Search Results

Search found 54664 results on 2187 pages for 'net assembly'.

Page 37/2187 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • Occasional "Could not load file or assembly" in asmx WebService on IIS and DFS

    - by jesse-mcdowell
    We have a handfull of ASMX web service hosted on two identical Windows Server 2003 boxes. The virtual directory for the web services is loaded in a DFS share, both servers point to the same share. We have a load balancer between the internet and the two web servers. At a seemingly random interval (right now about twice per week) when a user tries to access a method on the web service, IIS returns the error: "Could not load file or assembly" for one of the assemblies used in the method call, and will continue reporting it each time the method is called until the app pool is recycled. We haven't found any distinguishable pattern to the problem. This is what I know: the missing assembly varies (but it's always a home-brew assembly) the Web Service method that fails varies there is no noticeable pattern to the times or intervals where the problem appears there are no admin users accessing the servers when the problem appears the failing method will work correctly on one server and fail on the other, even though both point to the same bin folder the problem can always be corrected by recycling the app pool and making no other changes I have enabled the Assembly Binder Log, and know that the binder is looking in the correct location for the file. Our assemblies are compiled for .Net 3.5.

    Read the article

  • Why does my App.Config codebase not help .NET locate my assembly?

    - by pkolodziej
    I have the following client application and its corresponding config file: namespace Chapter9 { class Program { static void Main(string[] args) { AppDomain.CurrentDomain.ExecuteAssembly("AssemblyPrivate.exe"); } } } <configuration> <runtime> <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> <dependentAssembly> <codeBase href="file://C:\Users\djpiter\Documents\Visual Studio 2008\Projects\70536\AssemblyPrivate\bin\Debug\AssemblyPrivate.exe"/> </dependentAssembly> </assemblyBinding> </runtime> </configuration> The AssemblyPrivate.exe does not have a public key, nor is it located in the GAC. As far as I know, the runtime should parse the app.config file before looking for an assembly in the client app directory. The unhandled exception (wrapped for readability) is: Unhandled Exception: System.IO.FileNotFoundException: Could not load file or assembly 'file:///C:\Users\djpiter\Documents\Visual Studio 2008\Projects\70536\Chapter9\bin\Debug\AssemblyPrivate.exe' or one of its dependencies. The system cannot find the file specified. Why it is not working? I need to use dynamic binding (not static). Kind Regards, PK

