers of other systems. This layer is kept thin. It does not contain business rules or knowledge, but only coordinates tasks and delegates work to collaborations of domain objects in the next layer down. It does not have state reflecting the business situation, but it can have state that reflects the progress of a task for the user or the program. Which is reinforced here: Service interfaces. Services expose a service interface to which all inbound messages are sent. You can think of a service interface as a façade that exposes the business logic implemented in the application (typically, logic in the business layer) to potential consumers. And here: The service layer should be devoid of any application or business logic and should focus primarily on a few concerns. It should wrap Business Layer calls, translate your Domain in a common language that your clients can understand, and handle the communication medium between server and requesting client. This is a serious contrast to other resources that talk about the Service Layer: The service layer should consist of classes with methods that are units of work with actions that belong in the same transaction. Or the second answer to a question I've already linked: At some point, your application will want some business logic. Also, you might want to validate the input to make sure that there isn't something evil or nonperforming being requested. This logic belongs in your service layer. "Solution"? Following the guidelines in this answer, I came up with the following approach that uses a Service Layer: class UserController : Controller { private UserService _userService; public UserController(UserService userService){ _userService = userService; } public ActionResult MakeHimPay(string username, int amount) { _userService.MakeHimPay(username, amount); return RedirectToAction("ShowUserOverview"); } public ActionResult ShowUserOverview() { return View(); } } class UserService { private IUserRepository _userRepository; public UserService(IUserRepository userRepository) { _userRepository = userRepository; } public void MakeHimPay(username, amount) { _userRepository.GetUserByName(username).makePayment(amount); } } class UserRepository { public User GetUserByName(string name){ // Get appropriate user from database } } class User { private int debt; // debt in cents private string name; // getters public void makePayment(int cents){ debt -= cents; } } Conclusion All together not much has changed here: code from the controller has moved to the service layer (which is a good thing, so there is an upside to this approach). However this doesn't look like it had anything to do with my original answer. I realize design patterns are guidelines, not rules set in stone to be implemented whenever possible. Yet I have not found a definitive explanation of the service layer and how it should be regarded. Is it a means to simply extract logic from the controller and put it inside a service instead? Is it supposed to form a contract between the controller and the domain? Should there be a layer between the domain and the service layer? And, last but not least: following the original comment Business logic should really be in a service. Not in a model. Is this correct? How would I introduce my business logic in a service instead of the model?

    Read the article

  • Exception Handling Differences Between 32/64 Bit

    - by Alois Kraus
    I do quite a bit of debugging .NET applications but from time to time I see things that are impossible (at a first look). I may ask you dear reader what your mental exception handling model is. Exception handling is easy after all right? Lets suppose the following code:         private void F1(object sender, EventArgs e)         {             try             {                 F2();             }             catch (Exception ex)             {                 throw new Exception("even worse Exception");             }           }           private void F2()         {             try             {                 F3();             }             finally             {                 throw new Exception("other exception");             }         }           private void F3()         {             throw new NotImplementedException();         }   What will the call stack look like when you break into the catch(Exception) clause in Windbg (32 and 64 bit on .NET 3.5 SP1)? The mental model I have is that when an exception is thrown the stack frames are unwound until the catch handler can execute. An exception does propagate the call chain upwards.   So when F3 does throw an exception the control flow will resume at the finally handler in F2 which does throw another exception hiding the original one (that is nasty) and then the new Exception will be catched in F1 where the catch handler is executed. So we should see in the catch handler in F1 as call stack only the F1 stack frame right? Well lets try it out in Windbg. For this I created a simple Windows Forms application with one button which does execute the F1 method in its click handler. When you compile the application for 64 bit and the catch handler is reached you will find with the following commands in Windbg   Load sos extension from the same path where mscorwks was loaded in the current process .loadby sos mscorwks   Beak on clr exceptions sxe clr   Continue execution g   Dump mixed call stack container C++  and .NET Stacks interleaved 0:000> !DumpStack OS Thread Id: 0x1d8 (0) Child-SP         RetAddr          Call Site 00000000002c88c0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002c8990 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002c8a60 000007ff005dd7f4 mscorwks!JIT_Throw+0x130 00000000002c8c10 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0xb4 00000000002c8c60 000007fefa661012 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002c8d60 000007fefa711a72 mscorwks!ExceptionTracker::CallCatchHandler+0x9e 00000000002c8df0 0000000077b055cd mscorwks!ProcessCLRException+0x25e 00000000002c8e90 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002c8ec0 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002c9560 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002c9a70 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002c9b10 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002c9b40 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002ca220 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002ca7e0 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002ca8b0 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002ca980 000007ff005dd8df mscorwks!JIT_Throw+0x130 00000000002cab30 000007fefa6942e1 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x9f 00000000002cab80 000007fefa71b5b3 mscorwks!ExceptionTracker::CallHandler+0x145 00000000002cac80 000007fefa70dcd0 mscorwks!ExceptionTracker::ProcessManagedCallFrame+0x683 00000000002caed0 000007fefa7119af mscorwks!ExceptionTracker::ProcessOSExceptionNotification+0x430 00000000002cbd90 0000000077b055cd mscorwks!ProcessCLRException+0x19b 00000000002cbe30 0000000077ae55f8 ntdll!RtlpExecuteHandlerForUnwind+0xd 00000000002cbe60 000007fefa637c1a ntdll!RtlUnwindEx+0x539 00000000002cc500 000007fefa711a21 mscorwks!ClrUnwindEx+0x36 00000000002cca10 0000000077b0554d mscorwks!ProcessCLRException+0x20d 00000000002ccab0 0000000077ae5d1c ntdll!RtlpExecuteHandlerForException+0xd 00000000002ccae0 0000000077b1fe48 ntdll!RtlDispatchException+0x3cb 00000000002cd1c0 000007fefdaeaa7d ntdll!KiUserExceptionDispatcher+0x2e 00000000002cd780 000007fefa68f0bd KERNELBASE!RaiseException+0x39 00000000002cd850 000007fefac42ed0 mscorwks!RaiseTheExceptionInternalOnly+0x295 00000000002cd920 000007ff005dd968 mscorwks!JIT_Throw+0x130 00000000002cdad0 000007ff005dd875 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F3()+0x48 00000000002cdb10 000007ff005dd786 WindowsFormsApplication1!WindowsFormsApplication1.Form1.F2()+0x35 00000000002cdb60 000007ff005dbe6a WindowsFormsApplication1!WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)+0x46 00000000002cdbc0 000007ff005dd452 System_Windows_Forms!System.Windows.Forms.Control.OnClick(System.EventArgs)+0x5a   Hm okaaay. I see my method F1 two times in this call stack. Looks like we did get some recursion bug. But that can´t be given the obvious code above. Let´s try the same thing in a 32 bit process.  0:000> !DumpStack OS Thread Id: 0x33e4 (0) Current frame: KERNELBASE!RaiseException+0x58 ChildEBP RetAddr  Caller,Callee 0028ed38 767db727 KERNELBASE!RaiseException+0x58, calling ntdll!RtlRaiseException 0028ed4c 68b9008c mscorwks!Binder::RawGetClass+0x20, calling mscorwks!Module::LookupTypeDef 0028ed5c 68b904ff mscorwks!Binder::IsClass+0x23, calling mscorwks!Binder::RawGetClass 0028ed68 68bfb96f mscorwks!Binder::IsException+0x14, calling mscorwks!Binder::IsClass 0028ed78 68bfb996 mscorwks!IsExceptionOfType+0x23, calling mscorwks!Binder::IsException 0028ed80 68bfbb1c mscorwks!RaiseTheExceptionInternalOnly+0x2a8, calling KERNEL32!RaiseExceptionStub 0028eda8 68ba0713 mscorwks!Module::ResolveStringRef+0xe0, calling mscorwks!BaseDomain::GetStringObjRefPtrFromUnicodeString 0028edc8 68b91e8d mscorwks!SetObjectReferenceUnchecked+0x19 0028ede0 68c8e910 mscorwks!JIT_Throw+0xfc, calling mscorwks!RaiseTheExceptionInternalOnly 0028ee44 68c8e734 mscorwks!JIT_StrCns+0x22, calling mscorwks!LazyMachStateCaptureState 0028ee54 68c8e865 mscorwks!JIT_Throw+0x1e, calling mscorwks!LazyMachStateCaptureState 0028eea4 02ffaecd (MethodDesc 0x7af08c +0x7d WindowsFormsApplication1.Form1.F1(System.Object, System.EventArgs)), calling mscorwks!JIT_Throw 0028eeec 02ffaf19 (MethodDesc 0x7af098 +0x29 WindowsFormsApplication1.Form1.F2()), calling 06370634 0028ef58 02ffae37 (MethodDesc 0x7a7bb0 +0x4f System.Windows.Forms.Control.OnClick(System.EventArgs))   That does look more familar. The call stack has been unwound and we do see only some frames into the history where the debugger was smart enough to find out that we have called F2 from F1. The exception handling on 64 bit systems does work quite differently which seems to have the nice property to remember the called methods not only during the first pass of exception filter clauses (during first pass all catch handler are called if they are going to catch the exception which is about to be thrown)  but also when the actual stack unwind has taken place. This makes it possible to follow not only the call stack right at the moment but also to look into the “history” of the catch/finally clauses. In a 64 bit process you only need to look at the ExceptionTracker to find out if a catch or finally handler was called. The two frames ProcessManagedCallFrame/CallHandler does indicate a finally clause whereas CallCatchHandler/CallHandler indicates a catch clause. That was a interesting one. Oh and by the way if you manage to load the Microsoft symbols you can also find out the hidden exception which. When you encounter in the call stack a line 0016eb34 75b79617 KERNELBASE!RaiseException+0x58 ====> Exception Code e0434f4d cxr@16e850 exr@16e838 Then it is a good idea to execute .exr 16e838 !analyze –v to find out more. In the managed world it is even easier since we can dump the objects allocated on the stack which have not yet been garbage collected to look at former method parameters. The command !dso which is the abbreviation for dump stack objects will give you 0:000> !dso OS Thread Id: 0x46c (0) ESP/REG  Object   Name 0016dd4c 020737f0 System.Exception 0016dd98 020737f0 System.Exception 0016dda8 01f5c6cc System.Windows.Forms.Button 0016ddac 01f5d2b8 System.EventHandler 0016ddb0 02071744 System.Windows.Forms.MouseEventArgs 0016ddc0 01f5d2b8 System.EventHandler 0016ddcc 01f5c6cc System.Windows.Forms.Button 0016dddc 020737f0 System.Exception 0016dde4 01f5d2b8 System.EventHandler 0016ddec 02071744 System.Windows.Forms.MouseEventArgs 0016de40 020737f0 System.Exception 0016de80 02071744 System.Windows.Forms.MouseEventArgs 0016de8c 01f5d2b8 System.EventHandler 0016de90 01f5c6cc System.Windows.Forms.Button 0016df10 02073784 System.SByte[] 0016df5c 02073684 System.NotImplementedException 0016e2a0 02073684 System.NotImplementedException 0016e2e8 01ed69f4 System.Resources.ResourceManager From there it is easy to do 0:000> !pe 02073684 Exception object: 02073684 Exception type: System.NotImplementedException Message: Die Methode oder der Vorgang sind nicht implementiert. InnerException: <none> StackTrace (generated):     SP       IP       Function     0016ECB0 006904AD WindowsFormsApplication2!WindowsFormsApplication2.Form1.F3()+0x35     0016ECC0 00690411 WindowsFormsApplication2!WindowsFormsApplication2.Form1.F2()+0x29     0016ECF0 0069038F WindowsFormsApplication2!WindowsFormsApplication2.Form1.F1(System.Object, System.EventArgs)+0x3f StackTraceString: <none> HResult: 80004001 to see the former exception. That´s all for today.

    Read the article

  • Calling different layers from the same class

    - by khalid
    Hi, I am here to seek some help with my code which i am facing a dead end road with. I'm trying to pass values from screen1.java using Intent to screen2.java. Passing the values is fine and I managed to get through it; however, when I check using if statement the program crash down. Here are my files, plzzzzzzzzzzz help screen1.java package test.android; import android.app.Activity; import android.content.Intent; import android.os.Bundle; import android.view.View; import android.widget.Button; public class screen1 extends Activity { static String strKey = "Hello"; static final String strValue = "Hello"; public void onCreate(Bundle icicle) { super.onCreate(icicle); setContentView(R.layout.screen1); //** button A Button A = (Button) findViewById(R.id.btnClickA); A.setOnClickListener(new View.OnClickListener() { public void onClick(View arg0) { Intent i = new Intent(screen1.this, screen2.class); strKey = "NAME"; i.setClassName("packageName", "packageName.IntentClass"); String term = "Hello"; i.putExtra("packageName.term", term); //i.putExtra(strKey, strValue); startActivity(i); } }); //** //** button B Button B = (Button) findViewById(R.id.btnClickB); B.setOnClickListener(new View.OnClickListener() { public void onClick(View arg0) { Intent i = new Intent(screen1.this, screen3.class); startActivity(i); } }); //** } } screen2.java package test.android; import android.app.Activity; import android.os.Bundle; import android.view.View; import android.widget.Button; public class screen2 extends Activity { public void onCreate(Bundle icicle) { Bundle extras = getIntent().getExtras(); String term = extras.getString("packageName.term"); System.out.println("--- Name is -->"+ term); if(term.equalsIgnoreCase("Hello") || term.equalsIgnoreCase("Name")){ super.onCreate(icicle); setContentView(R.layout.screen3); Button b = (Button) findViewById(R.id.btnClick3); b.setOnClickListener(new View.OnClickListener() { public void onClick(View arg0) { setResult(RESULT_OK); finish(); } }); } else { super.onCreate(icicle); setContentView(R.layout.screen2); Button b = (Button) findViewById(R.id.btnClick2); b.setOnClickListener(new View.OnClickListener() { public void onClick(View arg0) { setResult(RESULT_OK); finish(); } }); } // DOES NOT WORK !!!!!!!!! System.out.println("--- Name is --"+ term); } } Layouts: screen1.xml screen2.xml screen3.xml AndroidManifest.xml <activity android:name="screen1" android:label="SCREEN 1"> <intent-filter> <action android:name="android.intent.action.MAIN" /> <category android:name="android.intent.category.LAUNCHER" /> </intent-filter> </activity> <activity android:name="screen2" android:label="SCREEN 2"> </activity> <activity android:name="screen3" android:label="SCREEN 3"> </activity> ===== The error is caused by these lines of code in screen2.java: if(term.equalsIgnoreCase("Hello") || term.equalsIgnoreCase("Name")){ super.onCreate(icicle); setContentView(R.layout.screen3); Button b = (Button) findViewById(R.id.btnClick3); b.setOnClickListener(new View.OnClickListener() { public void onClick(View arg0) { setResult(RESULT_OK); finish(); } }); } else { super.onCreate(icicle); setContentView(R.layout.screen2); Button b = (Button) findViewById(R.id.btnClick2); b.setOnClickListener(new View.OnClickListener() { public void onClick(View arg0) { setResult(RESULT_OK); finish(); } }); } **notice if I get rid of the entire IF statement and go with only the ELSE the program works fine.

    Read the article

  • Control-Break Style ADF Table - Comparing Values with Previous Row

    - by Steven Davelaar
    Sometimes you need to display data in an ADF Faces table in a control-break layout style, where rows should be "indented" when the break column has the same value as in the previous row. In the screen shot below, you see how the table breaks on both the RegionId column as well as the CountryId column. To implement this I didn't use fancy SQL statements. The table is based on a straightforward Locations ViewObject that is based on the Locations entity object and the Countries reference entity object, and the join query was automatically created by adding the reference EO. To get the indentation in the ADF Faces table, we simple use two rendered properties on the RegionId and CountryId outputText items:  <af:column sortProperty="RegionId" sortable="false"            headerText="#{bindings.LocationsView1.hints.RegionId.label}"            id="c5">   <af:outputText value="#{row.RegionId}" id="ot2"                  rendered="#{!CompareWithPreviousRowBean['RegionId']}">     <af:convertNumber groupingUsed="false"                       pattern="#{bindings.LocationsView1.hints.RegionId.format}"/>   </af:outputText> </af:column> <af:column sortProperty="CountryId" sortable="false"            headerText="#{bindings.LocationsView1.hints.CountryId.label}"            id="c1">   <af:outputText value="#{row.CountryId}" id="ot5"                  rendered="#{!CompareWithPreviousRowBean['CountryId']}"/> </af:column> The CompareWithPreviousRowBean managed bean is defined in request scope and is a generic bean that can be used for all the tables in your application that needs this layout style. As you can see the bean is a Map-style bean where we pass in the name of the attribute that should be compared with the previous row. The get method in the bean that is called returns boolean false when the attribute has the same value in the same row. Here is the code of the get method:  public Object get(Object key) {   String attrName = (String) key;   boolean isSame = false;   // get the currently processed row, using row expression #{row}   JUCtrlHierNodeBinding row = (JUCtrlHierNodeBinding) resolveExpression(getRowExpression());   JUCtrlHierBinding tableBinding = row.getHierBinding();   int rowRangeIndex = row.getViewObject().getRangeIndexOf(row.getRow());   Object currentAttrValue = row.getRow().getAttribute(attrName);   if (rowRangeIndex > 0)   {     Object previousAttrValue = tableBinding.getAttributeFromRow(rowRangeIndex - 1, attrName);     isSame = currentAttrValue != null && currentAttrValue.equals(previousAttrValue);   }   else if (tableBinding.getRangeStart() > 0)   {     // previous row is in previous range, we create separate rowset iterator,     // so we can change the range start without messing up the table rendering which uses     // the default rowset iterator     int absoluteIndexPreviousRow = tableBinding.getRangeStart() - 1;     RowSetIterator rsi = null;     try     {       rsi = tableBinding.getViewObject().getRowSet().createRowSetIterator(null);       rsi.setRangeStart(absoluteIndexPreviousRow);       Row previousRow = rsi.getRowAtRangeIndex(0);       Object previousAttrValue = previousRow.getAttribute(attrName);       isSame = currentAttrValue != null && currentAttrValue.equals(previousAttrValue);     }     finally     {       rsi.closeRowSetIterator();     }   }   return isSame; } The row expression defaults to #{row} but this can be changed through the rowExpression  managed property of the bean.  You can download the sample application here.

    Read the article

  • Why you need to learn async in .NET

    - by PSteele
    I had an opportunity to teach a quick class yesterday about what’s new in .NET 4.0.  One of the topics was the TPL (Task Parallel Library) and how it can make async programming easier.  I also stressed that this is the direction Microsoft is going with for C# 5.0 and learning the TPL will greatly benefit their understanding of the new async stuff.  We had a little time left over and I was able to show some code that uses the Async CTP to accomplish some stuff, but it wasn’t a simple demo that you could jump in to and understand so I thought I’d thrown one together and put it in a blog post. The entire solution file with all of the sample projects is located here. A Simple Example Let’s start with a super-simple example (WindowsApplication01 in the solution). I’ve got a form that displays a label and a button.  When the user clicks the button, I want to start displaying the current time for 15 seconds and then stop. What I’d like to write is this: lblTime.ForeColor = Color.Red; for (var x = 0; x < 15; x++) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); Thread.Sleep(1000); } lblTime.ForeColor = SystemColors.ControlText; (Note that I also changed the label’s color while counting – not quite an ILM-level effect, but it adds something to the demo!) As I’m sure most of my readers are aware, you can’t write WinForms code this way.  WinForms apps, by default, only have one thread running and it’s main job is to process messages from the windows message pump (for a more thorough explanation, see my Visual Studio Magazine article on multithreading in WinForms).  If you put a Thread.Sleep in the middle of that code, your UI will be locked up and unresponsive for those 15 seconds.  Not a good UX and something that needs to be fixed.  Sure, I could throw an “Application.DoEvents()” in there, but that’s hacky. The Windows Timer Then I think, “I can solve that.  I’ll use the Windows Timer to handle the timing in the background and simply notify me when the time has changed”.  Let’s see how I could accomplish this with a Windows timer (WindowsApplication02 in the solution): public partial class Form1 : Form { private readonly Timer clockTimer; private int counter;   public Form1() { InitializeComponent(); clockTimer = new Timer {Interval = 1000}; clockTimer.Tick += UpdateLabel; }   private void UpdateLabel(object sender, EventArgs e) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); counter++; if (counter == 15) { clockTimer.Enabled = false; lblTime.ForeColor = SystemColors.ControlText; } }   private void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; counter = 0; clockTimer.Start(); } } Holy cow – things got pretty complicated here.  I use the timer to fire off a Tick event every second.  Inside there, I can update the label.  Granted, I can’t use a simple for/loop and have to maintain a global counter for the number of iterations.  And my “end” code (when the loop is finished) is now buried inside the bottom of the Tick event (inside an “if” statement).  I do, however, get a responsive application that doesn’t hang or stop repainting while the 15 seconds are ticking away. But doesn’t .NET have something that makes background processing easier? The BackgroundWorker Next I try .NET’s BackgroundWorker component – it’s specifically designed to do processing in a background thread (leaving the UI thread free to process the windows message pump) and allows updates to be performed on the main UI thread (WindowsApplication03 in the solution): public partial class Form1 : Form { private readonly BackgroundWorker worker;   public Form1() { InitializeComponent(); worker = new BackgroundWorker {WorkerReportsProgress = true}; worker.DoWork += StartUpdating; worker.ProgressChanged += UpdateLabel; worker.RunWorkerCompleted += ResetLabelColor; }   private void StartUpdating(object sender, DoWorkEventArgs e) { var workerObject = (BackgroundWorker) sender; for (int x = 0; x < 15; x++) { workerObject.ReportProgress(0); Thread.Sleep(1000); } }   private void UpdateLabel(object sender, ProgressChangedEventArgs e) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); }   private void ResetLabelColor(object sender, RunWorkerCompletedEventArgs e) { lblTime.ForeColor = SystemColors.ControlText; }   private void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; worker.RunWorkerAsync(); } } Well, this got a little better (I think).  At least I now have my simple for/next loop back.  Unfortunately, I’m still dealing with event handlers spread throughout my code to co-ordinate all of this stuff in the right order. Time to look into the future. The async way Using the Async CTP, I can go back to much simpler code (WindowsApplication04 in the solution): private async void cmdStart_Click(object sender, EventArgs e) { lblTime.ForeColor = Color.Red; for (var x = 0; x < 15; x++) { lblTime.Text = DateTime.Now.ToString("HH:mm:ss"); await TaskEx.Delay(1000); } lblTime.ForeColor = SystemColors.ControlText; } This code will run just like the Timer or BackgroundWorker versions – fully responsive during the updates – yet is way easier to implement.  In fact, it’s almost a line-for-line copy of the original version of this code.  All of the async plumbing is handled by the compiler and the framework.  My code goes back to representing the “what” of what I want to do, not the “how”. I urge you to download the Async CTP.  All you need is .NET 4.0 and Visual Studio 2010 sp1 – no need to set up a virtual machine with the VS2011 beta (unless, of course, you want to dive right in to the C# 5.0 stuff!).  Starting playing around with this today and see how much easier it will be in the future to write async-enabled applications.

    Read the article

  • Notes on implementing Visual Studio 2010 Navigate To

    - by cyberycon
    One of the many neat functions added to Visual Studio in VS 2010 was the Navigate To feature. You can find it by clicking Edit, Navigate To, or by using the keyboard shortcut Ctrl, (yes, that's control plus the comma key). This pops up the Navigate To dialog that looks like this: As you type, Navigate To starts searching through a number of different search providers for your term. The entries in the list change as you type, with most providers doing some kind of fuzzy or at least substring matching. If you have C#, C++ or Visual Basic projects in your solution, all symbols defined in those projects are searched. There's also a file search provider, which displays all matching filenames from projects in the current solution as well. And, if you have a Visual Studio package of your own, you can implement a provider too. Micro Focus (where I work) provide the Visual COBOL language inside Visual Studio (http://visualstudiogallery.msdn.microsoft.com/ef9bc810-c133-4581-9429-b01420a9ea40 ), and we wanted to provide this functionality too. This post provides some notes on the things I discovered mainly through trial and error, but also with some kind help from devs inside Microsoft. The expectation of Navigate To is that it searches across the whole solution, not just the current project. So in our case, we wanted to search for all COBOL symbols inside all of our Visual COBOL projects inside the solution. So first of all, here's the Microsoft documentation on Navigate To: http://msdn.microsoft.com/en-us/library/ee844862.aspx . It's the reference information on the Microsoft.VisualStudio.Language.NavigateTo.Interfaces Namespace, and it lists all the interfaces you will need to implement to create your own Navigate To provider. Navigate To uses Visual Studio's latest mechanism for integrating external functionality and services, Managed Extensibility Framework (MEF). MEF components don't require any registration with COM or any other registry entries to be found by Visual Studio. Visual Studio looks in several well-known locations for manifest files (extension.vsixmanifest). It then uses reflection to scan for MEF attributes on classes in the assembly to determine which functionality the assembly provides. MEF itself is actually part of the .NET framework, and you can learn more about it here: http://mef.codeplex.com/. To get started with Visual Studio and MEF you could do worse than look at some of the editor examples on the VSX page http://archive.msdn.microsoft.com/vsx . I've also written a small application to help with switching between development and production MEF assemblies, which you can find on Codeproject: http://www.codeproject.com/KB/miscctrl/MEF_Switch.aspx. The Navigate To interfaces Back to Navigate To, and summarizing the MSDN reference documentation, you need to implement the following interfaces: INavigateToItemProviderFactoryThis is Visual Studio's entry point to your Navigate To implementation, and you must decorate your implementation with the following MEF export attribute: [Export(typeof(INavigateToItemProviderFactory))]  INavigateToItemProvider Your INavigateToItemProviderFactory needs to return your implementation of INavigateToItemProvider. This class implements StartSearch() and StopSearch(). StartSearch() is the guts of your provider, and we'll come back to it in a minute. This object also needs to implement IDisposeable(). INavigateToItemDisplayFactory Your INavigateToItemProvider hands back NavigateToItems to the NavigateTo framework. But to give you good control over what appears in the NavigateTo dialog box, these items will be handed back to your INavigateToItemDisplayFactory, which must create objects implementing INavigateToItemDisplay  INavigateToItemDisplay Each of these objects represents one result in the Navigate To dialog box. As well as providing the description and name of the item, this object also has a NavigateTo() method that should be capable of displaying the item in an editor when invoked. Carrying out the search The lifecycle of your INavigateToItemProvider is the same as that of the Navigate To dialog. This dialog is modal, which makes your implementation a little easier because you know that the user can't be changing things in editors and the IDE while this dialog is up. But the Navigate To dialog DOES NOT run on the main UI thread of the IDE – so you need to be aware of that if you want to interact with editors or other parts of the IDE UI. When the user invokes the Navigate To dialog, your INavigateToItemProvider gets sent a TryCreateNavigateToItemProvider() message. Instantiate your INavigateToItemProvider and hand this back. The sequence diagram below shows what happens next. Your INavigateToItemProvider will get called with StartSearch(), and passed an INavigateToCallback. StartSearch() is an asynchronous request – you must return from this method as soon as possible, and conduct your search on a separate thread. For each match to the search term, instantiate a NavigateToItem object and send it to INavigateToCallback.AddItem(). But as the user types in the Search Terms field, NavigateTo will invoke your StartSearch() method repeatedly with the changing search term. When you receive the next StartSearch() message, you have to abandon your current search, and start a new one. You can't rely on receiving a StopSearch() message every time. Finally, when the Navigate To dialog box is closed by the user, you will get a Dispose() message – that's your cue to abandon any uncompleted searches, and dispose any resources you might be using as part of your search. While you conduct your search invoke INavigateToCallback.ReportProgress() occasionally to provide feedback about how close you are to completing the search. There does not appear to be any particular requirement to how often you invoke ReportProgress(), and you report your progress as the ratio of two integers. In my implementation I report progress in terms of the number of symbols I've searched over the total number of symbols in my dictionary, and send a progress report every 16 symbols. Displaying the Results The Navigate to framework invokes INavigateToItemDisplayProvider.CreateItemDisplay() once for each result you passed to the INavigateToCallback. CreateItemDisplay() is passed the NavigateToItem you handed to the callback, and must return an INavigateToItemDisplay object. NavigateToItem is a sealed class which has a few properties, including the name of the symbol. It also has a Tag property, of type object. This enables you to stash away all the information you will need to create your INavigateToItemDisplay, which must implement an INavigateTo() method to display a symbol in an editor IDE when the user double-clicks an entry in the Navigate To dialog box. Since the tag is of type object, it is up to you, the implementor, to decide what kind of object you store in here, and how it enables the retrieval of other information which is not included in the NavigateToItem properties. Some of the INavigateToItemDisplay properties are self-explanatory, but a couple of them are less obvious: Additional informationThe string you return here is displayed inside brackets on the same line as the Name property. In English locales, Visual Studio includes the preposition "of". If you look at the first line in the Navigate To screenshot at the top of this article, Book_WebRole.Default is the additional information for textBookAuthor, and is the namespace qualified type name the symbol appears in. For procedural COBOL code we display the Program Id as the additional information DescriptionItemsYou can use this property to return any textual description you want about the item currently selected. You return a collection of DescriptionItem objects, each of which has a category and description collection of DescriptionRun objects. A DescriptionRun enables you to specify some text, and optional formatting, so you have some control over the appearance of the displayed text. The DescriptionItems property is displayed at the bottom of the Navigate To dialog box, with the Categories on the left and the Descriptions on the right. The Visual COBOL implementation uses it to display more information about the location of an item, making it easier for the user to know disambiguate duplicate names (something there can be a lot of in large COBOL applications). Summary I hope this article is useful for anyone implementing Navigate To. It is a fantastic navigation feature that Microsoft have added to Visual Studio, but at the moment there still don't seem to be any examples on how to implement it, and the reference information on MSDN is a little brief for anyone attempting an implementation.

    Read the article

  • Reading data from database and binding them to custom ListView

    - by N.K.
    I try to read data from a database i have made and to show some of the data in a row at a custom ListView. I can not understand what is my mistake. This is my code: public class EsodaMainActivity extends Activity { public static final String ROW_ID = "row_id"; //Intent extra key private ListView esodaListView; // the ListActivitys ListView private SimpleCursorAdapter esodaAdapter; // adapter for ListView DatabaseConnector databaseConnector = new DatabaseConnector(EsodaMainActivity.this); // called when the activity is first created @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_esoda_main); esodaListView = (ListView)findViewById(R.id.esodaList); esodaListView.setOnItemClickListener(viewEsodaListener); databaseConnector.open(); //Cursor cursor= databaseConnector.query("esoda", new String[] // {"name", "amount"}, null,null,null); Cursor cursor=databaseConnector.getAllEsoda(); startManagingCursor(cursor); // map each esoda to a TextView in the ListView layout // The desired columns to be bound String[] from = new String[] {"name","amount"}; // built an String array named "from" //The XML defined views which the data will be bound to int[] to = new int[] { R.id.esodaTextView, R.id.amountTextView}; // built an int array named "to" // EsodaMainActivity.this = The context in which the ListView is running // R.layout.esoda_list_item = Id of the layout that is used to display each item in ListView // null = // from = String array containing the column names to display // to = Int array containing the column names to display esodaAdapter = new SimpleCursorAdapter (this, R.layout.esoda_list_item, cursor, from, to); esodaListView.setAdapter(esodaAdapter); // set esodaView's adapter } // end of onCreate method @Override protected void onResume() { super.onResume(); // call super's onResume method // create new GetEsodaTask and execute it // GetEsodaTask is an AsyncTask object new GetEsodaTask().execute((Object[]) null); } // end of onResume method // onStop method is executed when the Activity is no longer visible to the user @Override protected void onStop() { Cursor cursor= esodaAdapter.getCursor(); // gets current cursor from esodaAdapter if (cursor != null) cursor.deactivate(); // deactivate cursor esodaAdapter.changeCursor(null); // adapter now has no cursor (removes the cursor from the CursorAdapter) super.onStop(); } // end of onStop method // this class performs db query outside the GUI private class GetEsodaTask extends AsyncTask<Object, Object, Cursor> { // we create a new DatabaseConnector obj // EsodaMainActivity.this = Context DatabaseConnector databaseConnector = new DatabaseConnector(EsodaMainActivity.this); // perform the db access @Override protected Cursor doInBackground(Object... params) { databaseConnector.open(); // get a cursor containing call esoda return databaseConnector.getAllEsoda(); // the cursor returned by getAllContacts() is passed to method onPostExecute() } // end of doInBackground method // here we use the cursor returned from the doInBackground() method @Override protected void onPostExecute(Cursor result) { esodaAdapter.changeCursor(result); // set the adapter's Cursor databaseConnector.close(); } // end of onPostExecute() method } // end of GetEsodaTask class // creates the Activity's menu from a menu resource XML file @Override public boolean onCreateOptionsMenu(Menu menu) { super.onCreateOptionsMenu(menu); MenuInflater inflater = getMenuInflater(); inflater.inflate(R.menu.esoda_menu, menu); // inflates(eµf?s?) esodamainactivity_menu.xml to the Options menu return true; } // end of onCreateOptionsMenu() method //handles choice from options menu - is executed when the user touches a MenuItem @Override public boolean onOptionsItemSelected(MenuItem item) { // creates a new Intent to launch the AddEditEsoda Activity // EsodaMainActivity.this = Context from which the Activity will be launched // AddEditEsoda.class = target Activity Intent addNewEsoda = new Intent(EsodaMainActivity.this, AddEditEsoda.class); startActivity(addNewEsoda); return super.onOptionsItemSelected(item); } // end of method onPtionsItemSelected() // event listener that responds to the user touching a esoda's name in the ListView OnItemClickListener viewEsodaListener = new OnItemClickListener() { @Override public void onItemClick(AdapterView<?> arg0, View arg1, int arg2, long arg3) { // create an intent to launch the ViewEsoda Activity Intent viewEsoda = new Intent(EsodaMainActivity.this, ViewEsoda.class); // pass the selected esoda's row ID as an extra with the Intent viewEsoda.putExtra(ROW_ID, arg3); startActivity(viewEsoda); // start viewEsoda.class Activity } // end of onItemClick() method }; // end of viewEsodaListener } // end of EsodaMainActivity class The statement: Cursor cursor=databaseConnector.getAllEsoda(); queries all data (columns) From the data I want to show at my custom ListView 2 of them: "name" and "amount". But I still get a debugger error. Please help.

    Read the article

  • LINQ – SequenceEqual() method

    - by nmarun
    I have been looking at LINQ extension methods and have blogged about what I learned from them in my blog space. Next in line is the SequenceEqual() method. Here’s the description about this method: “Determines whether two sequences are equal by comparing the elements by using the default equality comparer for their type.” Let’s play with some code: 1: int[] numbers = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 2: // int[] numbersCopy = numbers; 3: int[] numbersCopy = { 5, 4, 1, 3, 9, 8, 6, 7, 2, 0 }; 4:  5: Console.WriteLine(numbers.SequenceEqual(numbersCopy)); This gives an output of ‘True’ – basically compares each of the elements in the two arrays and returns true in this case. The result is same even if you uncomment line 2 and comment line 3 (I didn’t need to say that now did I?). So then what happens for custom types? For this, I created a Product class with the following definition: 1: class Product 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8: } 9:  10: public enum Status 11: { 12: Active = 1, 13: InActive = 2, 14: OffShelf = 3, 15: } In my calling code, I’m just adding a few product items: 1: private static List<Product> GetProducts() 2: { 3: return new List<Product> 4: { 5: new Product 6: { 7: ProductId = 1, 8: Name = "Laptop", 9: Category = "Computer", 10: MfgDate = new DateTime(2003, 4, 3), 11: Status = Status.Active, 12: }, 13: new Product 14: { 15: ProductId = 2, 16: Name = "Compact Disc", 17: Category = "Water Sport", 18: MfgDate = new DateTime(2009, 12, 3), 19: Status = Status.InActive, 20: }, 21: new Product 22: { 23: ProductId = 3, 24: Name = "Floppy", 25: Category = "Computer", 26: MfgDate = new DateTime(1993, 3, 7), 27: Status = Status.OffShelf, 28: }, 29: }; 30: } Now for the actual check: 1: List<Product> products1 = GetProducts(); 2: List<Product> products2 = GetProducts(); 3:  4: Console.WriteLine(products1.SequenceEqual(products2)); This one returns ‘False’ and the reason is simple – this one checks for reference equality and the products in the both the lists get different ‘memory addresses’ (sounds like I’m talking in ‘C’). In order to modify this behavior and return a ‘True’ result, we need to modify the Product class as follows: 1: class Product : IEquatable<Product> 2: { 3: public int ProductId { get; set; } 4: public string Name { get; set; } 5: public string Category { get; set; } 6: public DateTime MfgDate { get; set; } 7: public Status Status { get; set; } 8:  9: public override bool Equals(object obj) 10: { 11: return Equals(obj as Product); 12: } 13:  14: public bool Equals(Product other) 15: { 16: //Check whether the compared object is null. 17: if (ReferenceEquals(other, null)) return false; 18:  19: //Check whether the compared object references the same data. 20: if (ReferenceEquals(this, other)) return true; 21:  22: //Check whether the products' properties are equal. 23: return ProductId.Equals(other.ProductId) 24: && Name.Equals(other.Name) 25: && Category.Equals(other.Category) 26: && MfgDate.Equals(other.MfgDate) 27: && Status.Equals(other.Status); 28: } 29:  30: // If Equals() returns true for a pair of objects 31: // then GetHashCode() must return the same value for these objects. 32: // read why in the following articles: 33: // http://geekswithblogs.net/akraus1/archive/2010/02/28/138234.aspx 34: // http://stackoverflow.com/questions/371328/why-is-it-important-to-override-gethashcode-when-equals-method-is-overriden-in-c 35: public override int GetHashCode() 36: { 37: //Get hash code for the ProductId field. 38: int hashProductId = ProductId.GetHashCode(); 39:  40: //Get hash code for the Name field if it is not null. 41: int hashName = Name == null ? 0 : Name.GetHashCode(); 42:  43: //Get hash code for the ProductId field. 44: int hashCategory = Category.GetHashCode(); 45:  46: //Get hash code for the ProductId field. 47: int hashMfgDate = MfgDate.GetHashCode(); 48:  49: //Get hash code for the ProductId field. 50: int hashStatus = Status.GetHashCode(); 51: //Calculate the hash code for the product. 52: return hashProductId ^ hashName ^ hashCategory & hashMfgDate & hashStatus; 53: } 54:  55: public static bool operator ==(Product a, Product b) 56: { 57: // Enable a == b for null references to return the right value 58: if (ReferenceEquals(a, b)) 59: { 60: return true; 61: } 62: // If one is null and the other not. Remember a==null will lead to Stackoverflow! 63: if (ReferenceEquals(a, null)) 64: { 65: return false; 66: } 67: return a.Equals((object)b); 68: } 69:  70: public static bool operator !=(Product a, Product b) 71: { 72: return !(a == b); 73: } 74: } Now THAT kinda looks overwhelming. But lets take one simple step at a time. Ok first thing you’ve noticed is that the class implements IEquatable<Product> interface – the key step towards achieving our goal. This interface provides us with an ‘Equals’ method to perform the test for equality with another Product object, in this case. This method is called in the following situations: when you do a ProductInstance.Equals(AnotherProductInstance) and when you perform actions like Contains<T>, IndexOf() or Remove() on your collection Coming to the Equals method defined line 14 onwards. The two ‘if’ blocks check for null and referential equality using the ReferenceEquals() method defined in the Object class. Line 23 is where I’m doing the actual check on the properties of the Product instances. This is what returns the ‘True’ for us when we run the application. I have also overridden the Object.Equals() method which calls the Equals() method of the interface. One thing to remember is that anytime you override the Equals() method, its’ a good practice to override the GetHashCode() method and overload the ‘==’ and the ‘!=’ operators. For detailed information on this, please read this and this. Since we’ve overloaded the operators as well, we get ‘True’ when we do actions like: 1: Console.WriteLine(products1.Contains(products2[0])); 2: Console.WriteLine(products1[0] == products2[0]); This completes the full circle on the SequenceEqual() method. See the code used in the article here.

    Read the article

  • directX texture appears incorrectly

    - by numerical25
    I finally managed to get a texture onto a cube sadly, but it is appearing incorrectly. as the below picture identifies. Anyways, I am not sure what it could be. My first guess is it could be my uv mapping or my vertex positioning is off. If someone could check and make sure thats good. The first element is the vertex position, second is the color, and third is the uv texture. //Create vectors and put in vertices // Create vertex buffer VertexPos vertices[] = { // BACK SIDES { D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(1.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(1.0,1.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.0f,0.0f,0.0f), D3DXVECTOR2(1.0,1.0)}, // 2 FRONT SIDE { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f) , D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.0f,0.0f), D3DXVECTOR2(1.0,1.0)}, // 3 { D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,2.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, // 4 { D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(1.0f,0.5f,0.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, // 5 { D3DXVECTOR3(5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,0.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,1.0)}, { D3DXVECTOR3(5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(1.0,0.0)}, { D3DXVECTOR3(5.0f, -5.0f, 5.0f), D3DXVECTOR4(0.0f,1.0f,0.5f,0.0f), D3DXVECTOR2(0.0,2.0)}, // 6 {D3DXVECTOR3(-5.0f, 5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,0.0)}, {D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, {D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, {D3DXVECTOR3(-5.0f, 5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, {D3DXVECTOR3(-5.0f, -5.0f, -5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(1.0,0.0)}, {D3DXVECTOR3(-5.0f, -5.0f, 5.0f), D3DXVECTOR4(0.5f,0.0f,1.0f,0.0f), D3DXVECTOR2(0.0,1.0)}, }; My second guess could be an error that I am receiving as I run the program. But I don't know where to begin with that. The following is the description of the error . D3D10: WARNING: ID3D10Device::Draw: Vertex Buffer at the input vertex slot 0 is not big enough for what the Draw*() call expects to traverse. This is OK, as reading off the end of the Buffer is defined to return 0. However the developer probably did not intend to make use of this behavior. [ EXECUTION WARNING #356: DEVICE_DRAW_VERTEX_BUFFER_TOO_SMALL ] Not sure what it could be. but where is my vertex layout description //Create Layout D3D10_INPUT_ELEMENT_DESC layout[] = { {"POSITION",0,DXGI_FORMAT_R32G32B32_FLOAT, 0 , 0, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"COLOR",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 12, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"NORMAL",0,DXGI_FORMAT_R32G32B32A32_FLOAT, 0 , 28, D3D10_INPUT_PER_VERTEX_DATA, 0}, {"TEXCOORD",0, DXGI_FORMAT_R32G32_FLOAT, 0 , 44, D3D10_INPUT_PER_VERTEX_DATA, 0} }; UINT numElements = (sizeof(layout)/sizeof(layout[0])); modelObject.numVertices = sizeof(vertices)/sizeof(VertexPos); for(int i = 0; i < modelObject.numVertices; i += 3) { D3DXVECTOR3 out; D3DXVECTOR3 v1 = vertices[0 + i].pos; D3DXVECTOR3 v2 = vertices[1 + i].pos; D3DXVECTOR3 v3 = vertices[2 + i].pos; D3DXVECTOR3 u = v2 - v1; D3DXVECTOR3 v = v3 - v1; D3DXVec3Cross(&out, &u, &v); D3DXVec3Normalize(&out, &out); vertices[0 + i].normal = out; vertices[1 + i].normal = out; vertices[2 + i].normal = out; } //Create buffer desc D3D10_BUFFER_DESC bufferDesc; bufferDesc.Usage = D3D10_USAGE_DEFAULT; bufferDesc.ByteWidth = sizeof(VertexPos) * modelObject.numVertices; bufferDesc.BindFlags = D3D10_BIND_VERTEX_BUFFER; bufferDesc.CPUAccessFlags = 0; bufferDesc.MiscFlags = 0; D3D10_SUBRESOURCE_DATA initData; initData.pSysMem = vertices; //Create the buffer HRESULT hr = mpD3DDevice->CreateBuffer(&bufferDesc, &initData, &modelObject.pVertexBuffer); if(FAILED(hr)) return false;

    Read the article

  • Have a program/winform that outputs name and classes in message box, my objective is to write the cl

    - by JB
    Here is my Get Schedule Class: using System; using System.IO; using System.Data; using System.Text; using System.Drawing; using System.Data.OleDb; using System.Collections; using System.ComponentModel; using System.Windows.Forms; using System.Drawing.Printing; using System.Collections.Generic; namespace Eagle_Eye_Class_Finder { public class GetSchedule { public string GetDataFromNumber(string ID) { IDnumber[] IDnumbers = new IDnumber[3]; foreach (IDnumber IDCandidateMatch in IDnumbers) { if (IDCandidateMatch.ID == ID) { StringBuilder myData = new StringBuilder(); myData.AppendLine(IDCandidateMatch.Name); myData.AppendLine(": "); myData.AppendLine(IDCandidateMatch.ID); myData.AppendLine(IDCandidateMatch.year); myData.AppendLine(IDCandidateMatch.class1); myData.AppendLine(IDCandidateMatch.class2); myData.AppendLine(IDCandidateMatch.class3); myData.AppendLine(IDCandidateMatch.class4); //return myData; return myData.ToString(); } } return ""; } public GetSchedule() { IDnumber[] IDnumbers = new IDnumber[3]; IDnumbers[0] = new IDnumber() { Name = "Joshua Banks", ID = "900456317", year = "Senior", class1 = "TEET 4090", class2 = "TEET 3020", class3 = "TEET 3090", class4 = "TEET 4290" }; IDnumbers[1] = new IDnumber() { Name = "Sean Ward", ID = "900456318", year = "Junior", class1 = "ENGNR 4090", class2 = "ENGNR 3020", class3 = "ENGNR 3090", class4 = "ENGNR 4290" }; IDnumbers[2] = new IDnumber() { Name = "Terrell Johnson", ID = "900456319", year = "Sophomore", class1 = "BUS 4090", class2 = "BUS 3020", class3 = "BUS 3090", class4 = "BUS 4290" }; } public class IDnumber { public string Name { get; set; } public string ID { get; set; } public string year { get; set; } public string class1 { get; set; } public string class2 { get; set; } public string class3 { get; set; } public string class4 { get; set; } public static void ProcessNumber(IDnumber myNum) { StringBuilder myData = new StringBuilder(); myData.AppendLine(myNum.Name); myData.AppendLine(": "); myData.AppendLine(myNum.ID); myData.AppendLine(myNum.year); myData.AppendLine(myNum.class1); myData.AppendLine(myNum.class2); myData.AppendLine(myNum.class3); myData.AppendLine(myNum.class4); MessageBox.Show(myData.ToString()); } } } } Here is my Form 1 class: using System; using System.IO; using System.Data; using System.Text; using System.Drawing; using System.Data.OleDb; using System.Collections; using System.Windows.Forms; using System.ComponentModel; using System.Drawing.Printing; using System.Collections.Generic; namespace Eagle_Eye_Class_Finder { /// This form is the entry form, it is the first form the user will see when the app is run. /// public class Form1 : System.Windows.Forms.Form { private System.Windows.Forms.TextBox textBox1; private System.Windows.Forms.ProgressBar progressBar1; private System.Windows.Forms.PictureBox pictureBox1; private System.Windows.Forms.Button button2; private System.Windows.Forms.DateTimePicker dateTimePicker1; private IContainer components; private Timer timer1; private BindingSource form1BindingSource; public static Form Mainform = null; // creates new instance of second form YOURCLASSSCHEDULE SecondForm = new YOURCLASSSCHEDULE(); public Form1() { InitializeComponent(); // TODO: Add any constructor code after InitializeComponent call } /// Clean up any resources being used. protected override void Dispose(bool disposing) { if (disposing) { if (components != null) { components.Dispose(); } } base.Dispose(disposing); } #region Windows Form Designer generated code /// <summary> /// Required method for Designer support - do not modify /// the contents of this method with the code editor. /// </summary> private void InitializeComponent() { this.components = new System.ComponentModel.Container(); System.ComponentModel.ComponentResourceManager resources = new System.ComponentModel.ComponentResourceManager(typeof(Form1)); this.textBox1 = new System.Windows.Forms.TextBox(); this.progressBar1 = new System.Windows.Forms.ProgressBar(); this.pictureBox1 = new System.Windows.Forms.PictureBox(); this.button2 = new System.Windows.Forms.Button(); this.dateTimePicker1 = new System.Windows.Forms.DateTimePicker(); this.timer1 = new System.Windows.Forms.Timer(this.components); this.form1BindingSource = new System.Windows.Forms.BindingSource(this.components); ((System.ComponentModel.ISupportInitialize)(this.pictureBox1)).BeginInit(); ((System.ComponentModel.ISupportInitialize)(this.form1BindingSource)).BeginInit(); this.SuspendLayout(); // // textBox1 // this.textBox1.BackColor = System.Drawing.SystemColors.ActiveCaption; this.textBox1.DataBindings.Add(new System.Windows.Forms.Binding("Text", this.form1BindingSource, "Text", true, System.Windows.Forms.DataSourceUpdateMode.OnValidation, null, "900456317")); this.textBox1.Location = new System.Drawing.Point(328, 280); this.textBox1.Name = "textBox1"; this.textBox1.Size = new System.Drawing.Size(208, 20); this.textBox1.TabIndex = 2; this.textBox1.TextChanged += new System.EventHandler(this.textBox1_TextChanged); // // progressBar1 // this.progressBar1.Location = new System.Drawing.Point(258, 410); this.progressBar1.MarqueeAnimationSpeed = 10; this.progressBar1.Name = "progressBar1"; this.progressBar1.Size = new System.Drawing.Size(344, 8); this.progressBar1.TabIndex = 3; this.progressBar1.Click += new System.EventHandler(this.progressBar1_Click); // // pictureBox1 // this.pictureBox1.BackColor = System.Drawing.SystemColors.ControlLightLight; this.pictureBox1.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D; this.pictureBox1.Image = ((System.Drawing.Image)(resources.GetObject("pictureBox1.Image"))); this.pictureBox1.Location = new System.Drawing.Point(680, 400); this.pictureBox1.Name = "pictureBox1"; this.pictureBox1.Size = new System.Drawing.Size(120, 112); this.pictureBox1.TabIndex = 4; this.pictureBox1.TabStop = false; this.pictureBox1.Click += new System.EventHandler(this.pictureBox1_Click); // // button2 // this.button2.Font = new System.Drawing.Font("Mistral", 15.75F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); this.button2.Image = ((System.Drawing.Image)(resources.GetObject("button2.Image"))); this.button2.Location = new System.Drawing.Point(699, 442); this.button2.Name = "button2"; this.button2.Size = new System.Drawing.Size(78, 28); this.button2.TabIndex = 5; this.button2.Text = "OK"; this.button2.Click += new System.EventHandler(this.button2_Click); // // dateTimePicker1 // this.dateTimePicker1.Location = new System.Drawing.Point(336, 104); this.dateTimePicker1.Name = "dateTimePicker1"; this.dateTimePicker1.Size = new System.Drawing.Size(200, 20); this.dateTimePicker1.TabIndex = 6; this.dateTimePicker1.ValueChanged += new System.EventHandler(this.dateTimePicker1_ValueChanged); // // timer1 // this.timer1.Tick += new System.EventHandler(this.timer1_Tick); // // form1BindingSource // this.form1BindingSource.DataSource = typeof(Eagle_Eye_Class_Finder.Form1); // // Form1 // this.AcceptButton = this.button2; this.AutoScaleBaseSize = new System.Drawing.Size(5, 13); this.BackgroundImage = ((System.Drawing.Image)(resources.GetObject("$this.BackgroundImage"))); this.BackgroundImageLayout = System.Windows.Forms.ImageLayout.Stretch; this.ClientSize = new System.Drawing.Size(856, 556); this.Controls.Add(this.dateTimePicker1); this.Controls.Add(this.button2); this.Controls.Add(this.pictureBox1); this.Controls.Add(this.progressBar1); this.Controls.Add(this.textBox1); this.Name = "Form1"; this.Text = "Eagle Eye Class Finder"; this.Load += new System.EventHandler(this.Form1_Load); ((System.ComponentModel.ISupportInitialize)(this.pictureBox1)).EndInit(); ((System.ComponentModel.ISupportInitialize)(this.form1BindingSource)).EndInit(); this.ResumeLayout(false); this.PerformLayout(); } #endregion /// The main entry point for the application. [STAThread] static void Main() { Application.Run(new Form1()); } public void Form1_Load(object sender, System.EventArgs e) { } public void textBox1_TextChanged(object sender, System.EventArgs e) { //allows only numbers to be entered in textbox string Str = textBox1.Text.Trim(); double Num; bool isNum = double.TryParse(Str, out Num); if (isNum) Console.ReadLine(); else MessageBox.Show("Enter A Valid ID Number!"); } public void button2_Click(object sender, System.EventArgs e) { string text = textBox1.Text; Mainform = this; this.Hide(); GetSchedule myScheduleFinder = new GetSchedule(); string result = myScheduleFinder.GetDataFromNumber(text); if (!string.IsNullOrEmpty(result)) { MessageBox.Show(result); } else { MessageBox.Show("Enter A Valid ID Number!"); } } public void dateTimePicker1_ValueChanged(object sender, System.EventArgs e) { } public void pictureBox1_Click(object sender, System.EventArgs e) { } public void progressBar1_Click(object sender, EventArgs e) { //this.progressBar1 = new System.progressBar1(); //progressBar1.Maximum = 200; //progressBar1.Minimum = 0; //progressBar1.Step = 20; } private void timer1_Tick(object sender, EventArgs e) { //if (progressBar1.Value >= 200 ) //{ //progressBar1.Value = 0; //} //return; //} //progressBar1.Value != 20; } } } here is my form 2 class: using System; using System.Drawing; using System.Collections; using System.ComponentModel; using System.Windows.Forms; namespace Eagle_Eye_Class_Finder { /// <summary> /// Summary description for Form2. /// </summary> public class YOURCLASSSCHEDULE : System.Windows.Forms.Form { public System.Windows.Forms.LinkLabel linkLabel1; public System.Windows.Forms.LinkLabel linkLabel2; public System.Windows.Forms.LinkLabel linkLabel3; public System.Windows.Forms.LinkLabel linkLabel4; private Button button1; /// Required designer variable. public System.ComponentModel.Container components = null; public YOURCLASSSCHEDULE() { // InitializeComponent(); // TODO: Add any constructor code after InitializeComponent call } /// Clean up any resources being used. protected override void Dispose(bool disposing) { if (disposing) { if (components != null) { components.Dispose(); } } base.Dispose(disposing); } #region Windows Form Designer generated code /// <summary> /// Required method for Designer support - do not modify /// the contents of this method with the code editor. /// </summary> private void InitializeComponent() { System.ComponentModel.ComponentResourceManager resources = new System.ComponentModel.ComponentResourceManager(typeof(YOURCLASSSCHEDULE)); this.linkLabel1 = new System.Windows.Forms.LinkLabel(); this.linkLabel2 = new System.Windows.Forms.LinkLabel(); this.linkLabel3 = new System.Windows.Forms.LinkLabel(); this.linkLabel4 = new System.Windows.Forms.LinkLabel(); this.button1 = new System.Windows.Forms.Button(); this.SuspendLayout(); // // linkLabel1 // this.linkLabel1.BackColor = System.Drawing.SystemColors.ActiveCaption; this.linkLabel1.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D; this.linkLabel1.Font = new System.Drawing.Font("Times New Roman", 14.25F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); this.linkLabel1.LinkArea = new System.Windows.Forms.LinkArea(0, 7); this.linkLabel1.LinkBehavior = System.Windows.Forms.LinkBehavior.HoverUnderline; this.linkLabel1.Location = new System.Drawing.Point(41, 123); this.linkLabel1.Name = "linkLabel1"; this.linkLabel1.Size = new System.Drawing.Size(288, 32); this.linkLabel1.TabIndex = 1; this.linkLabel1.TabStop = true; this.linkLabel1.Text = "Class 1"; this.linkLabel1.TextAlign = System.Drawing.ContentAlignment.MiddleCenter; this.linkLabel1.LinkClicked += new System.Windows.Forms.LinkLabelLinkClickedEventHandler(this.linkLabel1_LinkClicked); // // linkLabel2 // this.linkLabel2.BackColor = System.Drawing.SystemColors.ActiveCaption; this.linkLabel2.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D; this.linkLabel2.Font = new System.Drawing.Font("Times New Roman", 14.25F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); this.linkLabel2.LinkBehavior = System.Windows.Forms.LinkBehavior.HoverUnderline; this.linkLabel2.Location = new System.Drawing.Point(467, 123); this.linkLabel2.Name = "linkLabel2"; this.linkLabel2.Size = new System.Drawing.Size(288, 32); this.linkLabel2.TabIndex = 2; this.linkLabel2.TabStop = true; this.linkLabel2.Text = "Class 2"; this.linkLabel2.TextAlign = System.Drawing.ContentAlignment.MiddleCenter; this.linkLabel2.VisitedLinkColor = System.Drawing.Color.Navy; this.linkLabel2.LinkClicked += new System.Windows.Forms.LinkLabelLinkClickedEventHandler(this.linkLabel2_LinkClicked); // // linkLabel3 // this.linkLabel3.BackColor = System.Drawing.SystemColors.ActiveCaption; this.linkLabel3.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D; this.linkLabel3.Font = new System.Drawing.Font("Times New Roman", 14.25F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); this.linkLabel3.LinkBehavior = System.Windows.Forms.LinkBehavior.HoverUnderline; this.linkLabel3.Location = new System.Drawing.Point(41, 311); this.linkLabel3.Name = "linkLabel3"; this.linkLabel3.Size = new System.Drawing.Size(288, 32); this.linkLabel3.TabIndex = 3; this.linkLabel3.TabStop = true; this.linkLabel3.Text = "Class 3"; this.linkLabel3.TextAlign = System.Drawing.ContentAlignment.MiddleCenter; this.linkLabel3.LinkClicked += new System.Windows.Forms.LinkLabelLinkClickedEventHandler(this.linkLabel3_LinkClicked); // // linkLabel4 // this.linkLabel4.BackColor = System.Drawing.SystemColors.ActiveCaption; this.linkLabel4.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D; this.linkLabel4.Font = new System.Drawing.Font("Times New Roman", 14.25F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); this.linkLabel4.LinkBehavior = System.Windows.Forms.LinkBehavior.HoverUnderline; this.linkLabel4.Location = new System.Drawing.Point(467, 311); this.linkLabel4.Name = "linkLabel4"; this.linkLabel4.Size = new System.Drawing.Size(288, 32); this.linkLabel4.TabIndex = 4; this.linkLabel4.TabStop = true; this.linkLabel4.Text = "Class 4"; this.linkLabel4.TextAlign = System.Drawing.ContentAlignment.MiddleCenter; this.linkLabel4.LinkClicked += new System.Windows.Forms.LinkLabelLinkClickedEventHandler(this.linkLabel4_LinkClicked); // // button1 // this.button1.BackColor = System.Drawing.SystemColors.ActiveCaptionText; this.button1.FlatAppearance.BorderColor = System.Drawing.Color.FromArgb(((int)(((byte)(0)))), ((int)(((byte)(0)))), ((int)(((byte)(64))))); this.button1.FlatStyle = System.Windows.Forms.FlatStyle.Popup; this.button1.Font = new System.Drawing.Font("Pristina", 12F, System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); this.button1.ForeColor = System.Drawing.SystemColors.ActiveCaption; this.button1.ImageAlign = System.Drawing.ContentAlignment.TopCenter; this.button1.Location = new System.Drawing.Point(358, 206); this.button1.Name = "button1"; this.button1.Size = new System.Drawing.Size(101, 25); this.button1.TabIndex = 5; this.button1.Text = "Go Back"; this.button1.UseVisualStyleBackColor = false; this.button1.Click += new System.EventHandler(this.button1_Click); // // YOURCLASSSCHEDULE // this.AutoScaleBaseSize = new System.Drawing.Size(6, 15); this.BackgroundImage = ((System.Drawing.Image)(resources.GetObject("$this.BackgroundImage"))); this.BackgroundImageLayout = System.Windows.Forms.ImageLayout.Stretch; this.ClientSize = new System.Drawing.Size(790, 482); this.Controls.Add(this.button1); this.Controls.Add(this.linkLabel4); this.Controls.Add(this.linkLabel3); this.Controls.Add(this.linkLabel2); this.Controls.Add(this.linkLabel1); this.Font = new System.Drawing.Font("OldDreadfulNo7 BT", 8.25F, System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); this.Name = "YOURCLASSSCHEDULE"; this.Text = "Your Classes"; this.Load += new System.EventHandler(this.Form2_Load); this.ResumeLayout(false); } #endregion public void Form2_Load(object sender, System.EventArgs e) { // if (text == "900456317") // { //} } public void linkLabel1_LinkClicked(object sender, System.Windows.Forms.LinkLabelLinkClickedEventArgs e) { System.Diagnostics.Process.Start("http://www.georgiasouthern.edu/map/"); } private void linkLabel2_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e) { System.Diagnostics.Process.Start("http://www.georgiasouthern.edu/map/"); } private void linkLabel3_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e) { System.Diagnostics.Process.Start("http://www.georgiasouthern.edu/map/"); } private void linkLabel4_LinkClicked(object sender, LinkLabelLinkClickedEventArgs e) { System.Diagnostics.Process.Start("http://www.georgiasouthern.edu/map/"); } private void button1_Click(object sender, EventArgs e) { Form1 form1 = new Form1(); form1.Show(); this.Hide(); } } }

    Read the article

  • 12.04 LTS: unity --reset hangs

    - by Gregory R. Pace
    Nearly each time I reboot my machine, the system panel and integrated app menus fail to load. At a terminal, when issuing 'unity --reset', I get the following errors: ... Initializing widget options...done Initializing winrules options...done Initializing wobbly options...done ERROR 2012-11-05 04:36:48 unity.glib-gobject <unknown>:0 g_object_unref: assertion `G_IS_OBJECT (object)' failed ERROR 2012-11-05 04:36:48 unity.gtk <unknown>:0 gtk_window_resize: assertion `width > 0' failed WARN 2012-11-05 04:37:14 unity <unknown>:0 Unable to fetch children: No such interface `org.ayatana.bamf.view' on object at path /org/ayatana/bamf/application885622223 ERROR 2012-11-05 04:37:21 unity.glib-gobject <unknown>:0 g_object_set_qdata: assertion `G_IS_OBJECT (object)' failed Setting Update "main_menu_key" Setting Update "run_key" WARN 2012-11-05 04:38:06 unity.iconloader IconLoader.cpp:438 Unable to load icon stock-person at size 24 WARN 2012-11-05 04:38:26 unity.glib.dbusproxy GLibDBusProxy.cpp:182 Unable to connect to proxy: Error calling StartServiceByName for com.canonical.Unity.Lens.Applications: Timeout was reached WARN 2012-11-05 04:38:26 unity.glib.dbusproxy GLibDBusProxy.cpp:182 Unable to connect to proxy: Error calling StartServiceByName for com.canonical.Unity.Lens.Applications: Timeout was reached The procedure hangs at this point. Any ideas how to solve these problems ? Thanks in advance.

    Read the article

  • WPF ListView as a DataGrid – Part 3

    - by psheriff
    I have had a lot of great feedback on the blog post about turning the ListView into a DataGrid by creating GridViewColumn objects on the fly. So, in the last 2 parts, I showed a couple of different methods for accomplishing this. Let’s now look at one more and that is use Reflection to extract the properties from a Product, Customer, or Employee object to create the columns. Yes, Reflection is a slower approach, but you could create the columns one time then cache the View object for re-use. Another potential drawback is you may have columns in your object that you do not wish to display on your ListView. But, just because so many people asked, here is how to accomplish this using Reflection.   Figure 1: Use Reflection to create GridViewColumns. Using Reflection to gather property names is actually quite simple. First you need to pass any type (Product, Customer, Employee, etc.) to a method like I did in my last two blog posts on this subject. Below is the method that I created in the WPFListViewCommon class that now uses reflection. C#public static GridView CreateGridViewColumns(Type anyType){  // Create the GridView  GridView gv = new GridView();  GridViewColumn gvc;   // Get the public properties.  PropertyInfo[] propInfo =          anyType.GetProperties(BindingFlags.Public |                                BindingFlags.Instance);   foreach (PropertyInfo item in propInfo)  {    gvc = new GridViewColumn();    gvc.DisplayMemberBinding = new Binding(item.Name);    gvc.Header = item.Name;    gvc.Width = Double.NaN;    gv.Columns.Add(gvc);  }   return gv;} VB.NETPublic Shared Function CreateGridViewColumns( _  ByVal anyType As Type) As GridView  ' Create the GridView   Dim gv As New GridView()  Dim gvc As GridViewColumn   ' Get the public properties.   Dim propInfo As PropertyInfo() = _    anyType.GetProperties(BindingFlags.Public Or _                          BindingFlags.Instance)   For Each item As PropertyInfo In propInfo    gvc = New GridViewColumn()    gvc.DisplayMemberBinding = New Binding(item.Name)    gvc.Header = item.Name    gvc.Width = [Double].NaN    gv.Columns.Add(gvc)  Next   Return gvEnd Function The key to using Relection is using the GetProperties method on the type you pass in. When you pass in a Product object as Type, you can now use the GetProperties method and specify, via flags, which properties you wish to return. In the code that I wrote, I am just retrieving the Public properties and only those that are Instance properties. I do not want any static/Shared properties or private properties. GetProperties returns an array of PropertyInfo objects. You can loop through this array and build your GridViewColumn objects by reading the Name property from the PropertyInfo object. Build the Product Screen To populate the ListView shown in Figure 1, you might write code like the following: C#private void CollectionSample(){  Product prod = new Product();   // Setup the GridView Columns  lstData.View =      WPFListViewCommon.CreateGridViewColumns(typeOf(Product));  lstData.DataContext = prod.GetProducts();} VB.NETPrivate Sub CollectionSample()  Dim prod As New Product()   ' Setup the GridView Columns  lstData.View = WPFListViewCommon.CreateGridViewColumns( _       GetType(Product))  lstData.DataContext = prod.GetProducts()End Sub All you need to do now is to pass in a Type object from your Product class that you can get by using the typeOf() function in C# or the GetType() function in VB. That’s all there is to it! Summary There are so many different ways to approach the same problem in programming. That is what makes programming so much fun! In this blog post I showed you how to create ListView columns on the fly using Reflection. This gives you a lot of flexibility without having to write extra code as was done previously. NOTE: You can download the complete sample code (in both VB and C#) at my website. http://www.pdsa.com/downloads. Choose Tips & Tricks, then "WPF ListView as a DataGrid – Part 3" from the drop-down. Good Luck with your Coding,Paul Sheriff ** SPECIAL OFFER FOR MY BLOG READERS **Visit http://www.pdsa.com/Event/Blog for a free eBook on "Fundamentals of N-Tier".  

    Read the article

  • Silverlight Cream for March 24, 2010 -- #819

    - by Dave Campbell
    In this Issue: Nokola, Tim Heuer, Christian Schormann, Brad Abrams, David Kelley, Phil Middlemiss, Michael Klucher, Brandon Watson, Kunal Chowdhury, Jacek Ciereszko, and Unni. Shoutouts: Michael Klucher has a short post up For Love of the Game (Development)…, where he's looking for some input from the developer community. Shawn Hargreaves has a link post up of all the Windows Phone MIX10 presentations Chris Cavanagh has a Soft-Body Physics for Windows Phone 7 post up that goes along with one he did 1-1/2 years ago! Jeff Weber posted An Open Letter To Microsoft Regarding The Silverlight Game Development Community Pete Brown posted his MIX10 Recap ... lots of information, and discussion of what he was up to ... I liked the Trivia app Pete... glad to hear that was yours :) I've changed my mind and added a WP7 tag to SilverlightCream. I'll straighten out all the Mobile plus Silverlight links to point at the WP7 tab hopefully tonight. From SilverlightCream.com: EasyPainter Source Pack 3: Adorners, Mouse Cursors and Frames Nokola has been busy with EasyPainter adding in Custom, Extensible Mouse Cursors and Customizable Adorners with extensible adorner frames, and best of all... all with source code! Simulate Geo Location in Silverlight Windows Phone 7 emulator Among the things we don't have in our WP7 emulators is Geo Location... Tim Heuer comes to the rescue with a simulator for it... too cool, Tim! Blend 4: About Path Layout, Part II Christian Schormann is back with Part 2 of his tutorial sequence on the new Path Layout. Really good info and definitely cool presentations of the control. Silverlight 4 + RIA Services - Ready for Business: Exposing OData Services Brad Abrams continues his series with a post on exposing OData services. This looks like a great tutorial on the topic... will probably resolve some questions I've been having :) No Silverlight and Preloader Experience(ish) - in 10 seconds... David Kelley exposes the code he uses on his site, designed to be friendly to Silverlight and non-Silverlight users alike. Merged Dictionaries of Style Resources and Blend Phil Middlemiss has a nice article up on Merged Dictionaries and using multiple resource dictionaries that the app chooses, but also be compatible with Prism and Blend while not eating your system resources out of house and home. XNA Game Studio and Windows Phone Emulator Compatibility Michael Klucher has a definitive post up about getting your XNA and system up-to-speed for WP7... a must-read if you've been running any of the other XNA drops. Windows Phone 7 301 Redirect Bug Brandon Watson reports a 301 Redirect bug on WP7 ... see the code and how he got it, then follow along as he explains all the debug paths he took and what the resolution (?) really is :) Silverlight 4: How to use the new Printing API? Kunal Chowdhury has a tutorial up on printing with Silverlight 4 RC... from the project layout to printing and then printing a smaller section... all good Printing problem in Silverlight 4.0 RC - loading images in code behind Jacek Ciereszko also is writing about printing, and in his case he had problems with loading an image dynamically and printing it... plus he provides a solution to the 'blank page' problem. ToolboxExampleAttribute - a new extension point in Blend 4 (and a few other extensibility related changes) Unni has an article up about Expression Blend 4's new ToolboxExampleAttribute which allow you to have multiple examples of the same type resulting in different XAML produced. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone    MIX10

    Read the article

  • Using Oracle ADF Data Visualization Tools (DVT) Line Graphs to Display Weather Information

    - by Christian David Straub
    OverviewA guest post by Jeanne Waldman.I have a simple JDeveloper Fusion application that retrieves weather data. I wanted to compare the week's temperatures of different locations in a graph. I decided to check out the dvt:lineGraph component, and it took me a few minutes to add it to my jspx page and supply it with data.Drag and Drop the dvt:lineGraph onto your pageI opened my .jspx page in design modeIn the Component Palette, I selected ADF Data Visualization.Then I dragged 'Line' onto my page.A dialog popped up giving me options of the type of line graph. I chose the default.A lineGraph displayed with some default data. Hook up your weather dataNow I wanted to hook up my own data. I browsed the tagdoc, and I found the tabularData attribute.Attribute: tabularDataType: java.util.ListTagDoc:Specifies a list of data that the graph uses to create a grid and populate itself. The List consists of a three-member Object array for each data value to be passed to the graph. The members of each array must be organized as follows: The first member (index 0) is the column label, in the grid, of the data value. This is generally a String. If the graph has a time axis, then this should be a Java Date. Column labels typically identify groups in the graph. The second member (index 1) is the row label, in the grid, of the data value. This is generally a String. Row labels appear as series labels in the graph (usually in the legend). The third member (index 2) is the data value, which is usually a Double.The first member is the column label of the data value. This would be the day of the week.The second member is the row label of the data value. This would be the location name.The third member is the data value, usually a Double. This would be the temperature. I already had all this information, I just needed to put it in a List with a three-member Object array for each data value.   /**    * This is used for the lineGraph to show the data for each location.    */   public List<Object[]> getTabularData()   {      List<Object[]> tabularData = new ArrayList<Object []>();      List<WeatherForecast> weatherForecastList = getWeatherForecastList();      // loop through the list and build up the tabular data. Then cache it.      for(WeatherForecast wf : weatherForecastList)      {        List<ForecastDay> forecastDayList = wf.getForecastDayList();        String location = wf.getLocation();        for (ForecastDay fday : forecastDayList)        {          String day = fday.getPrettyDate();          String highTemp = fday.getHighF();          tabularData.add(new Object[]{day, location, Double.valueOf(highTemp)});        }             }      return tabularData;    }  Now I bound the lineGraph to this method by setting tabularData to#{weatherForAllLocationsBean.tabularData}weatherForAllLocationsBean is my bean that is defined in faces-config.xml. Adding a barGraphIn about 30 seconds, I added a barGraph with the same data. I dragged and dropped a bar graph onto the page, used the same tabularData as I did in the line graph. The page looks like this:  ConclusionI was very happy how fast it was to hook up my weather data to these graphs. They look great, and they have built in functionality. For instance, I can hide/show a location by clicking on the name of the location in the legend.

    Read the article

  • Pygame surface rotation, rect rotation or sprite rotation?

    - by Alan
    i seem to have a conceptual misunderstanding of the surface and rect object in pygame. I currently observe these objects this way: Surface Just the loaded image rect the 'hard' representation of the ingame object (sprite). Used for simplifying object moment and collision detection sprite rect and surface grouped together What i want to do is rotate my sprite. The only available method i found for rotation is pygame.transform.rotate. How do i rotate the rectangle, or even better, the whole sprite? Below is the image of how i visualize this problem.

    Read the article

  • To ORM or Not to ORM. That is the question&hellip;

    - by Patrick Liekhus
    UPDATE:  Thanks for the feedback and comments.  I have adjusted my table below with your recommendations.  I had missed a point or two. I wanted to do a series on creating an entire project using the EDMX XAF code generation and the SpecFlow BDD Easy Test tools discussed in my earlier posts, but I thought it would be appropriate to start with a simple comparison and reasoning on why I choose to use these tools. Let’s start by defining the term ORM, or Object-Relational Mapping.  According to Wikipedia it is defined as the following: Object-relational mapping (ORM, O/RM, and O/R mapping) in computer software is a programming technique for converting data between incompatible type systems in object-oriented programming languages. This creates, in effect, a "virtual object database" that can be used from within the programming language. Why should you care?  Basically it allows you to map your business objects in code to their persistence layer behind them. And better yet, why would you want to do this?  Let me outline it in the following points: Development speed.  No more need to map repetitive tasks query results to object members.  Once the map is created the code is rendered for you. Persistence portability.  The ORM knows how to map SQL specific syntax for the persistence engine you choose.  It does not matter if it is SQL Server, Oracle and another database of your choosing. Standard/Boilerplate code is simplified.  The basic CRUD operations are consistent and case use database metadata for basic operations. So how does this help?  Well, let’s compare some of the ORM tools that I have used and/or researched.  I have been interested in ORM for some time now.  My ORM of choice for a long time was NHibernate and I still believe it has a strong case in some business situations.  However, you have to take business considerations into account and the law of diminishing returns.  Because of these two factors, my recent activity and experience has been around DevExpress eXpress Persistence Objects (XPO).  The primary reason for this is because they have the DevExpress eXpress Application Framework (XAF) that sits on top of XPO.  With this added value, the data model can be created (either database first of code first) and the Web and Windows client can be created from these maps.  While out of the box they provide some simple list and detail screens, you can verify easily extend and modify these to your liking.  DevExpress has done a tremendous job of providing enough framework while also staying out of the way when you need to extend it.  This sounds worse than it really is.  What I mean by this is that if you choose to follow DevExpress coding style and recommendations, the hooks and extension points provided allow you to do some pretty heavy lifting while also not worrying about the basics. I have put together a list of the top features that I have used to compare the limited list of ORM’s that I have exposure with.  Again, the biggest selling point in my opinion is that XPO is just a solid as any of the other ORM’s but with the added layer of XAF they become unstoppable.  And then couple that with the EDMX modeling tools and code generation, it becomes a no brainer. Designer Features Entity Framework NHibernate Fluent w/ Nhibernate Telerik OpenAccess DevExpress XPO DevExpress XPO/XAF plus Liekhus Tools Uses XML to map relationships - Yes - - -   Visual class designer interface Yes - - - - Yes Management integrated w/ Visual Studio Yes - - Yes - Yes Supports schema first approach Yes - - Yes - Yes Supports model first approach Yes - - Yes Yes Yes Supports code first approach Yes Yes Yes Yes Yes Yes Attribute driven coding style Yes - Yes - Yes Yes                 I have a very small team and limited resources with a lot of responsibilities.  In order to keep up with our customers, we must rely on tools like these.  We use the EDMX tool so that we can create a visual representation of the applications with our customers.  Second, we rely on the code generation so that we can focus on the business problems at hand and not whether a field is mapped correctly.  This keeps us from requiring as many junior level developers on our team.  I have also worked on multiple teams where they believed in writing their own “framework”.  In my experiences and opinion this is not the route to take unless you have a team dedicated to supporting just the framework.  Each time that I have worked on custom frameworks, the framework eventually becomes old, out dated and full of “performance” enhancements specific to one or two requirements.  With an ORM, there are a lot smarter people than me working on the bigger issue of persistence and performance.  Again, my recommendation would be to use an available framework and get to working on your business domain problems.  If your coding is not making money for you, why are you working on it?  Do you really need to be writing query to object member code again and again? Thanks

    Read the article

  • Developing Spring Portlet for use inside Weblogic Portal / Webcenter Portal

    - by Murali Veligeti
    We need to understand the main difference between portlet workflow and servlet workflow.The main difference between portlet workflow and servlet workflow is that, the request to the portlet can have two distinct phases: 1) Action phase 2) Render phase. The Action phase is executed only once and is where any 'backend' changes or actions occur, such as making changes in a database. The Render phase then produces what is displayed to the user each time the display is refreshed. The critical point here is that for a single overall request, the action phase is executed only once, but the render phase may be executed multiple times. This provides a clean separation between the activities that modify the persistent state of your system and the activities that generate what is displayed to the user.The dual phases of portlet requests are one of the real strengths of the JSR-168 specification. For example, dynamic search results can be updated routinely on the display without the user explicitly re-running the search. Most other portlet MVC frameworks attempt to completely hide the two phases from the developer and make it look as much like traditional servlet development as possible - we think this approach removes one of the main benefits of using portlets. So, the separation of the two phases is preserved throughout the Spring Portlet MVC framework. The primary manifestation of this approach is that where the servlet version of the MVC classes will have one method that deals with the request, the portlet version of the MVC classes will have two methods that deal with the request: one for the action phase and one for the render phase. For example, where the servlet version of AbstractController has the handleRequestInternal(..) method, the portlet version of AbstractController has handleActionRequestInternal(..) and handleRenderRequestInternal(..) methods.The Spring Portlet Framework is designed around a DispatcherPortlet that dispatches requests to handlers, with configurable handler mappings and view resolution, just as the DispatcherServlet in the Spring Web Framework does.  Developing portlet.xml Let's start the sample development by creating the portlet.xml file in the /WebContent/WEB-INF/ folder as shown below: <?xml version="1.0" encoding="UTF-8"?> <portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <portlet> <portlet-name>SpringPortletName</portlet-name> <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class> <supports> <mime-type>text/html</mime-type> <portlet-mode>view</portlet-mode> </supports> <portlet-info> <title>SpringPortlet</title> </portlet-info> </portlet> </portlet-app> DispatcherPortlet is responsible for handling every client request. When it receives a request, it finds out which Controller class should be used for handling this request, and then it calls its handleActionRequest() or handleRenderRequest() method based on the request processing phase. The Controller class executes business logic and returns a View name that should be used for rendering markup to the user. The DispatcherPortlet then forwards control to that View for actual markup generation. As you can see, DispatcherPortlet is the central dispatcher for use within Spring Portlet MVC Framework. Note that your portlet application can define more than one DispatcherPortlet. If it does so, then each of these portlets operates its own namespace, loading its application context and handler mapping. The DispatcherPortlet is also responsible for loading application context (Spring configuration file) for this portlet. First, it tries to check the value of the configLocation portlet initialization parameter. If that parameter is not specified, it takes the portlet name (that is, the value of the <portlet-name> element), appends "-portlet.xml" to it, and tries to load that file from the /WEB-INF folder. In the portlet.xml file, we did not specify the configLocation initialization parameter, so let's create SpringPortletName-portlet.xml file in the next section. Developing SpringPortletName-portlet.xml Create the SpringPortletName-portlet.xml file in the /WebContent/WEB-INF folder of your application as shown below: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans-2.0.xsd"> <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver"> <property name="viewClass" value="org.springframework.web.servlet.view.JstlView"/> <property name="prefix" value="/jsp/"/> <property name="suffix" value=".jsp"/> </bean> <bean id="pointManager" class="com.wlp.spring.bo.internal.PointManagerImpl"> <property name="users"> <list> <ref bean="point1"/> <ref bean="point2"/> <ref bean="point3"/> <ref bean="point4"/> </list> </property> </bean> <bean id="point1" class="com.wlp.spring.bean.User"> <property name="name" value="Murali"/> <property name="points" value="6"/> </bean> <bean id="point2" class="com.wlp.spring.bean.User"> <property name="name" value="Sai"/> <property name="points" value="13"/> </bean> <bean id="point3" class="com.wlp.spring.bean.User"> <property name="name" value="Rama"/> <property name="points" value="43"/> </bean> <bean id="point4" class="com.wlp.spring.bean.User"> <property name="name" value="Krishna"/> <property name="points" value="23"/> </bean> <bean id="messageSource" class="org.springframework.context.support.ResourceBundleMessageSource"> <property name="basename" value="messages"/> </bean> <bean name="/users.htm" id="userController" class="com.wlp.spring.controller.UserController"> <property name="pointManager" ref="pointManager"/> </bean> <bean name="/pointincrease.htm" id="pointIncreaseController" class="com.wlp.spring.controller.IncreasePointsFormController"> <property name="sessionForm" value="true"/> <property name="pointManager" ref="pointManager"/> <property name="commandName" value="pointIncrease"/> <property name="commandClass" value="com.wlp.spring.bean.PointIncrease"/> <property name="formView" value="pointincrease"/> <property name="successView" value="users"/> </bean> <bean id="parameterMappingInterceptor" class="org.springframework.web.portlet.handler.ParameterMappingInterceptor" /> <bean id="portletModeParameterHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeParameterHandlerMapping"> <property name="order" value="1" /> <property name="interceptors"> <list> <ref bean="parameterMappingInterceptor" /> </list> </property> <property name="portletModeParameterMap"> <map> <entry key="view"> <map> <entry key="pointincrease"> <ref bean="pointIncreaseController" /> </entry> <entry key="users"> <ref bean="userController" /> </entry> </map> </entry> </map> </property> </bean> <bean id="portletModeHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeHandlerMapping"> <property name="order" value="2" /> <property name="portletModeMap"> <map> <entry key="view"> <ref bean="userController" /> </entry> </map> </property> </bean> </beans> The SpringPortletName-portlet.xml file is an application context file for your MVC portlet. It has a couple of bean definitions: viewController. At this point, remember that the viewController bean definition points to the com.ibm.developerworks.springmvc.ViewController.java class. portletModeHandlerMapping. As we discussed in the last section, whenever DispatcherPortlet gets a client request, it tries to find a suitable Controller class for handling that request. That is where PortletModeHandlerMapping comes into the picture. The PortletModeHandlerMapping class is a simple implementation of the HandlerMapping interface and is used by DispatcherPortlet to find a suitable Controller for every request. The PortletModeHandlerMapping class uses Portlet mode for the current request to find a suitable Controller class to use for handling the request. The portletModeMap property of portletModeHandlerMapping bean is the place where we map the Portlet mode name against the Controller class. In the sample code, we show that viewController is responsible for handling View mode requests. Developing UserController.java In the preceding section, you learned that the viewController bean is responsible for handling all the View mode requests. Your next step is to create the UserController.java class as shown below: public class UserController extends AbstractController { private PointManager pointManager; public void handleActionRequest(ActionRequest request, ActionResponse response) throws Exception { } public ModelAndView handleRenderRequest(RenderRequest request, RenderResponse response) throws ServletException, IOException { String now = (new java.util.Date()).toString(); Map<String, Object> myModel = new HashMap<String, Object>(); myModel.put("now", now); myModel.put("users", this.pointManager.getUsers()); return new ModelAndView("users", "model", myModel); } public void setPointManager(PointManager pointManager) { this.pointManager = pointManager; } } Every controller class in Spring Portlet MVC Framework must implement the org.springframework.web. portlet.mvc.Controller interface directly or indirectly. To make things easier, Spring Framework provides AbstractController class, which is the default implementation of the Controller interface. As a developer, you should always extend your controller from either AbstractController or one of its more specific subclasses. Any implementation of the Controller class should be reusable, thread-safe, and capable of handling multiple requests throughout the lifecycle of the portlet. In the sample code, we create the ViewController class by extending it from AbstractController. Because we don't want to do any action processing in the HelloSpringPortletMVC portlet, we override only the handleRenderRequest() method of AbstractController. Now, the only thing that HelloWorldPortletMVC should do is render the markup of View.jsp to the user when it receives a user request to do so. To do that, return the object of ModelAndView with a value of view equal to View. Developing web.xml According to Portlet Specification 1.0, every portlet application is also a Servlet Specification 2.3-compliant Web application, and it needs a Web application deployment descriptor (that is, web.xml). Let’s create the web.xml file in the /WEB-INF/ folder as shown in listing 4. Follow these steps: Open the existing web.xml file located at /WebContent/WEB-INF/web.xml. Replace the contents of this file with the code as shown below: <servlet> <servlet-name>ViewRendererServlet</servlet-name> <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class> </servlet> <servlet-mapping> <servlet-name>ViewRendererServlet</servlet-name> <url-pattern>/WEB-INF/servlet/view</url-pattern> </servlet-mapping> <context-param> <param-name>contextConfigLocation</param-name> <param-value>/WEB-INF/applicationContext.xml</param-value> </context-param> <listener> <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class> </listener> The web.xml file for the sample portlet declares two things: ViewRendererServlet. The ViewRendererServlet is the bridge servlet for portlet support. During the render phase, DispatcherPortlet wraps PortletRequest into ServletRequest and forwards control to ViewRendererServlet for actual rendering. This process allows Spring Portlet MVC Framework to use the same View infrastructure as that of its servlet version, that is, Spring Web MVC Framework. ContextLoaderListener. The ContextLoaderListener class takes care of loading Web application context at the time of the Web application startup. The Web application context is shared by all the portlets in the portlet application. In case of duplicate bean definition, the bean definition in the portlet application context takes precedence over the Web application context. The ContextLoader class tries to read the value of the contextConfigLocation Web context parameter to find out the location of the context file. If the contextConfigLocation parameter is not set, then it uses the default value, which is /WEB-INF/applicationContext.xml, to load the context file. The Portlet Controller interface requires two methods that handle the two phases of a portlet request: the action request and the render request. The action phase should be capable of handling an action request and the render phase should be capable of handling a render request and returning an appropriate model and view. While the Controller interface is quite abstract, Spring Portlet MVC offers a lot of controllers that already contain a lot of the functionality you might need – most of these are very similar to controllers from Spring Web MVC. The Controller interface just defines the most common functionality required of every controller - handling an action request, handling a render request, and returning a model and a view. How rendering works As you know, when the user tries to access a page with PointSystemPortletMVC portlet on it or when the user performs some action on any other portlet on that page or tries to refresh that page, a render request is sent to the PointSystemPortletMVC portlet. In the sample code, because DispatcherPortlet is the main portlet class, Weblogic Portal / Webcenter Portal calls its render() method and then the following sequence of events occurs: The render() method of DispatcherPortlet calls the doDispatch() method, which in turn calls the doRender() method. After the doRenderService() method gets control, first it tries to find out the locale of the request by calling the PortletRequest.getLocale() method. This locale is used while making all the locale-related decisions for choices such as which resource bundle should be loaded or which JSP should be displayed to the user based on the locale. After that, the doRenderService() method starts iterating through all the HandlerMapping classes configured for this portlet, calling their getHandler() method to identify the appropriate Controller for handling this request. In the sample code, we have configured only PortletModeHandlerMapping as a HandlerMapping class. The PortletModeHandlerMapping class reads the value of the current portlet mode, and based on that, it finds out, the Controller class that should be used to handle this request. In the sample code, ViewController is configured to handle the View mode request so that the PortletModeHandlerMapping class returns the object of ViewController. After the object of ViewController is returned, the doRenderService() method calls its handleRenderRequestInternal() method. Implementation of the handleRenderRequestInternal() method in ViewController.java is very simple. It logs a message saying that it got control, and then it creates an instance of ModelAndView with a value equal to View and returns it to DispatcherPortlet. After control returns to doRenderService(), the next task is to figure out how to render View. For that, DispatcherPortlet starts iterating through all the ViewResolvers configured in your portlet application, calling their resolveViewName() method. In the sample code we have configured only one ViewResolver, InternalResourceViewResolver. When its resolveViewName() method is called with viewName, it tries to add /WEB-INF/jsp as a prefix to the view name and to add JSP as a suffix. And it checks if /WEB-INF/jsp/View.jsp exists. If it does exist, it returns the object of JstlView wrapping View.jsp. After control is returned to the doRenderService() method, it creates the object PortletRequestDispatcher, which points to /WEB-INF/servlet/view – that is, ViewRendererServlet. Then it sets the object of JstlView in the request and dispatches the request to ViewRendererServlet. After ViewRendererServlet gets control, it reads the JstlView object from the request attribute and creates another RequestDispatcher pointing to the /WEB-INF/jsp/View.jsp URL and passes control to it for actual markup generation. The markup generated by View.jsp is returned to user. At this point, you may question the need for ViewRendererServlet. Why can't DispatcherPortlet directly forward control to View.jsp? Adding ViewRendererServlet in between allows Spring Portlet MVC Framework to reuse the existing View infrastructure. You may appreciate this more when we discuss how easy it is to integrate Apache Tiles Framework with your Spring Portlet MVC Framework. The attached project SpringPortlet.zip should be used to import the project in to your OEPE Workspace. SpringPortlet_Jars.zip contains jar files required for the application. Project is written on Spring 2.5.  The same JSR 168 portlet should work on Webcenter Portal as well.  Downloads: Download WeblogicPotal Project which consists of Spring Portlet. Download Spring Jars In-addition to above you need to download Spring.jar (Spring2.5)

    Read the article

  • WEB203 &ndash; Jump into Silverlight!&hellip; and Become Effective Immediately with Tim Huckaby, Fou

    - by Robert Burger
    Getting ready for the good stuff. Definitely wish there were more Silverlight and WCF RIA sessions, but this is a start.  Was lucky to get a coveted power-enabled seat.  Luckily, due to my trustily slow Verizon data card, I can get these notes out amidst a total Internet outage here.  This is the second breakout session of the day, and is by far standing-room only.  I stepped out before the session started to get a cool Diet COKE and wouldn’t have gotten back in if I didn’t already have a seat. Tim says this is an intro session and that he’s been begging for intro sessions at TechEd for years and that by looking at this audience, he thinks the demand is there.  Admittedly, I didn’t know this was an intro session, or I might have gone elsewhere.  But, it was the very first Silverlight session, so I had to be here. Tim says he will be providing a very good comprehensive reference application at the end of the presentation.  He has just demoed it, and it is a full CRUD-based Sales Manager application based on…  AdventureWorks! Session Agenda What it is / How to get started Declarative Programming Layout and Controls, Events and Commands Working with Data Adding Style to Your Application   Silverlight…  “WPF Light” Why is the download 4.2MB?  Because the direct competitor is a 4.2MB download.  There is no technical reason it is not the entire framework.  It is purely to “be competitive”.   Getting Started Get all of the following downloads from www.silverlight.net/getstarted Install VS2010 or Visual Web Developer Express 2010 Install Silverlight 4 Tools for VS2010 Install Expression Blend 4 Install the Silverlight 4 Toolkit   Reference Application Features Uses MVVM pattern – a way to move data access code that would normally be inline within the UI and placing it in nice data access libraries Images loaded dynamically from the database, converting GIF to PNG because Silverlight does not support GIF. LINQ to SQL is the data access model WCF is the data provider and is using binary message encoding   Declarative Programming XAML replaces code for UI representation Attributes control Layout and Style Event handlers wired-up in XAML Declarative Data Binding   Layout Overview Content rendering flows inside of parent Fixed positioning (Canvas) is seldom used Panels are used to house content Margins and Padding over fixed size   Panels StackPanel – Arranges child elements into a single line oriented horizontally or vertically Grid – A flexible grid are that consists of rows and columns Canvas – An are where positions are specifically fixed WrapPanel (in Toolkit) – Positions child elements in sequential position left to right and top to bottom. DockPanel (in Toolkit) – Positions child controls within a dockable area   Positioning Horizontal and Vertical Alignment Margin – Separates an element from neighboring elements Padding – Enlarges the effective size of an element by a thickness   Controls Overview Not all controls created equal Silverlight, as a subset of WPF, so many WPF controls do not exist in the core Siverlight release Silverlight Toolkit continues to add controls, but are released in different quality bands Plenty of good 3rd party controls to fill the gaps Windows Phone 7 is to have 95% of controls available in Silverlight Core and Toolkit.   Events and Commands Standard .NET Events Routed Events Commands – based on the ICommand interface – logical action that can be invoked in several ways   Adding Style to Your Application Resource Dictionaries – Contains a hash table of key/value pairs.  Silverlight can only use Static Resources whereas WPF can also use Dynamic Resources Visual State Manager Silverlight 4 supports Implicit styles ResourceDictionary.MergedDictionaries combines many different file-based resources   Downloads

    Read the article

  • Tips to Make Your Website Cell Phone Friendly

    - by Aditi
    Working on a new website design? or Redesigning your website? There is a lot more to consider now a days not just user experience, clean code, CSS etc. one of the important attribute one must not miss, which is making them mobile friendly! With the growing use of handhelds & unlimited data plans, people browse on their cellphones! and All come in different sizes! it is tough to make a website that would look great not just on a high resolution widescreen monitor/LCD, but also should look equally impressive on the low resolutions of cellphones. We are today going to discuss about such factors that can help you make a website Cellphone Friendly. Fluid Width Layouts As we start discussing about this, Most people speak of the Fluid Width Layouts as vital step in moving your website to be mobile friendly. Fluid width allows the width of your website stretch or shrink depending on the browser size. However, having a layout which flows with the width of the screen’s resolution is certainly convenient, more often than not the website was originally laid out for a desktop in mind. Compressing a fluid layout to 320 pixels can do some serious damage to layout, Thus some people strongly believe it is far better to have a mobile style sheet and lay out the content specifically for that screen and have more control on the display. The best thing to do is to detect the type of platform that is connected to your website and disabling or changing some tools and effects to make it look better if not perfect. Keep Your Web Pages Short length One must avoid long pages on their website, a lot of scroll makes it very non user friendly for people, especially on mobile devices this is a huge draw back because of the longer load time it takes to download the webpage. Everyone likes crisp & concise content such pages are easier to load & browse. This makes your website accessible across all platforms. Also try to keep shorter urls, if they have to type..save them from that much work especially if someone is using a cellphone with no QWERTY keyboard it can be tough. Usable Navigation & Search Unlike Desktops, your website’s Navigation won’t super work on a cellphone. Keep in mind the user experience for cellphone users as you design your Navigation. Try to keep your content centered as they do have difficulty in reading the webpage. I always look upto Google and their pages as available on mobile as a great example. Keeping a functional & very visible search bar helps mobile users navigate by searching. Understanding Clean Website Code : Evolved for Mobile Clean code is important when you consider the diversity out there for handheld devices. Some cell phones may only understand WAP. More capable phones may understand WAP2, which allows rendering websites with XHTML and CSS. Most mobiles won’t display tables, floats, frames, JavaScript, and dynamic menus. Most cellphone will not support cookies. Devices at the high end of the mobile market such as BlackBerry, Palm, or the upcoming iPhone are highly capable and support nearly as much as a standard computer..but masses still do not have such phones. You can use specific emulators to test your website on mobile devices. Make sure your color combinations provide good contrast between foreground and background colors, particularly for devices with fewer color options.

    Read the article

  • A C# implementation of the CallStream pattern

    - by Bertrand Le Roy
    Dusan published this interesting post a couple of weeks ago about a novel JavaScript chaining pattern: http://dbj.org/dbj/?p=514 It’s similar to many existing patterns, but the syntax is extraordinarily terse and it provides a new form of friction-free, plugin-less extensibility mechanism. Here’s a JavaScript example from Dusan’s post: CallStream("#container") (find, "div") (attr, "A", 1) (css, "color", "#fff") (logger); The interesting thing here is that the functions that are being passed as the first argument are arbitrary, they don’t need to be declared as plug-ins. Compare that with a rough jQuery equivalent that could look something like this: $.fn.logger = function () { /* ... */ } $("selector") .find("div") .attr("A", 1) .css("color", "#fff") .logger(); There is also the “each” method in jQuery that achieves something similar, but its syntax is a little more verbose. Of course, that this pattern can be expressed so easily in JavaScript owes everything to the extraordinary way functions are treated in that language, something Douglas Crockford called “the very best part of JavaScript”. One of the first things I thought while reading Dusan’s post was how I could adapt that to C#. After all, with Lambdas and delegates, C# also has its first-class functions. And sure enough, it works really really well. After about ten minutes, I was able to write this: CallStreamFactory.CallStream (p => Console.WriteLine("Yay!")) (Dump, DateTime.Now) (DumpFooAndBar, new { Foo = 42, Bar = "the answer" }) (p => Console.ReadKey()); Where the Dump function is: public static void Dump(object options) { Console.WriteLine(options.ToString()); } And DumpFooAndBar is: public static void DumpFooAndBar(dynamic options) { Console.WriteLine("Foo is {0} and bar is {1}.", options.Foo, options.Bar); } So how does this work? Well, it really is very simple. And not. Let’s say it’s not a lot of code, but if you’re like me you might need an Advil after that. First, I defined the signature of the CallStream method as follows: public delegate CallStream CallStream (Action<object> action, object options = null); The delegate define a call stream as something that takes an action (a function of the options) and an optional options object and that returns a delegate of its own type. Tricky, but that actually works, a delegate can return its own type. Then I wrote an implementation of that delegate that calls the action and returns itself: public static CallStream CallStream (Action<object> action, object options = null) { action(options); return CallStream; } Pretty nice, eh? Well, yes and no. What we are doing here is to execute a sequence of actions using an interesting novel syntax. But for this to be actually useful, you’d need to build a more specialized call stream factory that comes with some sort of context (like Dusan did in JavaScript). For example, you could write the following alternate delegate signature that takes a string and returns itself: public delegate StringCallStream StringCallStream(string message); And then write the following call stream (notice the currying): public static StringCallStream CreateDumpCallStream(string dumpPath) { StringCallStream str = null; var dump = File.AppendText(dumpPath); dump.AutoFlush = true; str = s => { dump.WriteLine(s); return str; }; return str; } (I know, I’m not closing that stream; sure; bad, bad Bertrand) Finally, here’s how you use it: CallStreamFactory.CreateDumpCallStream(@".\dump.txt") ("Wow, this really works.") (DateTime.Now.ToLongTimeString()) ("And that is all."); Next step would be to combine this contextual implementation with the one that takes an action parameter and do some really fun stuff. I’m only scratching the surface here. This pattern could reveal itself to be nothing more than a gratuitous mind-bender or there could be applications that we hardly suspect at this point. In any case, it’s a fun new construct. Or is this nothing new? You tell me… Comments are open :)

    Read the article

  • Implementing an Interceptor Using NHibernate’s Built In Dynamic Proxy Generator

    - by Ricardo Peres
    NHibernate 3.2 came with an included proxy generator, which means there is no longer the need – or the possibility, for that matter – to choose Castle DynamicProxy, LinFu or Spring. This is actually a good thing, because it means one less assembly to deploy. Apparently, this generator was based, at least partially, on LinFu. As there are not many tutorials out there demonstrating it’s usage, here’s one, for demonstrating one of the most requested features: implementing INotifyPropertyChanged. This interceptor, of course, will still feature all of NHibernate’s functionalities that you are used to, such as lazy loading, and such. We will start by implementing an NHibernate interceptor, by inheriting from the base class NHibernate.EmptyInterceptor. This class does not do anything by itself, but it allows us to plug in behavior by overriding some of its methods, in this case, Instantiate: 1: public class NotifyPropertyChangedInterceptor : EmptyInterceptor 2: { 3: private ISession session = null; 4:  5: private static readonly ProxyFactory factory = new ProxyFactory(); 6:  7: public override void SetSession(ISession session) 8: { 9: this.session = session; 10: base.SetSession(session); 11: } 12:  13: public override Object Instantiate(String clazz, EntityMode entityMode, Object id) 14: { 15: Type entityType = Type.GetType(clazz); 16: IProxy proxy = factory.CreateProxy(entityType, new _NotifyPropertyChangedInterceptor(), typeof(INotifyPropertyChanged)) as IProxy; 17: 18: _NotifyPropertyChangedInterceptor interceptor = proxy.Interceptor as _NotifyPropertyChangedInterceptor; 19: interceptor.Proxy = this.session.SessionFactory.GetClassMetadata(entityType).Instantiate(id, entityMode); 20:  21: this.session.SessionFactory.GetClassMetadata(entityType).SetIdentifier(proxy, id, entityMode); 22:  23: return (proxy); 24: } 25: } Then we need a class that implements the NHibernate dynamic proxy behavior, let’s place it inside our interceptor, because it will only need to be used there: 1: class _NotifyPropertyChangedInterceptor : NHibernate.Proxy.DynamicProxy.IInterceptor 2: { 3: private PropertyChangedEventHandler changed = delegate { }; 4:  5: public Object Proxy 6: { 7: get; 8: set;} 9:  10: #region IInterceptor Members 11:  12: public Object Intercept(InvocationInfo info) 13: { 14: Boolean isSetter = info.TargetMethod.Name.StartsWith("set_") == true; 15: Object result = null; 16:  17: if (info.TargetMethod.Name == "add_PropertyChanged") 18: { 19: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 20: this.changed += propertyChangedEventHandler; 21: } 22: else if (info.TargetMethod.Name == "remove_PropertyChanged") 23: { 24: PropertyChangedEventHandler propertyChangedEventHandler = info.Arguments[0] as PropertyChangedEventHandler; 25: this.changed -= propertyChangedEventHandler; 26: } 27: else 28: { 29: result = info.TargetMethod.Invoke(this.Proxy, info.Arguments); 30: } 31:  32: if (isSetter == true) 33: { 34: String propertyName = info.TargetMethod.Name.Substring("set_".Length); 35: this.changed(this.Proxy, new PropertyChangedEventArgs(propertyName)); 36: } 37:  38: return (result); 39: } 40:  41: #endregion 42: } What this does for every interceptable method (those who are either virtual or from the INotifyPropertyChanged) is: For methods that came from the INotifyPropertyChanged interface, add_PropertyChanged and remove_PropertyChanged (yes, events are methods ), we add an implementation that adds or removes the event handlers to the delegate which we declared as changed; For all the others, we direct them to the place where they are actually implemented, which is the Proxy field; If the call is setting a property, it fires afterwards the PropertyChanged event. In order to use this, we need to add the interceptor to the Configuration before building the ISessionFactory: 1: using (ISessionFactory factory = cfg.SetInterceptor(new NotifyPropertyChangedInterceptor()).BuildSessionFactory()) 2: { 3: using (ISession session = factory.OpenSession()) 4: using (ITransaction tx = session.BeginTransaction()) 5: { 6: Customer customer = session.Get<Customer>(100); //some id 7: INotifyPropertyChanged inpc = customer as INotifyPropertyChanged; 8: inpc.PropertyChanged += delegate(Object sender, PropertyChangedEventArgs e) 9: { 10: //fired when a property changes 11: }; 12: customer.Address = "some other address"; //will raise PropertyChanged 13: customer.RecentOrders.ToList(); //will trigger the lazy loading 14: } 15: } Any problems, questions, do drop me a line!

    Read the article

  • Do Not Optimize Without Measuring

    - by Alois Kraus
    Recently I had to do some performance work which included reading a lot of code. It is fascinating with what ideas people come up to solve a problem. Especially when there is no problem. When you look at other peoples code you will not be able to tell if it is well performing or not by reading it. You need to execute it with some sort of tracing or even better under a profiler. The first rule of the performance club is not to think and then to optimize but to measure, think and then optimize. The second rule is to do this do this in a loop to prevent slipping in bad things for too long into your code base. If you skip for some reason the measure step and optimize directly it is like changing the wave function in quantum mechanics. This has no observable effect in our world since it does represent only a probability distribution of all possible values. In quantum mechanics you need to let the wave function collapse to a single value. A collapsed wave function has therefore not many but one distinct value. This is what we physicists call a measurement. If you optimize your application without measuring it you are just changing the probability distribution of your potential performance values. Which performance your application actually has is still unknown. You only know that it will be within a specific range with a certain probability. As usual there are unlikely values within your distribution like a startup time of 20 minutes which should only happen once in 100 000 years. 100 000 years are a very short time when the first customer tries your heavily distributed networking application to run over a slow WIFI network… What is the point of this? Every programmer/architect has a mental performance model in his head. A model has always a set of explicit preconditions and a lot more implicit assumptions baked into it. When the model is good it will help you to think of good designs but it can also be the source of problems. In real world systems not all assumptions of your performance model (implicit or explicit) hold true any longer. The only way to connect your performance model and the real world is to measure it. In the WIFI example the model did assume a low latency high bandwidth LAN connection. If this assumption becomes wrong the system did have a drastic change in startup time. Lets look at a example. Lets assume we want to cache some expensive UI resource like fonts objects. For this undertaking we do create a Cache class with the UI themes we want to support. Since Fonts are expensive objects we do create it on demand the first time the theme is requested. A simple example of a Theme cache might look like this: using System; using System.Collections.Generic; using System.Drawing; struct Theme { public Color Color; public Font Font; } static class ThemeCache { static Dictionary<string, Theme> _Cache = new Dictionary<string, Theme> { {"Default", new Theme { Color = Color.AliceBlue }}, {"Theme12", new Theme { Color = Color.Aqua }}, }; public static Theme Get(string theme) { Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } return cached; } } class Program { static void Main(string[] args) { Theme item = ThemeCache.Get("Theme12"); item = ThemeCache.Get("Theme12"); } } This cache does create font objects only once since on first retrieve of the Theme object the font is added to the Theme object. When we let the application run it should print “Creating new font” only once. Right? Wrong! The vigilant readers have spotted the issue already. The creator of this cache class wanted to get maximum performance. So he decided that the Theme object should be a value type (struct) to not put too much pressure on the garbage collector. The code Theme cached = _Cache[theme]; if (cached.Font == null) { Console.WriteLine("Creating new font"); cached.Font = new Font("Arial", 8); } does work with a copy of the value stored in the dictionary. This means we do mutate a copy of the Theme object and return it to our caller. But the original Theme object in the dictionary will have always null for the Font field! The solution is to change the declaration of struct Theme to class Theme or to update the theme object in the dictionary. Our cache as it is currently is actually a non caching cache. The funny thing was that I found out with a profiler by looking at which objects where finalized. I found way too many font objects to be finalized. After a bit debugging I found the allocation source for Font objects was this cache. Since this cache was there for years it means that the cache was never needed since I found no perf issue due to the creation of font objects. the cache was never profiled if it did bring any performance gain. to make the cache beneficial it needs to be accessed much more often. That was the story of the non caching cache. Next time I will write something something about measuring.

    Read the article

< Previous Page | 356 357 358 359 360 361 362 363 364 365 366 367  | Next Page >