Search Results

Search found 1040 results on 42 pages for 'paypal adaptive payments'.

Page 37/42 | < Previous Page | 33 34 35 36 37 38 39 40 41 42  | Next Page >

  • Web Hosting: Any web host that supports files more than 50,000 in number?

    - by Devner
    Hi all, For my PHP & mySQL based application, I am trying to buy website hosting from a host who does not have a limit on the number of files I carry in my hosting account. Almost all the websites have a common limit of 50,000 files (some websites call it 50,000 nodes). The rest(to the extent of my search) are not even close. I have gone through the various websites, Googled lot of information, have spoken with the customer service of the hosting companies and they said that they have a limit of 50,000 files and that's why they call it the LIMIT. Now I have my application, which is a kind of social networking website, where people can upload various files of varying file size. So say if 50,000 users were to join the website and upload 1 file each, the limit of 50,000 will be reached very easily and my 50,001 customer will start facing file upload problems (& so will my account). So I would like to know if there's any website hosting services that do NOT levy such restrictions. In summary, I need the following options: No maximum file limit (more than 50,000 files in account). No maximum file upload limit in server setting (10MB, 12MB, 15MB, 20MB, etc.). Ability to upload files of various types (zip, flv, jg, png, etc.). Ability to stream Audio and Video (live audio & video not necessary). Access to .htaccess Access to php.ini, my.cnf or my.ini (this would be a plus) Supports SSL. Provides dedicated hosting(& IP) as well. Monthly payments without contracts are a plus. If you know of any such website hosting services, please post a reply ( a link to the same will be appreciated ). Thank you.

    Read the article

  • Threshold of blurry image - part 2

    - by 1''
    How can I threshold this blurry image to make the digits as clear as possible? In a previous post, I tried adaptively thresholding a blurry image (left), which resulted in distorted and disconnected digits (right): Since then, I've tried using a morphological closing operation as described in this post to make the brightness of the image uniform: If I adaptively threshold this image, I don't get significantly better results. However, because the brightness is approximately uniform, I can now use an ordinary threshold: This is a lot better than before, but I have two problems: I had to manually choose the threshold value. Although the closing operation results in uniform brightness, the level of brightness might be different for other images. Different parts of the image would do better with slight variations in the threshold level. For instance, the 9 and 7 in the top left come out partially faded and should have a lower threshold, while some of the 6s have fused into 8s and should have a higher threshold. I thought that going back to an adaptive threshold, but with a very large block size (1/9th of the image) would solve both problems. Instead, I end up with a weird "halo effect" where the centre of the image is a lot brighter, but the edges are about the same as the normally-thresholded image: Edit: remi suggested morphologically opening the thresholded image at the top right of this post. This doesn't work too well. Using elliptical kernels, only a 3x3 is small enough to avoid obliterating the image entirely, and even then there are significant breakages in the digits:

    Read the article

  • Data Warehouse: Modelling a future schedule

    - by Pat
    I'm creating a DW that will contain data on financial securities such as bonds and loans. These securities are associated with payment schedules. For example, a bond could pay quarterly, while a mortage would usually pay monthly (sometimes biweekly). The payment schedule is created when the security is traded and, in the majority of cases, will remain unchanged. However, the design would need to accomodate those cases where it does change. I'm currently attempting to model this data and I'm having difficulty coming up with a workable design. One of the most commonly queried fields is "next payment date". Users often want to know when a security will pay next. Therefore, I want to make it as easy as possible for them to get the next payment date and amount for each security. Also, users often run historical queries in which case they'd want the next payment date and amount as of a specific point in time. For example, they may want to look back at 1/31/09 and query the next payment dates (which would usually be in February 2009 for mortgages). It's also common that they want to query a security's entire payment schedule, which might consist of 360 records (30 year mortgage x 12 payments/year). Since the next payment date and amount would be changing each month or even biweekly, these fields wouldn't seem to fit into a slow-changing dimension very well. It would probably make more sense to use a fact table, but I'm unsure of how to model it. Any ideas would be greatly appreciated.

    Read the article

  • Application logic for invoicing and subscriptions?

    - by Industrial
    Hi everyone, We're just in the planning stage of a web app that offers subscriptions to our customers. The subscription periods varies and can be prolonged indefinitely by our customers, but are always at least one month (30 days). When a customer signs up, the customer information (billing address, phone number and so on) are stored in a customers table and a subscription is created in the subscriptions table: id | start_date | end_date | customer_id -------------------------------------------------------- 1 | 2010-12-31 | 2011-01-31 | 1 Every month we'll loop through the subscriptions table (cronjob preferably) and create invoices for the past subscription period, which are housed in their own table - invoices. Depending on the customer, invoices are manually printed out and sent by mail, or just emailed to the customer. Due to the nature of our customers and the product, we need to offer a variety of different payment alternatives including wire transfer and card payments, hence some invoices may need to be manually handled and registered as paid by our staff. The 15th every month, the invoices table are looped through and if no payment has been marked for the actual invoice, the according subscription will be removed. If there's a payment registered, the end_date in the subscriptions table is incremented by another 30 days (or what now our period our customer has chosen). Are we looking at headaches by incrementing dates forwards and backwards to handle non-paying customers and extending subscriptions? Would it be a better idea to add new subscriptions as customers extends their subscription?

    Read the article

  • Invoking [SKProductsRequest start] hangs on iOS 4.0

    - by figelwump
    Encountering an issue with SKProductsRequest that is specific to iOS 4.0. The problematic code: - (void)requestProductData { NSSet *productIdentifiers = [NSSet setWithObjects:kLimitedDaysUpgradeProductId, kUnlimitedUpgradeProductId, nil]; self.productsRequest = [[SKProductsRequest alloc] initWithProductIdentifiers:productIdentifiers]; self.productsRequest.delegate = self; [self.productsRequest start]; } - (void)productsRequest:(SKProductsRequest *)request didReceiveResponse:(SKProductsResponse *)response { NSLog(@"didReceiveResponse"); } When [SKProductsRequest start] is invoked, the productsRequest:didReceiveResponse: delegate method is never invoked; further, the entire app hangs and is completely unresponsive to input. Obviously, this is a huge issue for our iOS 4.0 users as it not only breaks payments but makes the app completely unusable. Some other things to note: this only happens on iOS 4.0; iOS 4.2, 3.x are fine. Also: if the delegate is not set on the SKProductsRequest (i.e. comment out the line "self.productsRequest.delegate = self;"), the app doesn't hang (but of course in that case we have no way of getting the product info). Also, the problem still reproduces with everything stripped out of the productsRequest:didReceiveResponse: callback (that method never actually gets called). Finally, if the productIdentifiers NSSet object is initialized to an empty set, the hang doesn't occur. Has anybody else experienced this? Any ideas/thoughts on what could be going on here, and how we might be able to work around this?

    Read the article

  • Common Properties: Consolidating Loan, Purchase, Inventory and Sale tables into one Transaction tabl

    - by Frank Computer
    Pawnshop Application: I have separate tables for Loan, Purchase, Inventory & Sales transactions. Each tables rows are joined to their respective customer rows by: customer.pk [serial] = loan.fk [integer]; = purchase.fk [integer]; = inventory.fk [integer]; = sale.fk [integer]; Since there are so many common properties within the four tables, I consolidated the four tables into one table called "transaction", where a column: transaction.trx_type char(1) {L=Loan, P=Purchase, I=Inventory, S=Sale} Scenario: A customer initially pawns merchandise, makes a couple of interest payments, then decides he wants to sell the merchandise to the pawnshop, who then places merchandise in Inventory and eventually sells it to another customer. I designed a generic transaction table where for example: transaction.main_amount DECIMAL(7,2) in a loan transaction holds the pawn amount, in a purchase holds the purchase price, in inventory and sale holds sale price. This is clearly a denormalized design, but has made programming alot easier and improved performance. Any type of transaction can now be performed from within one screen, without the need to change to different tables.

    Read the article

  • Why MySQL sat for 2 minutes doing nothing?

    - by Alex R
    This was a one-time thing, not reproducible... But I saved the show innodb status output. Can anybody tell what's going on here? The simple insert took almost 3 minutes to complete. | InnoDB | | ===================================== 110201 15:58:10 INNODB MONITOR OUTPUT ===================================== Per second averages calculated from the last 34 seconds ---------- SEMAPHORES ---------- OS WAIT ARRAY INFO: reservation count 11963, signal count 11766 --Thread 1824 has waited at .\btr\btr0cur.c line 443 for 118.00 seconds the sema phore: S-lock on RW-latch at 09D6453C created in file .\buf\buf0buf.c line 550 a writer (thread id 1824) has reserved it in mode wait exclusive number of readers 1, waiters flag 1 Last time read locked in file .\buf\buf0flu.c line 599 Last time write locked in file .\btr\btr0cur.c line 443 Mutex spin waits 0, rounds 527817, OS waits 7133 RW-shared spins 2532, OS waits 1226; RW-excl spins 1652, OS waits 1118 ------------ TRANSACTIONS ------------ Trx id counter 0 95830 Purge done for trx's n:o < 0 95814 undo n:o < 0 0 History list length 11 LIST OF TRANSACTIONS FOR EACH SESSION: ---TRANSACTION 0 0, not started, OS thread id 3704 MySQL thread id 551, query id 2702112 localhost 127.0.0.1 root show innodb status ---TRANSACTION 0 95829, not started, OS thread id 3132 MySQL thread id 534, query id 2702020 localhost 127.0.0.1 root ---TRANSACTION 0 95828, not started, OS thread id 3152 MySQL thread id 527, query id 2701973 localhost 127.0.0.1 root ---TRANSACTION 0 95827, ACTIVE 118 sec, OS thread id 1824 inserting, thread decl ared inside InnoDB 500 mysql tables in use 1, locked 1 1 lock struct(s), heap size 320, 0 row lock(s) MySQL thread id 526, query id 2701972 localhost 127.0.0.1 root update INSERT INTO log_searchcriteria (userid,search_criteria,date,search_type) VALUES ( NAME_CONST('userid',NULL), NAME_CONST('search_criteria',_latin1' SELECT SQL_C ALC_FOUND_ROWS idx_search.CTCX_LATITUDE, idx_search.CTCX_LONGITUDE, idx_search.b uilding_id, idx_search.LN_LIST_NUMBER, idx_search.LP_LIST_PRICE, idx_search.HSN_ ADRESS_HOUSE_NUMBER, idx_search.STR_ADDRESS_STREET, idx_search.CP_ADDRESS_COMPAS S_POINT, idx_search.UN_UNIT, idx_search.CIT_CITY, idx_search.ZP_ZIP_CODE, idx_se arch.AR_AREA_NAME, idx_search.BR_BEDROOMS, idx_search.BTH_BATHS, idx_search.ST_S TATUS, idx_search.CTCX_STYLE_TYPE, idx_s -------- FILE I/O -------- I/O thread 0 state: wait Windows aio (insert buffer thread) I/O thread 1 state: wait Windows aio (log thread) I/O thread 2 state: wait Windows aio (read thread) I/O thread 3 state: wait Windows aio (write thread) Pending normal aio reads: 0, aio writes: 1, ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0 Pending flushes (fsync) log: 0; buffer pool: 0 151006 OS file reads, 120758 OS file writes, 6844 OS fsyncs 0.00 reads/s, 0 avg bytes/read, 0.00 writes/s, 0.00 fsyncs/s ------------------------------------- INSERT BUFFER AND ADAPTIVE HASH INDEX ------------------------------------- Ibuf: size 1, free list len 5, seg size 7, 24664 inserts, 24664 merged recs, 4612 merges Hash table size 553253, node heap has 629 buffer(s) 0.00 hash searches/s, 0.00 non-hash searches/s --- LOG --- Log sequence number 5 2318193115 Log flushed up to 5 2318193115 Last checkpoint at 5 2318129891 0 pending log writes, 0 pending chkp writes 3036 log i/o's done, 0.00 log i/o's/second ---------------------- BUFFER POOL AND MEMORY ---------------------- Total memory allocated 213459462; in additional pool allocated 1720192 Dictionary memory allocated 240416 Buffer pool size 8192 Free buffers 0 Database pages 7563 Modified db pages 18 Pending reads 0 Pending writes: LRU 0, flush list 18, single page 0 Pages read 150973, created 28788, written 115137 0.00 reads/s, 0.00 creates/s, 0.00 writes/s No buffer pool page gets since the last printout -------------- ROW OPERATIONS -------------- 1 queries inside InnoDB, 0 queries in queue 1 read views open inside InnoDB Main thread id 2992, state: flushing buffer pool pages Number of rows inserted 794294, updated 89203, deleted 13698, read 1453084305 0.00 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s ---------------------------- END OF INNODB MONITOR OUTPUT ============================ Thanks

    Read the article

  • Why does NX Client for Windows silently closes after connection?

    - by pavel
    Hey! I connect remotely to my Ubuntu server from Vista machine. Now I need to run a GUI application on the server (Wireshark). So I decided to use FreeNX server/client to view Ubuntu GUI on Vista I have successfully installed FreeNX on Ubuntu and NX Client on Vista. I was following this guide Unfortunately, now I found myself stuck with the following problem. At the client, the !M logo window appears, but after a few seconds that window just closes, even without showing any error message. Guys, I'm really stuck, please help! Maybe I should have installed some graphical environment on the server? These are the details from NX client, it seems there are no errors. ----------------- Info: Display running with pid '7768' and handler '0x670d24'. NXPROXY - Version 3.4.0 Copyright (C) 2001, 2007 NoMachine. See http://www.nomachine.com/ for more information. Info: Proxy running in client mode with pid '2168'. Session: Starting session at 'Sat Dec 19 10:58:35 2009'. Warning: Connected to remote version 3.3.0 with local version 3.4.0. Info: Connection with remote proxy completed. Info: Using WAN link parameters 768/24/1/0. Info: Using cache parameters 4/4096KB/16384KB/16384KB. Info: Using pack method 'adaptive-9' with session 'kde'. Info: Using ZLIB data compression 1/1/32. Info: Using ZLIB stream compression 1/1. Info: No suitable cache file found. Info: Forwarding X11 connections to display ':0'. Info: Listening to font server connections on port '11000'. Session: Session started at 'Sat Dec 19 10:58:35 2009'. Info: Established X server connection. Info: Using shared memory parameters 0/0K. Session: Terminating session at 'Sat Dec 19 10:58:37 2009'. Session: Session terminated at 'Sat Dec 19 10:58:37 2009'. -----------

    Read the article

  • PCI-DSS compliance for business with only swipe terminals [migrated]

    - by rowatt
    I support the IT infrastructure for a small retail business which is now required to undergo a PCI-DSS assessment. The payment service and terminal provider (Streamline) has asked that we use Trustwave to do the PCI-DSS certification. The problem I face is that if I answer all questions and follow Trustwave's requirements to the letter, we will have to invest significantly in networking equipment to segment LANs and /or do internal vulnerability scanning, while at the same time Streamline assures me that the terminals we have (Verifone VX670-B and MagIC3 X-8) are secure, don't store any credit card information and are PCI-DSS compliant so by implication we don't need to take any action to ensure their network security. I'm looking for any suggestions as to how we can most easily meet the networking requirements for PCI-DSS. Some background on our current network setup: single wired LAN, also with WiFi turned on (though if this creates any PCI-DSS complexities we can turn it off). single Netgear ADSL router. This is the only firewall we have in place, and the firewall is out the box configuration (i.e. no DMZ, SNMP etc). Passwords have been changed though :-) a few windows PCs and 2 windows based tills, none of which ever see any credit card information at all. two swipe terminals. Until a few months ago (before we were told we had to be PCI-DSS certified) these terminals did auth/capture over the phone. Streamline suggested we moved to their IP Broadband service, which instead uses an SSL encrypted channel over the internet to do auth/capture, so we now use that service. We don't do any ecommerce or receive payments over the internet. All transactions are either cardholder present, or MOTO with details given over phone and typed direct into terminal. We're based in the UK. As I currently understand it we have three options in order to get PCI-DSS certification. segment our network so the POS terminals are isolated from all PCs, and set up internal vulnerability scanning on that network. don't segment the network, and have to do more internal scanning and have more onerous management of PCs than I think we need (for example, though the tills are Windows based, they are fully managed so I have no control over software update policies, anti virus etc). All PCs have anti virus (MSE) and windows updates automatically applied, but we don't have any centralised go back to auth/capture over phone lines. I can't imagine we are the first merchant to be in this situation. I'm looking for any recommendations a simple, cost effective way to be PCI-DSS compliant - either by doing 1 or 2 above with (hopefully) simple and inexpensive equipment/software, or any other ways if there's a better way to do this. Or... should we just go back to the digital stone age and do auth/capture over the phone, which means we don't need to do anything on our network to be PCI-DSS certified?

    Read the article

  • Innodb Queries Slow

    - by user105196
    I have redHat 5.3 (Tikanga) with Mysql 5.0.86 configued with RIAD 10 HW, I run an application inquiries from Mysql/InnoDB and MyIsam tables, the queries are super fast,but some quires on Innodb tables sometime slow down and took more than 1-3 seconds to run and these queries are simple and optimized, this problem occurred just on innodb tables in different time with random queries. Why is this happening only to Innodb tables? the below is the Innodb status and some Mysql variables: show innodb status\G ************* 1. row ************* Status: 120325 10:54:08 INNODB MONITOR OUTPUT Per second averages calculated from the last 19 seconds SEMAPHORES OS WAIT ARRAY INFO: reservation count 22943, signal count 22947 Mutex spin waits 0, rounds 561745, OS waits 7664 RW-shared spins 24427, OS waits 12201; RW-excl spins 1461, OS waits 1277 TRANSACTIONS Trx id counter 0 119069326 Purge done for trx's n:o < 0 119069326 undo n:o < 0 0 History list length 41 Total number of lock structs in row lock hash table 0 LIST OF TRANSACTIONS FOR EACH SESSION: ---TRANSACTION 0 0, not started, process no 29093, OS thread id 1166043456 MySQL thread id 703985, query id 5807220 localhost root show innodb status FILE I/O I/O thread 0 state: waiting for i/o request (insert buffer thread) I/O thread 1 state: waiting for i/o request (log thread) I/O thread 2 state: waiting for i/o request (read thread) I/O thread 3 state: waiting for i/o request (write thread) Pending normal aio reads: 0, aio writes: 0, ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0 Pending flushes (fsync) log: 0; buffer pool: 0 132777 OS file reads, 689086 OS file writes, 252010 OS fsyncs 0.00 reads/s, 0 avg bytes/read, 0.00 writes/s, 0.00 fsyncs/s INSERT BUFFER AND ADAPTIVE HASH INDEX Ibuf: size 1, free list len 366, seg size 368, 62237 inserts, 62237 merged recs, 52881 merges Hash table size 8850487, used cells 3698960, node heap has 7061 buffer(s) 0.00 hash searches/s, 0.00 non-hash searches/s LOG Log sequence number 15 3415398745 Log flushed up to 15 3415398745 Last checkpoint at 15 3415398745 0 pending log writes, 0 pending chkp writes 218214 log i/o's done, 0.00 log i/o's/second BUFFER POOL AND MEMORY Total memory allocated 4798817080; in additional pool allocated 12342784 Buffer pool size 262144 Free buffers 101603 Database pages 153480 Modified db pages 0 Pending reads 0 Pending writes: LRU 0, flush list 0, single page 0 Pages read 151954, created 1526, written 494505 0.00 reads/s, 0.00 creates/s, 0.00 writes/s No buffer pool page gets since the last printout ROW OPERATIONS 0 queries inside InnoDB, 0 queries in queue 1 read views open inside InnoDB Main thread process no. 29093, id 1162049856, state: waiting for server activity Number of rows inserted 77675, updated 85439, deleted 0, read 14377072495 0.00 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s END OF INNODB MONITOR OUTPUT 1 row in set, 1 warning (0.02 sec) read_buffer_size = 128M sort_buffer_size = 256M tmp_table_size = 1024M innodb_additional_mem_pool_size = 20M innodb_log_file_size=10M innodb_lock_wait_timeout=100 innodb_buffer_pool_size=4G join_buffer_size = 128M key_buffer_size = 1G can any one help me ?

    Read the article

  • Why is domU faster than dom0 on IO?

    - by Paco
    I have installed debian 7 on a physical machine. This is the configuration of the machine: 3 hard drives using RAID 5 Strip element size: 1M Read policy: Adaptive read ahead Write policy: Write Through /boot 200 MB ext2 / 15 GB ext3 SWAP 10GB LVM rest (~500GB) emphasized text I installed postgresql, created a big database (over 1GB). I have an SQL request that takes a lot of time to run (a SELECT statement, so it only reads data from the database). This request takes approximately 5.5 seconds to run. Then, I installed XEN, created a domU, with another debian distro. On this OS, I also installed postgresql, with the same database. The same SQL request takes only 2.5 seconds to run. I checked the kernel on both dom0 and domU. uname-a returns "Linux debian 3.2.0-4-amd64 #1 SMP Debian 3.2.41-2+deb7u2 x86_64 GNU/Linux" on both systems. I checked the kernel parameters, which are approximately the same. For those that are relevant, I changed their values to make them match on both systems using sysctl. I saw no changes (the requests still take the same amount of time). After this, I checked the file systems. I used ext3 on domU. Still no changes. I installed hdparm, and ran hdparm -Tt on both systems, on all my partitions on both systems, and I get similar results. Now, I am stuck, I don't know what is different, and what could be the cause of such a big difference. Additional Info: Debian runs on a Dell server PowerEdge 2950 postgresql: 9.1.9 (both dom0 and domU) xen-linux-system: 3.2.0 xen-hypervisor: 4.1 Thanks EDIT: As Krzysztof Ksiezyk suggested, it might be due to some file caching system. I ran the dd command to test both the read and write speed. Here is domU: root@test1:~# dd if=/dev/zero of=/root/dd count=5MB bs=1MB ^C2020+0 records in 2020+0 records out 2020000000 bytes (2.0 GB) copied, 18.8289 s, 107 MB/s root@test1:~# dd if=/root/dd of=/dev/null count=5MB bs=1MB 2020+0 records in 2020+0 records out 2020000000 bytes (2.0 GB) copied, 15.0549 s, 134 MB/s And here is dom0: root@debian:~# dd if=/dev/zero of=/root/dd count=5MB bs=1MB ^C1693+0 records in 1693+0 records out 1693000000 bytes (1.7 GB) copied, 8.87281 s, 191 MB/s root@debian:~# dd if=/root/dd of=/dev/null count=5MB bs=1MB 1693+0 records in 1693+0 records out 1693000000 bytes (1.7 GB) copied, 0.501509 s, 3.4 GB/s What can be the cause of this caching system? And how can we "fix" it? Can we apply it to dom0? EDIT 2: I switched my virtual disk type. To do so I followed this article. I did a dd if=/dev/vg0/test1-disk of=/mnt/test1-disk.img bs=16M Then in /etc/xen/test1.cfg, I changed the disk parameter to use file: instead of phy: it should have removed the file caching, but I still get the same numbers (domU being much faster for Postgres)

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Why a Swing app stops my Java servlet ?

    - by Frank
    I have a Swing runnable app which updates messages, then I have a Java servlet that gets messages from Paypal IPN (Instant Payment Notification), when the servlet starts up, in the init(), I starts the Swing runnable app which opens a desktop window, but 30 minutes later an error in the Swing caused the servlet to stop, how can that happen ? Because the runnable is running on it's own thread, servlet started that thread, why an error in that thread will cause the servlet to stop ? public class License_Manager extends JPanel implements Runnable { License_Manager() { Do_GUI(); ... start(); } public static void main(String[] args) { // Schedule a job for the event-dispatching thread : creating and showing this application's GUI. javax.swing.SwingUtilities.invokeLater(new Runnable() { public void run() { Create_And_Show_GUI(); } }); } } public class PayPal_Servlet extends HttpServlet { public void init(ServletConfig config) throws ServletException { super.init(config); License_Manager.main(null); } protected void processRequest(HttpServletRequest request,HttpServletResponse response) throws ServletException,IOException { } } And besides the error don't even have anything to do with my code, it looks like this : Exception in thread "AWT-EventQueue-0" java.lang.ArrayIndexOutOfBoundsException: 17 = 0 at java.util.Vector.elementAt(Vector.java:427) at javax.swing.DefaultListModel.getElementAt(DefaultListModel.java:70) at javax.swing.plaf.basic.BasicListUI.paintCell(BasicListUI.java:191) at javax.swing.plaf.basic.BasicListUI.paintImpl(BasicListUI.java:304) at javax.swing.plaf.basic.BasicListUI.paint(BasicListUI.java:227) at javax.swing.plaf.ComponentUI.update(ComponentUI.java:143) at javax.swing.JComponent.paintComponent(JComponent.java:763) at javax.swing.JComponent.paint(JComponent.java:1029) at javax.swing.JComponent.paintChildren(JComponent.java:864) at javax.swing.JComponent.paint(JComponent.java:1038) at javax.swing.JViewport.paint(JViewport.java:747) at javax.swing.JComponent.paintChildren(JComponent.java:864) at javax.swing.JComponent.paint(JComponent.java:1038) at javax.swing.JComponent.paintToOffscreen(JComponent.java:5124) at javax.swing.BufferStrategyPaintManager.paint(BufferStrategyPaintManager.java:278) at javax.swing.RepaintManager.paint(RepaintManager.java:1220) at javax.swing.JComponent._paintImmediately(JComponent.java:5072) at javax.swing.JComponent.paintImmediately(JComponent.java:4882) at javax.swing.RepaintManager.paintDirtyRegions(RepaintManager.java:803) at javax.swing.RepaintManager.paintDirtyRegions(RepaintManager.java:714) at javax.swing.RepaintManager.seqPaintDirtyRegions(RepaintManager.java:694) at javax.swing.SystemEventQueueUtilities$ComponentWorkRequest.run(SystemEventQueueUtilities.java:128) at java.awt.event.InvocationEvent.dispatch(InvocationEvent.java:209) at java.awt.EventQueue.dispatchEvent(EventQueue.java:597) at java.awt.EventDispatchThread.pumpOneEventForFilters(EventDispatchThread.java:269) at java.awt.EventDispatchThread.pumpEventsForFilter(EventDispatchThread.java:184) at java.awt.EventDispatchThread.pumpEventsForHierarchy(EventDispatchThread.java:174) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:169) at java.awt.EventDispatchThread.pumpEvents(EventDispatchThread.java:161) at java.awt.EventDispatchThread.run(EventDispatchThread.java:122)

    Read the article

  • Anyone got a nifty credit expiry algorithm?

    - by garethkeenan
    Our website uses a credit system to allow users to purchase inexpensive digital goods (eg. photos). We use credits, rather than asking the user to pay for items individually, because the items are cheap and we are trying to keep our credit-card/PayPal overhead low. Because we aren't a bank, we have to expire credits after a certain amount of time. We expire deposit credits after a year, but other types of credits (bonuses, prizes, refunds) may have a different shelf-life. When a buyer buys an item, we spend the credit that is going to expire first. Our current system keeps track of every deposit by storing the original value and the remainder to be spent. We keep a list of all purchases as well, of course. I am currently moving to a system which is much more like a traditional double-entry accounting system. A deposit will create a ledger item, increasing the user's 'spending' account balance. Every purchase will also create a ledger item, decreasing the user's 'spending' account balance. The new system has running balances, while the old system does not, which greatly improves our ability to find problems and do reconciliations. We do not want to use the old system of keeping a 'remainder' value attached to each deposit record because it is inefficient to replay a user's activities to calculate what the remainder of each deposit is over time (for the user's statement). So, after all of this verbose introduction, my question is "Does anyone else out there have a similar system of expiring credits?" If you could describe how you calculate expired credits it would be a great help. If all expired credits had the exact same shelf life, we would be able to calculate the expired amount using: Total Deposits - Total Spending - Deposits Not Due To Expire = Amount to Expire However, because deposits can have different shelf lives, this formula does not work because more than one deposit can be partially spent at any given time.

    Read the article

  • Prevent illegal behavior to the registered user

    - by Al Kush
    I am building a website in which this website will be focused on the publishing of novels. Every writers who publish their novels with us will get a royalty from us. And this royalty comes from the user or the reader who read the novel online in our website. When a user search for a novel and want to read that, they will click a link to the page which its content is that novel. The html page for each novels will have a session function that first will force them to login or register to make a payment such as with a credit-card or paypal before accessing that html page. My problem now is if the user has succesfully login and access the html page, I am afraid if the user will copy the content of the novel. Some disccussion out here How to Disable Copy Paste (Browser) have a solution to create it in Flash so that it can't be coppied-paste. But the I think, if the user who access it is a web developer like us they will try to find the path of the file from the link in the page source, and then they can steal it. For now I think it is enough I am explaining this. I hope anyone fully accept this problem (question) with a good idea to solve it.

    Read the article

  • Domain Transfer Protection - need advice

    - by Jack
    Hey, I am about to purchase a domain name for a bit of money. I do not personally know the person who I am purchasing the domain name from, we have only chatted via email. The proposed process for the transfer is: The owner of the domain lowest the domain name security and emails me the domain password, I request the transfer After the request, I transfer the money via PayPal When the money has been cleared the current domain name owner confirms the transfer via the link that he receives in that email I wait for it to be transferred. The domain is currently registered with DirectNIC - http://www.directnic.com/ Is this the best practice? Seeing I am paying a bit of money for this domain name, I am worried that after the money has been cleared that I won't see the domain name or hear from the current domain name owner again. Is there a 'domain governing body' which I can report to if this is the case? Is the proposed transfer process the best solution? Any advice would be awesome. Thanks! Jack

    Read the article

  • Secure web module for paid subscribtion

    - by DarkJaff
    Hello everyone, I'm building a website (a community web site like digg) but we will soon release a new feature that people will need to pay for. Right now, our website is in pure C# in .NET, very simple pages with some AJAX. When the member log in, there is no HTTPS. Everything is check with session and the internal validation that I do. What we need, is that when the people are logged in, they can click on a link a proceed to a payment (Paypal, credit card, etc). After the payment is done, the "billing module" will return a value to my site to validate that the payment is done so the account will be flagged as "paying member". I'm guessing this is the way to do, maybe I'm wrong! So my questions are: -What is the name of this kind of billing module? (I will do some research on that) -Do you know any ready to go module that does this kind of thing? -(I push my luck) Do you know any FREE module that do this kind of things. If something is not clear, don't hesitate to ask question :) Thanks a lot! DarkJaff

    Read the article

  • jquery autocomplete, $array source. how do i make it multiple?

    - by Toni Michel Caubet
    hello there! I'm using autocomplete so user can easly enter data on inputs, like this: <? $a = new etiqueta(0, ''); $b = $a->autocomplete_etiquetas(); ?> <script type="text/javascript"> function cargar_autocomplete_etiquetas(){ $("#tags").autocomplete({ source: [<? echo $b; ?>] }); } </script> $a = $b its an array with a result like: 'help','please',i','need','to,'be able to', 'select next item',' with autocomplete'; and i checked the ui documentation, but it doesn't fith with my source method.. any idea? I'm trying like this (edited with Bugai13 aportation): <? $a = new etiqueta(0, ''); $b = $a->autocomplete_etiquetas(); ?> <script type="text/javascript"> function cargar_autocomplete_etiquetas(){ $("#tags").autocomplete({ source: [<? echo $b; ?>], multiple: true, multipleSeparator: ", ", matchContains: true }); } </script> but i don't know how to do it.. any idea? are .push and .pop functions from the autocomplete? or shall i define, them? thanks again! PS: i'm getting adicted to this site! PS: come on dudes, i think the answer will be very usefull for many people PS: is it allowed to offer paypal reward?

    Read the article

  • jquery autocomplete: works for first value, how to enable it for next?

    - by Toni Michel Caubet
    hello there! I'm using autocomplete so user can easly enter data on inputs, like this: <? $a = new etiqueta(0, ''); $b = $a->autocomplete_etiquetas(); ?> <script type="text/javascript"> function cargar_autocomplete_etiquetas(){ $("#tags").autocomplete({ source: [<? echo $b; ?>] }); } </script> $a = $b its an array with a result like: 'help','please',i','need','to,'be able to', 'select next item',' with autocomplete'; and i checked the ui documentation, but it doesn't fith with my source method.. any idea? I'm trying like this (edited with Bugai13 aportation): <? $a = new etiqueta(0, ''); $b = $a->autocomplete_etiquetas(); ?> <script type="text/javascript"> function cargar_autocomplete_etiquetas(){ $("#tags").autocomplete({ source: [<? echo $b; ?>], multiple: true, multipleSeparator: ", ", matchContains: true }); } </script> but i don't know how to do it.. any idea? are .push and .pop functions from the autocomplete? or shall i define, them? thanks again! PS: i'm getting adicted to this site! PS: come on dudes, i think the answer will be very usefull for many people PS: is it allowed to offer paypal reward?

    Read the article

  • ecommerce platform or from scratch? customer specific catalogs and purchase orders

    - by rafi
    I have a possible freelance job in front of me for a distributor who wants product ordering set up but the orders are all P.O.s basically - no actual credit card or paypal transaction. The customer is simply billed and the order archived. Customers will need to login to this site and each customer will have their own custom catalog of a few dozen products which have been setup via a control panel this distributor uses. So there will be a master catalog of over 1,000 products (perhaps browsable but not to be ordered from on the site) but each customer will only be able to order from the products specified for their accounts. I know I can build this from scratch but I figured it's worth looking into what ecommerce platforms would get me a nice head start. Obviously shopping cart, order history, catalog management are concepts that I can reuse but are any of the ecommerce systems out there also capable of handling custom catalogs (maybe as multi-stores?) or transactions billed to accounts without credit card? The more I could reuse the better. I've messed with OSCommerce (way back) and a little Zen Cart more recently. I've also worked on a number of totally custom e-commerce sites. But my knowledge of the open source e-commerce tools is pretty limited and I'm trying to keep the effort as simple as I possibly can on this. I'm pretty flexible on the language of the platform by the way. Thanks in advance.

    Read the article

  • Specific Shopping Cart Recommendations

    - by Dean J
    I'm trying to suggest a solution for a friend who owns an existing web shop. The current solution isn't cutting it. The new solution needs to have a few things that look like they're enterprise-only if I go with Magento, and $12k a year for a store with maybe $20k in stock just doesn't work. The site should have items, which have one or more categories. Each category may have a parent category. Items have MSRP, and a discount rate by supplier, brand, and sometimes additional discount by product. When a user buys something, it should automatically setup a shipping label with UPS or USPS, depending on user's choice, and build two invoices; one to go in the box, one to go into records. This is crucial; it's low profit per item, so it needs to minimize labor here. Need to be able to have sales (limited by time), discount codes/coupon codes. Ideally would have private sales and/or members-only rates as well. It needs a payment gateway; Paypal/GCheckout-only isn't going to fly. Must be able to accept Visa/MC. Suggestions? I'm debating just building this myself in Java or PHP, but wanted to point my friend to a reasonable-cost solution that already exists if I can. This all seems pretty straightforward to code, save working with the UPS/USPS/Visa/MC APIs, and doing CSS for it.

    Read the article

  • Why my autocomplete doesn't whant to be multiple ???

    - by Toni Michel Caubet
    please, give me a hand on this one; i'm trying to use autocomplete so user can enter tags by comma separated, example: 'autocomplete, jquery , next , last' ok, i had the autocomplete working by sending him an $array with all the tags of my website with the previous format aswell, this is my code: <? $a = new etiqueta(0, ''); $b = $a->autocomplete_etiquetas(); mostrar_notificacion('autocomplete_etiquetas_cargado?'); ?> <script type="text/javascript"> function cargar_autocomplete_etiquetas(){ $("#tags").autocomplete({ source: [<? echo $b; ?>] }); } </script> All i want it's user to select a tag, apply the ', ' and the autocomplete to be ready for next tag i'm trying with (i know they are diff id's, also diff inputs): <? $b = new ingrediente(0, ''); $c = $b->autocomplete_ingredientes(); ?> <script type="text/javascript"> function cargar_autocomplete_ingredientes(){ $("#ingredientes").autocomplete({ source: [<? echo $c; ?>], multiple: true, multipleSeparator: ", " }); } </script> But with out success.... 10€ via paypal if answered before 23h (its 21:50 now), it's not much, it's an incentive :P

    Read the article

  • SQL SERVER – Solution to Puzzle – Simulate LEAD() and LAG() without Using SQL Server 2012 Analytic Function

    - by pinaldave
    Earlier I wrote a series on SQL Server Analytic Functions of SQL Server 2012. During the series to keep the learning maximum and having fun, we had few puzzles. One of the puzzle was simulating LEAD() and LAG() without using SQL Server 2012 Analytic Function. Please read the puzzle here first before reading the solution : Write T-SQL Self Join Without Using LEAD and LAG. When I was originally wrote the puzzle I had done small blunder and the question was a bit confusing which I corrected later on but wrote a follow up blog post on over here where I describe the give-away. Quick Recap: Generate following results without using SQL Server 2012 analytic functions. I had received so many valid answers. Some answers were similar to other and some were very innovative. Some answers were very adaptive and some did not work when I changed where condition. After selecting all the valid answer, I put them in table and ran RANDOM function on the same and selected winners. Here are the valid answers. No Joins and No Analytic Functions Excellent Solution by Geri Reshef – Winner of SQL Server Interview Questions and Answers (India | USA) WITH T1 AS (SELECT Row_Number() OVER(ORDER BY SalesOrderDetailID) N, s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty FROM Sales.SalesOrderDetail s WHERE SalesOrderID IN (43670, 43669, 43667, 43663)) SELECT SalesOrderID,SalesOrderDetailID,OrderQty, CASE WHEN N%2=1 THEN MAX(CASE WHEN N%2=0 THEN SalesOrderDetailID END) OVER (Partition BY (N+1)/2) ELSE MAX(CASE WHEN N%2=1 THEN SalesOrderDetailID END) OVER (Partition BY N/2) END LeadVal, CASE WHEN N%2=1 THEN MAX(CASE WHEN N%2=0 THEN SalesOrderDetailID END) OVER (Partition BY N/2) ELSE MAX(CASE WHEN N%2=1 THEN SalesOrderDetailID END) OVER (Partition BY (N+1)/2) END LagVal FROM T1 ORDER BY SalesOrderID, SalesOrderDetailID, OrderQty; GO No Analytic Function and Early Bird Excellent Solution by DHall – Winner of Pluralsight 30 days Subscription -- a query to emulate LEAD() and LAG() ;WITH s AS ( SELECT 1 AS ldOffset, -- equiv to 2nd param of LEAD 1 AS lgOffset, -- equiv to 2nd param of LAG NULL AS ldDefVal, -- equiv to 3rd param of LEAD NULL AS lgDefVal, -- equiv to 3rd param of LAG ROW_NUMBER() OVER (ORDER BY SalesOrderDetailID) AS row, SalesOrderID, SalesOrderDetailID, OrderQty FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ) SELECT s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty, ISNULL( sLd.SalesOrderDetailID, s.ldDefVal) AS LeadValue, ISNULL( sLg.SalesOrderDetailID, s.lgDefVal) AS LagValue FROM s LEFT OUTER JOIN s AS sLd ON s.row = sLd.row - s.ldOffset LEFT OUTER JOIN s AS sLg ON s.row = sLg.row + s.lgOffset ORDER BY s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty No Analytic Function and Partition By Excellent Solution by DHall – Winner of Pluralsight 30 days Subscription /* a query to emulate LEAD() and LAG() */ ;WITH s AS ( SELECT 1 AS LeadOffset, /* equiv to 2nd param of LEAD */ 1 AS LagOffset, /* equiv to 2nd param of LAG */ NULL AS LeadDefVal, /* equiv to 3rd param of LEAD */ NULL AS LagDefVal, /* equiv to 3rd param of LAG */ /* Try changing the values of the 4 integer values above to see their effect on the results */ /* The values given above of 0, 0, null and null behave the same as the default 2nd and 3rd parameters to LEAD() and LAG() */ ROW_NUMBER() OVER (ORDER BY SalesOrderDetailID) AS row, SalesOrderID, SalesOrderDetailID, OrderQty FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ) SELECT s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty, ISNULL( sLead.SalesOrderDetailID, s.LeadDefVal) AS LeadValue, ISNULL( sLag.SalesOrderDetailID, s.LagDefVal) AS LagValue FROM s LEFT OUTER JOIN s AS sLead ON s.row = sLead.row - s.LeadOffset /* Try commenting out this next line when LeadOffset != 0 */ AND s.SalesOrderID = sLead.SalesOrderID /* The additional join criteria on SalesOrderID above is equivalent to PARTITION BY SalesOrderID in the OVER clause of the LEAD() function */ LEFT OUTER JOIN s AS sLag ON s.row = sLag.row + s.LagOffset /* Try commenting out this next line when LagOffset != 0 */ AND s.SalesOrderID = sLag.SalesOrderID /* The additional join criteria on SalesOrderID above is equivalent to PARTITION BY SalesOrderID in the OVER clause of the LAG() function */ ORDER BY s.SalesOrderID, s.SalesOrderDetailID, s.OrderQty No Analytic Function and CTE Usage Excellent Solution by Pravin Patel - Winner of SQL Server Interview Questions and Answers (India | USA) --CTE based solution ; WITH cteMain AS ( SELECT SalesOrderID, SalesOrderDetailID, OrderQty, ROW_NUMBER() OVER (ORDER BY SalesOrderDetailID) AS sn FROM Sales.SalesOrderDetail WHERE SalesOrderID IN (43670, 43669, 43667, 43663) ) SELECT m.SalesOrderID, m.SalesOrderDetailID, m.OrderQty, sLead.SalesOrderDetailID AS leadvalue, sLeg.SalesOrderDetailID AS leagvalue FROM cteMain AS m LEFT OUTER JOIN cteMain AS sLead ON sLead.sn = m.sn+1 LEFT OUTER JOIN cteMain AS sLeg ON sLeg.sn = m.sn-1 ORDER BY m.SalesOrderID, m.SalesOrderDetailID, m.OrderQty No Analytic Function and Co-Related Subquery Usage Excellent Solution by Pravin Patel – Winner of SQL Server Interview Questions and Answers (India | USA) -- Co-Related subquery SELECT m.SalesOrderID, m.SalesOrderDetailID, m.OrderQty, ( SELECT MIN(SalesOrderDetailID) FROM Sales.SalesOrderDetail AS l WHERE l.SalesOrderID IN (43670, 43669, 43667, 43663) AND l.SalesOrderID >= m.SalesOrderID AND l.SalesOrderDetailID > m.SalesOrderDetailID ) AS lead, ( SELECT MAX(SalesOrderDetailID) FROM Sales.SalesOrderDetail AS l WHERE l.SalesOrderID IN (43670, 43669, 43667, 43663) AND l.SalesOrderID <= m.SalesOrderID AND l.SalesOrderDetailID < m.SalesOrderDetailID ) AS leag FROM Sales.SalesOrderDetail AS m WHERE m.SalesOrderID IN (43670, 43669, 43667, 43663) ORDER BY m.SalesOrderID, m.SalesOrderDetailID, m.OrderQty This was one of the most interesting Puzzle on this blog. Giveaway Winners will get following giveaways. Geri Reshef and Pravin Patel SQL Server Interview Questions and Answers (India | USA) DHall Pluralsight 30 days Subscription Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, Readers Contribution, Readers Question, SQL, SQL Authority, SQL Function, SQL Puzzle, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Building a Distributed Commerce Infrastructure in the Cloud using Azure and Commerce Server

    - by Lewis Benge
    One of the biggest questions I routinely get asked is how scalable Commerce Server is. Of course the text book answer is the product has been around for 10 years, powers some of the largest e-Commerce websites in the world, so it scales horizontally extremely well. One argument however though is what if you can't predict the growth of demand required of your Commerce Platform, or need the ability to scale up during busy seasons such as Christmas for a retail environment but are hesitant on maintaining the infrastructure on a year-round basis? The obvious answer is to utilise the many elasticated cloud infrastructure providers that are establishing themselves in the ever-growing market, the problem however is Commerce Server is still product which has a legacy tightly coupled dependency on Windows and IIS components. Commerce Server 2009 codename "R2" however introduced to the concept of an n-tier deployment of Microsoft Commerce Server, meaning you are no longer tied to core objects API but instead have serializable Commerce Entity objects, and business logic allowing for Commerce Server to now be built into a WCF-based SOA architecture. Presentation layers no-longer now need to remain on the same physical machine as the application server, meaning you can now build the user experience into multiple-technologies and host them in multiple places – leveraging the transport benefits that a WCF service may bring, such as message queuing, security, and multiple end-points. All of this logic will still need to remain in your internal infrastructure, for two reasons. Firstly cloud based computing infrastructure does not support PCI security requirements, and secondly even though many of the legacy Commerce Server dependencies have been abstracted away within this version of the application, it is still not a fully supported to be deployed exclusively into the cloud. If you do wish to benefit from the scalability of the cloud however, you can still achieve a great Commerce Server and Azure setup by utilising both the Azure App Fabric in terms of the service bus, and authentication services and Windows Azure to host any online presence you may require. The architecture would be something similar to this: This setup would allow you to construct your Commerce Services as part of your on-site infrastructure. These services would contain all of the channels custom business logic, and provide the overall interface back into the underlying Commerce Server components. It would be recommended that services are constructed around the specific business domain of the application, which based on your business model would usually consist of separate services around Catalogue, Orders, Search, Profiles, and Marketing. The App Fabric service bus is then used to abstract and aggregate further the services, making them available to the cloud and subsequently secured by App Fabrics authentication services. These services are now available for consumption by any client, using any supported technology – not just .NET. Thus meaning you are now able to construct apps for IPhone, integrate with Java based POS Devices, and any many other potential uses. This aggregation is useful, and forms the basis of the further strategy around diversifying and enhancing the e-Commerce experience, but also provides the foundation for the scalability we want to gain from utilising a cloud-based application platform. The Windows Azure application platform is Microsoft solution to benefiting from the true economies of scale in terms of the elasticity of the cloud. Just before the launch of the Azure Platform – Domino's pizza actually managed to run their whole SuperBowl operation from the scalability of Windows Azure, and simply switching back to their traditional operation the next day with no residual infrastructure costs. The platform also natively can subscribe to services and messages exposed within the AppFabric service bus, making it an ideal solution to build and deploy a presentation layer which will need to support of scalable infrastructure – such as a high demand public facing e-Commerce portal, or a promotion element of a brand. Windows Azure has excellent support for ASP.NET, including its own caching providers meaning expensive operations such as catalogue queries can persist in memory on the application server, reducing the demand on internal infrastructure and prioritising it for more business critical operations such as receiving orders and processing payments. Windows Azure also supports other languages too, meaning utilising this approach you can technically build a Commerce Server presentation layer in Java, PHP, or Ruby – or equally in ASP.NET or Silverlight without having to change any of the underlying business or Commerce Server implementation. This SOA-style architecture is one of the primary differentiators for Commerce Server as a product in the e-Commerce market, and now with the introduction of a WCF capability in Commerce Server 2009/2009 R2 the opportunities for extensibility of the both the user experience, and integration into third parties, are drastically increased, all with no effect to the underlying channel logic. So if you are looking at deployment options for your e-Commerce application to help support demand in a cost effective way. I would highly recommend you consider looking at Windows Azure, and if you have any questions in-particular about this style of deployment, please feel free to get in touch!

    Read the article

  • Sun Fire X4800 M2 Delivers World Record TPC-C for x86 Systems

    - by Brian
    Oracle's Sun Fire X4800 M2 server equipped with eight 2.4 GHz Intel Xeon Processor E7-8870 chips obtained a result of 5,055,888 tpmC on the TPC-C benchmark. This result is a world record for x86 servers. Oracle demonstrated this world record database performance running Oracle Database 11g Release 2 Enterprise Edition with Partitioning. The Sun Fire X4800 M2 server delivered a new x86 TPC-C world record of 5,055,888 tpmC with a price performance of $0.89/tpmC using Oracle Database 11g Release 2. This configuration is available 06/26/12. The Sun Fire X4800 M2 server delivers 3.0x times better performance than the next 8-processor result, an IBM System p 570 equipped with POWER6 processors. The Sun Fire X4800 M2 server has 3.1x times better price/performance than the 8-processor 4.7GHz POWER6 IBM System p 570. The Sun Fire X4800 M2 server has 1.6x times better performance than the 4-processor IBM x3850 X5 system equipped with Intel Xeon processors. This is the first TPC-C result on any system using eight Intel Xeon Processor E7-8800 Series chips. The Sun Fire X4800 M2 server is the first x86 system to get over 5 million tpmC. The Oracle solution utilized Oracle Linux operating system and Oracle Database 11g Enterprise Edition Release 2 with Partitioning to produce the x86 world record TPC-C benchmark performance. Performance Landscape Select TPC-C results (sorted by tpmC, bigger is better) System p/c/t tpmC Price/tpmC Avail Database MemorySize Sun Fire X4800 M2 8/80/160 5,055,888 0.89 USD 6/26/2012 Oracle 11g R2 4 TB IBM x3850 X5 4/40/80 3,014,684 0.59 USD 7/11/2011 DB2 ESE 9.7 3 TB IBM x3850 X5 4/32/64 2,308,099 0.60 USD 5/20/2011 DB2 ESE 9.7 1.5 TB IBM System p 570 8/16/32 1,616,162 3.54 USD 11/21/2007 DB2 9.0 2 TB p/c/t - processors, cores, threads Avail - availability date Oracle and IBM TPC-C Response times System tpmC Response Time (sec) New Order 90th% Response Time (sec) New Order Average Sun Fire X4800 M2 5,055,888 0.210 0.166 IBM x3850 X5 3,014,684 0.500 0.272 Ratios - Oracle Better 1.6x 1.4x 1.3x Oracle uses average new order response time for comparison between Oracle and IBM. Graphs of Oracle's and IBM's response times for New-Order can be found in the full disclosure reports on TPC's website TPC-C Official Result Page. Configuration Summary and Results Hardware Configuration: Server Sun Fire X4800 M2 server 8 x 2.4 GHz Intel Xeon Processor E7-8870 4 TB memory 8 x 300 GB 10K RPM SAS internal disks 8 x Dual port 8 Gbs FC HBA Data Storage 10 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with 1 x 3.06 GHz Intel Xeon X5675 processor 8 GB memory 10 x 2 TB 7.2K RPM 3.5" SAS disks 2 x Sun Storage F5100 Flash Array storage (1.92 TB each) 1 x Brocade 5300 switches Redo Storage 2 x Sun Fire X4270 M2 servers configured as COMSTAR heads, each with 1 x 3.06 GHz Intel Xeon X5675 processor 8 GB memory 11 x 2 TB 7.2K RPM 3.5" SAS disks Clients 8 x Sun Fire X4170 M2 servers, each with 2 x 3.06 GHz Intel Xeon X5675 processors 48 GB memory 2 x 300 GB 10K RPM SAS disks Software Configuration: Oracle Linux (Sun Fire 4800 M2) Oracle Solaris 11 Express (COMSTAR for Sun Fire X4270 M2) Oracle Solaris 10 9/10 (Sun Fire X4170 M2) Oracle Database 11g Release 2 Enterprise Edition with Partitioning Oracle iPlanet Web Server 7.0 U5 Tuxedo CFS-R Tier 1 Results: System: Sun Fire X4800 M2 tpmC: 5,055,888 Price/tpmC: 0.89 USD Available: 6/26/2012 Database: Oracle Database 11g Cluster: no New Order Average Response: 0.166 seconds Benchmark Description TPC-C is an OLTP system benchmark. It simulates a complete environment where a population of terminal operators executes transactions against a database. The benchmark is centered around the principal activities (transactions) of an order-entry environment. These transactions include entering and delivering orders, recording payments, checking the status of orders, and monitoring the level of stock at the warehouses. Key Points and Best Practices Oracle Database 11g Release 2 Enterprise Edition with Partitioning scales easily to this high level of performance. COMSTAR (Common Multiprotocol SCSI Target) is the software framework that enables an Oracle Solaris host to serve as a SCSI Target platform. COMSTAR uses a modular approach to break the huge task of handling all the different pieces in a SCSI target subsystem into independent functional modules which are glued together by the SCSI Target Mode Framework (STMF). The modules implementing functionality at SCSI level (disk, tape, medium changer etc.) are not required to know about the underlying transport. And the modules implementing the transport protocol (FC, iSCSI, etc.) are not aware of the SCSI-level functionality of the packets they are transporting. The framework hides the details of allocation providing execution context and cleanup of SCSI commands and associated resources and simplifies the task of writing the SCSI or transport modules. Oracle iPlanet Web Server middleware is used for the client tier of the benchmark. Each web server instance supports more than a quarter-million users while satisfying the response time requirement from the TPC-C benchmark. See Also Oracle Press Release -- Sun Fire X4800 M2 TPC-C Executive Summary tpc.org Complete Sun Fire X4800 M2 TPC-C Full Disclosure Report tpc.org Transaction Processing Performance Council (TPC) Home Page Ideas International Benchmark Page Sun Fire X4800 M2 Server oracle.com OTN Oracle Linux oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Sun Storage F5100 Flash Array oracle.com OTN Disclosure Statement TPC Benchmark C, tpmC, and TPC-C are trademarks of the Transaction Processing Performance Council (TPC). Sun Fire X4800 M2 (8/80/160) with Oracle Database 11g Release 2 Enterprise Edition with Partitioning, 5,055,888 tpmC, $0.89 USD/tpmC, available 6/26/2012. IBM x3850 X5 (4/40/80) with DB2 ESE 9.7, 3,014,684 tpmC, $0.59 USD/tpmC, available 7/11/2011. IBM x3850 X5 (4/32/64) with DB2 ESE 9.7, 2,308,099 tpmC, $0.60 USD/tpmC, available 5/20/2011. IBM System p 570 (8/16/32) with DB2 9.0, 1,616,162 tpmC, $3.54 USD/tpmC, available 11/21/2007. Source: http://www.tpc.org/tpcc, results as of 7/15/2011.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42  | Next Page >