    Read the article

  • Use IIS Application Initialization for keeping ASP.NET Apps alive

    - by Rick Strahl
    I've been working quite a bit with Windows Services in the recent months, and well, it turns out that Windows Services are quite a bear to debug, deploy, update and maintain. The process of getting services set up,  debugged and updated is a major chore that has to be extensively documented and or automated specifically. On most projects when a service is built, people end up scrambling for the right 'process' to use for administration. Web app deployment and maintenance on the other hand are common and well understood today, as we are constantly dealing with Web apps. There's plenty of infrastructure and tooling built into Web Tools like Visual Studio to facilitate the process. By comparison Windows Services or anything self-hosted for that matter seems convoluted.In fact, in a recent blog post I mentioned that on a recent project I'd been using self-hosting for SignalR inside of a Windows service, because the application is in fact a 'service' that also needs to send out lots of messages via SignalR. But the reality is that it could just as well be an IIS application with a service component that runs in the background. Either way you look at it, it's either a Windows Service with a built in Web Server, or an IIS application running a Service application, neither of which follows the standard Service or Web App template.Personally I much prefer Web applications. Running inside of IIS I get all the benefits of the IIS platform including service lifetime management (crash and restart), controlled shutdowns, the whole security infrastructure including easy certificate support, hot-swapping of code and the the ability to publish directly to IIS from within Visual Studio with ease.Because of these benefits we set out to move from the self hosted service into an ASP.NET Web app instead.The Missing Link for ASP.NET as a Service: Auto-LoadingI've had moments in the past where I wanted to run a 'service like' application in ASP.NET because when you think about it, it's so much easier to control a Web application remotely. Services are locked into start/stop operations, but if you host inside of a Web app you can write your own ticket and control it from anywhere. In fact nearly 10 years ago I built a background scheduling application that ran inside of ASP.NET and it worked great and it's still running doing its job today.The tricky part for running an app as a service inside of IIS then and now, is how to get IIS and ASP.NET launched so your 'service' stays alive even after an Application Pool reset. 7 years ago I faked it by using a web monitor (my own West Wind Web Monitor app) I was running anyway to monitor my various web sites for uptime, and having the monitor ping my 'service' every 20 seconds to effectively keep ASP.NET alive or fire it back up after a reload. I used a simple scheduler class that also includes some logic for 'self-reloading'. Hacky for sure, but it worked reliably.Luckily today it's much easier and more integrated to get IIS to launch ASP.NET as soon as an Application Pool is started by using the Application Initialization Module. The Application Initialization Module basically allows you to turn on Preloading on the Application Pool and the Site/IIS App, which essentially fires a request through the IIS pipeline as soon as the Application Pool has been launched. This means that effectively your ASP.NET app becomes active immediately, Application_Start is fired making sure your app stays up and running at all times. All the other features like Application Pool recycling and auto-shutdown after idle time still work, but IIS will then always immediately re-launch the application.Getting started with Application InitializationAs of IIS 8 Application Initialization is part of the IIS feature set. For IIS 7 and 7.5 there's a separate download available via Web Platform Installer. Using IIS 8 Application Initialization is an optional install component in Windows or the Windows Server Role Manager: This is an optional component so make sure you explicitly select it.IIS Configuration for Application InitializationInitialization needs to be applied on the Application Pool as well as the IIS Application level. As of IIS 8 these settings can be made through the IIS Administration console.Start with the Application Pool:Here you need to set both the Start Automatically which is always set, and the StartMode which should be set to AlwaysRunning. Both have to be set - the Start Automatically flag is set true by default and controls the starting of the application pool itself while Always Running flag is required in order to launch the application. Without the latter flag set the site settings have no effect.Now on the Site/Application level you can specify whether the site should pre load: Set the Preload Enabled flag to true.At this point ASP.NET apps should auto-load. This is all that's needed to pre-load the site if all you want is to get your site launched automatically.If you want a little more control over the load process you can add a few more settings to your web.config file that allow you to show a static page while the App is starting up. This can be useful if startup is really slow, so rather than displaying blank screen while the user is fiddling their thumbs you can display a static HTML page instead: <system.webServer> <applicationInitialization remapManagedRequestsTo="Startup.htm" skipManagedModules="true"> <add initializationPage="ping.ashx" /> </applicationInitialization> </system.webServer>This allows you to specify a page to execute in a dry run. IIS basically fakes request and pushes it directly into the IIS pipeline without hitting the network. You specify a page and IIS will fake a request to that page in this case ping.ashx which just returns a simple OK string - ie. a fast pipeline request. This request is run immediately after Application Pool restart, and while this request is running and your app is warming up, IIS can display an alternate static page - Startup.htm above. So instead of showing users an empty loading page when clicking a link on your site you can optionally show some sort of static status page that says, "we'll be right back".  I'm not sure if that's such a brilliant idea since this can be pretty disruptive in some cases. Personally I think I prefer letting people wait, but at least get the response they were supposed to get back rather than a random page. But it's there if you need it.Note that the web.config stuff is optional. If you don't provide it IIS hits the default site link (/) and even if there's no matching request at the end of that request it'll still fire the request through the IIS pipeline. Ideally though you want to make sure that an ASP.NET endpoint is hit either with your default page, or by specify the initializationPage to ensure ASP.NET actually gets hit since it's possible for IIS fire unmanaged requests only for static pages (depending how your pipeline is configured).What about AppDomain Restarts?In addition to full Worker Process recycles at the IIS level, ASP.NET also has to deal with AppDomain shutdowns which can occur for a variety of reasons:Files are updated in the BIN folderWeb Deploy to your siteweb.config is changedHard application crashThese operations don't cause the worker process to restart, but they do cause ASP.NET to unload the current AppDomain and start up a new one. Because the features above only apply to Application Pool restarts, AppDomain restarts could also cause your 'ASP.NET service' to stop processing in the background.In order to keep the app running on AppDomain recycles, you can resort to a simple ping in the Application_End event:protected void Application_End() { var client = new WebClient(); var url = App.AdminConfiguration.MonitorHostUrl + "ping.aspx"; client.DownloadString(url); Trace.WriteLine("Application Shut Down Ping: " + url); }which fires any ASP.NET url to the current site at the very end of the pipeline shutdown which in turn ensures that the site immediately starts back up.Manual Configuration in ApplicationHost.configThe above UI corresponds to the following ApplicationHost.config settings. If you're using IIS 7, there's no UI for these flags so you'll have to manually edit them.When you install the Application Initialization component into IIS it should auto-configure the module into ApplicationHost.config. Unfortunately for me, with Mr. Murphy in his best form for me, the module registration did not occur and I had to manually add it.<globalModules> <add name="ApplicationInitializationModule" image="%windir%\System32\inetsrv\warmup.dll" /> </globalModules>Most likely you won't need ever need to add this, but if things are not working it's worth to check if the module is actually registered.Next you need to configure the ApplicationPool and the Web site. The following are the two relevant entries in ApplicationHost.config.<system.applicationHost> <applicationPools> <add name="West Wind West Wind Web Connection" autoStart="true" startMode="AlwaysRunning" managedRuntimeVersion="v4.0" managedPipelineMode="Integrated"> <processModel identityType="LocalSystem" setProfileEnvironment="true" /> </add> </applicationPools> <sites> <site name="Default Web Site" id="1"> <application path="/MPress.Workflow.WebQueueMessageManager" applicationPool="West Wind West Wind Web Connection" preloadEnabled="true"> <virtualDirectory path="/" physicalPath="C:\Clients\…" /> </application> </site> </sites> </system.applicationHost>On the Application Pool make sure to set the autoStart and startMode flags to true and AlwaysRunning respectively. On the site make sure to set the preloadEnabled flag to true.And that's all you should need. You can still set the web.config settings described above as well.ASP.NET as a Service?In the particular application I'm working on currently, we have a queue manager that runs as standalone service that polls a database queue and picks out jobs and processes them on several threads. The service can spin up any number of threads and keep these threads alive in the background while IIS is running doing its own thing. These threads are newly created threads, so they sit completely outside of the IIS thread pool. In order for this service to work all it needs is a long running reference that keeps it alive for the life time of the application.In this particular app there are two components that run in the background on their own threads: A scheduler that runs various scheduled tasks and handles things like picking up emails to send out outside of IIS's scope and the QueueManager. Here's what this looks like in global.asax:public class Global : System.Web.HttpApplication { private static ApplicationScheduler scheduler; private static ServiceLauncher launcher; protected void Application_Start(object sender, EventArgs e) { // Pings the service and ensures it stays alive scheduler = new ApplicationScheduler() { CheckFrequency = 600000 }; scheduler.Start(); launcher = new ServiceLauncher(); launcher.Start(); // register so shutdown is controlled HostingEnvironment.RegisterObject(launcher); }}By keeping these objects around as static instances that are set only once on startup, they survive the lifetime of the application. The code in these classes is essentially unchanged from the Windows Service code except that I could remove the various overrides required for the Windows Service interface (OnStart,OnStop,OnResume etc.). Otherwise the behavior and operation is very similar.In this application ASP.NET serves two purposes: It acts as the host for SignalR and provides the administration interface which allows remote management of the 'service'. I can start and stop the service remotely by shutting down the ApplicationScheduler very easily. I can also very easily feed stats from the queue out directly via a couple of Web requests or (as we do now) through the SignalR service.Registering a Background Object with ASP.NETNotice also the use of the HostingEnvironment.RegisterObject(). This function registers an object with ASP.NET to let it know that it's a background task that should be notified if the AppDomain shuts down. RegisterObject() requires an interface with a Stop() method that's fired and allows your code to respond to a shutdown request. Here's what the IRegisteredObject::Stop() method looks like on the launcher:public void Stop(bool immediate = false) { LogManager.Current.LogInfo("QueueManager Controller Stopped."); Controller.StopProcessing(); Controller.Dispose(); Thread.Sleep(1500); // give background threads some time HostingEnvironment.UnregisterObject(this); }Implementing IRegisterObject should help with reliability on AppDomain shutdowns. Thanks to Justin Van Patten for pointing this out to me on Twitter.RegisterObject() is not required but I would highly recommend implementing it on whatever object controls your background processing to all clean shutdowns when the AppDomain shuts down.Testing it outI'm still in the testing phase with this particular service to see if there are any side effects. But so far it doesn't look like it. With about 50 lines of code I was able to replace the Windows service startup to Web start up - everything else just worked as is. An honorable mention goes to SignalR 2.0's oWin hosting, because with the new oWin based hosting no code changes at all were required, merely a couple of configuration file settings and an assembly directive needed, to point at the SignalR startup class. Sweet!It also seems like SignalR is noticeably faster running inside of IIS compared to self-host. Startup feels faster because of the preload.Starting and Stopping the 'Service'Because the application is running as a Web Server, it's easy to have a Web interface for starting and stopping the services running inside of the service. For our queue manager the SignalR service and front monitoring app has a play and stop button for toggling the queue.If you want more administrative control and have it work more like a Windows Service you can also stop the application pool explicitly from the command line which would be equivalent to stopping and restarting a service.To start and stop from the command line you can use the IIS appCmd tool. To stop:> %windir%\system32\inetsrv\appcmd stop apppool /apppool.name:"Weblog"and to start> %windir%\system32\inetsrv\appcmd start apppool /apppool.name:"Weblog"Note that when you explicitly force the AppPool to stop running either in the UI (on the ApplicationPools page use Start/Stop) or via command line tools, the application pool will not auto-restart immediately. You have to manually start it back up.What's not to like?There are certainly a lot of benefits to running a background service in IIS, but… ASP.NET applications do have more overhead in terms of memory footprint and startup time is a little slower, but generally for server applications this is not a big deal. If the application is stable the service should fire up and stay running indefinitely. A lot of times this kind of service interface can simply be attached to an existing Web application, or if scalability requires be offloaded to its own Web server.Easier to work withBut the ultimate benefit here is that it's much easier to work with a Web app as opposed to a service. While developing I can simply turn off the auto-launch features and launch the service on demand through IIS simply by hitting a page on the site. If I want to shut down an IISRESET -stop will shut down the service easily enough. I can then attach a debugger anywhere I want and this works like any other ASP.NET application. Yes you end up on a background thread for debugging but Visual Studio handles that just fine and if you stay on a single thread this is no different than debugging any other code.SummaryUsing ASP.NET to run background service operations is probably not a super common scenario, but it probably should be something that is considered carefully when building services. Many applications have service like features and with the auto-start functionality of the Application Initialization module, it's easy to build this functionality into ASP.NET. Especially when combined with the notification features of SignalR it becomes very, very easy to create rich services that can also communicate their status easily to the outside world.Whether it's existing applications that need some background processing for scheduling related tasks, or whether you just create a separate site altogether just to host your service it's easy to do and you can leverage the same tool chain you're already using for other Web projects. If you have lots of service projects it's worth considering… give it some thought…© Rick Strahl, West Wind Technologies, 2005-2013Posted in ASP.NET  SignalR  IIS   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Creating ASP.NET MVC Negotiated Content Results

    - by Rick Strahl
    In a recent ASP.NET MVC application I’m involved with, we had a late in the process request to handle Content Negotiation: Returning output based on the HTTP Accept header of the incoming HTTP request. This is standard behavior in ASP.NET Web API but ASP.NET MVC doesn’t support this functionality directly out of the box. Another reason this came up in discussion is last week’s announcements of ASP.NET vNext, which seems to indicate that ASP.NET Web API is not going to be ported to the cloud version of vNext, but rather be replaced by a combined version of MVC and Web API. While it’s not clear what new API features will show up in this new framework, it’s pretty clear that the ASP.NET MVC style syntax will be the new standard for all the new combined HTTP processing framework. Why negotiated Content? Content negotiation is one of the key features of Web API even though it’s such a relatively simple thing. But it’s also something that’s missing in MVC and once you get used to automatically having your content returned based on Accept headers it’s hard to go back to manually having to create separate methods for different output types as you’ve had to with Microsoft server technologies all along (yes, yes I know other frameworks – including my own – have done this for years but for in the box features this is relatively new from Web API). As a quick review,  Accept Header content negotiation works off the request’s HTTP Accept header:POST http://localhost/mydailydosha/Editable/NegotiateContent HTTP/1.1 Content-Type: application/json Accept: application/json Host: localhost Content-Length: 76 Pragma: no-cache { ElementId: "header", PageName: "TestPage", Text: "This is a nice header" } If I make this request I would expect to get back a JSON result based on my application/json Accept header. To request XML  I‘d just change the accept header:Accept: text/xml and now I’d expect the response to come back as XML. Now this only works with media types that the server can process. In my case here I need to handle JSON, XML, HTML (using Views) and Plain Text. HTML results might need more than just a data return – you also probably need to specify a View to render the data into either by specifying the view explicitly or by using some sort of convention that can automatically locate a view to match. Today ASP.NET MVC doesn’t support this sort of automatic content switching out of the box. Unfortunately, in my application scenario we have an application that started out primarily with an AJAX backend that was implemented with JSON only. So there are lots of JSON results like this:[Route("Customers")] public ActionResult GetCustomers() { return Json(repo.GetCustomers(),JsonRequestBehavior.AllowGet); } These work fine, but they are of course JSON specific. Then a couple of weeks ago, a requirement came in that an old desktop application needs to also consume this API and it has to use XML to do it because there’s no JSON parser available for it. Ooops – stuck with JSON in this case. While it would have been easy to add XML specific methods I figured it’s easier to add basic content negotiation. And that’s what I show in this post. Missteps – IResultFilter, IActionFilter My first attempt at this was to use IResultFilter or IActionFilter which look like they would be ideal to modify result content after it’s been generated using OnResultExecuted() or OnActionExecuted(). Filters are great because they can look globally at all controller methods or individual methods that are marked up with the Filter’s attribute. But it turns out these filters don’t work for raw POCO result values from Action methods. What we wanted to do for API calls is get back to using plain .NET types as results rather than result actions. That is  you write a method that doesn’t return an ActionResult, but a standard .NET type like this:public Customer UpdateCustomer(Customer cust) { … do stuff to customer :-) return cust; } Unfortunately both OnResultExecuted and OnActionExecuted receive an MVC ContentResult instance from the POCO object. MVC basically takes any non-ActionResult return value and turns it into a ContentResult by converting the value using .ToString(). Ugh. The ContentResult itself doesn’t contain the original value, which is lost AFAIK with no way to retrieve it. So there’s no way to access the raw customer object in the example above. Bummer. Creating a NegotiatedResult This leaves mucking around with custom ActionResults. ActionResults are MVC’s standard way to return action method results – you basically specify that you would like to render your result in a specific format. Common ActionResults are ViewResults (ie. View(vn,model)), JsonResult, RedirectResult etc. They work and are fairly effective and work fairly well for testing as well as it’s the ‘standard’ interface to return results from actions. The problem with the this is mainly that you’re explicitly saying that you want a specific result output type. This works well for many things, but sometimes you do want your result to be negotiated. My first crack at this solution here is to create a simple ActionResult subclass that looks at the Accept header and based on that writes the output. I need to support JSON and XML content and HTML as well as text – so effectively 4 media types: application/json, text/xml, text/html and text/plain. Everything else is passed through as ContentResult – which effecively returns whatever .ToString() returns. Here’s what the NegotiatedResult usage looks like:public ActionResult GetCustomers() { return new NegotiatedResult(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return new NegotiatedResult("Show", repo.GetCustomer(id)); } There are two overloads of this method – one that returns just the raw result value and a second version that accepts an optional view name. The second version returns the Razor view specified only if text/html is requested – otherwise the raw data is returned. This is useful in applications where you have an HTML front end that can also double as an API interface endpoint that’s using the same model data you send to the View. For the application I mentioned above this was another actual use-case we needed to address so this was a welcome side effect of creating a custom ActionResult. There’s also an extension method that directly attaches a Negotiated() method to the controller using the same syntax:public ActionResult GetCustomers() { return this.Negotiated(repo.GetCustomers()); } public ActionResult GetCustomer(int id) { return this.Negotiated("Show",repo.GetCustomer(id)); } Using either of these mechanisms now allows you to return JSON, XML, HTML or plain text results depending on the Accept header sent. Send application/json you get just the Customer JSON data. Ditto for text/xml and XML data. Pass text/html for the Accept header and the "Show.cshtml" Razor view is rendered passing the result model data producing final HTML output. While this isn’t as clean as passing just POCO objects back as I had intended originally, this approach fits better with how MVC action methods are intended to be used and we get the bonus of being able to specify a View to render (optionally) for HTML. How does it work An ActionResult implementation is pretty straightforward. You inherit from ActionResult and implement the ExecuteResult method to send your output to the ASP.NET output stream. ActionFilters are an easy way to effectively do post processing on ASP.NET MVC controller actions just before the content is sent to the output stream, assuming your specific action result was used. Here’s the full code to the NegotiatedResult class (you can also check it out on GitHub):/// <summary> /// Returns a content negotiated result based on the Accept header. /// Minimal implementation that works with JSON and XML content, /// can also optionally return a view with HTML. /// </summary> /// <example> /// // model data only /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult(repo.Customers.OrderBy( c=> c.Company) ) /// } /// // optional view for HTML /// public ActionResult GetCustomers() /// { /// return new NegotiatedResult("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public class NegotiatedResult : ActionResult { /// <summary> /// Data stored to be 'serialized'. Public /// so it's potentially accessible in filters. /// </summary> public object Data { get; set; } /// <summary> /// Optional name of the HTML view to be rendered /// for HTML responses /// </summary> public string ViewName { get; set; } public static bool FormatOutput { get; set; } static NegotiatedResult() { FormatOutput = HttpContext.Current.IsDebuggingEnabled; } /// <summary> /// Pass in data to serialize /// </summary> /// <param name="data">Data to serialize</param> public NegotiatedResult(object data) { Data = data; } /// <summary> /// Pass in data and an optional view for HTML views /// </summary> /// <param name="data"></param> /// <param name="viewName"></param> public NegotiatedResult(string viewName, object data) { Data = data; ViewName = viewName; } public override void ExecuteResult(ControllerContext context) { if (context == null) throw new ArgumentNullException("context"); HttpResponseBase response = context.HttpContext.Response; HttpRequestBase request = context.HttpContext.Request; // Look for specific content types if (request.AcceptTypes.Contains("text/html")) { response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); } else if (request.AcceptTypes.Contains("text/plain")) { response.ContentType = "text/plain"; response.Write(Data); } else if (request.AcceptTypes.Contains("application/json")) { using (JsonTextWriter writer = new JsonTextWriter(response.Output)) { var settings = new JsonSerializerSettings(); if (FormatOutput) settings.Formatting = Newtonsoft.Json.Formatting.Indented; JsonSerializer serializer = JsonSerializer.Create(settings); serializer.Serialize(writer, Data); writer.Flush(); } } else if (request.AcceptTypes.Contains("text/xml")) { response.ContentType = "text/xml"; if (Data != null) { using (var writer = new XmlTextWriter(response.OutputStream, new UTF8Encoding())) { if (FormatOutput) writer.Formatting = System.Xml.Formatting.Indented; XmlSerializer serializer = new XmlSerializer(Data.GetType()); serializer.Serialize(writer, Data); writer.Flush(); } } } else { // just write data as a plain string response.Write(Data); } } } /// <summary> /// Extends Controller with Negotiated() ActionResult that does /// basic content negotiation based on the Accept header. /// </summary> public static class NegotiatedResultExtensions { /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated( repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, object data) { return new NegotiatedResult(data); } /// <summary> /// Return content-negotiated content of the data based on Accept header. /// Supports: /// application/json - using JSON.NET /// text/xml - Xml as XmlSerializer XML /// text/html - as text, or an optional View /// text/plain - as text /// </summary> /// <param name="controller"></param> /// <param name="viewName">Name of the View to when Accept is text/html</param> /// /// <param name="data">Data to return</param> /// <returns>serialized data</returns> /// <example> /// public ActionResult GetCustomers() /// { /// return this.Negotiated("List", repo.Customers.OrderBy( c=> c.Company) ) /// } /// </example> public static NegotiatedResult Negotiated(this Controller controller, string viewName, object data) { return new NegotiatedResult(viewName, data); } } Output Generation – JSON and XML Generating output for XML and JSON is simple – you use the desired serializer and off you go. Using XmlSerializer and JSON.NET it’s just a handful of lines each to generate serialized output directly into the HTTP output stream. Please note this implementation uses JSON.NET for its JSON generation rather than the default JavaScriptSerializer that MVC uses which I feel is an additional bonus to implementing this custom action. I’d already been using a custom JsonNetResult class previously, but now this is just rolled into this custom ActionResult. Just keep in mind that JSON.NET outputs slightly different JSON for certain things like collections for example, so behavior may change. One addition to this implementation might be a flag to allow switching the JSON serializer. Html View Generation Html View generation actually turned out to be easier than anticipated. Initially I used my generic ASP.NET ViewRenderer Class that can render MVC views from any ASP.NET application. However it turns out since we are executing inside of an active MVC request there’s an easier way: We can simply create a custom ViewResult and populate its members and then execute it. The code in text/html handling code that renders the view is simply this:response.ContentType = "text/html"; if (!string.IsNullOrEmpty(ViewName)) { var viewData = context.Controller.ViewData; viewData.Model = Data; var viewResult = new ViewResult { ViewName = ViewName, MasterName = null, ViewData = viewData, TempData = context.Controller.TempData, ViewEngineCollection = ((Controller)context.Controller).ViewEngineCollection }; viewResult.ExecuteResult(context.Controller.ControllerContext); } else response.Write(Data); which is a neat and easy way to render a Razor view assuming you have an active controller that’s ready for rendering. Sweet – dependency removed which makes this class self-contained without any external dependencies other than JSON.NET. Summary While this isn’t exactly a new topic, it’s the first time I’ve actually delved into this with MVC. I’ve been doing content negotiation with Web API and prior to that with my REST library. This is the first time it’s come up as an issue in MVC. But as I have worked through this I find that having a way to specify both HTML Views *and* JSON and XML results from a single controller certainly is appealing to me in many situations as we are in this particular application returning identical data models for each of these operations. Rendering content negotiated views is something that I hope ASP.NET vNext will provide natively in the combined MVC and WebAPI model, but we’ll see how this actually will be implemented. In the meantime having a custom ActionResult that provides this functionality is a workable and easily adaptable way of handling this going forward. Whatever ends up happening in ASP.NET vNext the abstraction can probably be changed to support the native features of the future. Anyway I hope some of you found this useful if not for direct integration then as insight into some of the rendering logic that MVC uses to get output into the HTTP stream… Related Resources Latest Version of NegotiatedResult.cs on GitHub Understanding Action Controllers Rendering ASP.NET Views To String© Rick Strahl, West Wind Technologies, 2005-2014Posted in MVC  ASP.NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • .NET framework 4 backwards compatibility.

    - by Dark.Lama
    Hi! I had installed .NET framework 4 in my system. It says that .NET framework 4 is backwards compatible with all previous versions. But an app installer still asks me to install .NET.F.W. 3.5 SP1. What should I do to make the installer aware of .NET 4's presence? Is it necessary to install .NET. 3.5 SP1 too? (It is a big setup ~250 MB)

    Read the article

  • Classic assembly language texts not using x86?

    - by wrp
    I'm looking for texts that give detailed treatment of assembly programming principles and don't use x86 as the target architecture. I haven't found any recent books like that, but I would expect that there were some good ones written in the 1970s and 1980s, when whole applications were still written in assembly. The architecture used should also be one of the cleaner designs, such as the 6502 or VAX.

    Read the article

  • Why are those modules being loaded in an ASP.NET project (not website)

    - by petergmagid
    I have an ASP.NET 3.5 Project (not website) and I don't understand why all these modules are being created and loaded. I thought that with a web project it would all compile to a single .DLL 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_fwtnlvuq.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_vb8hmtmg.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_v-nkuwgl.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_wn_uucrw.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_ngd_8nhu.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_8keebrhe.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_ohg9e50r.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_yhmgvhum.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_4qltywkk.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_1nml5ezc.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_cdju8bdk.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_xhugloto.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_rkqqzc0u.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_-vfyn7ik.dll', Symbols loaded. 'WebDev.WebServer.EXE' (Managed): Loaded 'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\Temporary ASP.NET Files\reviewstat_20\c147e006\64781866\App_Web_cthyzgij.dll', Symbols loaded.

    Read the article

  • In-line assembly

    - by aCuria
    For the below code, if i want to convert the for loop to in-line assembly, how would it be done? (Pardon the weird code, i just made it up.) 1) This is for the x86, using visual studio 2) This is a "how to use in line assembly" question, not a "how to optimize this code" question 3) Any other example will be fine. I will think of some better example code in abit.

    Read the article

  • a multi-component truth table for assembly

    - by Malfist
    Can someone help me convert this C if statement into something assembly can understand? if((plain>='a' && plain<='x') || (plain>='A' && plain <='X')){ code = plain+2; } plain is a char, which for assembly is stored in the al register. Any help would be appreciated.

    Read the article

  • load and execute assembly from arbitary directory

    - by bitbonk
    How can I load, reflect on and then instanciate types of an assembly that is in an arbitary directory on the system using Assembly.Load or similar without having to modify any security settings for the runtime on the machine. The user should be able to specify the name and location at runtime.

    Read the article

  • ASP.NET/VB.NET problem solving help!

    - by Jonesy
    Hi folks, Got a problem I need help with. Basically I'm gonna develop a form (part of a bigger web app) that lists a load of clients and there business contact, tech contact 1, and tech contact 2. The idea is rapid data entry. So one form shows each client with their contacts in dropdowns and I we can change each one then click a save button to do a mass save. the database looks like this: tblClient ClientID ClientName BusinessContact Tech1 Tech2 My idea was to use a repeater to format the data like this: Client Business Contact Tech1 Tech2 Client2 Business Contact Tech1 Tech2 What I'm stuck on is how to do the mass update? Can I do something like for each item in Repeater1 then do an update SQL statement? -- Jonesy

    Read the article

  • Long overdue (for me) question about disposing managed objects in .Net, VB.Net, C#

    - by Jules
    I can't believe I'm still confused about this but, any way, lets finally nail it: I have a class that overrides OnPaint to do some drawing. To speed things up, I create the pens, brushes etc before hand, in the construtor, so that OnPaint does not need to keep creating and disposing them. Now, I make sure that I always dispose of such objects, but I have the feeling I don't need to because, despite the fact they implement IDisposable, they're managed objects. Is this correct?

    Read the article

  • Retrive data from two tables in asp.net mvc using ADO.Net Entity Framework

    - by user192972
    Please read my question carefully and reply me. I have two tables as table1 and table2. In table1 i have columns as AddressID(Primary Key),Address1,Address2,City In table2 i have columns as ContactID(Primary Key),AddressID(Foriegn Key),Last Name,First Name. By using join operation i can retrive data from both the tables. I created a Model in my MVC Application.I can see both the tables in enitity editor. In the ViewData folder of my solution explorer i created two class as ContactViewData.cs and SLXRepository.cs In the ContactViewData.cs i have following code public IEnumerable<CONTACT> contacts { get; set; } In the SLXRepository.cs i have following code public IEnumerable<CONTACT> GetContacts() { var contact = ( from c in context.CONTACT join a in context.ADDRESS on c.ADDRESSID equals a.ADDRESSID select new { a.ADDRESS1, a.ADDRESS2, a.CITY, c.FIRSTNAME, c.LASTNAME } ); return contact; } I am getting the error in return type Cannot implicitly convert type 'System.Linq.IQueryable' to 'System.Collections.Generic.IEnumerable'. An explicit conversion exists (are you missing a cast?)

    Read the article

  • .NET 4.0 Fails When sending emails with attachments larger than 3MB

    - by JL
    I recently had an issue after upgrading my .net framework to 4.0 from 3.5: System.Net.Mail.SmtpException: Failure sending mail. --- System.IndexOutOfRangeException: Index was outside the bounds of the array. at System.Net.Base64Stream.EncodeBytes(Byte[] buffer, Int32 offset, Int32 count, Boolean dontDeferFinalBytes, Boolean shouldAppendSpaceToCRLF) at System.Net.Base64Stream.Write(Byte[] buffer, Int32 offset, Int32 count) at System.Net.Mime.MimePart.Send(BaseWriter writer) at System.Net.Mime.MimeMultiPart.Send(BaseWriter writer) at System.Net.Mail.Message.Send(BaseWriter writer, Boolean sendEnvelope) at System.Net.Mail.SmtpClient.Send(MailMessage message) --- End of inner exception stack trace --- I read this connect bug listing here: http://connect.microsoft.com/VisualStudio/feedback/details/544562/cannot-send-e-mails-with-large-attachments-system-net-mail-smtpclient-system-net-mail-mailmessage. If anyone cares about this issue, please vote for it on Connect, so it will be fixed sooner.

    Read the article

  • How come .net 4.0 and .net 2.0 CLR's can exist in a same machine

    - by Vinni
    I have a basic doubt that, How can we have both CLR's on a same machine. If this is possible, When I refer few dll's of 4.0 and setting application pool to 2.0 why Cant I run the website(I am getting errors).When we refer the dll's from web.config it means it searches for GAC when that particular 4.0 dll is available in GAC Why dont it load (How come it is not loading).. Please clarify my doubts

    Read the article

  • VB.NET - ASP.NET - MS-Access - SQL Statement

    - by Brian
    I have a button which when pressed, sets the user's rights in the db. (If Administrator UserTypeID is set to '2' and if Customer it is set to '1'). However when I run the below code, everything remains the same. I think it's from the SQL statement but I;m not sure. Can anyone help please? Protected Sub btnSetUser_Click(sender As Object, e As System.EventArgs) Handles btnSetUser.Click Dim conn As New OleDbConnection("Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\Users\Brian\Documents\Visual Studio 2010\WebSites\WebSite3\db.mdb;") Dim cmd As OleDbCommand = New OleDbCommand("UPDATE [User] SET [UserTypeID] WHERE Username=?", conn) conn.Open() cmd.Parameters.AddWithValue("@Username", txtUser.Text) If ddUserType.SelectedItem.Text = "Administrator" Then cmd.Parameters.AddWithValue("@UserTypeID", "2") cmd.ExecuteNonQuery() lblSetUser.Text = txtUser.Text + "was set to Administrator." ElseIf ddUserType.SelectedItem.Text = "Customer" Then cmd.Parameters.AddWithValue("@UserTypeID", "1") cmd.ExecuteNonQuery() lblSetUser.Text = txtUser.Text + "was set to Customer." End If conn.Close() End Sub End Class

    Read the article

  • Assembly.CodeBase: when is it no file-URI?

    - by Marc Wittke
    Assembly.Location gives a plain path to the assembly. Unfortunately this is empty when running in a shadowed environment, such as unit test or ASP.NET. Hovever, the Codebase property is available and provides a URI that can be used instead. In which cases it returns no URI starting with file:///? Or in other words: what are the cases in which this won't work or will return unusable results? Assembly assembly = GetType().Assembly; Uri codeBaseUri = new Uri(assembly.CodeBase); string path = codeBaseUri.LocalPath;

    Read the article

  • Hiding an internal interface in a "friend" assembly

    - by dmo
    I have two assemblies: A and B. A has InternalsVisibleTo set for B. I would like to make calls from A to get information that can only be known by a type defined in B in a way that keeps things internal. I can do this using an internal interface defined in A and implemented explicitly in B. Assembly A internal interface IHasData { Data GetData(); } class ClassA { DoSomething(IHasData); } Assembly B public abstract class ClassB : IHasData { Data IHasData.GetData() { /** do something internal **/ } } The trouble comes when someone references assembly B and derives from ClassB - they get the error: "The type 'AssemblyA.IHasData' is defined in an assembly that is not referenced" even though that type should be invisible to them. If I look at the public type definition I see what I expect - ClassB with no interfaces implemented. Why do I get this error? All of the implementation is in assembly B. I could use IHasData internally in ClassB and that wouldn't require assembly A to be referenced. Can someone help me understand what is going on?

    Read the article

  • BING Search using ASP.NET and jQuery Ajax

    - by hajan
    The BING API provides extremely simple way to make search queries using BING. It provides nice way to get the search results as XML or JSON. In this blog post I will show one simple example on how to query BING and get the results as JSON in an ASP.NET website with help of jQuery’s getJSON ajax method. Basically we submit an HTTP GET request with the AppID which you can get in the BING Developer Center. To create new AppID, click here. Once you fill the form, submit it and you will get your AppID. Now, lets make this work in several steps. 1. Open VS.NET or Visual Web Developer.NET, create new sample project (or use existing one) and create new ASPX Web Form with name of your choice. 2. Add the following ASPX in your page body <body>     <form id="form1" runat="server">     <asp:TextBox ID="txtSearch" runat="server" /> <asp:Button ID="btnSearch" runat="server" Text="BING Search" />     <div id="result">          </div>     </form> </body> We have text box for search, button for firing the search event and div where we will place the results. 3. Next, I have created simple CSS style for the search result: <style type="text/css">             .item { width:600px; padding-top:10px; }             .title { background-color:#4196CE; color:White; font-size:18px;              font-family:Calibri, Verdana, Tahoma, Sans-Serif; padding:2px 2px 2px 2px; }     .title a { text-decoration:none; color:white}     .date { font-style:italic; font-size:10px; font-family:Verdana, Arial, Sans-Serif;}             .description { font-family:Verdana, Arial, Sans-Serif; padding:2px 2px 2px 2px; font-size:12px; }     .url { font-size: 10px; font-style:italic; font-weight:bold; color:Gray;}     .url a { text-decoration:none; color:gray;}     #txtSearch { width:450px; border:2px solid #4196CE; } </style> 4. The needed jQuery Scripts (v1.4.4 core jQuery and jQuery template plugin) <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.min.js" type="text/javascript"></script> <script src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.min.js" type="text/javascript"></script> Note: I use jQuery Templates plugin in order to avoid foreach loop in the jQuery callback function. JQuery Templates also simplifies the code and allows us to create nice template for the end result. You can read more about jQuery Templates here. 5. Now, lets create another script tag where we will write our BING search script <script language="javascript" type="text/javascript">     $(document).ready(function () {         var bingAPIKey = "<Your-BING-AppID-KEY-HERE>";                  //the rest of the script goes here              }); </script> 6. Before we do any searching, we need to take a look at the search URL that we will call from our Ajax function BING Search URL : http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&AppId={appId}&query={query}&sources={sourceType} The URL in our example is as follows: http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&Appid=" + bingAPIKey + "&query=" + keyWords + "&sources=web Lets split it up with brief explanation on each part of the URL http://api.search.live.net/json.aspx – is the main part of the URL which is used to call when we need to retrieve json result set. JsonType=callback&JsonCallback=? – using JsonType, we can control the format of the response. For more info about this, refer here. Appid=” + bingAPIKey +” – the AppID we’ve got from the BING website, explained previously query=” + keyWords + “ – the search query keywords sources=web – the type of source. Possible source types can be found here. 7. Before we continue with writing the last part of the script, lets see what search result BING will send us back: {"SearchResponse":     {         "Version":"2.2",         "Query":             {                 "SearchTerms":"hajan selmani aspnet weblog"             },         "Web":             {                 "Total":16,                 "Offset":0,                 "Results":[                     {                         "Title":"Hajan's Blog",                         "Description":"microsoft asp.net development blog ... Create nice animation on your ASP.NET Menu control using jQuery by hajan",                         "Url":"http:\/\/weblogs.asp.net\/hajan\/",                         "CacheUrl":"http:\/\/cc.bingj.com\/cache.aspx?q=hajan+selmani+aspnet+weblog&d=4760941354158132&w=c9535fb0,d1d66baa",                         "DisplayUrl":"weblogs.asp.net\/hajan",                         "DateTime":"2011-03-03T18:24:00Z"                     },                     {                         "Title":"codeasp.net",                         "Description":"... social community for ASP.NET bloggers - we are one of                                         the largest ASP.NET blog ... 2\/5\/2011 1:41:00 AM by Hajan Selmani - Comments ...",                         "Url":"http:\/\/codeasp.net\/blogs\/hajan",                         "CacheUrl":"http:\/\/cc.bingj.com\/cache.aspx?q=hajan+selmani+aspnet+weblog&d=4826710187311653&w=5b41c930,676a37f8",                         "DisplayUrl":"codeasp.net\/blogs\/hajan",                         "DateTime":"2011-03-03T07:40:00Z"                     }                     ...                         ]             }     } }  To get to the result of the search response, the path is: SearchResponse.Web.Results, where we have array of objects returned back from BING. 8. The final part of the code that performs the search is $("#<%= btnSearch.ClientID %>").click(function (event) {     event.preventDefault();     var keyWords = $("#<%= txtSearch.ClientID %>").val();     var encodedKeyWords = encodeURIComponent(keyWords);     //alert(keyWords);     var url = "http://api.search.live.net/json.aspx?JsonType=callback&JsonCallback=?&Appid="+ bingAPIKey              + "&query=" + encodedKeyWords              + "&sources=web";     $.getJSON(url, function (data) {         $("#result").html("");         $("#bingSearchTemplate").tmpl(data.SearchResponse.Web.Results).appendTo("#result");     }); }); The search happens once we click the Search Button with id btnSearch. We get the keywords from the Text Box with id txtSearch and then we use encodeURIComponent. The encodeURIComponent is used to encode the special characters such as: , / ? : @ & = + $ #, which might be part of the search query string. Then we construct the URL and call it using HTTP GET. The callback function returns the data, where we first clear the html inside div with id result and after that we render the data.SearchResponse.Web.Results array of objects using template with id bingSearchTemplate and append the result into div with id result. 9. The bingSearchTemplate Template <script id="bingSearchTemplate" type="text/html">     <div class="item">         <div class="title"><a href="${Url}" target="_blank">${Title}</a></div>         <div class="date">${DateTime}</div>         <div class="searchresult">             <div class="description">             ${Description}             </div>             <div class="url">                 <a href="${Url}" target="_blank">${Url}</a>             </div>         </div>     </div> </script> If you paid attention on the search result structure that BING creates for us, you have seen properties like Url, Title, Description, DateTime etc. In the above defined template, you see the same wrapped into template tags. Some are combined to create hyperlinked URLs. 10. THE END RESULT   As you see, it’s quite simple to use BING API and make search queries with ASP.NET and jQuery. In addition, if you want to make instant search, replace this line: $(“#<%= btnSearch.ClientID %>”).click(function(event) {        event.preventDefault(); with $(“#<%= txtSearch.ClientID %>”).keyup(function() { This will trigger search on each key up in your keyboard, so if you use this approach, you won’t event need a search button. If it’s your first time working with BING API, it’s very recommended to read the following API Basics PDF document. Hope this was helpful blog post for you.

    Read the article

  • NDepend tool – Why every developer working with Visual Studio.NET must try it!

    - by hajan
    In the past two months, I have had a chance to test the capabilities and features of the amazing NDepend tool designed to help you make your .NET code better, more beautiful and achieve high code quality. In other words, this tool will definitely help you harmonize your code. I mean, you’ve probably heard about Chaos Theory. Experienced developers and architects are already advocates of the programming chaos that happens when working with complex project architecture, the matrix of relationships between objects which simply even if you are the one who have written all that code, you know how hard is to visualize everything what does the code do. When the application get more and more complex, you will start missing a lot of details in your code… NDepend will help you visualize all the details on a clever way that will help you make smart moves to make your code better. The NDepend tool supports many features, such as: Code Query Language – which will help you write custom rules and query your own code! Imagine, you want to find all your methods which have more than 100 lines of code :)! That’s something simple! However, I will dig much deeper in one of my next blogs which I’m going to dedicate to the NDepend’s CQL (Code Query Language) Architecture Visualization – You are an architect and want to visualize your application’s architecture? I’m thinking how many architects will be really surprised from their architectures since NDepend shows your whole architecture showing each piece of it. NDepend will show you how your code is structured. It shows the architecture in graphs, but if you have very complex architecture, you can see it in Dependency Matrix which is more suited to display large architecture Code Metrics – Using NDepend’s panel, you can see the code base according to Code Metrics. You can do some additional filtering, like selecting the top code elements ordered by their current code metric value. You can use the CQL language for this purpose too. Smart Search – NDepend has great searching ability, which is again based on the CQL (Code Query Language). However, you have some options to search using dropdown lists and text boxes and it will generate the appropriate CQL code on fly. Moreover, you can modify the CQL code if you want it to fit some more advanced searching tasks. Compare Builds and Code Difference – NDepend will also help you compare previous versions of your code with the current one at one of the most clever ways I’ve seen till now. Create Custom Rules – using CQL you can create custom rules and let NDepend warn you on each build if you break a rule Reporting – NDepend can automatically generate reports with detailed stats, graph representation, dependency matrixes and some additional advanced reporting features that will simply explain you everything related to your application’s code, architecture and what you’ve done. And that’s not all. As I’ve seen, there are many other features that NDepend supports. I will dig more in the upcoming days and will blog more about it. The team who built the NDepend have also created good documentation, which you can find on the NDepend website. On their website, you can also find some good videos that will help you get started quite fast. It’s easy to install and what is very important it is fully integrated with Visual Studio. To get you started, you can watch the following Getting Started Online Demo and Tutorial with explanations and screenshots. If you are interested to know more about how to use the features of this tool, either visit their website or wait for my next blogs where I will show some real examples of using the tool and how it helps make your code better. And the last thing for this blog, I would like to copy one sentence from the NDepend’s home page which says: ‘Hence the software design becomes concrete, code reviews are effective, large refactoring are easy and evolution is mastered.’ Website: www.ndepend.com Getting Started: http://www.ndepend.com/GettingStarted.aspx Features: http://www.ndepend.com/Features.aspx Download: http://www.ndepend.com/NDependDownload.aspx Hope you like it! Please do let me know your feedback by providing comments to my blog post. Kind Regards, Hajan

    Read the article

  • Confused about ASP.NET AJAX, AJAX, jQUERY and javascript

    - by Mr.Y
    Yesterday, I read couple of chapters on ASP.NET Ajax,and jQuery from my ASP.NET 4.0 book and I found those frameworks pretty interesting and decide to learn more about it. Today, I borrow some books from library on AJAX and Javascript. It seems ASP.NET ajax is different from Ajax and jQuery seems like the "new" javascript. Is that means I can skip javascript and learn jQUERY directly? On the other hand, the Ajax(non asp.net) book I borrow from library seems apply to the client side web programming only and looks quite difference from what I learned from ASP.NET AJAX. If I'm a ASP.NET developer I guess I should stick with ASP.NET AJAX instead of client side AJAX right? What about PHP? Is there a "PHP AJAX" similar to ASP.NET AJAX? It's not that I'm "lazy" to learn other tools, but I just want to focus on the right ones. Thx. The more I going deep

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • RequestValidation Changes in ASP.NET 4.0

    - by Rick Strahl
    There’s been a change in the way the ValidateRequest attribute on WebForms works in ASP.NET 4.0. I noticed this today while updating a post on my WebLog all of which contain raw HTML and so all pretty much trigger request validation. I recently upgraded this app from ASP.NET 2.0 to 4.0 and it’s now failing to update posts. At first this was difficult to track down because of custom error handling in my app – the custom error handler traps the exception and logs it with only basic error information so the full detail of the error was initially hidden. After some more experimentation in development mode the error that occurs is the typical ASP.NET validate request error (‘A potentially dangerous Request.Form value was detetected…’) which looks like this in ASP.NET 4.0: At first when I got this I was real perplexed as I didn’t read the entire error message and because my page does have: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="NewEntry.aspx.cs" Inherits="Westwind.WebLog.NewEntry" MasterPageFile="~/App_Templates/Standard/AdminMaster.master" ValidateRequest="false" EnableEventValidation="false" EnableViewState="false" %> WTF? ValidateRequest would seem like it should be enough, but alas in ASP.NET 4.0 apparently that setting alone is no longer enough. Reading the fine print in the error explains that you need to explicitly set the requestValidationMode for the application back to V2.0 in web.config: <httpRuntime executionTimeout="300" requestValidationMode="2.0" /> Kudos for the ASP.NET team for putting up a nice error message that tells me how to fix this problem, but excuse me why the heck would you change this behavior to require an explicit override to an optional and by default disabled page level switch? You’ve just made a relatively simple fix to a solution a nasty morass of hard to discover configuration settings??? The original way this worked was perfectly discoverable via attributes in the page. Now you can set this setting in the page and get completely unexpected behavior and you are required to set what effectively amounts to a backwards compatibility flag in the configuration file. It turns out the real reason for the .config flag is that the request validation behavior has moved from WebForms pipeline down into the entire ASP.NET/IIS request pipeline and is now applied against all requests. Here’s what the breaking changes page from Microsoft says about it: The request validation feature in ASP.NET provides a certain level of default protection against cross-site scripting (XSS) attacks. In previous versions of ASP.NET, request validation was enabled by default. However, it applied only to ASP.NET pages (.aspx files and their class files) and only when those pages were executing. In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request. As a result, request validation errors might now occur for requests that previously did not trigger errors. To revert to the behavior of the ASP.NET 2.0 request validation feature, add the following setting in the Web.config file: <httpRuntime requestValidationMode="2.0" /> However, we recommend that you analyze any request validation errors to determine whether existing handlers, modules, or other custom code accesses potentially unsafe HTTP inputs that could be XSS attack vectors. Ok, so ValidateRequest of the form still works as it always has but it’s actually the ASP.NET Event Pipeline, not WebForms that’s throwing the above exception as request validation is applied to every request that hits the pipeline. Creating the runtime override removes the HttpRuntime checking and restores the WebForms only behavior. That fixes my immediate problem but still leaves me wondering especially given the vague wording of the above explanation. One thing that’s missing in the description is above is one important detail: The request validation is applied only to application/x-www-form-urlencoded POST content not to all inbound POST data. When I first read this this freaked me out because it sounds like literally ANY request hitting the pipeline is affected. To make sure this is not really so I created a quick handler: public class Handler1 : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World <hr>" + context.Request.Form.ToString()); } public bool IsReusable { get { return false; } } } and called it with Fiddler by posting some XML to the handler using a default form-urlencoded POST content type: and sure enough – hitting the handler also causes the request validation error and 500 server response. Changing the content type to text/xml effectively fixes the problem however, bypassing the request validation filter so Web Services/AJAX handlers and custom modules/handlers that implement custom protocols aren’t affected as long as they work with special input content types. It also looks that multipart encoding does not trigger event validation of the runtime either so this request also works fine: POST http://rasnote/weblog/handler1.ashx HTTP/1.1 Content-Type: multipart/form-data; boundary=------7cf2a327f01ae User-Agent: West Wind Internet Protocols 5.53 Host: rasnote Content-Length: 40 Pragma: no-cache <xml>asdasd</xml>--------7cf2a327f01ae *That* probably should trigger event validation – since it is a potential HTML form submission, but it doesn’t. New Runtime Feature, Global Scope Only? Ok, so request validation is now a runtime feature but sadly it’s a feature that’s scoped to the ASP.NET Runtime – effective scope to the entire running application/app domain. You can still manually force validation using Request.ValidateInput() which gives you the option to do this in code, but that realistically will only work with the requestValidationMode set to V2.0 as well since the 4.0 mode auto-fires before code ever gets a chance to intercept the call. Given all that, the new setting in ASP.NET 4.0 seems to limit options and makes things more difficult and less flexible. Of course Microsoft gets to say ASP.NET is more secure by default because of it but what good is that if you have to turn off this flag the very first time you need to allow one single request that bypasses request validation??? This is really shortsighted design… <sigh>© Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >