Search Results

Search found 3425 results on 137 pages for 'polynomial math'.

Page 37/137 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • Fibonacci sequence subroutine returning one digit too high...PERL

    - by beProactive
    #!/usr/bin/perl -w use strict; sub fib { my($num) = @_; #give $num to input array return(1) if ($num<=1); #termination condition return($num = &fib($num-1) + &fib($num-2)); #should return sum of first "n" terms in the fibonacci sequence } print &fib(7)."\n"; #should output 20 This subroutine should be outputting a summation of the first "x" amount of terms, as specified by the argument to the sub. However, it's one too high. Does this have something to do with the recursion? Thanks.

    Read the article

  • Runge-Kutta Method with adaptive step

    - by infoholic_anonymous
    I am implementing Runge-Kutta method with adaptive step in matlab. I get different results as compared to matlab's own ode45 and my own implementation of Runge-Kutta method with fixed step. What am I doing wrong in my code? Is it possible? function [ result ] = rk4_modh( f, int, init, h, h_min ) % % f - function handle % int - interval - pair (x_min, x_max) % init - initial conditions - pair (y1(0),y2(0)) % h_min - lower limit for h (step length) % h - initial step length % x - independent variable ( for example time ) % y - dependent variable - vertical vector - in our case ( y1, y2 ) function [ k1, k2, k3, k4, ka, y ] = iteration( f, h, x, y ) % core functionality performed within loop k1 = h * f(x,y); k2 = h * f(x+h/2, y+k1/2); k3 = h * f(x+h/2, y+k2/2); k4 = h * f(x+h, y+k3); ka = (k1 + 2*k2 + 2*k3 + k4)/6; y = y + ka; end % constants % relative error eW = 1e-10; % absolute error eB = 1e-10; s = 0.9; b = 5; % initialization i = 1; x = int(1); y = init; while true hy = y; hx = x; %algorithm [ k1, k2, k3, k4, ka, y ] = iteration( f, h, x, y ); % error estimation for j=1:2 [ hk1, hk2, hk3, hk4, hka, hy ] = iteration( f, h/2, hx, hy ); hx = hx + h/2; end err(:,i) = abs(hy - y); % step adjustment e = abs( hy ) * eW + eB; a = min( e ./ err(:,i) )^(0.2); mul = a * s; if mul >= 1 % step length admitted keepH(i) = h; k(:,:,i) = [ k1, k2, k3, k4, ka ]; previous(i,:) = [ x+h, y' ]; %' i = i + 1; if floor( x + h + eB ) == int(2) break; else h = min( [mul*h, b*h, int(2)-x] ); x = x + keepH(i-1); end else % step length requires further adjustments h = mul * h; if ( h < h_min ) error('Computation with given precision impossible'); end end end result = struct( 'val', previous, 'k', k, 'err', err, 'h', keepH ); end The function in question is: function [ res ] = fun( x, y ) % res(1) = y(2) + y(1) * ( 0.9 - y(1)^2 - y(2)^2 ); res(2) = -y(1) + y(2) * ( 0.9 - y(1)^2 - y(2)^2 ); res = res'; %' end The call is: res = rk4( @fun, [0,20], [0.001; 0.001], 0.008 ); The resulting plot for x1 : The result of ode45( @fun, [0, 20], [0.001, 0.001] ) is:

    Read the article

  • finding ALL cycles in a huge sparse matrix

    - by Andy
    Hi there, First of all I'm quite a Java beginner, so I'm not sure if this is even possible! Basically I have a huge (3+million) data source of relational data (i.e. A is friends with B+C+D, B is friends with D+G+Z (but not A - i.e. unmutual) etc.) and I want to find every cycle within this (not necessarily connected) directed graph. I've found this thread (http://stackoverflow.com/questions/546655/finding-all-cycles-in-graph/549402#549402) which has pointed me to Donald Johnson's (elementary) cycle-finding algorithm which, superficially at least, looks like it'll do what I'm after (I'm going to try when I'm back at work on Tuesday - thought it wouldn't hurt to ask in the meanwhile!). I had a quick scan through the code of the Java implementation of Johnson's algorithm (in that thread) and it looks like a matrix of relations is the first step, so I guess my questions are: a) Is Java capable of handling a 3+million*3+million matrix? (was planning on representing A-friends-with-B by a binary sparse matrix) b) Do I need to find every connected subgraph as my first problem, or will cycle-finding algorithms handle disjoint data? c) Is this actually an appropriate solution for the problem? My understanding of "elementary" cycles is that in the graph below, rather than picking out A-B-C-D-E-F it'll pick out A-B-F, B-C-D etc. but that's not the end of the world given the task. E / \ D---F / \ / \ C---B---A d) If necessary, I can simplify the problem by enforcing mutuality in relations - i.e. A-friends-with-B <== B-friends-with-A, and if really necessary I can maybe cut down the data size, but realistically it is always going to be around the 1mil mark. z) Is this a P or NP task?! Am I biting off more than I can chew? Thanks all, any help appreciated! Andy

    Read the article

  • floor of double(time_t)

    - by plok
    I cannot understand why this throws undefined reference to `floor'": double curr_time = (double)time(NULL); return floor(curr_time); Hasn't it been casted to double, which is what floor receives?

    Read the article

  • Calculating Length Based on Sensor Data

    - by BSchlinker
    I've got an IR sensor which writes its current information to a token which I then interpret in a C# application. That's all good -- no problems there, heres my code: SetLabelText(tokens [1],label_sensorValue); sensorreading = Int32.Parse(tokens[0]); sensordistance = (mathfunctionhere); Great. So the further away the IR sensor is from an object, the lower the sensor reading (as less light is reflected back and received by the sensor). My problem is in interpreting that length. I can go ahead and get lets say "110" as a value when an object is 5 inches away, and then "70" as a value when an object is 6 inches away. Now I want to be able to calculate the distance of an object using these constants for any length. Any ideas?

    Read the article

  • calculate intersection between two segments in a symmetric way

    - by Elazar Leibovich
    When using the usual formulas to calculate intersection between two 2D segments, ie here, if you round the result to an integer, you get non-symmetric results. That is, sometimes, due to rounding errors, I get that intersection(A,B)!=intersection(B,A). The best solution is to keep working with floats, and compare the results up to a certain precision. However, I must round the results to integers after calculating the intersection, I cannot keep working with floats. My best solution so far was to use some full order on the segments in the plane, and have intersection to always compare the smaller segment to the larger segment. Is there a better method? Am I missing something?

    Read the article

  • Unique keys for Sphinx along three vectors instead of two

    - by Brendon Muir
    I'm trying to implement thinking-sphinx across multiple 'sites' hosted under a single rails application. I'm working with the developer of thinking-sphinx to sort through the finer details and am making good progress, but I need help with a maths problem: Usually the formula for making a unique ID in a thinking-sphinx search index is to take the id, multiply it by the total number of models that are searchable, and add the number of the currently indexed model: id * total_models + current_model This works well, but now I also through an entity_id into the mix, so there are three vextors for making this ID unique. Could someone help me figure out the equation to gaurantee that the id's will never collide using these three variables: id, total_models, total_entities The entity ID is an integer. I thought of: id * (total_models + total_entities) + (current_model + current_entity) but that results in collisions. Any help would be greatly appreciated :)

    Read the article

  • Rewrite probabilities as boolean algebra

    - by Magsol
    I'm given three binary random variables: X, Y, and Z. I'm also given the following: P(Z | X) P(Z | Y) P(X) P(Y) I'm then supposed to determine whether or not it is possible to find P(Z | Y, X). I've tried rewriting the solution in the form of Bayes' Theorem and have gotten nowhere. Given that these are boolean random variables, is it possible to rewrite the system in terms of boolean algebra? I understand that the conditionals can be mapped to boolean implications (x -> y, or !x + y), but I'm unsure how this would translate in terms of the overall problem I'm trying to solve. (yes, this is a homework problem, but here I'm much more interested in how to formally solve this problem than what the solution is...I also figured this question would be entirely too simple for MathOverflow)

    Read the article

  • Real life usage of the projective plane theory

    - by Elazar Leibovich
    I'm learning about the theory of the projective plane. Very generally speaking, it is an extension of the plane, which includes additional points which are defined as the intersection points of two parallel lines. In the projective plane, every two lines have an interesection point. Whether they're parallel or not. Every point in the projective plane can be represented by three numbers (you actually need less than that, but nevemind now). Is there any real life application which uses the projective plane? I can think that, for instance, a software which needs to find the intersections of a line, can benefit from always having an intersection point which might lead to simpler code, but is it really used?

    Read the article

  • What is the difference between "someValuesFrom" and "allValuesFrom"?

    - by ahmed
    In descriptive logic, what is the difference between "someValuesFrom" and "allValuesFrom"? In other words, the difference between (limited existential quantification) and (value restriction). For example, consider this picture: I have used the photoshop because I can't write some symbols. Is there any way to simplify the concept of somevaluefrom and allvaluesfrom?

    Read the article

  • Delphi component or library to display mathematical expressions

    - by Svein Bringsli
    I'm looking for a simple component that displays mathematical expressions in Delphi. When I started out I thought it would be easy to find something on the net, but it turns out it was harder than anticipated. There are lots and lots of components that will parse mathematical expressions, but few (none?) that will display them. Ideally I would like a component as simple as a TLabel, where I could set the caption to some expression and it would be displayed correctly, but some sort of library that let's me draw expressions to a canvas would also be sufficient for my needs. Update: I'm not talking about plotting graphs of functions or something like that. I want to display (for instance) (X^2+3)/X like this:

    Read the article

  • Single dimension peak fitting

    - by bufferz
    I have a single dimensional array of floating point values (c# doubles FYI) and I need to find the "peak" of the values ... as if graphed. I can't just take the highest value, as the peak is actually a plateau that has small fluctuations. This plateau is in the middle of a bunch of noise. I'm looking find a solution that would give me the center of this plateau. An example array might look like this: 1,2,1,1,2,1,3,2,4,4,4,5,6,8,8,8,8,7,8,7,9,7,5,4,4,3,3,2,2,1,1,1,1,1,2,1,1,1,1 where the peak is somewhere in the bolded section. Any ideas?

    Read the article

  • CenterPoint in CGContextAddArc ?

    - by Mikhail Naimy
    Hi , i am drawing Arc through CGCOntext.I want to draw a string in the center Point of Arc.how can i fond the center point in the Arc which has been drawn through CGContext. CGContextSetAlpha(ctx, 0.5); CGContextSetRGBFillColor(ctx, color.red, color.green, color.blue, color.alpha ); CGContextMoveToPoint(ctx, cX, cY); CGContextAddArc(ctx, cX, cY, radious+10, (startDeg-90)*M_PI/180.0, (endDeg-90)*M_PI/180.0, 0); CGContextClosePath(ctx); CGContextFillPath(ctx);

    Read the article

  • multidimensional vector rotation and angle computation -- how?

    - by macias
    Input: two multidimensional (for example dim=8) vectors a and b. I need to find out the "directed" angle (0-2*Pi, not 0-Pi) between those vectors a and b. And if they are not parallel I need to rotate vector b in plane a,b by "directed" angle L. If they are parallel, plane does not matter, but angle of rotation is still the same L. For 2d and 3d this is quite easy, but for more dimensions I am lost, I didn't find anything on google, and I prefer using some already proved&tested equations (avoiding errors introduced by my calculations :-D). Thank you in advance for tips, links, etc. Edit: dimension of the space is the same as dimension of the vectors.

    Read the article

  • values from different fields in matalb

    - by ariel
    Hi does anybody familiar with a way that I could implement a matrix with values from a field (not the real or complex number, but lets say Z mod p). so I could perform all the operation of matlab on the matrix (with the values of the chosen field) Ariel

    Read the article

  • How can I write a power function myself?

    - by Koning WWWWWWWWWWWWWWWWWWWWWWW
    Since I was 12, I was always wondering how I can make a function which calculates the power (e.g. 23) myself. In most languages these are included in the standard library, mostly as pow(double x, double y), but how can I write it myself? I was thinking about for loops, but it think my brain got in a loop (when I wanted to do a power with a non-integer exponent, like 54.5 or negatives 2-21) and I went crazy ;) So, how can I write a function which calculates the power of a real number? Thanks

    Read the article

  • How to compute the dot product?

    - by WizardOfOdds
    I have the following piece of pseudo-C/Java/C# code: int a[]= { 30, 20 }; int b[] = { 40, 50 }; int c[] = {12, 12}; How do I compute the sign of the dot-product AB . AC? I'm only interested in the sign, so I have: boolean signABxAC = ? Now concretely what do I write to get the sign of the dot-product AB . AC?

    Read the article

  • How to make scipy.interpolate give a an extrapolated result beyond the input range?

    - by Salim Fadhley
    I'm trying to port a program which uses a hand-rolled interpolator (developed by a mathematitian colleage) over to use the interpolators provided by scipy. I'd like to use or wrap the scipy interpolator so that it has as close as possible behavior to the old interpolator. A key difference between the two functions is that in our original interpolator - if the input value is above or below the input range, our original interpolator will extrapolate the result. If you try this with the scipy interpolator it raises a ValueError. Consider this program as an example: import numpy as np from scipy import interpolate x = np.arange(0,10) y = np.exp(-x/3.0) f = interpolate.interp1d(x, y) print f(9) print f(11) # Causes ValueError, because it's greater than max(x) Is there a sensible way to make it so that instead of crashing, the final line will simply do a linear extrapolate, continuing the gradients defined by the first and last two pouints to infinity. Note, that in the real software I'm not actually using the exp function - that's here for illustration only!

    Read the article

  • st-ordering library function?

    - by chang
    I'm in the search for an implementation of an ear-decomposition algorithm (http://www.ics.uci.edu/~eppstein/junkyard/euler/ear.html). I examined networkx and didn't find one. Although the algorithm layout is vaguely in my mind, I'd like to see some reference implementation, too. Side problem: First step could be an st-ordering of a graph. Are there any implementations for st-ordering algorithms you know? Thanks for your input. I'd really like to contribute e.g. to networkx by implementing the ear-decomposition algorithm in python.

    Read the article

  • Flipping issue when interpolating Rotations using Quaternions

    - by uhuu
    I use slerp to interpolate between two quaternions representing rotations. The resulting rotation is then extracted as Euler angles to be fed into a graphics lib. This kind of works, but I have the following problem; when rotating around two (one works just fine) axes in the direction of the green arrow as shown in the left frame here the rotation soon jumps around to rotate from the opposite site to the opposite visual direction, as indicated by the red arrow in the right frame. This may be logical from a mathematical perspective (although not to me), but it is undesired. How could I achieve an interpolation with no visual flipping and changing of directions when rotating around more than one axis, following the green arrow at all times until the interpolation is complete? Thanks in advance.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >