Search Results

Search found 66233 results on 2650 pages for 'class method'.

Page 364/2650 | < Previous Page | 360 361 362 363 364 365 366 367 368 369 370 371  | Next Page >

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Setting up a new Silverlight 4 Project with WCF RIA Services

    - by Kevin Grossnicklaus
    Many of my clients are actively using Silverlight 4 and RIA Services to build powerful line of business applications.  Getting things set up correctly is critical to being to being able to take full advantage of the RIA services plumbing and when developers struggle with the setup they tend to shy away from the solution as a whole.  I’m a big proponent of RIA services and wanted to take the opportunity to share some of my experiences in setting up these types of projects.  In late 2010 I presented a RIA Services Master Class here in St. Louis, MO through my firm (ArchitectNow) and the information shared in this post was promised during that presentation. One other thing I want to mention before diving in is the existence of a number of other great posts on this subject.  I’ve learned a lot from many of them and wanted to call out a few of them.  The purpose of my post is to point out some of the gotchas that people get caught up on in the process but I would still encourage you to do as much additional research as you can to find the perfect setup for your needs. Here are a few additional blog posts and articles you should check out on the subject: http://msdn.microsoft.com/en-us/library/ee707351(VS.91).aspx http://adam-thompson.com/post/2010/07/03/Getting-Started-with-WCF-RIA-Services-for-Silverlight-4.aspx Technologies I don’t intend for this post to turn into a full WCF RIA Services tutorial but I did want to point out what technologies we will be using: Visual Studio.NET 2010 Silverlight 4.0 WCF RIA Services for Visual Studio 2010 Entity Framework 4.0 I also wanted to point out that the screenshots came from my personal development box which has a number of additional plug-ins and frameworks loaded so a few of the screenshots might not match 100% with what you see on your own machines. If you do not have Visual Studio 2010 you can download the express version from http://www.microsoft.com/express.  The Silverlight 4.0 tools and the WCF RIA Services components are installed via the Web Platform Installer (http://www.microsoft.com/web/download). Also, the examples given in this post are done in C#…sorry to you VB folks but the concepts are 100% identical. Setting up anew RIA Services Project This section will provide a step-by-step walkthrough of setting up a new RIA services project using a shared DLL for server side code and a simple Entity Framework model for data access.  All projects are created with the consistent ArchitectNow.RIAServices filename prefix and default namespace.  This would be modified to match your companies standards. First, open Visual Studio and open the new project window via File->New->Project.  In the New Project window, select the Silverlight folder in the Installed Templates section on the left and select “Silverlight Application” as your project type.  Verify your solution name and location are set appropriately.  Note that the project name we specified in the example below ends with .Client.  This indicates the name which will be given to our Silverlight project. I consider Silverlight a client-side technology and thus use this name to reflect that.  Click Ok to continue. During the creation on a new Silverlight 4 project you will be prompted with the following dialog to create a new web ASP.NET web project to host your Silverlight content.  As we are demonstrating the setup of a WCF RIA Services infrastructure, make sure the “Enable WCF RIA Services” option is checked and click OK.  Obviously, there are some other options here which have an effect on your solution and you are welcome to look around.  For our example we are going to leave the ASP.NET Web Application Project selected.  If you are interested in having your Silverlight project hosted in an MVC 2 application or a Web Site project these options are available as well.  Also, whichever web project type you select, the name can be modified here as well.  Note that it defaults to the same name as your Silverlight project with the addition of a .Web suffix. At this point, your full Silverlight 4 project and host ASP.NET Web Application should be created and will now display in your Visual Studio solution explorer as part of a single Visual Studio solution as follows: Now we want to add our WCF RIA Services projects to this same solution.  To do so, right-click on the Solution node in the solution explorer and select Add->New Project.  In the New Project dialog again select the Silverlight folder under the Visual C# node on the left and, in the main area of the screen, select the WCF RIA Services Class Library project template as shown below.  Make sure your project name is set appropriately as well.  For the sample below, we will name the project “ArchitectNow.RIAServices.Server.Entities”.   The .Server.Entities suffix we use is meant to simply indicate that this particular project will contain our WCF RIA Services entity classes (as you will see below).  Click OK to continue. Once you have created the WCF RIA Services Class Library specified above, Visual Studio will automatically add TWO projects to your solution.  The first will be an project called .Server.Entities (using our naming conventions) and the other will have the same name with a .Web extension.  The full solution (with all 4 projects) is shown in the image below.  The .Entities project will essentially remain empty and is actually a Silverlight 4 class library that will contain generated RIA Services domain objects.  It will be referenced by our front-end Silverlight project and thus allow for simplified sharing of code between the client and the server.   The .Entities.Web project is a .NET 4.0 class library into which we will put our data access code (via Entity Framework).  This is our server side code and business logic and the RIA Services plumbing will maintain a link between this project and the front end.  Specific entities such as our domain objects and other code we set to be shared will be copied automatically into the .Entities project to be used in both the front end and the back end. At this point, we want to do a little cleanup of the projects in our solution and we will do so by deleting the “Class1.cs” class from both the .Entities project and the .Entities.Web project.  (Has anyone ever intentionally named a class “Class1”?) Next, we need to configure a few references to make RIA Services work.  THIS IS A KEY STEP THAT CAUSES MANY HEADACHES FOR DEVELOPERS NEW TO THIS INFRASTRUCTURE! Using the Add References dialog in Visual Studio, add a project reference from the *.Client project (our Silverlight 4 client) to the *.Entities project (our RIA Services class library).  Next, again using the Add References dialog in Visual Studio, add a project reference from the *.Client.Web project (our ASP.NET host project) to the *.Entities.Web project (our back-end data services DLL).  To get to the Add References dialog, simply right-click on the project you with to add a reference to in the Visual Studio solution explorer and select “Add Reference” from the resulting context menu.  You will want to make sure these references are added as “Project” references to simplify your future debugging.  To reiterate the reference direction using the project names we have utilized in this example thus far:  .Client references .Entities and .Client.Web reference .Entities.Web.  If you have opted for a different naming convention, then the Silverlight project must reference the RIA Services Silverlight class library and the ASP.NET host project must reference the server-side class library. Next, we are going to add a new Entity Framework data model to our data services project (.Entities.Web).  We will do this by right clicking on this project (ArchitectNow.Server.Entities.Web in the above diagram) and selecting Add->New Project.  In the New Project dialog we will select ADO.NET Entity Data Model as in the following diagram.  For now we will call this simply SampleDataModel.edmx and click OK. It is worth pointing out that WCF RIA Services is in no way tied to the Entity Framework as a means of accessing data and any data access technology is supported (as long as the server side implementation maps to the RIA Services pattern which is a topic beyond the scope of this post).  We are using EF to quickly demonstrate the RIA Services concepts and setup infrastructure, as such, I am not providing a database schema with this post but am instead connecting to a small sample database on my local machine.  The following diagram shows a simple EF Data Model with two tables that I reverse engineered from a local data store.   If you are putting together your own solution, feel free to reverse engineer a few tables from any local database to which you have access. At this point, once you have an EF data model generated as an EDMX into your .Entites.Web project YOU MUST BUILD YOUR SOLUTION.  I know it seems strange to call that out but it important that the solution be built at this point for the next step to be successful.  Obviously, if you have any build errors, these must be addressed at this point. At this point we will add a RIA Services Domain Service to our .Entities.Web project (our server side code).  We will need to right-click on the .Entities.Web project and select Add->New Item.  In the Add New Item dialog, select Domain Service Class and verify the name of your new Domain Service is correct (ours is called SampleService.cs in the image below).  Next, click "Add”. After clicking “Add” to include the Domain Service Class in the selected project, you will be presented with the following dialog.  In it, you can choose which entities from the selected EDMX to include in your services and if they should be allowed to be edited (i.e. inserted, updated, or deleted) via this service.  If the “Available DataContext/ObjectContext classes” dropdown is empty, this indicates you have not yes successfully built your project after adding your EDMX.  I would also recommend verifying that the “Generate associated classes for metadata” option is selected.  Once you have selected the appropriate options, click “OK”. Once you have added the domain service class to the .Entities.Web project, the resulting solution should look similar to the following: Note that in the solution you now have a SampleDataModel.edmx which represents your EF data mapping to your database and a SampleService.cs which will contain a large amount of generated RIA Services code which RIA Services utilizes to access this data from the Silverlight front-end.  You will put all your server side data access code and logic into the SampleService.cs class.  The SampleService.metadata.cs class is for decorating the generated domain objects with attributes from the System.ComponentModel.DataAnnotations namespace for validation purposes. FINAL AND KEY CONFIGURATION STEP!  One key step that causes significant headache to developers configuring RIA Services for the first time is the fact that, when we added the EDMX to the .Entities.Web project for our EF data access, a connection string was generated and placed within a newly generated App.Context file within that project.  While we didn’t point it out at the time you can see it in the image above.  This connection string will be required for the EF data model to successfully locate it’s data.  Also, when we added the Domain Service class to the .Entities.Web project, a number of RIA Services configuration options were added to the same App.Config file.   Unfortunately, when we ultimately begin to utilize the RIA Services infrastructure, our Silverlight UI will be making RIA services calls through the ASP.NET host project (i.e. .Client.Web).  This host project has a reference to the .Entities.Web project which actually contains the code so all will pass through correctly EXCEPT the fact that the host project will utilize it’s own Web.Config for any configuration settings.  For this reason we must now merge all the sections of the App.Config file in the .Entities.Web project into the Web.Config file in the .Client.Web project.  I know this is a bit tedious and I wish there were a simpler solution but it is required for our RIA Services Domain Service to be made available to the front end Silverlight project.  Much of this manual merge can be achieved by simply cutting and pasting from App.Config into Web.Config.  Unfortunately, the <system.webServer> section will exist in both and the contents of this section will need to be manually merged.  Fortunately, this is a step that needs to be taken only once per solution.  As you add additional data structures and Domain Services methods to the server no additional changes will be necessary to the Web.Config. Next Steps At this point, we have walked through the basic setup of a simple RIA services solution.  Unfortunately, there is still a lot to know about RIA services and we have not even begun to take advantage of the plumbing which we just configured (meaning we haven’t even made a single RIA services call).  I plan on posting a few more introductory posts over the next few weeks to take us to this step.  If you have any questions on the content in this post feel free to reach out to me via this Blog and I’ll gladly point you in (hopefully) the right direction. Resources Prior to closing out this post, I wanted to share a number or resources to help you get started with RIA services.  While I plan on posting more on the subject, I didn’t invent any of this stuff and wanted to give credit to the following areas for helping me put a lot of these pieces into place.   The books and online resources below will go a long way to making you extremely productive with RIA services in the shortest time possible.  The only thing required of you is the dedication to take advantage of the resources available. Books Pro Business Applications with Silverlight 4 http://www.amazon.com/Pro-Business-Applications-Silverlight-4/dp/1430272074/ref=sr_1_2?ie=UTF8&qid=1291048751&sr=8-2 Silverlight 4 in Action http://www.amazon.com/Silverlight-4-Action-Pete-Brown/dp/1935182374/ref=sr_1_1?ie=UTF8&qid=1291048751&sr=8-1 Pro Silverlight for the Enterprise (Books for Professionals by Professionals) http://www.amazon.com/Pro-Silverlight-Enterprise-Books-Professionals/dp/1430218673/ref=sr_1_3?ie=UTF8&qid=1291048751&sr=8-3 Web Content RIA Services http://channel9.msdn.com/Blogs/RobBagby/NET-RIA-Services-in-5-Minutes http://silverlight.net/riaservices/ http://www.silverlight.net/learn/videos/all/net-ria-services-intro/ http://www.silverlight.net/learn/videos/all/ria-services-support-visual-studio-2010/ http://channel9.msdn.com/learn/courses/Silverlight4/SL4BusinessModule2/SL4LOB_02_01_RIAServices http://www.myvbprof.com/MainSite/index.aspx#/zSL4_RIA_01 http://channel9.msdn.com/blogs/egibson/silverlight-firestarter-ria-services http://msdn.microsoft.com/en-us/library/ee707336%28v=VS.91%29.aspx Silverlight www.silverlight.net http://msdn.microsoft.com/en-us/silverlight4trainingcourse.aspx http://channel9.msdn.com/shows/silverlighttv

    Read the article

  • Developing custom MBeans to manage J2EE Applications (Part III)

    - by philippe Le Mouel
    This is the third and final part in a series of blogs, that demonstrate how to add management capability to your own application using JMX MBeans. In Part I we saw: How to implement a custom MBean to manage configuration associated with an application. How to package the resulting code and configuration as part of the application's ear file. How to register MBeans upon application startup, and unregistered them upon application stop (or undeployment). How to use generic JMX clients such as JConsole to browse and edit our application's MBean. In Part II we saw: How to add localized descriptions to our MBean, MBean attributes, MBean operations and MBean operation parameters. How to specify meaningful name to our MBean operation parameters. We also touched on future enhancements that will simplify how we can implement localized MBeans. In this third and last part, we will re-write our MBean to simplify how we added localized descriptions. To do so we will take advantage of the functionality we already described in part II and that is now part of WebLogic 10.3.3.0. We will show how to take advantage of WebLogic's localization support to localize our MBeans based on the client's Locale independently of the server's Locale. Each client will see MBean descriptions localized based on his/her own Locale. We will show how to achieve this using JConsole, and also using a sample programmatic JMX Java client. The complete code sample and associated build files for part III are available as a zip file. The code has been tested against WebLogic Server 10.3.3.0 and JDK6. To build and deploy our sample application, please follow the instruction provided in Part I, as they also apply to part III's code and associated zip file. Providing custom descriptions take II In part II we localized our MBean descriptions by extending the StandardMBean class and overriding its many getDescription methods. WebLogic 10.3.3.0 similarly to JDK 7 can automatically localize MBean descriptions as long as those are specified according to the following conventions: Descriptions resource bundle keys are named according to: MBean description: <MBeanInterfaceClass>.mbean MBean attribute description: <MBeanInterfaceClass>.attribute.<AttributeName> MBean operation description: <MBeanInterfaceClass>.operation.<OperationName> MBean operation parameter description: <MBeanInterfaceClass>.operation.<OperationName>.<ParameterName> MBean constructor description: <MBeanInterfaceClass>.constructor.<ConstructorName> MBean constructor parameter description: <MBeanInterfaceClass>.constructor.<ConstructorName>.<ParameterName> We also purposely named our resource bundle class MBeanDescriptions and included it as part of the same package as our MBean. We already followed the above conventions when creating our resource bundle in part II, and our default resource bundle class with English descriptions looks like: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "MBean used to manage persistent application properties"}, {"PropertyConfigMXBean.attribute.Properties", "Properties associated with the running application"}, {"PropertyConfigMXBean.operation.setProperty", "Create a new property, or change the value of an existing property"}, {"PropertyConfigMXBean.operation.setProperty.key", "Name that identify the property to set."}, {"PropertyConfigMXBean.operation.setProperty.value", "Value for the property being set"}, {"PropertyConfigMXBean.operation.getProperty", "Get the value for an existing property"}, {"PropertyConfigMXBean.operation.getProperty.key", "Name that identify the property to be retrieved"} }; } } We have now also added a resource bundle with French localized descriptions: package blog.wls.jmx.appmbean; import java.util.ListResourceBundle; public class MBeanDescriptions_fr extends ListResourceBundle { protected Object[][] getContents() { return new Object[][] { {"PropertyConfigMXBean.mbean", "Manage proprietes sauvegarde dans un fichier disque."}, {"PropertyConfigMXBean.attribute.Properties", "Proprietes associee avec l'application en cour d'execution"}, {"PropertyConfigMXBean.operation.setProperty", "Construit une nouvelle proprietee, ou change la valeur d'une proprietee existante."}, {"PropertyConfigMXBean.operation.setProperty.key", "Nom de la propriete dont la valeur est change."}, {"PropertyConfigMXBean.operation.setProperty.value", "Nouvelle valeur"}, {"PropertyConfigMXBean.operation.getProperty", "Retourne la valeur d'une propriete existante."}, {"PropertyConfigMXBean.operation.getProperty.key", "Nom de la propriete a retrouver."} }; } } So now we can just remove the many getDescriptions methods from our MBean code, and have a much cleaner: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Map; import java.util.HashMap; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig extends StandardMBean implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; private static Map operationsParamNames_ = null; static { operationsParamNames_ = new HashMap(); operationsParamNames_.put("setProperty", new String[] {"key", "value"}); operationsParamNames_.put("getProperty", new String[] {"key"}); } public PropertyConfig(String relativePath) throws Exception { super(PropertyConfigMXBean.class , true); props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} protected String getParameterName(MBeanOperationInfo op, MBeanParameterInfo param, int sequence) { return operationsParamNames_.get(op.getName())[sequence]; } } The only reason we are still extending the StandardMBean class, is to override the default values for our operations parameters name. If this isn't a concern, then one could just write the following code: package blog.wls.jmx.appmbean; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.File; import java.net.URL; import java.util.Properties; import javax.management.MBeanServer; import javax.management.ObjectName; import javax.management.MBeanRegistration; import javax.management.StandardMBean; import javax.management.MBeanOperationInfo; import javax.management.MBeanParameterInfo; public class PropertyConfig implements PropertyConfigMXBean, MBeanRegistration { private String relativePath_ = null; private Properties props_ = null; private File resource_ = null; public PropertyConfig(String relativePath) throws Exception { props_ = new Properties(); relativePath_ = relativePath; } public String setProperty(String key, String value) throws IOException { String oldValue = null; if (value == null) { oldValue = String.class.cast(props_.remove(key)); } else { oldValue = String.class.cast(props_.setProperty(key, value)); } save(); return oldValue; } public String getProperty(String key) { return props_.getProperty(key); } public Map getProperties() { return (Map) props_; } private void load() throws IOException { InputStream is = new FileInputStream(resource_); try { props_.load(is); } finally { is.close(); } } private void save() throws IOException { OutputStream os = new FileOutputStream(resource_); try { props_.store(os, null); } finally { os.close(); } } public ObjectName preRegister(MBeanServer server, ObjectName name) throws Exception { // MBean must be registered from an application thread // to have access to the application ClassLoader ClassLoader cl = Thread.currentThread().getContextClassLoader(); URL resourceUrl = cl.getResource(relativePath_); resource_ = new File(resourceUrl.toURI()); load(); return name; } public void postRegister(Boolean registrationDone) { } public void preDeregister() throws Exception {} public void postDeregister() {} } Note: The above would also require changing the operations parameters name in the resource bundle classes. For instance: PropertyConfigMXBean.operation.setProperty.key would become: PropertyConfigMXBean.operation.setProperty.p0 Client based localization When accessing our MBean using JConsole started with the following command line: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -debug We see that our MBean descriptions are localized according to the WebLogic's server Locale. English in this case: Note: Consult Part I for information on how to use JConsole to browse/edit our MBean. Now if we specify the client's Locale as part of the JConsole command line as follow: jconsole -J-Djava.class.path=$JAVA_HOME/lib/jconsole.jar:$JAVA_HOME/lib/tools.jar: $WL_HOME/server/lib/wljmxclient.jar -J-Djmx.remote.protocol.provider.pkgs=weblogic.management.remote -J-Dweblogic.management.remote.locale=fr-FR -debug We see that our MBean descriptions are now localized according to the specified client's Locale. French in this case: We use the weblogic.management.remote.locale system property to specify the Locale that should be associated with the cient's JMX connections. The value is composed of the client's language code and its country code separated by the - character. The country code is not required, and can be omitted. For instance: -Dweblogic.management.remote.locale=fr We can also specify the client's Locale using a programmatic client as demonstrated below: package blog.wls.jmx.appmbean.client; import javax.management.MBeanServerConnection; import javax.management.ObjectName; import javax.management.MBeanInfo; import javax.management.remote.JMXConnector; import javax.management.remote.JMXServiceURL; import javax.management.remote.JMXConnectorFactory; import java.util.Hashtable; import java.util.Set; import java.util.Locale; public class JMXClient { public static void main(String[] args) throws Exception { JMXConnector jmxCon = null; try { JMXServiceURL serviceUrl = new JMXServiceURL( "service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime"); System.out.println("Connecting to: " + serviceUrl); // properties associated with the connection Hashtable env = new Hashtable(); env.put(JMXConnectorFactory.PROTOCOL_PROVIDER_PACKAGES, "weblogic.management.remote"); String[] credentials = new String[2]; credentials[0] = "weblogic"; credentials[1] = "weblogic"; env.put(JMXConnector.CREDENTIALS, credentials); // specifies the client's Locale env.put("weblogic.management.remote.locale", Locale.FRENCH); jmxCon = JMXConnectorFactory.newJMXConnector(serviceUrl, env); jmxCon.connect(); MBeanServerConnection con = jmxCon.getMBeanServerConnection(); Set mbeans = con.queryNames( new ObjectName( "blog.wls.jmx.appmbean:name=myAppProperties,type=PropertyConfig,*"), null); for (ObjectName mbeanName : mbeans) { System.out.println("\n\nMBEAN: " + mbeanName); MBeanInfo minfo = con.getMBeanInfo(mbeanName); System.out.println("MBean Description: "+minfo.getDescription()); System.out.println("\n"); } } finally { // release the connection if (jmxCon != null) jmxCon.close(); } } } The above client code is part of the zip file associated with this blog, and can be run using the provided client.sh script. The resulting output is shown below: $ ./client.sh Connecting to: service:jmx:iiop://127.0.0.1:7001/jndi/weblogic.management.mbeanservers.runtime MBEAN: blog.wls.jmx.appmbean:type=PropertyConfig,name=myAppProperties MBean Description: Manage proprietes sauvegarde dans un fichier disque. $ Miscellaneous Using Description annotation to specify MBean descriptions Earlier we have seen how to name our MBean descriptions resource keys, so that WebLogic 10.3.3.0 automatically uses them to localize our MBean. In some cases we might want to implicitly specify the resource key, and resource bundle. For instance when operations are overloaded, and the operation name is no longer sufficient to uniquely identify a single operation. In this case we can use the Description annotation provided by WebLogic as follow: import weblogic.management.utils.Description; @Description(resourceKey="myapp.resources.TestMXBean.description", resourceBundleBaseName="myapp.resources.MBeanResources") public interface TestMXBean { @Description(resourceKey="myapp.resources.TestMXBean.threshold.description", resourceBundleBaseName="myapp.resources.MBeanResources" ) public int getthreshold(); @Description(resourceKey="myapp.resources.TestMXBean.reset.description", resourceBundleBaseName="myapp.resources.MBeanResources") public int reset( @Description(resourceKey="myapp.resources.TestMXBean.reset.id.description", resourceBundleBaseName="myapp.resources.MBeanResources", displayNameKey= "myapp.resources.TestMXBean.reset.id.displayName.description") int id); } The Description annotation should be applied to the MBean interface. It can be used to specify MBean, MBean attributes, MBean operations, and MBean operation parameters descriptions as demonstrated above. Retrieving the Locale associated with a JMX operation from the MBean code There are several cases where it is necessary to retrieve the Locale associated with a JMX call from the MBean implementation. For instance this can be useful when localizing exception messages. This can be done as follow: import weblogic.management.mbeanservers.JMXContextUtil; ...... // some MBean method implementation public String setProperty(String key, String value) throws IOException { Locale callersLocale = JMXContextUtil.getLocale(); // use callersLocale to localize Exception messages or // potentially some return values such a Date .... } Conclusion With this last part we conclude our three part series on how to write MBeans to manage J2EE applications. We are far from having exhausted this particular topic, but we have gone a long way and are now capable to take advantage of the latest functionality provided by WebLogic's application server to write user friendly MBeans.

    Read the article

  • Simple GET operation with JSON data in ADF Mobile

    - by PadmajaBhat
    Usecase: This sample uses a RESTful service which contains a GET method that fetches employee details for an employee with given employee ID along with other methods. The data is fetched in JSON format. This RESTful service is then invoked via ADF Mobile and the JSON data thus obtained is parsed and rendered in mobile in a table. Prerequisite: Download JDev build JDEVADF_11.1.2.4.0_GENERIC_130421.1600.6436.1 or higher with mobile support.  Steps: Run EmployeeService.java in JSONService.zip. This is a simple service with a method, getEmpById(id) that takes employee ID as parameter and produces employee details in JSON format. Copy the target URL generated on running this service. The target URL will be as shown below: http://127.0.0.1:7101/JSONService-Project1-context-root/jersey/project1 Now, let us invoke this service in our mobile application. For this, create an ADF Mobile application.  Name the application JSON_SearchByEmpID and finish the wizard. Now, let us create a connection to our service. To do this, we create a URL Connection. Invoke new gallery wizard on ApplicationController project.  Select URL Connection option. In the Create URL Connection window, enter connection name as ‘conn’. For URL endpoint, supply the URL you copied earlier on running the service. Remember to use your system IP instead of localhost. Test the connection and click OK. At this point, a connection to the REST service has been created. Since JSON data is not supported directly in WSDC wizard, we need to invoke the operation through Java code using RestServiceAdapter. For this, in the ApplicationController project, create a Java class called ‘EmployeeDC’. We will be creating DC from this class. Add the following code to the newly created class to invoke the getEmpById method. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 public Employee fetchEmpDetails(){ RestServiceAdapter restServiceAdapter = Model.createRestServiceAdapter(); restServiceAdapter.clearRequestProperties(); restServiceAdapter.setConnectionName("conn"); //URL connection created with this name restServiceAdapter.setRequestType(RestServiceAdapter.REQUEST_TYPE_GET); restServiceAdapter.addRequestProperty("Content-Type", "application/json"); restServiceAdapter.addRequestProperty("Accept", "application/json; charset=UTF-8"); restServiceAdapter.setRetryLimit(0); restServiceAdapter.setRequestURI("/getById/"+inputEmpID); String response = ""; JSONBeanSerializationHelper jsonHelper = new JSONBeanSerializationHelper(); try { response = restServiceAdapter.send(""); //Invoke the GET operation System.out.println("Response received!"); Employee responseObject = (Employee) jsonHelper.fromJSON(Employee.class, response); return responseObject; } catch (Exception e) { } return null; } Here, in lines 2 to 9, we create the RestServiceAdapter and set various properties required to invoke the web service. At line 4, we are pointing to the connection ‘conn’ created previously. Since we want to invoke getEmpById method of the service, which is defined by the URL http://IP:7101/REST_Sanity_JSON-Project1-context-root/resources/project1/getById/{id} we are updating the request URI to point to this URI at line 9. inputEmpID is a variable that will hold the value input by the user for employee ID. This we will be creating in a while. As the method we are invoking is a GET operation and consumes json data, these properties are being set in lines 5 through 7. Finally, we are sending the request in line 13. In line 15, we use jsonHelper.fromJSON to convert received JSON data to a Java object. The required Java objects' structure is defined in class Employee.java whose structure is provided later. Since the response from our service is a simple response consisting of attributes like employee Id, name, design etc, we will just return this parsed response (line 16) and use it to create DC. As mentioned previously, we would like the user to input the employee ID for which he/she wants to perform search. So, in the same class, define a variable inputEmpID which will hold the value input by the user. Generate accessors for this variable. Lastly, we need to create Employee class. Employee class will define how we want to structure the JSON object received from the service. To design the Employee class, run the services’ method in the browser or via analyzer using path parameter as 1. This will give you the output JSON structure. Ours is a simple service that returns a JSONObject with a set of data. Hence, Employee class will just contain this set of data defined with the proper data types. Create Employee.java in the same project as EmployeeDC.java and write the below code: package application; import oracle.adfmf.java.beans.PropertyChangeListener; import oracle.adfmf.java.beans.PropertyChangeSupport; public class Employee { private String dept; private String desig; private int id; private String name; private int salary; private PropertyChangeSupport propertyChangeSupport = new PropertyChangeSupport(this); public void setDept(String dept) {         String oldDept = this.dept; this.dept = dept; propertyChangeSupport.firePropertyChange("dept", oldDept, dept); } public String getDept() { return dept; } public void setDesig(String desig) { String oldDesig = this.desig; this.desig = desig; propertyChangeSupport.firePropertyChange("desig", oldDesig, desig); } public String getDesig() { return desig; } public void setId(int id) { int oldId = this.id; this.id = id; propertyChangeSupport.firePropertyChange("id", oldId, id); } public int getId() { return id; } public void setName(String name) { String oldName = this.name; this.name = name; propertyChangeSupport.firePropertyChange("name", oldName, name); } public String getName() { return name; } public void setSalary(int salary) { int oldSalary = this.salary; this.salary = salary; propertyChangeSupport.firePropertyChange("salary", oldSalary, salary); } public int getSalary() { return salary; } public void addPropertyChangeListener(PropertyChangeListener l) { propertyChangeSupport.addPropertyChangeListener(l); } public void removePropertyChangeListener(PropertyChangeListener l) { propertyChangeSupport.removePropertyChangeListener(l);     } } Now, let us create a DC out of EmployeeDC.java.  DC as shown below is created. Now, you can design the mobile page as usual and invoke the operation of the service. To design the page, go to ViewController project and locate adfmf-feature.xml. Create a new feature called ‘SearchFeature’ by clicking the plus icon. Go the content tab and add an amx page. Call it SearchPage.amx. Call it SearchPage.amx. Remove primary and secondary buttons as we don’t need them and rename the header. Drag and drop inputEmpID from the DC palette onto Panel Page in the structure pane as input text with label. Next, drop fetchEmpDetails method as an ADF button. For a change, let us display the output in a table component instead of the usual form. However, you will notice that if you drag and drop Employee onto the structure pane, there is no option for ADF Mobile Table. Hence, we will need to create the table on our own. To do this, let us first drop Employee as an ADF Read -Only form. This step is needed to get the required bindings. We will be deleting this form in a while. Now, from the Component palette, search for ‘Table Layout’. Drag and drop this below the command button.  Within the tablelayout, insert ‘Row Layout’ and ‘Cell Format’ components. Final table structure should be as shown below. Here, we have also defined some inline styling to render the UI in a nice manner. <amx:tableLayout id="tl1" borderWidth="2" halign="center" inlineStyle="vertical-align:middle;" width="100%" cellPadding="10"> <amx:rowLayout id="rl1" > <amx:cellFormat id="cf1" width="30%"> <amx:outputText value="#{bindings.dept.hints.label}" id="ot7" inlineStyle="color:rgb(0,148,231);"/> </amx:cellFormat> <amx:cellFormat id="cf2"> <amx:outputText value="#{bindings.dept.inputValue}" id="ot8" /> </amx:cellFormat> </amx:rowLayout> <amx:rowLayout id="rl2"> <amx:cellFormat id="cf3" width="30%"> <amx:outputText value="#{bindings.desig.hints.label}" id="ot9" inlineStyle="color:rgb(0,148,231);"/> </amx:cellFormat> <amx:cellFormat id="cf4" > <amx:outputText value="#{bindings.desig.inputValue}" id="ot10"/> </amx:cellFormat> </amx:rowLayout> <amx:rowLayout id="rl3"> <amx:cellFormat id="cf5" width="30%"> <amx:outputText value="#{bindings.id.hints.label}" id="ot11" inlineStyle="color:rgb(0,148,231);"/> </amx:cellFormat> <amx:cellFormat id="cf6" > <amx:outputText value="#{bindings.id.inputValue}" id="ot12"/> </amx:cellFormat> </amx:rowLayout> <amx:rowLayout id="rl4"> <amx:cellFormat id="cf7" width="30%"> <amx:outputText value="#{bindings.name.hints.label}" id="ot13" inlineStyle="color:rgb(0,148,231);"/> </amx:cellFormat> <amx:cellFormat id="cf8"> <amx:outputText value="#{bindings.name.inputValue}" id="ot14"/> </amx:cellFormat> </amx:rowLayout> <amx:rowLayout id="rl5"> <amx:cellFormat id="cf9" width="30%"> <amx:outputText value="#{bindings.salary.hints.label}" id="ot15" inlineStyle="color:rgb(0,148,231);"/> </amx:cellFormat> <amx:cellFormat id="cf10"> <amx:outputText value="#{bindings.salary.inputValue}" id="ot16"/> </amx:cellFormat> </amx:rowLayout>     </amx:tableLayout> The values used in the output text of the table come from the bindings obtained from the ADF Form created earlier. As we have used the bindings and don’t need the form anymore, let us delete the form.  One last thing before we deploy. When user changes employee ID, we want to clear the table contents. For this we associate a value change listener with the input text box. Click New in the resulting dialog to create a managed bean. Next, we create a method within the managed bean. For this, click on the New button associated with method. Call the method ‘empIDChange’. Open myClass.java and write the below code in empIDChange(). public void empIDChange(ValueChangeEvent valueChangeEvent) { // Add event code here... //Resetting the values to blank values when employee id changes AdfELContext adfELContext = AdfmfJavaUtilities.getAdfELContext(); ValueExpression ve = AdfmfJavaUtilities.getValueExpression("#{bindings.dept.inputValue}", String.class); ve.setValue(adfELContext, ""); ve = AdfmfJavaUtilities.getValueExpression("#{bindings.desig.inputValue}", String.class); ve.setValue(adfELContext, ""); ve = AdfmfJavaUtilities.getValueExpression("#{bindings.id.inputValue}", int.class); ve.setValue(adfELContext, ""); ve = AdfmfJavaUtilities.getValueExpression("#{bindings.name.inputValue}", String.class); ve.setValue(adfELContext, ""); ve = AdfmfJavaUtilities.getValueExpression("#{bindings.salary.inputValue}", int.class); ve.setValue(adfELContext, ""); } That’s it. Deploy the application to android emulator or device. Some snippets from the app.

    Read the article

  • How to maintain encapsulation with composition in C++?

    - by iFreilicht
    I am designing a class Master that is composed from multiple other classes, A, Base, C and D. These four classes have absolutely no use outside of Master and are meant to split up its functionality into manageable and logically divided packages. They also provide extensible functionality as in the case of Base, which can be inherited from by clients. But, how do I maintain encapsulation of Master with this design? So far, I've got two approaches, which are both far from perfect: 1. Replicate all accessors: Just write accessor-methods for all accessor-methods of all classes that Master is composed of. This leads to perfect encapsulation, because no implementation detail of Master is visible, but is extremely tedious and makes the class definition monstrous, which is exactly what the composition should prevent. Also, adding functionality to one of the composees (is that even a word?) would require to re-write all those methods in Master. An additional problem is that inheritors of Base could only alter, but not add functionality. 2. Use non-assignable, non-copyable member-accessors: Having a class accessor<T> that can not be copied, moved or assigned to, but overrides the operator-> to access an underlying shared_ptr, so that calls like Master->A()->niceFunction(); are made possible. My problem with this is that it kind of breaks encapsulation as I would now be unable to change my implementation of Master to use a different class for the functionality of niceFunction(). Still, it is the closest I've gotten without using the ugly first approach. It also fixes the inheritance issue quite nicely. A small side question would be if such a class already existed in std or boost. EDIT: Wall of code I will now post the code of the header files of the classes discussed. It may be a bit hard to understand, but I'll give my best in explaining all of it. 1. GameTree.h The foundation of it all. This basically is a doubly-linked tree, holding GameObject-instances, which we'll later get to. It also has it's own custom iterator GTIterator, but I left that out for brevity. WResult is an enum with the values SUCCESS and FAILED, but it's not really important. class GameTree { public: //Static methods for the root. Only one root is allowed to exist at a time! static void ConstructRoot(seed_type seed, unsigned int depth); inline static bool rootExists(){ return static_cast<bool>(rootObject_); } inline static weak_ptr<GameTree> root(){ return rootObject_; } //delta is in ms, this is used for velocity, collision and such void tick(unsigned int delta); //Interaction with the tree inline weak_ptr<GameTree> parent() const { return parent_; } inline unsigned int numChildren() const{ return static_cast<unsigned int>(children_.size()); } weak_ptr<GameTree> getChild(unsigned int index) const; template<typename GOType> weak_ptr<GameTree> addChild(seed_type seed, unsigned int depth = 9001){ GOType object{ new GOType(seed) }; return addChildObject(unique_ptr<GameTree>(new GameTree(std::move(object), depth))); } WResult moveTo(weak_ptr<GameTree> newParent); WResult erase(); //Iterators for for( : ) loop GTIterator& begin(){ return *(beginIter_ = std::move(make_unique<GTIterator>(children_.begin()))); } GTIterator& end(){ return *(endIter_ = std::move(make_unique<GTIterator>(children_.end()))); } //unloading should be used when objects are far away WResult unloadChildren(unsigned int newDepth = 0); WResult loadChildren(unsigned int newDepth = 1); inline const RenderObject& renderObject() const{ return gameObject_->renderObject(); } //Getter for the underlying GameObject (I have not tested the template version) weak_ptr<GameObject> gameObject(){ return gameObject_; } template<typename GOType> weak_ptr<GOType> gameObject(){ return dynamic_cast<weak_ptr<GOType>>(gameObject_); } weak_ptr<PhysicsObject> physicsObject() { return gameObject_->physicsObject(); } private: GameTree(const GameTree&); //copying is only allowed internally GameTree(shared_ptr<GameObject> object, unsigned int depth = 9001); //pointer to root static shared_ptr<GameTree> rootObject_; //internal management of a child weak_ptr<GameTree> addChildObject(shared_ptr<GameTree>); WResult removeChild(unsigned int index); //private members shared_ptr<GameObject> gameObject_; shared_ptr<GTIterator> beginIter_; shared_ptr<GTIterator> endIter_; //tree stuff vector<shared_ptr<GameTree>> children_; weak_ptr<GameTree> parent_; unsigned int selfIndex_; //used for deletion, this isn't necessary void initChildren(unsigned int depth); //constructs children }; 2. GameObject.h This is a bit hard to grasp, but GameObject basically works like this: When constructing a GameObject, you construct its basic attributes and a CResult-instance, which contains a vector<unique_ptr<Construction>>. The Construction-struct contains all information that is needed to construct a GameObject, which is a seed and a function-object that is applied at construction by a factory. This enables dynamic loading and unloading of GameObjects as done by GameTree. It also means that you have to define that factory if you inherit GameObject. This inheritance is also the reason why GameTree has a template-function gameObject<GOType>. GameObject can contain a RenderObject and a PhysicsObject, which we'll later get to. Anyway, here's the code. class GameObject; typedef unsigned long seed_type; //this declaration magic means that all GameObjectFactorys inherit from GameObjectFactory<GameObject> template<typename GOType> struct GameObjectFactory; template<> struct GameObjectFactory<GameObject>{ virtual unique_ptr<GameObject> construct(seed_type seed) const = 0; }; template<typename GOType> struct GameObjectFactory : GameObjectFactory<GameObject>{ GameObjectFactory() : GameObjectFactory<GameObject>(){} unique_ptr<GameObject> construct(seed_type seed) const{ return unique_ptr<GOType>(new GOType(seed)); } }; //same as with the factories. this is important for storing them in vectors template<typename GOType> struct Construction; template<> struct Construction<GameObject>{ virtual unique_ptr<GameObject> construct() const = 0; }; template<typename GOType> struct Construction : Construction<GameObject>{ Construction(seed_type seed, function<void(GOType*)> func = [](GOType* null){}) : Construction<GameObject>(), seed_(seed), func_(func) {} unique_ptr<GameObject> construct() const{ unique_ptr<GameObject> gameObject{ GOType::factory.construct(seed_) }; func_(dynamic_cast<GOType*>(gameObject.get())); return std::move(gameObject); } seed_type seed_; function<void(GOType*)> func_; }; typedef struct CResult { CResult() : constructions{} {} CResult(CResult && o) : constructions(std::move(o.constructions)) {} CResult& operator= (CResult& other){ if (this != &other){ for (unique_ptr<Construction<GameObject>>& child : other.constructions){ constructions.push_back(std::move(child)); } } return *this; } template<typename GOType> void push_back(seed_type seed, function<void(GOType*)> func = [](GOType* null){}){ constructions.push_back(make_unique<Construction<GOType>>(seed, func)); } vector<unique_ptr<Construction<GameObject>>> constructions; } CResult; //finally, the GameObject class GameObject { public: GameObject(seed_type seed); GameObject(const GameObject&); virtual void tick(unsigned int delta); inline Matrix4f trafoMatrix(){ return physicsObject_->transformationMatrix(); } //getter inline seed_type seed() const{ return seed_; } inline CResult& properties(){ return properties_; } inline const RenderObject& renderObject() const{ return *renderObject_; } inline weak_ptr<PhysicsObject> physicsObject() { return physicsObject_; } protected: virtual CResult construct_(seed_type seed) = 0; CResult properties_; shared_ptr<RenderObject> renderObject_; shared_ptr<PhysicsObject> physicsObject_; seed_type seed_; }; 3. PhysicsObject That's a bit easier. It is responsible for position, velocity and acceleration. It will also handle collisions in the future. It contains three Transformation objects, two of which are optional. I'm not going to include the accessors on the PhysicsObject class because I tried my first approach on it and it's just pure madness (way over 30 functions). Also missing: the named constructors that construct PhysicsObjects with different behaviour. class Transformation{ Vector3f translation_; Vector3f rotation_; Vector3f scaling_; public: Transformation() : translation_{ 0, 0, 0 }, rotation_{ 0, 0, 0 }, scaling_{ 1, 1, 1 } {}; Transformation(Vector3f translation, Vector3f rotation, Vector3f scaling); inline Vector3f translation(){ return translation_; } inline void translation(float x, float y, float z){ translation(Vector3f(x, y, z)); } inline void translation(Vector3f newTranslation){ translation_ = newTranslation; } inline void translate(float x, float y, float z){ translate(Vector3f(x, y, z)); } inline void translate(Vector3f summand){ translation_ += summand; } inline Vector3f rotation(){ return rotation_; } inline void rotation(float pitch, float yaw, float roll){ rotation(Vector3f(pitch, yaw, roll)); } inline void rotation(Vector3f newRotation){ rotation_ = newRotation; } inline void rotate(float pitch, float yaw, float roll){ rotate(Vector3f(pitch, yaw, roll)); } inline void rotate(Vector3f summand){ rotation_ += summand; } inline Vector3f scaling(){ return scaling_; } inline void scaling(float x, float y, float z){ scaling(Vector3f(x, y, z)); } inline void scaling(Vector3f newScaling){ scaling_ = newScaling; } inline void scale(float x, float y, float z){ scale(Vector3f(x, y, z)); } void scale(Vector3f factor){ scaling_(0) *= factor(0); scaling_(1) *= factor(1); scaling_(2) *= factor(2); } Matrix4f matrix(){ return WMatrix::Translation(translation_) * WMatrix::Rotation(rotation_) * WMatrix::Scale(scaling_); } }; class PhysicsObject; typedef void tickFunction(PhysicsObject& self, unsigned int delta); class PhysicsObject{ PhysicsObject(const Transformation& trafo) : transformation_(trafo), transformationVelocity_(nullptr), transformationAcceleration_(nullptr), tick_(nullptr) {} PhysicsObject(PhysicsObject&& other) : transformation_(other.transformation_), transformationVelocity_(std::move(other.transformationVelocity_)), transformationAcceleration_(std::move(other.transformationAcceleration_)), tick_(other.tick_) {} Transformation transformation_; unique_ptr<Transformation> transformationVelocity_; unique_ptr<Transformation> transformationAcceleration_; tickFunction* tick_; public: void tick(unsigned int delta){ tick_ ? tick_(*this, delta) : 0; } inline Matrix4f transformationMatrix(){ return transformation_.matrix(); } } 4. RenderObject RenderObject is a base class for different types of things that could be rendered, i.e. Meshes, Light Sources or Sprites. DISCLAIMER: I did not write this code, I'm working on this project with someone else. class RenderObject { public: RenderObject(float renderDistance); virtual ~RenderObject(); float renderDistance() const { return renderDistance_; } void setRenderDistance(float rD) { renderDistance_ = rD; } protected: float renderDistance_; }; struct NullRenderObject : public RenderObject{ NullRenderObject() : RenderObject(0.f){}; }; class Light : public RenderObject{ public: Light() : RenderObject(30.f){}; }; class Mesh : public RenderObject{ public: Mesh(unsigned int seed) : RenderObject(20.f) { meshID_ = 0; textureID_ = 0; if (seed == 1) meshID_ = Model::getMeshID("EM-208_heavy"); else meshID_ = Model::getMeshID("cube"); }; unsigned int getMeshID() const { return meshID_; } unsigned int getTextureID() const { return textureID_; } private: unsigned int meshID_; unsigned int textureID_; }; I guess this shows my issue quite nicely: You see a few accessors in GameObject which return weak_ptrs to access members of members, but that is not really what I want. Also please keep in mind that this is NOT, by any means, finished or production code! It is merely a prototype and there may be inconsistencies, unnecessary public parts of classes and such.

    Read the article

  • Dependency Injection in ASP.NET MVC NerdDinner App using Ninject

    - by shiju
    In this post, I am applying Dependency Injection to the NerdDinner application using Ninject. The controllers of NerdDinner application have Dependency Injection enabled constructors. So we can apply Dependency Injection through constructor without change any existing code. A Dependency Injection framework injects the dependencies into a class when the dependencies are needed. Dependency Injection enables looser coupling between classes and their dependencies and provides better testability of an application and it removes the need for clients to know about their dependencies and how to create them. If you are not familiar with Dependency Injection and Inversion of Control (IoC), read Martin Fowler’s article Inversion of Control Containers and the Dependency Injection pattern. The Open Source Project NerDinner is a great resource for learning ASP.NET MVC.  A free eBook provides an end-to-end walkthrough of building NerdDinner.com application. The free eBook and the Open Source Nerddinner application are extremely useful if anyone is trying to lean ASP.NET MVC. The first release of  Nerddinner was as a sample for the first chapter of Professional ASP.NET MVC 1.0. Currently the application is updating to ASP.NET MVC 2 and you can get the latest source from the source code tab of Nerddinner at http://nerddinner.codeplex.com/SourceControl/list/changesets. I have taken the latest ASP.NET MVC 2 source code of the application and applied  Dependency Injection using Ninject and Ninject extension Ninject.Web.Mvc.Ninject &  Ninject.Web.MvcNinject is available at http://github.com/enkari/ninject and Ninject.Web.Mvc is available at http://github.com/enkari/ninject.web.mvcNinject is a lightweight and a great dependency injection framework for .NET.  Ninject is a great choice of dependency injection framework when building ASP.NET MVC applications. Ninject.Web.Mvc is an extension for ninject which providing integration with ASP.NET MVC.Controller constructors and dependencies of NerdDinner application Listing 1 – Constructor of DinnersController  public DinnersController(IDinnerRepository repository) {     dinnerRepository = repository; }  Listing 2 – Constrcutor of AccountControllerpublic AccountController(IFormsAuthentication formsAuth, IMembershipService service) {     FormsAuth = formsAuth ?? new FormsAuthenticationService();     MembershipService = service ?? new AccountMembershipService(); }  Listing 3 – Constructor of AccountMembership – Concrete class of IMembershipService public AccountMembershipService(MembershipProvider provider) {     _provider = provider ?? Membership.Provider; }    Dependencies of NerdDinnerDinnersController, RSVPController SearchController and ServicesController have a dependency with IDinnerRepositiry. The concrete implementation of IDinnerRepositiry is DinnerRepositiry. AccountController has dependencies with IFormsAuthentication and IMembershipService. The concrete implementation of IFormsAuthentication is FormsAuthenticationService and the concrete implementation of IMembershipService is AccountMembershipService. The AccountMembershipService has a dependency with ASP.NET Membership Provider. Dependency Injection in NerdDinner using NinjectThe below steps will configure Ninject to apply controller injection in NerdDinner application.Step 1 – Add reference for NinjectOpen the  NerdDinner application and add  reference to Ninject.dll and Ninject.Web.Mvc.dll. Both are available from http://github.com/enkari/ninject and http://github.com/enkari/ninject.web.mvcStep 2 – Extend HttpApplication with NinjectHttpApplication Ninject.Web.Mvc extension allows integration between the Ninject and ASP.NET MVC. For this, you have to extend your HttpApplication with NinjectHttpApplication. Open the Global.asax.cs and inherit your MVC application from  NinjectHttpApplication instead of HttpApplication.   public class MvcApplication : NinjectHttpApplication Then the Application_Start method should be replace with OnApplicationStarted method. Inside the OnApplicationStarted method, call the RegisterAllControllersIn() method.   protected override void OnApplicationStarted() {     AreaRegistration.RegisterAllAreas();     RegisterRoutes(RouteTable.Routes);     ViewEngines.Engines.Clear();     ViewEngines.Engines.Add(new MobileCapableWebFormViewEngine());     RegisterAllControllersIn(Assembly.GetExecutingAssembly()); }  The RegisterAllControllersIn method will enables to activating all controllers through Ninject in the assembly you have supplied .We are passing the current assembly as parameter for RegisterAllControllersIn() method. Now we can expose dependencies of controller constructors and properties to request injectionsStep 3 – Create Ninject ModulesWe can configure your dependency injection mapping information using Ninject Modules.Modules just need to implement the INinjectModule interface, but most should extend the NinjectModule class for simplicity. internal class ServiceModule : NinjectModule {     public override void Load()     {                    Bind<IFormsAuthentication>().To<FormsAuthenticationService>();         Bind<IMembershipService>().To<AccountMembershipService>();                  Bind<MembershipProvider>().ToConstant(Membership.Provider);         Bind<IDinnerRepository>().To<DinnerRepository>();     } } The above Binding inforamtion specified in the Load method tells the Ninject container that, to inject instance of DinnerRepositiry when there is a request for IDinnerRepositiry and  inject instance of FormsAuthenticationService when there is a request for IFormsAuthentication and inject instance of AccountMembershipService when there is a request for IMembershipService. The AccountMembershipService class has a dependency with ASP.NET Membership provider. So we configure that inject the instance of Membership Provider. When configuring the binding information, you can specify the object scope in you application.There are four built-in scopes available in Ninject:Transient  -  A new instance of the type will be created each time one is requested. (This is the default scope). Binding method is .InTransientScope()   Singleton - Only a single instance of the type will be created, and the same instance will be returned for each subsequent request. Binding method is .InSingletonScope()Thread -  One instance of the type will be created per thread. Binding method is .InThreadScope() Request -  One instance of the type will be created per web request, and will be destroyed when the request ends. Binding method is .InRequestScope() Step 4 – Configure the Ninject KernelOnce you create NinjectModule, you load them into a container called the kernel. To request an instance of a type from Ninject, you call the Get() extension method. We can configure the kernel, through the CreateKernel method in the Global.asax.cs. protected override IKernel CreateKernel() {     var modules = new INinjectModule[]     {         new ServiceModule()     };       return new StandardKernel(modules); } Here we are loading the Ninject Module (ServiceModule class created in the step 3)  onto the container called the kernel for performing dependency injection.Source CodeYou can download the source code from http://nerddinneraddons.codeplex.com. I just put the modified source code onto CodePlex repository. The repository will update with more add-ons for the NerdDinner application.

    Read the article

  • Handling HTTP 404 Error in ASP.NET Web API

    - by imran_ku07
            Introduction:                     Building modern HTTP/RESTful/RPC services has become very easy with the new ASP.NET Web API framework. Using ASP.NET Web API framework, you can create HTTP services which can be accessed from browsers, machines, mobile devices and other clients. Developing HTTP services is now become more easy for ASP.NET MVC developer becasue ASP.NET Web API is now included in ASP.NET MVC. In addition to developing HTTP services, it is also important to return meaningful response to client if a resource(uri) not found(HTTP 404) for a reason(for example, mistyped resource uri). It is also important to make this response centralized so you can configure all of 'HTTP 404 Not Found' resource at one place. In this article, I will show you how to handle 'HTTP 404 Not Found' at one place.         Description:                     Let's say that you are developing a HTTP RESTful application using ASP.NET Web API framework. In this application you need to handle HTTP 404 errors in a centralized location. From ASP.NET Web API point of you, you need to handle these situations, No route matched. Route is matched but no {controller} has been found on route. No type with {controller} name has been found. No matching action method found in the selected controller due to no action method start with the request HTTP method verb or no action method with IActionHttpMethodProviderRoute implemented attribute found or no method with {action} name found or no method with the matching {action} name found.                                          Now, let create a ErrorController with Handle404 action method. This action method will be used in all of the above cases for sending HTTP 404 response message to the client.  public class ErrorController : ApiController { [HttpGet, HttpPost, HttpPut, HttpDelete, HttpHead, HttpOptions, AcceptVerbs("PATCH")] public HttpResponseMessage Handle404() { var responseMessage = new HttpResponseMessage(HttpStatusCode.NotFound); responseMessage.ReasonPhrase = "The requested resource is not found"; return responseMessage; } }                     You can easily change the above action method to send some other specific HTTP 404 error response. If a client of your HTTP service send a request to a resource(uri) and no route matched with this uri on server then you can route the request to the above Handle404 method using a custom route. Put this route at the very bottom of route configuration,  routes.MapHttpRoute( name: "Error404", routeTemplate: "{*url}", defaults: new { controller = "Error", action = "Handle404" } );                     Now you need handle the case when there is no {controller} in the matching route or when there is no type with {controller} name found. You can easily handle this case and route the request to the above Handle404 method using a custom IHttpControllerSelector. Here is the definition of a custom IHttpControllerSelector, public class HttpNotFoundAwareDefaultHttpControllerSelector : DefaultHttpControllerSelector { public HttpNotFoundAwareDefaultHttpControllerSelector(HttpConfiguration configuration) : base(configuration) { } public override HttpControllerDescriptor SelectController(HttpRequestMessage request) { HttpControllerDescriptor decriptor = null; try { decriptor = base.SelectController(request); } catch (HttpResponseException ex) { var code = ex.Response.StatusCode; if (code != HttpStatusCode.NotFound) throw; var routeValues = request.GetRouteData().Values; routeValues["controller"] = "Error"; routeValues["action"] = "Handle404"; decriptor = base.SelectController(request); } return decriptor; } }                     Next, it is also required to pass the request to the above Handle404 method if no matching action method found in the selected controller due to the reason discussed above. This situation can also be easily handled through a custom IHttpActionSelector. Here is the source of custom IHttpActionSelector,  public class HttpNotFoundAwareControllerActionSelector : ApiControllerActionSelector { public HttpNotFoundAwareControllerActionSelector() { } public override HttpActionDescriptor SelectAction(HttpControllerContext controllerContext) { HttpActionDescriptor decriptor = null; try { decriptor = base.SelectAction(controllerContext); } catch (HttpResponseException ex) { var code = ex.Response.StatusCode; if (code != HttpStatusCode.NotFound && code != HttpStatusCode.MethodNotAllowed) throw; var routeData = controllerContext.RouteData; routeData.Values["action"] = "Handle404"; IHttpController httpController = new ErrorController(); controllerContext.Controller = httpController; controllerContext.ControllerDescriptor = new HttpControllerDescriptor(controllerContext.Configuration, "Error", httpController.GetType()); decriptor = base.SelectAction(controllerContext); } return decriptor; } }                     Finally, we need to register the custom IHttpControllerSelector and IHttpActionSelector. Open global.asax.cs file and add these lines,  configuration.Services.Replace(typeof(IHttpControllerSelector), new HttpNotFoundAwareDefaultHttpControllerSelector(configuration)); configuration.Services.Replace(typeof(IHttpActionSelector), new HttpNotFoundAwareControllerActionSelector());         Summary:                       In addition to building an application for HTTP services, it is also important to send meaningful centralized information in response when something goes wrong, for example 'HTTP 404 Not Found' error.  In this article, I showed you how to handle 'HTTP 404 Not Found' error in a centralized location. Hopefully you will enjoy this article too.

    Read the article

  • C# Extension Methods - To Extend or Not To Extend...

    - by James Michael Hare
    I've been thinking a lot about extension methods lately, and I must admit I both love them and hate them. They are a lot like sugar, they taste so nice and sweet, but they'll rot your teeth if you eat them too much.   I can't deny that they aren't useful and very handy. One of the major components of the Shared Component library where I work is a set of useful extension methods. But, I also can't deny that they tend to be overused and abused to willy-nilly extend every living type.   So what constitutes a good extension method? Obviously, you can write an extension method for nearly anything whether it is a good idea or not. Many times, in fact, an idea seems like a good extension method but in retrospect really doesn't fit.   So what's the litmus test? To me, an extension method should be like in the movies when a person runs into their twin, separated at birth. You just know you're related. Obviously, that's hard to quantify, so let's try to put a few rules-of-thumb around them.   A good extension method should:     Apply to any possible instance of the type it extends.     Simplify logic and improve readability/maintainability.     Apply to the most specific type or interface applicable.     Be isolated in a namespace so that it does not pollute IntelliSense.     So let's look at a few examples in relation to these rules.   The first rule, to me, is the most important of all. Once again, it bears repeating, a good extension method should apply to all possible instances of the type it extends. It should feel like the long lost relative that should have been included in the original class but somehow was missing from the family tree.    Take this nifty little int extension, I saw this once in a blog and at first I really thought it was pretty cool, but then I started noticing a code smell I couldn't quite put my finger on. So let's look:       public static class IntExtensinos     {         public static int Seconds(int num)         {             return num * 1000;         }           public static int Minutes(int num)         {             return num * 60000;         }     }     This is so you could do things like:       ...     Thread.Sleep(5.Seconds());     ...     proxy.Timeout = 1.Minutes();     ...     Awww, you say, that's cute! Well, that's the problem, it's kitschy and it doesn't always apply (and incidentally you could achieve the same thing with TimeStamp.FromSeconds(5)). It's syntactical candy that looks cool, but tends to rot and pollute the code. It would allow things like:       total += numberOfTodaysOrders.Seconds();     which makes no sense and should never be allowed. The problem is you're applying an extension method to a logical domain, not a type domain. That is, the extension method Seconds() doesn't really apply to ALL ints, it applies to ints that are representative of time that you want to convert to milliseconds.    Do you see what I mean? The two problems, in a nutshell, are that a) Seconds() called off a non-time value makes no sense and b) calling Seconds() off something to pass to something that does not take milliseconds will be off by a factor of 1000 or worse.   Thus, in my mind, you should only ever have an extension method that applies to the whole domain of that type.   For example, this is one of my personal favorites:       public static bool IsBetween<T>(this T value, T low, T high)         where T : IComparable<T>     {         return value.CompareTo(low) >= 0 && value.CompareTo(high) <= 0;     }   This allows you to check if any IComparable<T> is within an upper and lower bound. Think of how many times you type something like:       if (response.Employee.Address.YearsAt >= 2         && response.Employee.Address.YearsAt <= 10)     {     ...     }     Now, you can instead type:       if(response.Employee.Address.YearsAt.IsBetween(2, 10))     {     ...     }     Note that this applies to all IComparable<T> -- that's ints, chars, strings, DateTime, etc -- and does not depend on any logical domain. In addition, it satisfies the second point and actually makes the code more readable and maintainable.   Let's look at the third point. In it we said that an extension method should fit the most specific interface or type possible. Now, I'm not saying if you have something that applies to enumerables, you create an extension for List, Array, Dictionary, etc (though you may have reasons for doing so), but that you should beware of making things TOO general.   For example, let's say we had an extension method like this:       public static T ConvertTo<T>(this object value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This lets you do more fluent conversions like:       double d = "5.0".ConvertTo<double>();     However, if you dig into Reflector (LOVE that tool) you will see that if the type you are calling on does not implement IConvertible, what you convert to MUST be the exact type or it will throw an InvalidCastException. Now this may or may not be what you want in this situation, and I leave that up to you. Things like this would fail:       object value = new Employee();     ...     // class cast exception because typeof(IEmployee) != typeof(Employee)     IEmployee emp = value.ConvertTo<IEmployee>();       Yes, that's a downfall of working with Convertible in general, but if you wanted your fluent interface to be more type-safe so that ConvertTo were only callable on IConvertibles (and let casting be a manual task), you could easily make it:         public static T ConvertTo<T>(this IConvertible value)     {         return (T)Convert.ChangeType(value, typeof(T));     }         This is what I mean by choosing the best type to extend. Consider that if we used the previous (object) version, every time we typed a dot ('.') on an instance we'd pull up ConvertTo() whether it was applicable or not. By filtering our extension method down to only valid types (those that implement IConvertible) we greatly reduce our IntelliSense pollution and apply a good level of compile-time correctness.   Now my fourth rule is just my general rule-of-thumb. Obviously, you can make extension methods as in-your-face as you want. I included all mine in my work libraries in its own sub-namespace, something akin to:       namespace Shared.Core.Extensions { ... }     This is in a library called Shared.Core, so just referencing the Core library doesn't pollute your IntelliSense, you have to actually do a using on Shared.Core.Extensions to bring the methods in. This is very similar to the way Microsoft puts its extension methods in System.Linq. This way, if you want 'em, you use the appropriate namespace. If you don't want 'em, they won't pollute your namespace.   To really make this work, however, that namespace should only include extension methods and subordinate types those extensions themselves may use. If you plant other useful classes in those namespaces, once a user includes it, they get all the extensions too.   Also, just as a personal preference, extension methods that aren't simply syntactical shortcuts, I like to put in a static utility class and then have extension methods for syntactical candy. For instance, I think it imaginable that any object could be converted to XML:       namespace Shared.Core     {         // A collection of XML Utility classes         public static class XmlUtility         {             ...             // Serialize an object into an xml string             public static string ToXml(object input)             {                 var xs = new XmlSerializer(input.GetType());                   // use new UTF8Encoding here, not Encoding.UTF8. The later includes                 // the BOM which screws up subsequent reads, the former does not.                 using (var memoryStream = new MemoryStream())                 using (var xmlTextWriter = new XmlTextWriter(memoryStream, new UTF8Encoding()))                 {                     xs.Serialize(xmlTextWriter, input);                     return Encoding.UTF8.GetString(memoryStream.ToArray());                 }             }             ...         }     }   I also wanted to be able to call this from an object like:       value.ToXml();     But here's the problem, if i made this an extension method from the start with that one little keyword "this", it would pop into IntelliSense for all objects which could be very polluting. Instead, I put the logic into a utility class so that users have the choice of whether or not they want to use it as just a class and not pollute IntelliSense, then in my extensions namespace, I add the syntactical candy:       namespace Shared.Core.Extensions     {         public static class XmlExtensions         {             public static string ToXml(this object value)             {                 return XmlUtility.ToXml(value);             }         }     }   So now it's the best of both worlds. On one hand, they can use the utility class if they don't want to pollute IntelliSense, and on the other hand they can include the Extensions namespace and use as an extension if they want. The neat thing is it also adheres to the Single Responsibility Principle. The XmlUtility is responsible for converting objects to XML, and the XmlExtensions is responsible for extending object's interface for ToXml().

    Read the article

  • Using Sitecore RenderingContext Parameters as MVC controller action arguments

    - by Kyle Burns
    I have been working with the Technical Preview of Sitecore 6.6 on a project and have been for the most part happy with the way that Sitecore (which truly is an MVC implementation unto itself) has been expanded to support ASP.NET MVC. That said, getting up to speed with the combined platform has not been entirely without stumbles and today I want to share one area where Sitecore could have really made things shine from the "it just works" perspective. A couple days ago I was asked by a colleague about the usage of the "Parameters" field that is defined on Sitecore's Controller Rendering data template. Based on the standard way that Sitecore handles a field named Parameters, I was able to deduce that the field expected key/value pairs separated by the "&" character, but beyond that I wasn't sure and didn't see anything from a documentation perspective to guide me, so it was time to dig and find out where the data in the field was made available. My first thought was that it would be really nice if Sitecore handled the parameters in this field consistently with the way that ASP.NET MVC handles the various parameter collections on the HttpRequest object and automatically maps them to parameters of the action method executing. Being the hopeful sort, I configured a name/value pair on one of my renderings, added a parameter with matching name to the controller action and fired up the bugger to see... that the parameter was not populated. Having established that the field's value was not going to be presented to me the way that I had hoped it would, the next assumption that I would work on was that Sitecore would handle this field similar to how they handle other similar data and would plug it into some ambient object that I could reference from within the controller method. After a considerable amount of guessing, testing, and cracking code open with Redgate's Reflector (a must-have companion to Sitecore documentation), I found that the most direct way to access the parameter was through the ambient RenderingContext object using code similar to: string myArgument = string.Empty; var rc = Sitecore.Mvc.Presentation.RenderingContext.CurrentOrNull; if (rc != null) {     var parms = rc.Rendering.Parameters;     myArgument = parms["myArgument"]; } At this point, we know how this field is used out of the box from Sitecore and can provide information from Sitecore's Content Editor that will be available when the controller action is executing, but it feels a little dirty. In order to properly test the action method I would have to do a lot of setup work and possible use an isolation framework such as Pex and Moles to get at a value that my action method is dependent upon. Notice I said that my method is dependent upon the value but in order to meet that dependency I've accepted another dependency upon Sitecore's RenderingContext.  I'm a big believer in, when possible, ensuring that any piece of code explicitly advertises dependencies using the method signature, so I found myself still wanting this to work the same as if the parameters were in the request route, querystring, or form by being able to add a myArgument parameter to the action method and have this parameter populated by the framework. Lucky for us, the ASP.NET MVC framework is extremely flexible and provides some easy to grok and use extensibility points. ASP.NET MVC is able to provide information from the request as input parameters to controller actions because it uses objects which implement an interface called IValueProvider and have been registered to service the application. The most basic statement of responsibility for an IValueProvider implementation is "I know about some data which is indexed by key. If you hand me the key for a piece of data that I know about I give you that data". When preparing to invoke a controller action, the framework queries registered IValueProvider implementations with the name of each method argument to see if the ValueProvider can supply a value for the parameter. (the rest of this post will assume you're working along and make a lot more sense if you do) Let's pull Sitecore out of the equation for a second to simplify things and create an extremely simple IValueProvider implementation. For this example, I first create a new ASP.NET MVC3 project in Visual Studio, selecting "Internet Application" and otherwise taking defaults (I'm assuming that anyone reading this far in the post either already knows how to do this or will need to take a quick run through one of the many available basic MVC tutorials such as the MVC Music Store). Once the new project is created, go to the Index action of HomeController.  This action sets a Message property on the ViewBag to "Welcome to ASP.NET MVC!" and invokes the View, which has been coded to display the Message. For our example, we will remove the hard coded message from this controller (although we'll leave it just as hard coded somewhere else - this is sample code). For the first step in our exercise, add a string parameter to the Index action method called welcomeMessage and use the value of this argument to set the ViewBag.Message property. The updated Index action should look like: public ActionResult Index(string welcomeMessage) {     ViewBag.Message = welcomeMessage;     return View(); } This represents the entirety of the change that you will make to either the controller or view.  If you run the application now, the home page will display and no message will be presented to the user because no value was supplied to the Action method. Let's now write a ValueProvider to ensure this parameter gets populated. We'll start by creating a new class called StaticValueProvider. When the class is created, we'll update the using statements to ensure that they include the following: using System.Collections.Specialized; using System.Globalization; using System.Web.Mvc; With the appropriate using statements in place, we'll update the StaticValueProvider class to implement the IValueProvider interface. The System.Web.Mvc library already contains a pretty flexible dictionary-like implementation called NameValueCollectionValueProvider, so we'll just wrap that and let it do most of the real work for us. The completed class looks like: public class StaticValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider;     public StaticValueProvider(ControllerContext controllerContext)     {         var parameters = new NameValueCollection();         parameters.Add("welcomeMessage", "Hello from the value provider!");         _wrappedProvider = new NameValueCollectionValueProvider(parameters, CultureInfo.InvariantCulture);     }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } Notice that the only entry in the collection matches the name of the argument to our HomeController's Index action.  This is the important "secret sauce" that will make things work. We've got our new value provider now, but that's not quite enough to be finished. Mvc obtains IValueProvider instances using factories that are registered when the application starts up. These factories extend the abstract ValueProviderFactory class by initializing and returning the appropriate implementation of IValueProvider from the GetValueProvider method. While I wouldn't do so in production code, for the sake of this example, I'm going to add the following class definition within the StaticValueProvider.cs source file: public class StaticValueProviderFactory : ValueProviderFactory {     public override IValueProvider GetValueProvider(ControllerContext controllerContext)     {         return new StaticValueProvider(controllerContext);     } } Now that we have a factory, we can register it by adding the following line to the end of the Application_Start method in Global.asax.cs: ValueProviderFactories.Factories.Add(new StaticValueProviderFactory()); If you've done everything right to this point, you should be able to run the application and be presented with the home page reading "Hello from the value provider!". Now that you have the basics of the IValueProvider down, you have everything you need to enhance your Sitecore MVC implementation by adding an IValueProvider that exposes values from the ambient RenderingContext's Parameters property. I'll provide the code for the IValueProvider implementation (which should look VERY familiar) and you can use the work we've already done as a reference to create and register the factory: public class RenderingContextValueProvider : IValueProvider {     private NameValueCollectionValueProvider _wrappedProvider = null;     public RenderingContextValueProvider(ControllerContext controllerContext)     {         var collection = new NameValueCollection();         var rc = RenderingContext.CurrentOrNull;         if (rc != null && rc.Rendering != null)         {             foreach(var parameter in rc.Rendering.Parameters)             {                 collection.Add(parameter.Key, parameter.Value);             }         }         _wrappedProvider = new NameValueCollectionValueProvider(collection, CultureInfo.InvariantCulture);         }     public bool ContainsPrefix(string prefix)     {         return _wrappedProvider.ContainsPrefix(prefix);     }     public ValueProviderResult GetValue(string key)     {         return _wrappedProvider.GetValue(key);     } } In this post I've discussed the MVC IValueProvider used to map data to controller action method arguments and how this can be integrated into your Sitecore 6.6 MVC solution.

    Read the article

  • How to extract terms from an HTML document

    - by bookcasey
    I have a HTML document filled with terms that I need to put into a spreadsheet. They follow this basic pattern: <ul> <li class="name"><a href="spot.html">Spot</a></li> <li class="type">Dog</li> <li class="color">Red</li> </ul> <ul> <li class="name"><a href="mittens.html">Mittens</a></li> <li class="type">Cat</li> <li class="color">Brown</li> </ul> <ul> <li class="name"><a href="squakers.html">Squakers</a></li> <li class="type">Little Parrot</li> <li class="color">Rainbow</li> </ul> It's very consistent. I need to extract the string within the li.name a (so, "Spot") but only if the type is "Dog" or "Parrot", and put them in a spreadsheet. I've been trying to use Sublime Text's ability to Find with regex, but I'm really struggling, and since regex and HTML usually don't play nice, I was wondering if there is a better and easier way to accomplish this. Thanks.

    Read the article

  • Unable to boot Ubuntu 13.10 (nVidia GTX 770m and Intel HD 4600)

    - by Raziel Gonzalez
    Ever since I bought this laptop I've been trying to install Ubuntu on it. It came with W8 preinstalled. Up to this point, I've been able to boot in UEFI mode with a black screen. I can tell it's trying to use the nVidia card (there's a led on the computer, depending on the color you can tell which GPU is using) and if I press crtl+alt+F1 I can go to console mode. Taking this advantage I tried to install bumblebee and after a successful install the led that indicates which GPU is being used change, indicating that it switched to the Intel HD 4600 graphics. After the installation I tried to initiate the graphic interface (startx) with no success. Xorg.0.log shows the error: [ 3706.779] X.Org X Server 1.14.3 Release Date: 2013-09-12 [ 3706.782] X Protocol Version 11, Revision 0 [ 3706.783] Build Operating System: Linux 3.2.0-37-generic x86_64 Ubuntu [ 3706.783] Current Operating System: Linux ubuntu 3.11.0-12-generic #19-Ubuntu SMP Wed Oct 9 16:20:46 UTC 2013 x86_64 [ 3706.783] Kernel command line: BOOT_IMAGE=/casper/vmlinuz.efi file=/cdrom/preseed/ubuntu.seed boot=casper nomodeset -- [ 3706.785] Build Date: 15 October 2013 09:23:37AM [ 3706.786] xorg-server 2:1.14.3-3ubuntu2 (For technical support please see http://www.ubuntu.com/support) [ 3706.786] Current version of pixman: 0.30.2 [ 3706.788] Before reporting problems, check http://wiki.x.org to make sure that you have the latest version. [ 3706.788] Markers: (--) probed, (**) from config file, (==) default setting, (++) from command line, (!!) notice, (II) informational, (WW) warning, (EE) error, (NI) not implemented, (??) unknown. [ 3706.791] (==) Log file: "/var/log/Xorg.0.log", Time: Sat Nov 2 12:28:52 2013 [ 3706.792] (==) Using system config directory "/usr/share/X11/xorg.conf.d" [ 3706.792] (==) No Layout section. Using the first Screen section. [ 3706.792] (==) No screen section available. Using defaults. [ 3706.792] (**) |-->Screen "Default Screen Section" (0) [ 3706.792] (**) | |-->Monitor "<default monitor>" [ 3706.792] (==) No monitor specified for screen "Default Screen Section". Using a default monitor configuration. [ 3706.792] (==) Automatically adding devices [ 3706.792] (==) Automatically enabling devices [ 3706.792] (==) Automatically adding GPU devices [ 3706.792] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 3706.792] Entry deleted from font path. [ 3706.792] (WW) The directory "/usr/share/fonts/X11/100dpi/" does not exist. [ 3706.792] Entry deleted from font path. [ 3706.792] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 3706.792] Entry deleted from font path. [ 3706.792] (WW) The directory "/usr/share/fonts/X11/100dpi" does not exist. [ 3706.792] Entry deleted from font path. [ 3706.792] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 3706.792] Entry deleted from font path. [ 3706.792] (==) FontPath set to: /usr/share/fonts/X11/misc, /usr/share/fonts/X11/Type1, built-ins [ 3706.792] (==) ModulePath set to "/usr/lib/x86_64-linux-gnu/xorg/extra-modules,/usr/lib/xorg/extra-modules,/usr/lib/xorg/modules" [ 3706.792] (II) The server relies on udev to provide the list of input devices. If no devices become available, reconfigure udev or disable AutoAddDevices. [ 3706.792] (II) Loader magic: 0x7ff680918d20 [ 3706.792] (II) Module ABI versions: [ 3706.792] X.Org ANSI C Emulation: 0.4 [ 3706.792] X.Org Video Driver: 14.1 [ 3706.792] X.Org XInput driver : 19.1 [ 3706.792] X.Org Server Extension : 7.0 [ 3706.793] (--) PCI:*(0:0:2:0) 8086:0416:1462:10e8 rev 6, Mem @ 0xf7400000/4194304, 0xb0000000/268435456, I/O @ 0x0000f000/64 [ 3706.793] (II) Open ACPI successful (/var/run/acpid.socket) [ 3706.794] Initializing built-in extension Generic Event Extension [ 3706.795] Initializing built-in extension SHAPE [ 3706.796] Initializing built-in extension MIT-SHM [ 3706.797] Initializing built-in extension XInputExtension [ 3706.797] Initializing built-in extension XTEST [ 3706.798] Initializing built-in extension BIG-REQUESTS [ 3706.799] Initializing built-in extension SYNC [ 3706.799] Initializing built-in extension XKEYBOARD [ 3706.800] Initializing built-in extension XC-MISC [ 3706.801] Initializing built-in extension SECURITY [ 3706.802] Initializing built-in extension XINERAMA [ 3706.802] Initializing built-in extension XFIXES [ 3706.803] Initializing built-in extension RENDER [ 3706.804] Initializing built-in extension RANDR [ 3706.804] Initializing built-in extension COMPOSITE [ 3706.805] Initializing built-in extension DAMAGE [ 3706.806] Initializing built-in extension MIT-SCREEN-SAVER [ 3706.806] Initializing built-in extension DOUBLE-BUFFER [ 3706.807] Initializing built-in extension RECORD [ 3706.807] Initializing built-in extension DPMS [ 3706.808] Initializing built-in extension X-Resource [ 3706.809] Initializing built-in extension XVideo [ 3706.809] Initializing built-in extension XVideo-MotionCompensation [ 3706.810] Initializing built-in extension SELinux [ 3706.811] Initializing built-in extension XFree86-VidModeExtension [ 3706.811] Initializing built-in extension XFree86-DGA [ 3706.812] Initializing built-in extension XFree86-DRI [ 3706.812] Initializing built-in extension DRI2 [ 3706.812] (II) "glx" will be loaded by default. [ 3706.812] (WW) "xmir" is not to be loaded by default. Skipping. [ 3706.812] (II) LoadModule: "dri2" [ 3706.812] (II) Module "dri2" already built-in [ 3706.812] (II) LoadModule: "glamoregl" [ 3706.813] (II) Loading /usr/lib/xorg/modules/libglamoregl.so [ 3706.813] (II) Module glamoregl: vendor="X.Org Foundation" [ 3706.813] compiled for 1.14.2.901, module version = 0.5.1 [ 3706.813] ABI class: X.Org ANSI C Emulation, version 0.4 [ 3706.813] (II) LoadModule: "glx" [ 3706.813] (II) Loading /usr/lib/xorg/modules/extensions/libglx.so [ 3706.813] (II) Module glx: vendor="X.Org Foundation" [ 3706.813] compiled for 1.14.3, module version = 1.0.0 [ 3706.813] ABI class: X.Org Server Extension, version 7.0 [ 3706.813] (==) AIGLX enabled [ 3706.814] Loading extension GLX [ 3706.814] (==) Matched intel as autoconfigured driver 0 [ 3706.814] (==) Matched vesa as autoconfigured driver 1 [ 3706.814] (==) Matched modesetting as autoconfigured driver 2 [ 3706.814] (==) Matched fbdev as autoconfigured driver 3 [ 3706.814] (==) Assigned the driver to the xf86ConfigLayout [ 3706.814] (II) LoadModule: "intel" [ 3706.814] (II) Loading /usr/lib/xorg/modules/drivers/intel_drv.so [ 3706.814] (II) Module intel: vendor="X.Org Foundation" [ 3706.814] compiled for 1.14.3, module version = 2.99.904 [ 3706.814] Module class: X.Org Video Driver [ 3706.814] ABI class: X.Org Video Driver, version 14.1 [ 3706.814] (II) LoadModule: "vesa" [ 3706.814] (II) Loading /usr/lib/xorg/modules/drivers/vesa_drv.so [ 3706.814] (II) Module vesa: vendor="X.Org Foundation" [ 3706.814] compiled for 1.14.1, module version = 2.3.2 [ 3706.814] Module class: X.Org Video Driver [ 3706.814] ABI class: X.Org Video Driver, version 14.1 [ 3706.814] (II) LoadModule: "modesetting" [ 3706.814] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 3706.814] (II) Module modesetting: vendor="X.Org Foundation" [ 3706.814] compiled for 1.14.1, module version = 0.8.0 [ 3706.814] Module class: X.Org Video Driver [ 3706.814] ABI class: X.Org Video Driver, version 14.1 [ 3706.814] (II) LoadModule: "fbdev" [ 3706.814] (II) Loading /usr/lib/xorg/modules/drivers/fbdev_drv.so [ 3706.815] (II) Module fbdev: vendor="X.Org Foundation" [ 3706.815] compiled for 1.14.1, module version = 0.4.3 [ 3706.815] Module class: X.Org Video Driver [ 3706.815] ABI class: X.Org Video Driver, version 14.1 [ 3706.815] (II) intel: Driver for Intel(R) Integrated Graphics Chipsets: i810, i810-dc100, i810e, i815, i830M, 845G, 854, 852GM/855GM, 865G, 915G, E7221 (i915), 915GM, 945G, 945GM, 945GME, Pineview GM, Pineview G, 965G, G35, 965Q, 946GZ, 965GM, 965GME/GLE, G33, Q35, Q33, GM45, 4 Series, G45/G43, Q45/Q43, G41, B43, HD Graphics, HD Graphics 2000, HD Graphics 3000, HD Graphics 2500, HD Graphics 4000, HD Graphics P4000, HD Graphics 4600, HD Graphics 5000, HD Graphics P4600/P4700, Iris(TM) Graphics 5100, HD Graphics 4400, HD Graphics 4200, Iris(TM) Pro Graphics 5200 [ 3706.815] (II) VESA: driver for VESA chipsets: vesa [ 3706.815] (II) modesetting: Driver for Modesetting Kernel Drivers: kms [ 3706.815] (II) FBDEV: driver for framebuffer: fbdev [ 3706.815] (--) using VT number 7 [ 3706.819] (WW) Falling back to old probe method for modesetting [ 3706.819] (EE) open /dev/dri/card0: No such file or directory [ 3706.819] (WW) Falling back to old probe method for fbdev [ 3706.819] (II) Loading sub module "fbdevhw" [ 3706.819] (II) LoadModule: "fbdevhw" [ 3706.819] (II) Loading /usr/lib/xorg/modules/libfbdevhw.so [ 3706.819] (II) Module fbdevhw: vendor="X.Org Foundation" [ 3706.819] compiled for 1.14.3, module version = 0.0.2 [ 3706.819] ABI class: X.Org Video Driver, version 14.1 [ 3706.819] (II) Loading sub module "vbe" [ 3706.819] (II) LoadModule: "vbe" [ 3706.819] (II) Loading /usr/lib/xorg/modules/libvbe.so [ 3706.819] (II) Module vbe: vendor="X.Org Foundation" [ 3706.819] compiled for 1.14.3, module version = 1.1.0 [ 3706.819] ABI class: X.Org Video Driver, version 14.1 [ 3706.819] (II) Loading sub module "int10" [ 3706.819] (II) LoadModule: "int10" [ 3706.819] (II) Loading /usr/lib/xorg/modules/libint10.so [ 3706.819] (II) Module int10: vendor="X.Org Foundation" [ 3706.819] compiled for 1.14.3, module version = 1.0.0 [ 3706.819] ABI class: X.Org Video Driver, version 14.1 [ 3706.819] (II) VESA(0): initializing int10 [ 3706.820] (EE) VESA(0): V_BIOS address 0x0 out of range [ 3706.820] (II) UnloadModule: "vesa" [ 3706.820] (II) UnloadSubModule: "int10" [ 3706.820] (II) Unloading int10 [ 3706.820] (II) UnloadSubModule: "vbe" [ 3706.820] (II) Unloading vbe [ 3706.820] (EE) Screen(s) found, but none have a usable configuration. [ 3706.820] (EE) Fatal server error: [ 3706.820] (EE) no screens found(EE) [ 3706.820] (EE) Please consult the The X.Org Foundation support at http://wiki.x.org for help. [ 3706.820] (EE) Please also check the log file at "/var/log/Xorg.0.log" for additional information. [ 3706.820] (EE) [ 3706.827] (EE) Server terminated with error (1). Closing log file. I also saved the dsmeg output to see if it can be of any help. In order to be able to get to this stage I had to boot with nomodeset option and removed quiet and splash. Anyone got this same error? Any guidance? I've tried other linux distros and so far the only one that is able to boot is Opensuse 12.3 without any issues (but only when I switch to legacy mode instead of UEFI).

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 2 – Table per Type (TPT)

    - by mortezam
    In the previous blog post you saw that there are three different approaches to representing an inheritance hierarchy and I explained Table per Hierarchy (TPH) as the default mapping strategy in EF Code First. We argued that the disadvantages of TPH may be too serious for our design since it results in denormalized schemas that can become a major burden in the long run. In today’s blog post we are going to learn about Table per Type (TPT) as another inheritance mapping strategy and we'll see that TPT doesn’t expose us to this problem. Table per Type (TPT)Table per Type is about representing inheritance relationships as relational foreign key associations. Every class/subclass that declares persistent properties—including abstract classes—has its own table. The table for subclasses contains columns only for each noninherited property (each property declared by the subclass itself) along with a primary key that is also a foreign key of the base class table. This approach is shown in the following figure: For example, if an instance of the CreditCard subclass is made persistent, the values of properties declared by the BillingDetail base class are persisted to a new row of the BillingDetails table. Only the values of properties declared by the subclass (i.e. CreditCard) are persisted to a new row of the CreditCards table. The two rows are linked together by their shared primary key value. Later, the subclass instance may be retrieved from the database by joining the subclass table with the base class table. TPT Advantages The primary advantage of this strategy is that the SQL schema is normalized. In addition, schema evolution is straightforward (modifying the base class or adding a new subclass is just a matter of modify/add one table). Integrity constraint definition are also straightforward (note how CardType in CreditCards table is now a non-nullable column). Another much more important advantage is the ability to handle polymorphic associations (a polymorphic association is an association to a base class, hence to all classes in the hierarchy with dynamic resolution of the concrete class at runtime). A polymorphic association to a particular subclass may be represented as a foreign key referencing the table of that particular subclass. Implement TPT in EF Code First We can create a TPT mapping simply by placing Table attribute on the subclasses to specify the mapped table name (Table attribute is a new data annotation and has been added to System.ComponentModel.DataAnnotations namespace in CTP5): public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } [Table("BankAccounts")] public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } } [Table("CreditCards")] public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } } public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; } } If you prefer fluent API, then you can create a TPT mapping by using ToTable() method: protected override void OnModelCreating(ModelBuilder modelBuilder) {     modelBuilder.Entity<BankAccount>().ToTable("BankAccounts");     modelBuilder.Entity<CreditCard>().ToTable("CreditCards"); } Generated SQL For QueriesLet’s take an example of a simple non-polymorphic query that returns a list of all the BankAccounts: var query = from b in context.BillingDetails.OfType<BankAccount>() select b; Executing this query (by invoking ToList() method) results in the following SQL statements being sent to the database (on the bottom, you can also see the result of executing the generated query in SQL Server Management Studio): Now, let’s take an example of a very simple polymorphic query that requests all the BillingDetails which includes both BankAccount and CreditCard types: projects some properties out of the base class BillingDetail, without querying for anything from any of the subclasses: var query = from b in context.BillingDetails             select new { b.BillingDetailId, b.Number, b.Owner }; -- var query = from b in context.BillingDetails select b; This LINQ query seems even more simple than the previous one but the resulting SQL query is not as simple as you might expect: -- As you can see, EF Code First relies on an INNER JOIN to detect the existence (or absence) of rows in the subclass tables CreditCards and BankAccounts so it can determine the concrete subclass for a particular row of the BillingDetails table. Also the SQL CASE statements that you see in the beginning of the query is just to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type) TPT ConsiderationsEven though this mapping strategy is deceptively simple, the experience shows that performance can be unacceptable for complex class hierarchies because queries always require a join across many tables. In addition, this mapping strategy is more difficult to implement by hand— even ad-hoc reporting is more complex. This is an important consideration if you plan to use handwritten SQL in your application (For ad hoc reporting, database views provide a way to offset the complexity of the TPT strategy. A view may be used to transform the table-per-type model into the much simpler table-per-hierarchy model.) SummaryIn this post we learned about Table per Type as the second inheritance mapping in our series. So far, the strategies we’ve discussed require extra consideration with regard to the SQL schema (e.g. in TPT, foreign keys are needed). This situation changes with the Table per Concrete Type (TPC) that we will discuss in the next post. References ADO.NET team blog Java Persistence with Hibernate book a { text-decoration: none; } a:visited { color: Blue; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } p.MsoNormal { margin-top: 0in; margin-right: 0in; margin-bottom: 10.0pt; margin-left: 0in; line-height: 115%; font-size: 11.0pt; font-family: "Calibri" , "sans-serif"; }

    Read the article

  • Refactoring FizzBuzz

    - by MarkPearl
    A few years ago I blogger about FizzBuzz, at the time the post was prompted by Scott Hanselman who had podcasted about how surprized he was that some programmers could not even solve the FizzBuzz problem within a reasonable period of time during a job interview. At the time I thought I would give the problem a go in F# and sure enough the solution was fairly simple – I then also did a basic solution in C# but never posted it. Since then I have learned that being able to solve a problem and how you solve the problem are two totally different things. Today I decided to give the problem a retry and see if I had learnt anything new in the last year or so. Here is how my solution looked after refactoring… Solution 1 – Cheap and Nasty public class FizzBuzzCalculator { public string NumberFormat(int number) { var numDivisibleBy3 = (number % 3) == 0; var numDivisibleBy5 = (number % 5) == 0; if (numDivisibleBy3 && numDivisibleBy5) return String.Format("{0} FizzBuz", number); else if (numDivisibleBy3) return String.Format("{0} Fizz", number); else if (numDivisibleBy5) return String.Format("{0} Buz", number); return number.ToString(); } } class Program { static void Main(string[] args) { var fizzBuzz = new FizzBuzzCalculator(); for (int i = 0; i < 100; i++) { Console.WriteLine(fizzBuzz.NumberFormat(i)); } } } My first attempt I just looked at solving the problem – it works, and could be an acceptable solution but tonight I thought I would see how far  I could refactor it… The section I decided to focus on was the mass of if..else code in the NumberFormat method. Solution 2 – Replacing If…Else with a Dictionary public class FizzBuzzCalculator { private readonly Dictionary<Tuple<bool, bool>, string> _mappings; public FizzBuzzCalculator(Dictionary<Tuple<bool, bool>, string> mappings) { _mappings = mappings; } public string NumberFormat(int number) { var numDivisibleBy3 = (number % 3) == 0; var numDivisibleBy5 = (number % 5) == 0; var mappedKey = new Tuple<bool, bool>(numDivisibleBy3, numDivisibleBy5); return String.Format("{0} {1}", number, _mappings[mappedKey]); } } class Program { static void Main(string[] args) { var mappings = new Dictionary<Tuple<bool, bool>, string> { { new Tuple<bool, bool>(true, true), "- FizzBuzz"}, { new Tuple<bool, bool>(true, false), "- Fizz"}, { new Tuple<bool, bool>(false, true), "- Buzz"}, { new Tuple<bool, bool>(false, false), ""} }; var fizzBuzz = new FizzBuzzCalculator(mappings); for (int i = 0; i < 100; i++) { Console.WriteLine(fizzBuzz.NumberFormat(i)); } Console.ReadLine(); } } In my second attempt I looked at removing the if else in the NumberFormat method. A dictionary proved to be useful for this – I added a constructor to the class and injected the dictionary mapping. One could argue that this is totally overkill, but if I was going to use this code in a large system an approach like this makes it easy to put this data in a configuration file, which would up its OC (Open for extensibility, closed for modification principle). I could of course take the OC principle even further – the check for divisibility by 3 and 5 is tightly coupled to this class. If I wanted to make it 4 instead of 3, I would need to adjust this class. This introduces my third refactoring. Solution 3 – Introducing Delegates and Injecting them into the class public delegate bool FizzBuzzComparison(int number); public class FizzBuzzCalculator { private readonly Dictionary<Tuple<bool, bool>, string> _mappings; private readonly FizzBuzzComparison _comparison1; private readonly FizzBuzzComparison _comparison2; public FizzBuzzCalculator(Dictionary<Tuple<bool, bool>, string> mappings, FizzBuzzComparison comparison1, FizzBuzzComparison comparison2) { _mappings = mappings; _comparison1 = comparison1; _comparison2 = comparison2; } public string NumberFormat(int number) { var mappedKey = new Tuple<bool, bool>(_comparison1(number), _comparison2(number)); return String.Format("{0} {1}", number, _mappings[mappedKey]); } } class Program { private static bool DivisibleByNum(int number, int divisor) { return number % divisor == 0; } public static bool Divisibleby3(int number) { return number % 3 == 0; } public static bool Divisibleby5(int number) { return number % 5 == 0; } static void Main(string[] args) { var mappings = new Dictionary<Tuple<bool, bool>, string> { { new Tuple<bool, bool>(true, true), "- FizzBuzz"}, { new Tuple<bool, bool>(true, false), "- Fizz"}, { new Tuple<bool, bool>(false, true), "- Buzz"}, { new Tuple<bool, bool>(false, false), ""} }; var fizzBuzz = new FizzBuzzCalculator(mappings, Divisibleby3, Divisibleby5); for (int i = 0; i < 100; i++) { Console.WriteLine(fizzBuzz.NumberFormat(i)); } Console.ReadLine(); } } I have taken this one step further and introduced delegates that are injected into the FizzBuzz Calculator class, from an OC principle perspective it has probably made it more compliant than the previous Solution 2, but there seems to be a lot of noise. Anonymous Delegates increase the readability level, which is what I have done in Solution 4. Solution 4 – Anon Delegates public delegate bool FizzBuzzComparison(int number); public class FizzBuzzCalculator { private readonly Dictionary<Tuple<bool, bool>, string> _mappings; private readonly FizzBuzzComparison _comparison1; private readonly FizzBuzzComparison _comparison2; public FizzBuzzCalculator(Dictionary<Tuple<bool, bool>, string> mappings, FizzBuzzComparison comparison1, FizzBuzzComparison comparison2) { _mappings = mappings; _comparison1 = comparison1; _comparison2 = comparison2; } public string NumberFormat(int number) { var mappedKey = new Tuple<bool, bool>(_comparison1(number), _comparison2(number)); return String.Format("{0} {1}", number, _mappings[mappedKey]); } } class Program { static void Main(string[] args) { var mappings = new Dictionary<Tuple<bool, bool>, string> { { new Tuple<bool, bool>(true, true), "- FizzBuzz"}, { new Tuple<bool, bool>(true, false), "- Fizz"}, { new Tuple<bool, bool>(false, true), "- Buzz"}, { new Tuple<bool, bool>(false, false), ""} }; var fizzBuzz = new FizzBuzzCalculator(mappings, (n) => n % 3 == 0, (n) => n % 5 == 0); for (int i = 0; i < 100; i++) { Console.WriteLine(fizzBuzz.NumberFormat(i)); } Console.ReadLine(); } }   Using the anonymous delegates I think the noise level has now been reduced. This is where I am going to end this post, I have gone through 4 iterations of the code from the initial solution using If..Else to delegates and dictionaries. I think each approach would have it’s pro’s and con’s and depending on the intention of where the code would be used would be a large determining factor. If you can think of an alternative way to do FizzBuzz, add a comment!

    Read the article

  • We've completed the first iteration

    - by CliveT
    There are a lot of features in C# that are implemented by the compiler and not by the underlying platform. One such feature is a lambda expression. Since local variables cannot be accessed once the current method activation finishes, the compiler has to go out of its way to generate a new class which acts as a home for any variable whose lifetime needs to be extended past the activation of the procedure. Take the following example:     Random generator = new Random();     Func func = () = generator.Next(10); In this case, the compiler generates a new class called c_DisplayClass1 which is marked with the CompilerGenerated attribute. [CompilerGenerated] private sealed class c__DisplayClass1 {     // Fields     public Random generator;     // Methods     public int b__0()     {         return this.generator.Next(10);     } } Two quick comments on this: (i)    A display was the means that compilers for languages like Algol recorded the various lexical contours of the nested procedure activations on the stack. I imagine that this is what has led to the name. (ii)    It is a shame that the same attribute is used to mark all compiler generated classes as it makes it hard to figure out what they are being used for. Indeed, you could imagine optimisations that the runtime could perform if it knew that classes corresponded to certain high level concepts. We can see that the local variable generator has been turned into a field in the class, and the body of the lambda expression has been turned into a method of the new class. The code that builds the Func object simply constructs an instance of this class and initialises the fields to their initial values.     c__DisplayClass1 class2 = new c__DisplayClass1();     class2.generator = new Random();     Func func = new Func(class2.b__0); Reflector already contains code to spot this pattern of code and reproduce the form containing the lambda expression, so this is example is correctly decompiled. The use of compiler generated code is even more spectacular in the case of iterators. C# introduced the idea of a method that could automatically store its state between calls, so that it can pick up where it left off. The code can express the logical flow with yield return and yield break denoting places where the method should return a particular value and be prepared to resume.         {             yield return 1;             yield return 2;             yield return 3;         } Of course, there was already a .NET pattern for expressing the idea of returning a sequence of values with the computation proceeding lazily (in the sense that the work for the next value is executed on demand). This is expressed by the IEnumerable interface with its Current property for fetching the current value and the MoveNext method for forcing the computation of the next value. The sequence is terminated when this method returns false. The C# compiler links these two ideas together so that an IEnumerator returning method using the yield keyword causes the compiler to produce the implementation of an Iterator. Take the following piece of code.         IEnumerable GetItems()         {             yield return 1;             yield return 2;             yield return 3;         } The compiler implements this by defining a new class that implements a state machine. This has an integer state that records which yield point we should go to if we are resumed. It also has a field that records the Current value of the enumerator and a field for recording the thread. This latter value is used for optimising the creation of iterator instances. [CompilerGenerated] private sealed class d__0 : IEnumerable, IEnumerable, IEnumerator, IEnumerator, IDisposable {     // Fields     private int 1__state;     private int 2__current;     public Program 4__this;     private int l__initialThreadId; The body gets converted into the code to construct and initialize this new class. private IEnumerable GetItems() {     d__0 d__ = new d__0(-2);     d__.4__this = this;     return d__; } When the class is constructed we set the state, which was passed through as -2 and the current thread. public d__0(int 1__state) {     this.1__state = 1__state;     this.l__initialThreadId = Thread.CurrentThread.ManagedThreadId; } The state needs to be set to 0 to represent a valid enumerator and this is done in the GetEnumerator method which optimises for the usual case where the returned enumerator is only used once. IEnumerator IEnumerable.GetEnumerator() {     if ((Thread.CurrentThread.ManagedThreadId == this.l__initialThreadId)               && (this.1__state == -2))     {         this.1__state = 0;         return this;     } The state machine itself is implemented inside the MoveNext method. private bool MoveNext() {     switch (this.1__state)     {         case 0:             this.1__state = -1;             this.2__current = 1;             this.1__state = 1;             return true;         case 1:             this.1__state = -1;             this.2__current = 2;             this.1__state = 2;             return true;         case 2:             this.1__state = -1;             this.2__current = 3;             this.1__state = 3;             return true;         case 3:             this.1__state = -1;             break;     }     return false; } At each stage, the current value of the state is used to determine how far we got, and then we generate the next value which we return after recording the next state. Finally we return false from the MoveNext to signify the end of the sequence. Of course, that example was really simple. The original method body didn't have any local variables. Any local variables need to live between the calls to MoveNext and so they need to be transformed into fields in much the same way that we did in the case of the lambda expression. More complicated MoveNext methods are required to deal with resources that need to be disposed when the iterator finishes, and sometimes the compiler uses a temporary variable to hold the return value. Why all of this explanation? We've implemented the de-compilation of iterators in the current EAP version of Reflector (7). This contrasts with previous version where all you could do was look at the MoveNext method and try to figure out the control flow. There's a fair amount of things we have to do. We have to spot the use of a CompilerGenerated class which implements the Enumerator pattern. We need to go to the class and figure out the fields corresponding to the local variables. We then need to go to the MoveNext method and try to break it into the various possible states and spot the state transitions. We can then take these pieces and put them back together into an object model that uses yield return to show the transition points. After that Reflector can carry on optimising using its usual optimisations. The pattern matching is currently a little too sensitive to changes in the code generation, and we only do a limited analysis of the MoveNext method to determine use of the compiler generated fields. In some ways, it is a pity that iterators are compiled away and there is no metadata that reflects the original intent. Without it, we are always going to dependent on our knowledge of the compiler's implementation. For example, we have noticed that the Async CTP changes the way that iterators are code generated, so we'll have to do some more work to support that. However, with that warning in place, we seem to do a reasonable job of decompiling the iterators that are built into the framework. Hopefully, the EAP will give us a chance to find examples where we don't spot the pattern correctly or regenerate the wrong code, and we can improve things. Please give it a go, and report any problems.

    Read the article

  • An Introduction to jQuery Templates

    - by Stephen Walther
    The goal of this blog entry is to provide you with enough information to start working with jQuery Templates. jQuery Templates enable you to display and manipulate data in the browser. For example, you can use jQuery Templates to format and display a set of database records that you have retrieved with an Ajax call. jQuery Templates supports a number of powerful features such as template tags, template composition, and wrapped templates. I’ll concentrate on the features that I think that you will find most useful. In order to focus on the jQuery Templates feature itself, this blog entry is server technology agnostic. All the samples use HTML pages instead of ASP.NET pages. In a future blog entry, I’ll focus on using jQuery Templates with ASP.NET Web Forms and ASP.NET MVC (You can do some pretty powerful things when jQuery Templates are used on the client and ASP.NET is used on the server). Introduction to jQuery Templates The jQuery Templates plugin was developed by the Microsoft ASP.NET team in collaboration with the open-source jQuery team. While working at Microsoft, I wrote the original proposal for jQuery Templates, Dave Reed wrote the original code, and Boris Moore wrote the final code. The jQuery team – especially John Resig – was very involved in each step of the process. Both the jQuery community and ASP.NET communities were very active in providing feedback. jQuery Templates will be included in the jQuery core library (the jQuery.js library) when jQuery 1.5 is released. Until jQuery 1.5 is released, you can download the jQuery Templates plugin from the jQuery Source Code Repository or you can use jQuery Templates directly from the ASP.NET CDN. The documentation for jQuery Templates is already included with the official jQuery documentation at http://api.jQuery.com. The main entry for jQuery templates is located under the topic plugins/templates. A Basic Sample of jQuery Templates Let’s start with a really simple sample of using jQuery Templates. We’ll use the plugin to display a list of books stored in a JavaScript array. Here’s the complete code: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html > <head> <title>Intro</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg" }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg" }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg" }, ]; // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html> When you open this page in a browser, a list of books is displayed: There are several things going on in this page which require explanation. First, notice that the page uses both the jQuery 1.4.4 and jQuery Templates libraries. Both libraries are retrieved from the ASP.NET CDN: <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> You can use the ASP.NET CDN for free (even for production websites). You can learn more about the files included on the ASP.NET CDN by visiting the ASP.NET CDN documentation page. Second, you should notice that the actual template is included in a script tag with a special MIME type: <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> This template is displayed for each of the books rendered by the template. The template displays a book picture, title, and price. Notice that the SCRIPT tag which wraps the template has a MIME type of text/x-jQuery-tmpl. Why is the template wrapped in a SCRIPT tag and why the strange MIME type? When a browser encounters a SCRIPT tag with an unknown MIME type, it ignores the content of the tag. This is the behavior that you want with a template. You don’t want a browser to attempt to parse the contents of a template because this might cause side effects. For example, the template above includes an <img> tag with a src attribute that points at “BookPictures/${picture}”. You don’t want the browser to attempt to load an image at the URL “BookPictures/${picture}”. Instead, you want to prevent the browser from processing the IMG tag until the ${picture} expression is replaced by with the actual name of an image by the jQuery Templates plugin. If you are not worried about browser side-effects then you can wrap a template inside any HTML tag that you please. For example, the following DIV tag would also work with the jQuery Templates plugin: <div id="bookTemplate" style="display:none"> <div> <h2>${title}</h2> price: ${formatPrice(price)} </div> </div> Notice that the DIV tag includes a style=”display:none” attribute to prevent the template from being displayed until the template is parsed by the jQuery Templates plugin. Third, notice that the expression ${…} is used to display the value of a JavaScript expression within a template. For example, the expression ${title} is used to display the value of the book title property. You can use any JavaScript function that you please within the ${…} expression. For example, in the template above, the book price is formatted with the help of the custom JavaScript formatPrice() function which is defined lower in the page. Fourth, and finally, the template is rendered with the help of the tmpl() method. The following statement selects the bookTemplate and renders an array of books using the bookTemplate. The results are appended to a DIV element named bookContainer by using the standard jQuery appendTo() method. $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); Using Template Tags Within a template, you can use any of the following template tags. {{tmpl}} – Used for template composition. See the section below. {{wrap}} – Used for wrapped templates. See the section below. {{each}} – Used to iterate through a collection. {{if}} – Used to conditionally display template content. {{else}} – Used with {{if}} to conditionally display template content. {{html}} – Used to display the value of an HTML expression without encoding the value. Using ${…} or {{= }} performs HTML encoding automatically. {{= }}-- Used in exactly the same way as ${…}. {{! }} – Used for displaying comments. The contents of a {{!...}} tag are ignored. For example, imagine that you want to display a list of blog entries. Each blog entry could, possibly, have an associated list of categories. The following page illustrates how you can use the { if}} and {{each}} template tags to conditionally display categories for each blog entry:   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>each</title> <link href="1_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="blogPostContainer"></div> <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> var blogPosts = [ { postTitle: "How to fix a sink plunger in 5 minutes", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.", categories: ["HowTo", "Sinks", "Plumbing"] }, { postTitle: "How to remove a broken lightbulb", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna.", categories: ["HowTo", "Lightbulbs", "Electricity"] }, { postTitle: "New associate website", postEntry: "Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna." } ]; // Render the blog posts $("#blogPostTemplate").tmpl(blogPosts).appendTo("#blogPostContainer"); </script> </body> </html> When this page is opened in a web browser, the following list of blog posts and categories is displayed: Notice that the first and second blog entries have associated categories but the third blog entry does not. The third blog entry is “Uncategorized”. The template used to render the blog entries and categories looks like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script> Notice the special expression $value used within the {{each}} template tag. You can use $value to display the value of the current template item. In this case, $value is used to display the value of each category in the collection of categories. Template Composition When building a fancy page, you might want to build a template out of multiple templates. In other words, you might want to take advantage of template composition. For example, imagine that you want to display a list of products. Some of the products are being sold at their normal price and some of the products are on sale. In that case, you might want to use two different templates for displaying a product: a productTemplate and a productOnSaleTemplate. The following page illustrates how you can use the {{tmpl}} tag to build a template from multiple templates:   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Composition</title> <link href="2_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContainer"> <h1>Products</h1> <div id="productListContainer"></div> <!-- Show list of products using composition --> <script id="productListTemplate" type="text/x-jQuery-tmpl"> <div> {{if onSale}} {{tmpl "#productOnSaleTemplate"}} {{else}} {{tmpl "#productTemplate"}} {{/if}} </div> </script> <!-- Show product --> <script id="productTemplate" type="text/x-jQuery-tmpl"> ${name} </script> <!-- Show product on sale --> <script id="productOnSaleTemplate" type="text/x-jQuery-tmpl"> <b>${name}</b> <img src="images/on_sale.png" alt="On Sale" /> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> var products = [ { name: "Laptop", onSale: false }, { name: "Apples", onSale: true }, { name: "Comb", onSale: false } ]; $("#productListTemplate").tmpl(products).appendTo("#productListContainer"); </script> </div> </body> </html>   In the page above, the main template used to display the list of products looks like this: <script id="productListTemplate" type="text/x-jQuery-tmpl"> <div> {{if onSale}} {{tmpl "#productOnSaleTemplate"}} {{else}} {{tmpl "#productTemplate"}} {{/if}} </div> </script>   If a product is on sale then the product is displayed with the productOnSaleTemplate (which includes an on sale image): <script id="productOnSaleTemplate" type="text/x-jQuery-tmpl"> <b>${name}</b> <img src="images/on_sale.png" alt="On Sale" /> </script>   Otherwise, the product is displayed with the normal productTemplate (which does not include the on sale image): <script id="productTemplate" type="text/x-jQuery-tmpl"> ${name} </script>   You can pass a parameter to the {{tmpl}} tag. The parameter becomes the data passed to the template rendered by the {{tmpl}} tag. For example, in the previous section, we used the {{each}} template tag to display a list of categories for each blog entry like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{each categories}} <i>${$value}</i> {{/each}} {{else}} Uncategorized {{/if}} </script>   Another way to create this template is to use template composition like this: <script id="blogPostTemplate" type="text/x-jQuery-tmpl"> <h1>${postTitle}</h1> <p> ${postEntry} </p> {{if categories}} Categories: {{tmpl(categories) "#categoryTemplate"}} {{else}} Uncategorized {{/if}} </script> <script id="categoryTemplate" type="text/x-jQuery-tmpl"> <i>${$data}</i> &nbsp; </script>   Using the {{each}} tag or {{tmpl}} tag is largely a matter of personal preference. Wrapped Templates The {{wrap}} template tag enables you to take a chunk of HTML and transform the HTML into another chunk of HTML (think easy XSLT). When you use the {{wrap}} tag, you work with two templates. The first template contains the HTML being transformed and the second template includes the filter expressions for transforming the HTML. For example, you can use the {{wrap}} template tag to transform a chunk of HTML into an interactive tab strip: When you click any of the tabs, you see the corresponding content. This tab strip was created with the following page: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Wrapped Templates</title> <style type="text/css"> body { font-family: Arial; background-color:black; } .tabs div { display:inline-block; border-bottom: 1px solid black; padding:4px; background-color:gray; cursor:pointer; } .tabs div.tabState_true { background-color:white; border-bottom:1px solid white; } .tabBody { border-top:1px solid white; padding:10px; background-color:white; min-height:400px; width:400px; } </style> </head> <body> <div id="tabsView"></div> <script id="tabsContent" type="text/x-jquery-tmpl"> {{wrap "#tabsWrap"}} <h3>Tab 1</h3> <div> Content of tab 1. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 2</h3> <div> Content of tab 2. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 3</h3> <div> Content of tab 3. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> {{/wrap}} </script> <script id="tabsWrap" type="text/x-jquery-tmpl"> <div class="tabs"> {{each $item.html("h3", true)}} <div class="tabState_${$index === selectedTabIndex}"> ${$value} </div> {{/each}} </div> <div class="tabBody"> {{html $item.html("div")[selectedTabIndex]}} </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Global for tracking selected tab var selectedTabIndex = 0; // Render the tab strip $("#tabsContent").tmpl().appendTo("#tabsView"); // When a tab is clicked, update the tab strip $("#tabsView") .delegate(".tabState_false", "click", function () { var templateItem = $.tmplItem(this); selectedTabIndex = $(this).index(); templateItem.update(); }); </script> </body> </html>   The “source” for the tab strip is contained in the following template: <script id="tabsContent" type="text/x-jquery-tmpl"> {{wrap "#tabsWrap"}} <h3>Tab 1</h3> <div> Content of tab 1. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 2</h3> <div> Content of tab 2. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> <h3>Tab 3</h3> <div> Content of tab 3. Lorem ipsum dolor <b>sit</b> amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. </div> {{/wrap}} </script>   The tab strip is created with a list of H3 elements (which represent each tab) and DIV elements (which represent the body of each tab). Notice that the HTML content is wrapped in the {{wrap}} template tag. This template tag points at the following tabsWrap template: <script id="tabsWrap" type="text/x-jquery-tmpl"> <div class="tabs"> {{each $item.html("h3", true)}} <div class="tabState_${$index === selectedTabIndex}"> ${$value} </div> {{/each}} </div> <div class="tabBody"> {{html $item.html("div")[selectedTabIndex]}} </div> </script> The tabs DIV contains all of the tabs. The {{each}} template tag is used to loop through each of the H3 elements from the source template and render a DIV tag that represents a particular tab. The template item html() method is used to filter content from the “source” HTML template. The html() method accepts a jQuery selector for its first parameter. The tabs are retrieved from the source template by using an h3 filter. The second parameter passed to the html() method – the textOnly parameter -- causes the filter to return the inner text of each h3 element. You can learn more about the html() method at the jQuery website (see the section on $item.html()). The tabBody DIV renders the body of the selected tab. Notice that the {{html}} template tag is used to display the tab body so that HTML content in the body won’t be HTML encoded. The html() method is used, once again, to grab all of the DIV elements from the source HTML template. The selectedTabIndex global variable is used to display the contents of the selected tab. Remote Templates A common feature request for jQuery templates is support for remote templates. Developers want to be able to separate templates into different files. Adding support for remote templates requires only a few lines of extra code (Dave Ward has a nice blog entry on this). For example, the following page uses a remote template from a file named BookTemplate.htm: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Remote Templates</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg" }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg" }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg" }, ]; // Get the remote template $.get("BookTemplate.htm", null, function (bookTemplate) { // Render the books using the remote template $.tmpl(bookTemplate, books).appendTo("#bookContainer"); }); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   The remote template is retrieved (and rendered) with the following code: // Get the remote template $.get("BookTemplate.htm", null, function (bookTemplate) { // Render the books using the remote template $.tmpl(bookTemplate, books).appendTo("#bookContainer"); });   This code uses the standard jQuery $.get() method to get the BookTemplate.htm file from the server with an Ajax request. After the BookTemplate.htm file is successfully retrieved, the $.tmpl() method is used to render an array of books with the template. Here’s what the BookTemplate.htm file looks like: <div> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> Notice that the template in the BooksTemplate.htm file is not wrapped by a SCRIPT element. There is no need to wrap the template in this case because there is no possibility that the template will get interpreted before you want it to be interpreted. If you plan to use the bookTemplate multiple times – for example, you are paging or sorting the books -- then you should compile the template into a function and cache the compiled template function. For example, the following page can be used to page through a list of 100 products (using iPhone style More paging). <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Template Caching</title> <link href="6_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <h1>Products</h1> <div id="productContainer"></div> <button id="more">More</button> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Globals var pageIndex = 0; // Create an array of products var products = []; for (var i = 0; i < 100; i++) { products.push({ name: "Product " + (i + 1) }); } // Get the remote template $.get("ProductTemplate.htm", null, function (productTemplate) { // Compile and cache the template $.template("productTemplate", productTemplate); // Render the products renderProducts(0); }); $("#more").click(function () { pageIndex++; renderProducts(); }); function renderProducts() { // Get page of products var pageOfProducts = products.slice(pageIndex * 5, pageIndex * 5 + 5); // Used cached productTemplate to render products $.tmpl("productTemplate", pageOfProducts).appendTo("#productContainer"); } function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   The ProductTemplate is retrieved from an external file named ProductTemplate.htm. This template is retrieved only once. Furthermore, it is compiled and cached with the help of the $.template() method: // Get the remote template $.get("ProductTemplate.htm", null, function (productTemplate) { // Compile and cache the template $.template("productTemplate", productTemplate); // Render the products renderProducts(0); });   The $.template() method compiles the HTML representation of the template into a JavaScript function and caches the template function with the name productTemplate. The cached template can be used by calling the $.tmp() method. The productTemplate is used in the renderProducts() method: function renderProducts() { // Get page of products var pageOfProducts = products.slice(pageIndex * 5, pageIndex * 5 + 5); // Used cached productTemplate to render products $.tmpl("productTemplate", pageOfProducts).appendTo("#productContainer"); } In the code above, the first parameter passed to the $.tmpl() method is the name of a cached template. Working with Template Items In this final section, I want to devote some space to discussing Template Items. A new Template Item is created for each rendered instance of a template. For example, if you are displaying a list of 100 products with a template, then 100 Template Items are created. A Template Item has the following properties and methods: data – The data associated with the Template Instance. For example, a product. tmpl – The template associated with the Template Instance. parent – The parent template item if the template is nested. nodes – The HTML content of the template. calls – Used by {{wrap}} template tag. nest – Used by {{tmpl}} template tag. wrap – Used to imperatively enable wrapped templates. html – Used to filter content from a wrapped template. See the above section on wrapped templates. update – Used to re-render a template item. The last method – the update() method -- is especially interesting because it enables you to re-render a template item with new data or even a new template. For example, the following page displays a list of books. When you hover your mouse over any of the books, additional book details are displayed. In the following screenshot, details for ASP.NET Kick Start are displayed. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Template Item</title> <link href="0_Site.css" rel="stylesheet" type="text/css" /> </head> <body> <div id="pageContent"> <h1>ASP.NET Bookstore</h1> <div id="bookContainer"></div> </div> <script id="bookTemplate" type="text/x-jQuery-tmpl"> <div class="bookItem"> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} </div> </script> <script id="bookDetailsTemplate" type="text/x-jQuery-tmpl"> <div class="bookItem"> <img src="BookPictures/${picture}" alt="" /> <h2>${title}</h2> price: ${formatPrice(price)} <p> ${description} </p> </div> </script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.js"></script> <script type="text/javascript" src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.js"></script> <script type="text/javascript"> // Create an array of books var books = [ { title: "ASP.NET 4 Unleashed", price: 37.79, picture: "AspNet4Unleashed.jpg", description: "The most comprehensive book on Microsoft’s new ASP.NET 4.. " }, { title: "ASP.NET MVC Unleashed", price: 44.99, picture: "AspNetMvcUnleashed.jpg", description: "Writing for professional programmers, Walther explains the crucial concepts that make the Model-View-Controller (MVC) development paradigm work…" }, { title: "ASP.NET Kick Start", price: 4.00, picture: "AspNetKickStart.jpg", description: "Visual Studio .NET is the premier development environment for creating .NET applications…." }, { title: "ASP.NET MVC Unleashed iPhone", price: 44.99, picture: "AspNetMvcUnleashedIPhone.jpg", description: "ASP.NET MVC Unleashed for the iPhone…" }, ]; // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer"); // Get compiled details template var bookDetailsTemplate = $("#bookDetailsTemplate").template(); // Add hover handler $(".bookItem").mouseenter(function () { // Get template item associated with DIV var templateItem = $(this).tmplItem(); // Change template to compiled template templateItem.tmpl = bookDetailsTemplate; // Re-render template templateItem.update(); }); function formatPrice(price) { return "$" + price.toFixed(2); } </script> </body> </html>   There are two templates used to display a book: bookTemplate and bookDetailsTemplate. When you hover your mouse over a template item, the standard bookTemplate is swapped out for the bookDetailsTemplate. The bookDetailsTemplate displays a book description. The books are rendered with the bookTemplate with the following line of code: // Render the books using the template $("#bookTemplate").tmpl(books).appendTo("#bookContainer");   The following code is used to swap the bookTemplate and the bookDetailsTemplate to show details for a book: // Get compiled details template var bookDetailsTemplate = $("#bookDetailsTemplate").template(); // Add hover handler $(".bookItem").mouseenter(function () { // Get template item associated with DIV var templateItem = $(this).tmplItem(); // Change template to compiled template templateItem.tmpl = bookDetailsTemplate; // Re-render template templateItem.update(); });   When you hover your mouse over a DIV element rendered by the bookTemplate, the mouseenter handler executes. First, this handler retrieves the Template Item associated with the DIV element by calling the tmplItem() method. The tmplItem() method returns a Template Item. Next, a new template is assigned to the Template Item. Notice that a compiled version of the bookDetailsTemplate is assigned to the Template Item’s tmpl property. The template is compiled earlier in the code by calling the template() method. Finally, the Template Item update() method is called to re-render the Template Item with the bookDetailsTemplate instead of the original bookTemplate. Summary This is a long blog entry and I still have not managed to cover all of the features of jQuery Templates J However, I’ve tried to cover the most important features of jQuery Templates such as template composition, template wrapping, and template items. To learn more about jQuery Templates, I recommend that you look at the documentation for jQuery Templates at the official jQuery website. Another great way to learn more about jQuery Templates is to look at the (unminified) source code.

    Read the article

  • Using Lambdas for return values in Rhino.Mocks

    - by PSteele
    In a recent StackOverflow question, someone showed some sample code they’d like to be able to use.  The particular syntax they used isn’t supported by Rhino.Mocks, but it was an interesting idea that I thought could be easily implemented with an extension method. Background When stubbing a method return value, Rhino.Mocks supports the following syntax: dependency.Stub(s => s.GetSomething()).Return(new Order()); The method signature is generic and therefore you get compile-time type checking that the object you’re returning matches the return value defined by the “GetSomething” method. You could also have Rhino.Mocks execute arbitrary code using the “Do” method: dependency.Stub(s => s.GetSomething()).Do((Func<Order>) (() => new Order())); This requires the cast though.  It works, but isn’t as clean as the original poster wanted.  They showed a simple example of something they’d like to see: dependency.Stub(s => s.GetSomething()).Return(() => new Order()); Very clean, simple and no casting required.  While Rhino.Mocks doesn’t support this syntax, it’s easy to add it via an extension method. The Rhino.Mocks “Stub” method returns an IMethodOptions<T>.  We just need to accept a Func<T> and use that as the return value.  At first, this would seem straightforward: public static IMethodOptions<T> Return<T>(this IMethodOptions<T> opts, Func<T> factory) { opts.Return(factory()); return opts; } And this would work and would provide the syntax the user was looking for.  But the problem with this is that you loose the late-bound semantics of a lambda.  The Func<T> is executed immediately and stored as the return value.  At the point you’re setting up your mocks and stubs (the “Arrange” part of “Arrange, Act, Assert”), you may not want the lambda executing – you probably want it delayed until the method is actually executed and Rhino.Mocks plugs in your return value. So let’s make a few small tweaks: public static IMethodOptions<T> Return<T>(this IMethodOptions<T> opts, Func<T> factory) { opts.Return(default(T)); // required for Rhino.Mocks on non-void methods opts.WhenCalled(mi => mi.ReturnValue = factory()); return opts; } As you can see, we still need to set up some kind of return value or Rhino.Mocks will complain as soon as it intercepts a call to our stubbed method.  We use the “WhenCalled” method to set the return value equal to the execution of our lambda.  This gives us the delayed execution we’re looking for and a nice syntax for lambda-based return values in Rhino.Mocks. Technorati Tags: .NET,Rhino.Mocks,Mocking,Extension Methods

    Read the article

  • How to make the constructor for the following exercise in c++?

    - by user40630
    This is the exercise I?m trying to solve. It's from C++, How to program book from Deitel and it's my homework. (Card Shuffling and Dealing) Create a program to shuffle and deal a deck of cards. The program should consist of class Card, class DeckOfCards and a driver program. Class Card should provide: a) Data members face and suit of type int. b) A constructor that receives two ints representing the face and suit and uses them to initialize the data members. c) Two static arrays of strings representing the faces and suits. d) A toString function that returns the Card as a string in the form “face of suit.” You can use the + operator to concatenate strings. Class DeckOfCards should contain: a) A vector of Cards named deck to store the Cards. b) An integer currentCard representing the next card to deal. c) A default constructor that initializes the Cards in the deck. The constructor should use vector function push_back to add each Card to the end of the vector after the Card is created and initialized. This should be done for each of the 52 Cards in the deck. d) A shuffle function that shuffles the Cards in the deck. The shuffle algorithm should iterate through the vector of Cards. For each Card, randomly select another Card in the deck and swap the two Cards. e) A dealCard function that returns the next Card object from the deck. f) A moreCards function that returns a bool value indicating whether there are more Cards to deal. The driver program should create a DeckOfCards object, shuffle the cards, then deal the 52 cards. The problem I'm facing is that I don't know exactly how to make the constructor for the second class. See description commented in the code bellow. #include <iostream> #include <vector> using namespace std; /* * */ //Class card. No problems here. class Card { public: Card(int, int); string toString(); private: int suit, face; static string faceNames[13]; static string suitNames[4]; }; string Card::faceNames[13] = {"Ace","Two","Three","Four","Five","Six","Seven","Eight","Nine","Ten","Queen","Jack","King"}; string Card::suitNames[4] = {"Diamonds","Clubs","Hearts","Spades"}; string Card::toString() { return faceNames[face]+" of "+suitNames[suit]; } Card::Card(int f, int s) :face(f), suit(s) { } /*The problem begins here. This class should create(when and object for it is created) a copy of the vector deck, right? But how exactly are these vector cards be initialized? I'll explain better in the constructor definition bellow.*/ class DeckOfCards { public: DeckOfCards(); void shuffleCards(); Card dealCard(); bool moreCards(); private: vector<Card> deck(52); int currentCard; }; int main(int argc, char** argv) { return 0; } DeckOfCards::DeckOfCards() { //This is where I'm stuck. I can't figure out how to set each of the 52 cards of the vector deck to have a specific suit and face every one of them, by using only the constructor of the Card class. //What you see bellow was one of my attempts to solve this problem but I blocked pretty soon in the middle of it. for(int i=0; i<deck.size(); i++) { deck[i]//....There is no function to set them. They must be set when initialized. But how?? } } For easier reading: http://pastebin.com/pJeXMH0f

    Read the article

  • Page output caching for dynamic web applications

    - by Mike Ellis
    I am currently working on a web application where the user steps (forward or back) through a series of pages with "Next" and "Previous" buttons, entering data until they reach a page with the "Finish" button. Until finished, all data is stored in Session state, then sent to the mainframe database via web services at the end of the process. Some of the pages display data from previous pages in order to collect additional information. These pages can never be cached because they are different for every user. For pages that don't display this dynamic data, they can be cached, but only the first time they load. After that, the data that was previously entered needs to be displayed. This requires Page_Load to fire, which means the page can't be cached at that point. A couple of weeks ago, I knew almost nothing about implementing page caching. Now I still don't know much, but I know a little bit, and here is the solution that I developed with the help of others on my team and a lot of reading and trial-and-error. We have a base page class defined from which all pages inherit. In this class I have defined a method that sets the caching settings programmatically. For pages that can be cached, they call this base page method in their Page_Load event within a if(!IsPostBack) block, which ensures that only the page itself gets cached, not the data on the page. if(!IsPostBack) {     ...     SetCacheSettings();     ... } protected void SetCacheSettings() {     Response.Cache.AddValidationCallback(new HttpCacheValidateHandler(Validate), null);     Response.Cache.SetExpires(DateTime.Now.AddHours(1));     Response.Cache.SetSlidingExpiration(true);     Response.Cache.SetValidUntilExpires(true);     Response.Cache.SetCacheability(HttpCacheability.ServerAndNoCache); } The AddValidationCallback sets up an HttpCacheValidateHandler method called Validate which runs logic when a cached page is requested. The Validate method signature is standard for this method type. public static void Validate(HttpContext context, Object data, ref HttpValidationStatus status) {     string visited = context.Request.QueryString["v"];     if (visited != null && "1".Equals(visited))     {         status = HttpValidationStatus.IgnoreThisRequest; //force a page load     }     else     {         status = HttpValidationStatus.Valid; //load from cache     } } I am using the HttpValidationStatus values IgnoreThisRequest or Valid which forces the Page_Load event method to run or allows the page to load from cache, respectively. Which one is set depends on the value in the querystring. The value in the querystring is set up on each page in the "Next" and "Previous" button click event methods based on whether the page that the button click is taking the user to has any data on it or not. bool hasData = HasPageBeenVisited(url); if (hasData) {     url += VISITED; } Response.Redirect(url); The HasPageBeenVisited method determines whether the destination page has any data on it by checking one of its required data fields. (I won't include it here because it is very system-dependent.) VISITED is a string constant containing "?v=1" and gets appended to the url if the destination page has been visited. The reason this logic is within the "Next" and "Previous" button click event methods is because 1) the Validate method is static which doesn't allow it to access non-static data such as the data fields for a particular page, and 2) at the time at which the Validate method runs, either the data has not yet been deserialized from Session state or is not available (different AppDomain?) because anytime I accessed the Session state information from the Validate method, it was always empty.

    Read the article

  • Best Design Pattern for Coupling User Interface Components and Data Structures

    - by szahn
    I have a windows desktop application with a tree view. Due to lack of a sound data-binding solution for a tree view, I've implemented my own layer of abstraction on it to bind nodes to my own data structure. The requirements are as follows: Populate a tree view with nodes that resemble fields in a data structure. When a node is clicked, display the appropriate control to modify the value of that property in the instance of the data structure. The tree view is populated with instances of custom TreeNode classes that inherit from TreeNode. The responsibility of each custom TreeNode class is to (1) format the node text to represent the name and value of the associated field in my data structure, (2) return the control used to modify the property value, (3) get the value of the field in the control (3) set the field's value from the control. My custom TreeNode implementation has a property called "Control" which retrieves the proper custom control in the form of the base control. The control instance is stored in the custom node and instantiated upon first retrieval. So each, custom node has an associated custom control which extends a base abstract control class. Example TreeNode implementation: //The Tree Node Base Class public abstract class TreeViewNodeBase : TreeNode { public abstract CustomControlBase Control { get; } public TreeViewNodeBase(ExtractionField field) { UpdateControl(field); } public virtual void UpdateControl(ExtractionField field) { Control.UpdateControl(field); UpdateCaption(FormatValueForCaption()); } public virtual void SaveChanges(ExtractionField field) { Control.SaveChanges(field); UpdateCaption(FormatValueForCaption()); } public virtual string FormatValueForCaption() { return Control.FormatValueForCaption(); } public virtual void UpdateCaption(string newValue) { this.Text = Caption; this.LongText = newValue; } } //The tree node implementation class public class ExtractionTypeNode : TreeViewNodeBase { private CustomDropDownControl control; public override CustomControlBase Control { get { if (control == null) { control = new CustomDropDownControl(); control.label1.Text = Caption; control.comboBox1.Items.Clear(); control.comboBox1.Items.AddRange( Enum.GetNames( typeof(ExtractionField.ExtractionType))); } return control; } } public ExtractionTypeNode(ExtractionField field) : base(field) { } } //The custom control base class public abstract class CustomControlBase : UserControl { public abstract void UpdateControl(ExtractionField field); public abstract void SaveChanges(ExtractionField field); public abstract string FormatValueForCaption(); } //The custom control generic implementation (view) public partial class CustomDropDownControl : CustomControlBase { public CustomDropDownControl() { InitializeComponent(); } public override void UpdateControl(ExtractionField field) { //Nothing to do here } public override void SaveChanges(ExtractionField field) { //Nothing to do here } public override string FormatValueForCaption() { //Nothing to do here return string.Empty; } } //The custom control specific implementation public class FieldExtractionTypeControl : CustomDropDownControl { public override void UpdateControl(ExtractionField field) { comboBox1.SelectedIndex = comboBox1.FindStringExact(field.Extraction.ToString()); } public override void SaveChanges(ExtractionField field) { field.Extraction = (ExtractionField.ExtractionType) Enum.Parse(typeof(ExtractionField.ExtractionType), comboBox1.SelectedItem.ToString()); } public override string FormatValueForCaption() { return string.Empty; } The problem is that I have "generic" controls which inherit from CustomControlBase. These are just "views" with no logic. Then I have specific controls that inherit from the generic controls. I don't have any functions or business logic in the generic controls because the specific controls should govern how data is associated with the data structure. What is the best design pattern for this?

    Read the article

  • Subterranean IL: Custom modifiers

    - by Simon Cooper
    In IL, volatile is an instruction prefix used to set a memory barrier at that instruction. However, in C#, volatile is applied to a field to indicate that all accesses on that field should be prefixed with volatile. As I mentioned in my previous post, this means that the field definition needs to store this information somehow, as such a field could be accessed from another assembly. However, IL does not have a concept of a 'volatile field'. How is this information stored? Attributes The standard way of solving this is to apply a VolatileAttribute or similar to the field; this extra metadata notifies the C# compiler that all loads and stores to that field should use the volatile prefix. However, there is a problem with this approach, namely, the .NET C++ compiler. C++ allows methods to be overloaded using properties, like volatile or const, on the parameters; this is perfectly legal C++: public ref class VolatileMethods { void Method(int *i) {} void Method(volatile int *i) {} } If volatile was specified using a custom attribute, then the VolatileMethods class wouldn't be compilable to IL, as there is nothing to differentiate the two methods from each other. This is where custom modifiers come in. Custom modifiers Custom modifiers are similar to custom attributes, but instead of being applied to an IL element separately to its declaration, they are embedded within the field or parameter's type signature itself. The VolatileMethods class would be compiled to the following IL: .class public VolatileMethods { .method public instance void Method(int32* i) {} .method public instance void Method( int32 modreq( [mscorlib]System.Runtime.CompilerServices.IsVolatile)* i) {} } The modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile) is the custom modifier. This adds a TypeDef or TypeRef token to the signature of the field or parameter, and even though they are mostly ignored by the CLR when it's executing the program, this allows methods and fields to be overloaded in ways that wouldn't be allowed using attributes. Because the modifiers are part of the signature, they need to be fully specified when calling such a method in IL: call instance void Method( int32 modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile)*) There are two ways of applying modifiers; modreq specifies required modifiers (like IsVolatile), and modopt specifies optional modifiers that can be ignored by compilers (like IsLong or IsConst). The type specified as the modifier argument are simple placeholders; if you have a look at the definitions of IsVolatile and IsLong they are completely empty. They exist solely to be referenced by a modifier. Custom modifiers are used extensively by the C++ compiler to specify concepts that aren't expressible in IL, but still need to be taken into account when calling method overloads. C++ and C# That's all very well and good, but how does this affect C#? Well, the C++ compiler uses modreq(IsVolatile) to specify volatility on both method parameters and fields, as it would be slightly odd to have the same concept represented using a modifier or attribute depending on what it was applied to. Once you've compiled your C++ project, it can then be referenced and used from C#, so the C# compiler has to recognise the modreq(IsVolatile) custom modifier applied to fields, and vice versa. So, even though you can't overload fields or parameters with volatile using C#, volatile needs to be expressed using a custom modifier rather than an attribute to guarentee correct interoperability and behaviour with any C++ dlls that happen to come along. Next up: a closer look at attributes, and how certain attributes compile in unexpected ways.

    Read the article

  • Oracle Fusion Supply Chain Management (SCM) Designs May Improve End User Productivity

    - by Applications User Experience
    By Applications User Experience on March 10, 2011 Michele Molnar, Senior Usability Engineer, Applications User Experience The Challenge: The SCM User Experience team, in close collaboration with product management and strategy, completely redesigned the user experience for Oracle Fusion applications. One of the goals of this redesign was to increase end user productivity by applying design patterns and guidelines and incorporating findings from extensive usability research. But a question remained: How do we know that the Oracle Fusion designs will actually increase end user productivity? The Test: To answer this question, the SCM Usability Engineers compared Oracle Fusion designs to their corresponding existing Oracle applications using the workflow time analysis method. The workflow time analysis method breaks tasks into a sequence of operators. By applying standard time estimates for all of the operators in the task, an estimate of the overall task time can be calculated. The workflow time analysis method has been recently adopted by the Applications User Experience group for use in predicting end user productivity. Using this method, a design can be tested and refined as needed to improve productivity even before the design is coded. For the study, we selected some of our recent designs for Oracle Fusion Product Information Management (PIM). The designs encompassed tasks performed by Product Managers to create, manage, and define products for their organization. (See Figure 1 for an example.) In applying this method, the SCM Usability Engineers collaborated with Product Management to compare the new Oracle Fusion Applications designs against Oracle’s existing applications. Together, we performed the following activities: Identified the five most frequently performed tasks Created detailed task scenarios that provided the context for each task Conducted task walkthroughs Analyzed and documented the steps and flow required to complete each task Applied standard time estimates to the operators in each task to estimate the overall task completion time Figure 1. The interactions on each Oracle Fusion Product Information Management screen were documented, as indicated by the red highlighting. The task scenario and script provided the context for each task.  The Results: The workflow time analysis method predicted that the Oracle Fusion Applications designs would result in productivity gains in each task, ranging from 8% to 62%, with an overall productivity gain of 43%. All other factors being equal, the new designs should enable these tasks to be completed in about half the time it takes with existing Oracle Applications. Further analysis revealed that these performance gains would be achieved by reducing the number of clicks and screens needed to complete the tasks. Conclusions: Using the workflow time analysis method, we can expect the Oracle Fusion Applications redesign to succeed in improving end user productivity. The workflow time analysis method appears to be an effective and efficient tool for testing, refining, and retesting designs to optimize productivity. The workflow time analysis method does not replace usability testing with end users, but it can be used as an early predictor of design productivity even before designs are coded. We are planning to conduct usability tests later in the development cycle to compare actual end user data with the workflow time analysis results. Such results can potentially be used to validate the productivity improvement predictions. Used together, the workflow time analysis method and usability testing will enable us to continue creating, evaluating, and delivering Oracle Fusion designs that exceed the expectations of our end users, both in the quality of the user experience and in productivity. (For more information about studying productivity, refer to the Measuring User Productivity blog.)

    Read the article

  • Ado.net Fill method not throwing error on running a Stored Procedure that does not exist.

    - by Mike
    I am using a combination of the Enterprise library and the original Fill method of ADO. This is because I need to open and close the command connection myself as I am capture the event Info Message Here is my code so far // Set Up Command SqlDatabase db = new SqlDatabase(ConfigurationManager.ConnectionStrings[ConnectionName].ConnectionString); SqlCommand command = db.GetStoredProcCommand(StoredProcName) as SqlCommand; command.Connection = db.CreateConnection() as SqlConnection; // Set Up Events for Logging command.StatementCompleted += new StatementCompletedEventHandler(command_StatementCompleted); command.Connection.FireInfoMessageEventOnUserErrors = true; command.Connection.InfoMessage += new SqlInfoMessageEventHandler(Connection_InfoMessage); // Add Parameters foreach (Parameter parameter in Parameters) { db.AddInParameter(command, parameter.Name, (System.Data.DbType)Enum.Parse(typeof(System.Data.DbType), parameter.Type), parameter.Value); } // Use the Old Style fill to keep the connection Open througout the population // and manage the Statement Complete and InfoMessage events SqlDataAdapter da = new SqlDataAdapter(command); DataSet ds = new DataSet(); // Open Connection command.Connection.Open(); // Populate da.Fill(ds); // Dispose of the adapter if (da != null) { da.Dispose(); } // If you do not explicitly close the connection here, it will leak! if (command.Connection.State == ConnectionState.Open) { command.Connection.Close(); } ... Now if I pass into the variable StoredProcName = "ThisProcDoesNotExists" And run this peice of code. The CreateCommand nor da.Fill through an error message. Why is this. The only way I can tell it did not run was that it returns a dataset with 0 tables in it. But when investigating the error it is not appearant that the procedure does not exist. EDIT Upon further investigation command.Connection.FireInfoMessageEventOnUserErrors = true; is causeing the error to be surpressed into the InfoMessage Event From BOL When you set FireInfoMessageEventOnUserErrors to true, errors that were previously treated as exceptions are now handled as InfoMessage events. All events fire immediately and are handled by the event handler. If is FireInfoMessageEventOnUserErrors is set to false, then InfoMessage events are handled at the end of the procedure. What I want is each print statement from Sql to create a new log record. Setting this property to false combines it as one big string. So if I leave the property set to true, now the question is can I discern a print message from an Error ANOTHER EDIT So now I have the code so that the flag is set to true and checking the error number in the method void Connection_InfoMessage(object sender, SqlInfoMessageEventArgs e) { // These are not really errors unless the Number >0 // if Number = 0 that is a print message foreach (SqlError sql in e.Errors) { if (sql.Number == 0) { Logger.WriteInfo("Sql Message",sql.Message); } else { // Whatever this was it was an error throw new DataException(String.Format("Message={0},Line={1},Number={2},State{3}", sql.Message, sql.LineNumber, sql.Number, sql.State)); } } } The issue now that when I throw the error it does not bubble up to the statement that made the call or even the error handler that is above that. It just bombs out on that line The populate looks like // Populate try { da.Fill(ds); } catch (Exception e) { throw new Exception(e.Message, e); } Now even though I see the calling codes and methods still in the Call Stack, this exception does not seem to bubble up?

    Read the article

  • Styling specific columns and rows

    - by hattenn
    I'm trying to style some specific parts of a 5x4 table that I create. It should be like this: Every even numbered row and every odd numbered row should get a different color. Text in the second, third, and fourth columns should be centered. I have this table: <table> <caption>Some caption</caption> <colgroup> <col> <col class="value"> <col class="value"> <col class="value"> </colgroup> <thead> <tr> <th id="year">Year</th> <th>1999</th> <th>2000</th> <th>2001</th> </tr> </thead> <tbody> <tr class="oddLine"> <td>Berlin</td> <td>3,3</td> <td>1,9</td> <td>2,3</td> </tr> <tr class="evenLine"> <td>Hamburg</td> <td>1,5</td> <td>1,3</td> <td>2,0</td> </tr> <tr class="oddLine"> <td>München</td> <td>0,6</td> <td>1,1</td> <td>1,0</td> </tr> <tr class="evenLine"> <td>Frankfurt</td> <td>1,3</td> <td>1,6</td> <td>1,9</td> </tr> </tbody> <tfoot> <tr class="oddLine"> <td>Total</td> <td>6,7</td> <td>5,9</td> <td>7,2</td> </tr> </tfoot> </table> And I have this CSS file: table, th, td { border: 1px solid black; border-collapse: collapse; padding: 0px 5px; } #year { text-align: left; } .oddLine { background-color: #DDDDDD; } .evenLine { background-color: #BBBBBB; } .value { text-align: center; } And this doesn't work. The text in the columns are not centered. What is the problem here? And is there a way to solve it (other than changing the class of all the cells that I want centered)? P.S.: I think there's some interference with .evenLine and .oddLine classes. Because when I put "background: black" in the class "value", it changes the background color of the columns in the first row. The thing is, if I delete those two classes, text-align still doesn't work, but background attribute works perfectly. Argh...

    Read the article

  • Should I expose IObservable<T> on my interfaces?

    - by Alex
    My colleague and I have dispute. We are writing a .NET application that processes massive amounts of data. It receives data elements, groups subsets of them into blocks according to some criterion and processes those blocks. Let's say we have data items of type Foo arriving some source (from the network, for example) one by one. We wish to gather subsets of related objects of type Foo, construct an object of type Bar from each such subset and process objects of type Bar. One of us suggested the following design. Its main theme is exposing IObservable objects directly from the interfaces of our components. // ********* Interfaces ********** interface IFooSource { // this is the event-stream of objects of type Foo IObservable<Foo> FooArrivals { get; } } interface IBarSource { // this is the event-stream of objects of type Bar IObservable<Bar> BarArrivals { get; } } / ********* Implementations ********* class FooSource : IFooSource { // Here we put logic that receives Foo objects from the network and publishes them to the FooArrivals event stream. } class FooSubsetsToBarConverter : IBarSource { IFooSource fooSource; IObservable<Bar> BarArrivals { get { // Do some fancy Rx operators on fooSource.FooArrivals, like Buffer, Window, Join and others and return IObservable<Bar> } } } // this class will subscribe to the bar source and do processing class BarsProcessor { BarsProcessor(IBarSource barSource); void Subscribe(); } // ******************* Main ************************ class Program { public static void Main(string[] args) { var fooSource = FooSourceFactory.Create(); var barsProcessor = BarsProcessorFactory.Create(fooSource) // this will create FooSubsetToBarConverter and BarsProcessor barsProcessor.Subscribe(); fooSource.Run(); // this enters a loop of listening for Foo objects from the network and notifying about their arrival. } } The other suggested another design that its main theme is using our own publisher/subscriber interfaces and using Rx inside the implementations only when needed. //********** interfaces ********* interface IPublisher<T> { void Subscribe(ISubscriber<T> subscriber); } interface ISubscriber<T> { Action<T> Callback { get; } } //********** implementations ********* class FooSource : IPublisher<Foo> { public void Subscribe(ISubscriber<Foo> subscriber) { /* ... */ } // here we put logic that receives Foo objects from some source (the network?) publishes them to the registered subscribers } class FooSubsetsToBarConverter : ISubscriber<Foo>, IPublisher<Bar> { void Callback(Foo foo) { // here we put logic that aggregates Foo objects and publishes Bars when we have received a subset of Foos that match our criteria // maybe we use Rx here internally. } public void Subscribe(ISubscriber<Bar> subscriber) { /* ... */ } } class BarsProcessor : ISubscriber<Bar> { void Callback(Bar bar) { // here we put code that processes Bar objects } } //********** program ********* class Program { public static void Main(string[] args) { var fooSource = fooSourceFactory.Create(); var barsProcessor = barsProcessorFactory.Create(fooSource) // this will create BarsProcessor and perform all the necessary subscriptions fooSource.Run(); // this enters a loop of listening for Foo objects from the network and notifying about their arrival. } } Which one do you think is better? Exposing IObservable and making our components create new event streams from Rx operators, or defining our own publisher/subscriber interfaces and using Rx internally if needed? Here are some things to consider about the designs: In the first design the consumer of our interfaces has the whole power of Rx at his/her fingertips and can perform any Rx operators. One of us claims this is an advantage and the other claims that this is a drawback. The second design allows us to use any publisher/subscriber architecture under the hood. The first design ties us to Rx. If we wish to use the power of Rx, it requires more work in the second design because we need to translate the custom publisher/subscriber implementation to Rx and back. It requires writing glue code for every class that wishes to do some event processing.

    Read the article

  • Java.lang.NullPointerException when using retreived Image (Unless method is used statically!)

    - by Emdiesse
    Hi there, This has been doing my head in all day and I have finally decided to resort to asking for help! In my MIDLet I have an instance of the java class ImageFetcher called anImg. Also within my MIDLet I have a command that simply say's fetch, a CommandListener that when detects fetch was clicked runs the function below. This function should simply run public getImage() from the anImg instance of class ImageFetcher which returns an image and then appends/sets this Image onto the form on the display. (You may recognise the getImage() function from the Nokia JavaME Wiki!!!) Instead of any image being displayed this is written to the output terminal in netbeans: Msg: Java.lang.NullPointerException HOWEVER, If I change public getImage() to public static getImage() and replace anImg.getImage() with ImageFetcher.getImage() the image is successfully displayed!!! Thank you for your replies on this issue :) I look forward to going my hair back after this ordeal! FetchImageApp.java ... ... ... private doThis(){ try { Image im; if ((im = anImg.getImage()) != null) { ImageItem ii = new ImageItem(null, im, ImageItem.LAYOUT_DEFAULT, null); // If there is already an image, set (replace) it if (form.size() != 0) { form.set(0, ii); } else // Append the image to the empty form { form.append(ii); } } else { form.append("Unsuccessful download."); } // Display the form with the image display.setCurrent(form); } catch (Exception e) { System.err.println("Msg: " + e.toString()); } } ... ... ... ImageFetcher.java ... ... ... /*-------------------------------------------------- * Open connection and download png into a byte array. *-------------------------------------------------*/ public Image getImage() throws IOException { String url = "http://kenai.com/attachments/wiki_images/chessgame/java-duke-logo.png"; ContentConnection connection = (ContentConnection) Connector.open(url); // * There is a bug in MIDP 1.0.3 in which read() sometimes returns // an invalid length. To work around this, I have changed the // stream to DataInputStream and called readFully() instead of read() // InputStream iStrm = connection.openInputStream(); DataInputStream iStrm = connection.openDataInputStream(); ByteArrayOutputStream bStrm = null; Image im = null; try { // ContentConnection includes a length method byte imageData[]; int length = (int) connection.getLength(); if (length != -1) { imageData = new byte[length]; // Read the png into an array // iStrm.read(imageData); iStrm.readFully(imageData); } else // Length not available... { bStrm = new ByteArrayOutputStream(); int ch; while ((ch = iStrm.read()) != -1) { bStrm.write(ch); } imageData = bStrm.toByteArray(); bStrm.close(); } // Create the image from the byte array im = Image.createImage(imageData, 0, imageData.length); } finally { // Clean up if (iStrm != null) { iStrm.close(); } if (connection != null) { connection.close(); } if (bStrm != null) { bStrm.close(); } } return (im == null ? null : im); } ... ... ...

    Read the article

< Previous Page | 360 361 362 363 364 365 366 367 368 369 370 371  | Next Page >