Search Results

Search found 4841 results on 194 pages for 'poor programmer'.

Page 37/194 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • Pros and cons of PHP vs C,C++ as language in a programming interview ?

    - by DhruvPathak
    Hi All, Though this is a matter of personal choice and comfort. I would want your views on a situation like this. Programmer A has been working on PHP for some years, and has had prior experience in C.C++ during algorithm courses in university. The current fluency is good is PHP,but C,C++ can also be brushed up. So for interviews with major companies who put lot of emphasis on algorithms and data structures in programming interview e.g. binary trees, linked lists, arrays , strings . What should programmer A do ? Try to implement those things in PHP ( which is generally more suited for web development rather than programming contests/interviews ) or Or brush up the C,C++ skills and keep them as primary tool for tackling interview questions. What are advantages/ disadvantages of each language for an environment like programming contest or an interview ? Why would you recommend,not recommend Programmer A to participate in a contest like google code Jam/ ACM ICPC using PHP instead of C++ ? ( assuming PHP is allowed as a language there)

    Read the article

  • Who should have full visibility of all (non-data) requirements information?

    - by ebyrob
    I work at a smallish mid-size company where requirements are sometimes nothing more than an email or brief meeting with a subject matter manager requiring some new feature. Should a programmer working on a feature reasonably expect to have access to such "request emails" and other requirements information? Is it more appropriate for a "program manager" (PGM) to rewrite all requirements before sharing with programmers? The company is not technology-centric and has between 50 and 250 employees. (fewer than 10 programmers in sum) Our project management "software" consists of a "TODO.txt" checked into source control in "/doc/". Note: This is nothing to do with "sensitive data access". Unless a particular subject matter manager's style of email correspondence is top secret. Given the suggested duplicate, perhaps this could be a turf war, as the PGM would like to specify HOW. Whereas WHY is absent and WHAT is muddled by the time it gets through to the programmer(s)... Basically. Should specification be transparent to programmers? Perhaps a history of requirements might exist. Shouldn't a programmer be able to see that history of reqs if/when they can tell something is hinky in the spec? This isn't a question about organizing requirements. It is a question about WHO should have full VISIBILITY of requirements. I'd propose it should be ALL STAKEHOLDERS. Please point out where I'm wrong here.

    Read the article

  • Are small amounts of functional programming understandable by non-FP people?

    - by kd35a
    Case: I'm working at a company, writing an application in Python that is handling a lot of data in arrays. I'm the only developer of this program at the moment, but it will probably be used/modified/extended in the future (1-3 years) by some other programmer, at this moment unknown to me. I will probably not be there directly to help then, but maybe give some support via email if I have time for it. So, as a developer who has learned functional programming (Haskell), I tend to solve, for example, filtering like this: filtered = filter(lambda item: included(item.time, dur), measures) The rest of the code is OO, it's just some small cases where I want to solve it like this, because it is much simpler and more beautiful according to me. Question: Is it OK today to write code like this? How does a developer that hasn't written/learned FP react to code like this? Is it readable? Modifiable? Should I write documentation like explaining to a child what the line does? # Filter out the items from measures for which included(item.time, dur) != True I have asked my boss, and he just says "FP is black magic, but if it works and is the most efficient solution, then it's OK to use it." What is your opinion on this? As a non-FP programmer, how do you react to the code? Is the code "googable" so you can understand what it does? I would love feedback on this :) Edit: I marked phant0m's post as answer, because he gives good advice on how to write the code in a more readable way, and still keep the advantages. But I would also like to recommend superM's post because of his viewpoint as a non-FP programmer.

    Read the article

  • Is It Worth It To Learn Experimental Languages

    - by Xander Lamkins
    I'm a young programmer who desires to work in the field someday as a programmer. I know Java, VB.NET and C#. I want to learn a new language (as I programmer, I know that it is valuable to extend what I know - to learn languages that make you think differently). I took a look online to see what languages were common. Everybody knows C and C++ (even those muggles who know so little about computers in general), so I thought, maybe I should push for C. C and C++ are nice but they are old. Things like Haskell and Forth (etc. etc. etc.) are old and have lost their popularity. I'm scared of learning C (or even C++) for this same reason. Java is pretty old as well and is slow because it's run by the JVM and not compiled to native code. I've been a Windows developer for quite a while. I recently started using Java - but only because it was more versatile and spreadable to other places. The problem is that it doesn't look like a very usable language for these reasons: It's most used purpose is for web application and cellphone apps (specifically Android) As far as actual products made with it, the only things that come to mind are Netbeans, Eclipse (hurrah for making and IDE with the language the IDE is for - it's like making a webpage for writing HTML/CSS/Javascript), and Minecraft which happens to be fun but laggy and bipolar as far as computer spec. support. Other than that it's used for servers but heck - I don't only want to make/configure servers. The .NET languages are nice, however: People laugh if I even mention VB.NET or C# in a serious conversation. It isn't cross-platform unless you use MONO (which is still in development and has some improvements to be made). Lacks low level stuff because, like Java with the JVM, it is run/managed by the CLR. My first thought was learning something like C and then using it to springboard into C++ (just to make sure I would have a strong understanding/base), but like I said earlier, it's getting older and older by the minute. What I've Looked Into Fantom looks nice. It's like a nice middleman between my two favorite languages and even lets me publish between the two interchangeably, but, unlike what I want, it compiles to the CLR or JVM (depending on what you publish it to) instead of it being a complete compile. D also looks nice. It seems like a very usable language and from multiple sources it appears to actually be better than C/C++. I would jump right with it, but I'm still unsure of its success because it obviously isn't very mainstream at this point. There are a couple others that looked pretty nice that focused on other things such as Opa with web development and Go by GOOGLE. My Question Is it worth learning these "experimental" languages? I've read other questions that say that if you aren't constantly learning languages and open to all languages that you aren't in the right mindset for programming. I understand this and I still might not quite be getting it, but in truth, if a language isn't going to become mainstream, should I spend my time learning something else? I don't want to learn old (or any going to soon be old) programming languages. I know that many people see this as something important, *but would any of you ever actually consider (assuming you didn't already know) FORTRAN? My goal is to stay current to make sure I'm successful in the future. Disclaimer Yes, I am a young programmer, so I probably made a lot of naive statements in my question. Feel free to correct me on ANYTHING! I have to start learning somewhere so I'm sure a lot of my knowledge is sketchy enough to have caused to incorrect statements or flaws in my thinking. Please leave any feelings you have in the comments.

    Read the article

  • Is it worth to learn Experimental Languages?

    - by Xander Lamkins
    I'm a young programmer who desires to work in the field someday as a programmer. I know Java, VB.NET and C#. I want to learn a new language (as I programmer, I know that it is valuable to extend what I know - to learn languages that make you think differently). I took a look online to see what languages were common. Everybody knows C and C++ (even those muggles who know so little about computers in general), so I thought, maybe I should push for C. C and C++ are nice but they are old. Things like Haskell and Forth (etc. etc. etc.) are old and have lost their popularity. I'm scared of learning C (or even C++) for this same reason. Java is pretty old as well and is slow because it's run by the JVM and not compiled to native code. I've been a Windows developer for quite a while. I recently started using Java - but only because it was more versatile and spreadable to other places. The problem is that it doesn't look like a very usable language for these reasons: It's most used purpose is for web application and cellphone apps (specifically Android) As far as actual products made with it, the only things that come to mind are Netbeans, Eclipse (hurrah for making and IDE with the language the IDE is for - it's like making a webpage for writing HTML/CSS/Javascript), and Minecraft which happens to be fun but laggy and bipolar as far as computer spec. support. Other than that it's used for servers but heck - I don't only want to make/configure servers. The .NET languages are nice, however: People laugh if I even mention VB.NET or C# in a serious conversation. It isn't cross-platform unless you use MONO (which is still in development and has some improvements to be made). Lacks low level stuff because, like Java with the JVM, it is run/managed by the CLR. My first thought was learning something like C and then using it to springboard into C++ (just to make sure I would have a strong understanding/base), but like I said earlier, it's getting older and older by the minute. What I've Looked Into Fantom looks nice. It's like a nice middleman between my two favorite languages and even lets me publish between the two interchangeably, but, unlike what I want, it compiles to the CLR or JVM (depending on what you publish it to) instead of it being a complete compile. D also looks nice. It seems like a very usable language and from multiple sources it appears to actually be better than C/C++. I would jump right with it, but I'm still unsure of its success because it obviously isn't very mainstream at this point. There are a couple others that looked pretty nice that focused on other things such as Opa with web development and Go by GOOGLE. My Question Is it worth learning these "experimental" languages? I've read other questions that say that if you aren't constantly learning languages and open to all languages that you aren't in the right mindset for programming. I understand this and I still might not quite be getting it, but in truth, if a language isn't going to become mainstream, should I spend my time learning something else? I don't want to learn old (or any going to soon be old) programming languages. I know that many people see this as something important, *but would any of you ever actually consider (assuming you didn't already know) FORTRAN? My goal is to stay current to make sure I'm successful in the future. Disclaimer Yes, I am a young programmer, so I probably made a lot of naive statements in my question. Feel free to correct me on ANYTHING! I have to start learning somewhere so I'm sure a lot of my knowledge is sketchy enough to have caused to incorrect statements or flaws in my thinking. Please leave any feelings you have in the comments.

    Read the article

  • what differs a computer scientist/software engineer to regular people who learn programming language and APIs?

    - by Amumu
    In University, we learn and reinvent the wheel a lot to truly learn the programming concepts. For example, we may learn assembly language to understand, what happens inside the box, and how the system operates, when we execute our code. This helps understanding higher level concepts deeper. For example, memory management like in C is just an abstraction of manually managed memory contents and addresses. The problem is, when we're going to work, usually productivity is required more. I could program my own containers, or string class, or date/time (using POSIX with C system call) to do the job, but then, it would take much longer time to use existing STL or Boost library, which abstract all of those thing and very easy to use. This leads to an issue, that a regular person doesn't need to get through all the low level/under the hood stuffs, who learns only one programming language and using language-related APIs. These people may eventually compete with the mainstream graduates from computer science or software engineer and call themselves programmers. At first, I don't think it's valid to call them programmers. I used to think, a real programmer needs to understand the computer deeply (but not at the electronic level). But then I changed my mind. After all, they get the job done and satisfy all the test criteria (logic, performance, security...), and in business environment, who cares if you're an expert and understand how computer works or not. You may get behind the "amateurs" if you spend to much time learning about how things work inside. It is totally valid for those people to call themselves programmers. This makes me confuse. So, after all, programming should be considered an universal skill? Does programming language and concepts matter or the problems we solve matter? For example, many C/C++ vs Java and other high level language, one of the main reason is because C/C++ features performance, as well as accessing low level facility. One of the main reason (in my opinion), is coding in C/C++ seems complex, so people feel good about it (not trolling anyone, just my observation, and my experience as well. Try to google "C hacker syndrome"). While Java on the other hand, made for simplifying programming tasks to help developers concentrate on solving their problems. Based on Java rationale, if the programing language keeps evolve, one day everyone can map their logic directly with natural language. Everyone can program. On that day, maybe real programmers are mathematicians, who could perform most complex logic (including business logic and academic logic) without worrying about installing/configuring compiler, IDEs? What's our job as a computer scientist/software engineer? To solve computer specific problems or to solve problems in general? For example, take a look at this exame: http://cm.baylor.edu/ICPCWiki/attach/Problem%20Resources/2010WorldFinalProblemSet.pdf . The example requires only basic knowledge about the programming language, but focus more on problem solving with the language. In sum, what differs a computer scientist/software engineer to regular people who learn programming language and APIs? A mathematician can be considered a programmer, if he is good enough to use programming language to implement his formula. Can we programmer do this? Probably not for most of us, since we specialize about computer, not math. An electronic engineer, who learns how to use C to program for his devices, can be considered a programmer. If the programming languages keep being simplified, may one day the software engineers, who implements business logic and create softwares, be obsolete? (Not for computer scientist though, since many of the CS topics are scientific, and science won't change, but technology will).

    Read the article

  • Violation of the DRY Principle

    - by Onorio Catenacci
    I am sure there's a name for this anti-pattern somewhere; however I am not familiar enough with the anti-pattern literature to know it. Consider the following scenario: or0 is a member function in a class. For better or worse, it's heavily dependent on class member variables. Programmer A comes along and needs functionality like or0 but rather than calling or0, Programmer A copies and renames the entire class. I'm guessing that she doesn't call or0 because, as I say, it's heavily dependent on member variables for its functionality. Or maybe she's a junior programmer and doesn't know how to call it from other code. So now we've got or0 and c0 (c for copy). I can't completely fault Programmer A for this approach--we all get under tight deadlines and we hack code to get work done. Several programmers maintain or0 so it's now version orN. c0 is now version cN. Unfortunately most of the programmers that maintained the class containing or0 seemed to be completely unaware of c0--which is one of the strongest arguments I can think of for the wisdom of the DRY principle. And there may also have been independent maintainance of the code in c. Either way it appears that or0 and c0 were maintained independent of each other. And, joy and happiness, an error is occurring in cN that does not occur in orN. So I have a few questions: 1.) Is there a name for this anti-pattern? I've seen this happen so often I'd find it hard to believe this is not a named anti-pattern. 2.) I can see a few alternatives: a.) Fix orN to take a parameter that specifies the values of all the member variables it needs. Then modify cN to call orN with all of the needed parameters passed in. b.) Try to manually port fixes from orN to cN. (Mind you I don't want to do this but it is a realistic possibility.) c.) Recopy orN to cN--again, yuck but I list it for sake of completeness. d.) Try to figure out where cN is broken and then repair it independently of orN. Alternative a seems like the best fix in the long term but I doubt the customer will let me implement it. Never time or money to fix things right but always time and money to repair the same problem 40 or 50 times, right? Can anyone suggest other approaches I may not have considered? If you were in my place, which approach would you take? If there are other questions and answers here along these lines, please post links to them. I don't mind removing this question if it's a dupe but my searching hasn't turned up anything that addresses this question yet. EDIT: Thanks everyone for all the thoughtful responses. I asked about a name for the anti-pattern so I could research it further on my own. I'm surprised this particular bad coding practice doesn't seem to have a "canonical" name for it.

    Read the article

  • What Counts for a DBA: Skill

    - by drsql
    “Practice makes perfect:” right? Well, not exactly. The reality of it all is that this saying is an untrustworthy aphorism. I discovered this in my “younger” days when I was a passionate tennis player, practicing and playing 20+ hours a week. No matter what my passion level was, without some serious coaching (and perhaps a change in dietary habits), my skill level was never going to rise to a level where I could make any money at the sport that involved something other than selling tennis balls at a sporting goods store. My game may have improved with all that practice but I had too many bad practices to overcome. Practice by itself merely reinforces what we know and what we can figure out naturally. The truth is actually closer to the expression used by Vince Lombardi: “Perfect practice makes perfect.” So how do you get to become skilled as a DBA if practice alone isn’t sufficient? Hit the Internet and start searching for SQL training and you can find 100 different sites. There are also hundreds of blogs, magazines, books, conferences both onsite and virtual. But then how do you know who is good? Unfortunately often the worst guide can be to find out the experience level of the writer. Some of the best DBAs are frighteningly young, and some got their start back when databases were stored on stacks of paper with little holes in it. As a programmer, is it really so hard to understand normalization? Set based theory? Query optimization? Indexing and performance tuning? The biggest barrier often is previous knowledge, particularly programming skills cultivated before you get started with SQL. In the world of technology, it is pretty rare that a fresh programmer will gravitate to database programming. Database programming is very unsexy work, because without a UI all you have are a bunch of text strings that you could never impress anyone with. Newbies spend most of their time building UIs or apps with procedural code in C# or VB scoring obvious interesting wins. Making matters worse is that SQL programming requires mastery of a much different toolset than most any mainstream programming skill. Instead of controlling everything yourself, most of the really difficult work is done by the internals of the engine (written by other non-relational programmers…we just can’t get away from them.) So is there a golden road to achieving a high skill level? Sadly, with tennis, I am pretty sure I’ll never discover it. However, with programming it seems to boil down to practice in applying the appropriate techniques for whatever type of programming you are doing. Can a C# programmer build a great database? As long as they don’t treat SQL like C#, absolutely. Same goes for a DBA writing C# code. None of this stuff is rocket science, as long as you learn to understand that different types of programming require different skill sets and you as a programmer must recognize the difference between one of the procedural languages and SQL and treat them differently. Skill comes from practicing doing things the right way and making “right” a habit.

    Read the article

  • Plan Caching and Query Memory Part I – When not to use stored procedure or other plan caching mechanisms like sp_executesql or prepared statement

    - by sqlworkshops
      The most common performance mistake SQL Server developers make: SQL Server estimates memory requirement for queries at compilation time. This mechanism is fine for dynamic queries that need memory, but not for queries that cache the plan. With dynamic queries the plan is not reused for different set of parameters values / predicates and hence different amount of memory can be estimated based on different set of parameter values / predicates. Common memory allocating queries are that perform Sort and do Hash Match operations like Hash Join or Hash Aggregation or Hash Union. This article covers Sort with examples. It is recommended to read Plan Caching and Query Memory Part II after this article which covers Hash Match operations.   When the plan is cached by using stored procedure or other plan caching mechanisms like sp_executesql or prepared statement, SQL Server estimates memory requirement based on first set of execution parameters. Later when the same stored procedure is called with different set of parameter values, the same amount of memory is used to execute the stored procedure. This might lead to underestimation / overestimation of memory on plan reuse, overestimation of memory might not be a noticeable issue for Sort operations, but underestimation of memory will lead to spill over tempdb resulting in poor performance.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   To read additional articles I wrote click here.   In most cases it is cheaper to pay for the compilation cost of dynamic queries than huge cost for spill over tempdb, unless memory requirement for a stored procedure does not change significantly based on predicates.   The best way to learn is to practice. To create the below tables and reproduce the behavior, join the mailing list by using this link: www.sqlworkshops.com/ml and I will send you the table creation script. Most of these concepts are also covered in our webcasts: www.sqlworkshops.com/webcasts   Enough theory, let’s see an example where we sort initially 1 month of data and then use the stored procedure to sort 6 months of data.   Let’s create a stored procedure that sorts customers by name within certain date range.   --Example provided by www.sqlworkshops.com create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1)       end go Let’s execute the stored procedure initially with 1 month date range.   set statistics time on go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 48 ms to complete.     The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.       The estimated number of rows, 43199.9 is similar to actual number of rows 43200 and hence the memory estimation should be ok.       There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 679 ms to complete.      The stored procedure was granted 6656 KB based on 43199.9 rows being estimated.      The estimated number of rows, 43199.9 is way different from the actual number of rows 259200 because the estimation is based on the first set of parameter value supplied to the stored procedure which is 1 month in our case. This underestimation will lead to sort spill over tempdb, resulting in poor performance.      There was Sort Warnings in SQL Profiler.    To monitor the amount of data written and read from tempdb, one can execute select num_of_bytes_written, num_of_bytes_read from sys.dm_io_virtual_file_stats(2, NULL) before and after the stored procedure execution, for additional information refer to the webcast: www.sqlworkshops.com/webcasts.     Let’s recompile the stored procedure and then let’s first execute the stored procedure with 6 month date range.  In a production instance it is not advisable to use sp_recompile instead one should use DBCC FREEPROCCACHE (plan_handle). This is due to locking issues involved with sp_recompile, refer to our webcasts for further details.   exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go Now the stored procedure took only 294 ms instead of 679 ms.    The stored procedure was granted 26832 KB of memory.      The estimated number of rows, 259200 is similar to actual number of rows of 259200. Better performance of this stored procedure is due to better estimation of memory and avoiding sort spill over tempdb.      There was no Sort Warnings in SQL Profiler.       Now let’s execute the stored procedure with 1 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-31' go The stored procedure took 49 ms to complete, similar to our very first stored procedure execution.     This stored procedure was granted more memory (26832 KB) than necessary memory (6656 KB) based on 6 months of data estimation (259200 rows) instead of 1 month of data estimation (43199.9 rows). This is because the estimation is based on the first set of parameter value supplied to the stored procedure which is 6 months in this case. This overestimation did not affect performance, but it might affect performance of other concurrent queries requiring memory and hence overestimation is not recommended. This overestimation might affect performance Hash Match operations, refer to article Plan Caching and Query Memory Part II for further details.    Let’s recompile the stored procedure and then let’s first execute the stored procedure with 2 day date range. exec sp_recompile CustomersByCreationDate go --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-02' go The stored procedure took 1 ms.      The stored procedure was granted 1024 KB based on 1440 rows being estimated.      There was no Sort Warnings in SQL Profiler.      Now let’s execute the stored procedure with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-06-30' go   The stored procedure took 955 ms to complete, way higher than 679 ms or 294ms we noticed before.      The stored procedure was granted 1024 KB based on 1440 rows being estimated. But we noticed in the past this stored procedure with 6 month date range needed 26832 KB of memory to execute optimally without spill over tempdb. This is clear underestimation of memory and the reason for the very poor performance.      There was Sort Warnings in SQL Profiler. Unlike before this was a Multiple pass sort instead of Single pass sort. This occurs when granted memory is too low.      Intermediate Summary: This issue can be avoided by not caching the plan for memory allocating queries. Other possibility is to use recompile hint or optimize for hint to allocate memory for predefined date range.   Let’s recreate the stored procedure with recompile hint. --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, recompile)       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.      The stored procedure with 1 month date range has good estimation like before.      The stored procedure with 6 month date range also has good estimation and memory grant like before because the query was recompiled with current set of parameter values.      The compilation time and compilation CPU of 1 ms is not expensive in this case compared to the performance benefit.     Let’s recreate the stored procedure with optimize for hint of 6 month date range.   --Example provided by www.sqlworkshops.com drop proc CustomersByCreationDate go create proc CustomersByCreationDate @CreationDateFrom datetime, @CreationDateTo datetime as begin       declare @CustomerID int, @CustomerName varchar(48), @CreationDate datetime       select @CustomerName = c.CustomerName, @CreationDate = c.CreationDate from Customers c             where c.CreationDate between @CreationDateFrom and @CreationDateTo             order by c.CustomerName       option (maxdop 1, optimize for (@CreationDateFrom = '2001-01-01', @CreationDateTo ='2001-06-30'))       end go Let’s execute the stored procedure initially with 1 month date range and then with 6 month date range.   --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-01-30' exec CustomersByCreationDate '2001-01-01', '2001-06-30' go The stored procedure took 48ms and 291 ms in line with previous optimal execution times.    The stored procedure with 1 month date range has overestimation of rows and memory. This is because we provided hint to optimize for 6 months of data.      The stored procedure with 6 month date range has good estimation and memory grant because we provided hint to optimize for 6 months of data.       Let’s execute the stored procedure with 12 month date range using the currently cashed plan for 6 month date range. --Example provided by www.sqlworkshops.com exec CustomersByCreationDate '2001-01-01', '2001-12-31' go The stored procedure took 1138 ms to complete.      2592000 rows were estimated based on optimize for hint value for 6 month date range. Actual number of rows is 524160 due to 12 month date range.      The stored procedure was granted enough memory to sort 6 month date range and not 12 month date range, so there will be spill over tempdb.      There was Sort Warnings in SQL Profiler.      As we see above, optimize for hint cannot guarantee enough memory and optimal performance compared to recompile hint.   This article covers underestimation / overestimation of memory for Sort. Plan Caching and Query Memory Part II covers underestimation / overestimation for Hash Match operation. It is important to note that underestimation of memory for Sort and Hash Match operations lead to spill over tempdb and hence negatively impact performance. Overestimation of memory affects the memory needs of other concurrently executing queries. In addition, it is important to note, with Hash Match operations, overestimation of memory can actually lead to poor performance.   Summary: Cached plan might lead to underestimation or overestimation of memory because the memory is estimated based on first set of execution parameters. It is recommended not to cache the plan if the amount of memory required to execute the stored procedure has a wide range of possibilities. One can mitigate this by using recompile hint, but that will lead to compilation overhead. However, in most cases it might be ok to pay for compilation rather than spilling sort over tempdb which could be very expensive compared to compilation cost. The other possibility is to use optimize for hint, but in case one sorts more data than hinted by optimize for hint, this will still lead to spill. On the other side there is also the possibility of overestimation leading to unnecessary memory issues for other concurrently executing queries. In case of Hash Match operations, this overestimation of memory might lead to poor performance. When the values used in optimize for hint are archived from the database, the estimation will be wrong leading to worst performance, so one has to exercise caution before using optimize for hint, recompile hint is better in this case. I explain these concepts with detailed examples in my webcasts (www.sqlworkshops.com/webcasts), I recommend you to watch them. The best way to learn is to practice. To create the above tables and reproduce the behavior, join the mailing list at www.sqlworkshops.com/ml and I will send you the relevant SQL Scripts.     Register for the upcoming 3 Day Level 400 Microsoft SQL Server 2008 and SQL Server 2005 Performance Monitoring & Tuning Hands-on Workshop in London, United Kingdom during March 15-17, 2011, click here to register / Microsoft UK TechNet.These are hands-on workshops with a maximum of 12 participants and not lectures. For consulting engagements click here.     Disclaimer and copyright information:This article refers to organizations and products that may be the trademarks or registered trademarks of their various owners. Copyright of this article belongs to R Meyyappan / www.sqlworkshops.com. You may freely use the ideas and concepts discussed in this article with acknowledgement (www.sqlworkshops.com), but you may not claim any of it as your own work. This article is for informational purposes only; you use any of the suggestions given here entirely at your own risk.   R Meyyappan [email protected] LinkedIn: http://at.linkedin.com/in/rmeyyappan

    Read the article

  • Is there a better term than "smoothness" or "granularity" to describe this language feature?

    - by Chris Stevens
    One of the best things about programming is the abundance of different languages. There are general purpose languages like C++ and Java, as well as little languages like XSLT and AWK. When comparing languages, people often use things like speed, power, expressiveness, and portability as the important distinguishing features. There is one characteristic of languages I consider to be important that, so far, I haven't heard [or been able to come up with] a good term for: how well a language scales from writing tiny programs to writing huge programs. Some languages make it easy and painless to write programs that only require a few lines of code, e.g. task automation. But those languages often don't have enough power to solve large problems, e.g. GUI programming. Conversely, languages that are powerful enough for big problems often require far too much overhead for small problems. This characteristic is important because problems that look small at first frequently grow in scope in unexpected ways. If a programmer chooses a language appropriate only for small tasks, scope changes can require rewriting code from scratch in a new language. And if the programmer chooses a language with lots of overhead and friction to solve a problem that stays small, it will be harder for other people to use and understand than necessary. Rewriting code that works fine is the single most wasteful thing a programmer can do with their time, but using a bazooka to kill a mosquito instead of a flyswatter isn't good either. Here are some of the ways this characteristic presents itself. Can be used interactively - there is some environment where programmers can enter commands one by one Requires no more than one file - neither project files nor makefiles are required for running in batch mode Can easily split code across multiple files - files can refeence each other, or there is some support for modules Has good support for data structures - supports structures like arrays, lists, and especially classes Supports a wide variety of features - features like networking, serialization, XML, and database connectivity are supported by standard libraries Here's my take on how C#, Python, and shell scripting measure up. Python scores highest. Feature C# Python shell scripting --------------- --------- --------- --------------- Interactive poor strong strong One file poor strong strong Multiple files strong strong moderate Data structures strong strong poor Features strong strong strong Is there a term that captures this idea? If not, what term should I use? Here are some candidates. Scalability - already used to decribe language performance, so it's not a good idea to overload it in the context of language syntax Granularity - expresses the idea of being good just for big tasks versus being good for big and small tasks, but doesn't express anything about data structures Smoothness - expresses the idea of low friction, but doesn't express anything about strength of data structures or features Note: Some of these properties are more correctly described as belonging to a compiler or IDE than the language itself. Please consider these tools collectively as the language environment. My question is about how easy or difficult languages are to use, which depends on the environment as well as the language.

    Read the article

  • When is the best time to do self learning in relation with software management?

    - by shankbond
    It all started from here. I have been following Software Estimation: Demystifying the Black Art (Best Practices (Microsoft)). The third chapter says that in Software Management: You cannot give too much time to software developers, if you give it to them, then it is likely that extra time given to them will be filled by some other tasks (in other words, the developers will eat that time :)) Parkinson's Law You can also not squeeze the time from their schedule because if you do that, it is likely that they will develop poor quality product, poor design and will hurt you in the long run, there will be a panic situation and total chaos in the project, lots of rework etc. My question is related to the first point. If you don't give enough time then will the typical software engineer learn his/her skills? The market is always coming with new technologies, you need to learn them. Even with the existing familiar technologies there are always best practices and dos and don'ts.

    Read the article

  • Methods to Manage/Document "one-off" Reports

    - by Jason Holland
    I'm a programmer that also does database stuff and I get a lot of so-called one-time report requests and recurring report requests. I work at a company that has a SQL Server database that we integrate third-party data with and we also have some third-party vendors that we have to use their proprietary reporting system to extract data in flat file format from that we don't integrate into SQL Server for security reasons. To generate many of these reports I have to query data from various systems, write small scripts to combine data from the separate systems, cry, pull my hair, curse the last guy's name that made the report before me, etc. My question is, what are some good methods for documenting the steps taken to generate these reports so the next poor soul that has to do them won't curse my name? As of now I just have a folder with subfolders per project with the selects and scripts that generated the last report but that seems like a "poor man's" solution. :)

    Read the article

  • Is there a better term than "smoothness" or "granularity" to describe this language feature?

    - by Chris
    One of the best things about programming is the abundance of different languages. There are general purpose languages like C++ and Java, as well as little languages like XSLT and AWK. When comparing languages, people often use things like speed, power, expressiveness, and portability as the important distinguishing features. There is one characteristic of languages I consider to be important that, so far, I haven't heard [or been able to come up with] a good term for: how well a language scales from writing tiny programs to writing huge programs. Some languages make it easy and painless to write programs that only require a few lines of code, e.g. task automation. But those languages often don't have enough power to solve large problems, e.g. GUI programming. Conversely, languages that are powerful enough for big problems often require far too much overhead for small problems. This characteristic is important because problems that look small at first frequently grow in scope in unexpected ways. If a programmer chooses a language appropriate only for small tasks, scope changes can require rewriting code from scratch in a new language. And if the programmer chooses a language with lots of overhead and friction to solve a problem that stays small, it will be harder for other people to use and understand than necessary. Rewriting code that works fine is the single most wasteful thing a programmer can do with their time, but using a bazooka to kill a mosquito instead of a flyswatter isn't good either. Here are some of the ways this characteristic presents itself. Can be used interactively - there is some environment where programmers can enter commands one by one Requires no more than one file - neither project files nor makefiles are required for running in batch mode Can easily split code across multiple files - files can refeence each other, or there is some support for modules Has good support for data structures - supports structures like arrays, lists, and especially classes Supports a wide variety of features - features like networking, serialization, XML, and database connectivity are supported by standard libraries Here's my take on how C#, Python, and shell scripting measure up. Python scores highest. Feature C# Python shell scripting --------------- --------- --------- --------------- Interactive poor strong strong One file poor strong strong Multiple files strong strong moderate Data structures strong strong poor Features strong strong strong Is there a term that captures this idea? If not, what term should I use? Here are some candidates. Scalability - already used to decribe language performance, so it's not a good idea to overload it in the context of language syntax Granularity - expresses the idea of being good just for big tasks versus being good for big and small tasks, but doesn't express anything about data structures Smoothness - expresses the idea of low friction, but doesn't express anything about strength of data structures or features Note: Some of these properties are more correctly described as belonging to a compiler or IDE than the language itself. Please consider these tools collectively as the language environment. My question is about how easy or difficult languages are to use, which depends on the environment as well as the language.

    Read the article

  • Deeper Unity search indexing

    - by Chris Bauer
    Unity is currently only indexing and displaying a shallow set of file results. Suppose I want to open the file "/home/Music/Creedence Clearwater Revival/Willy and the Poor Boys/The-Midnight-Special.mp3". I open the "Files and Folders" lens and type "The Midnight Special". Unfortunately, the song doesn't display. I try "Willy and the Poor Boys" but that folder doesn't display either. The only folder that does display in the lens is "Music". Therefore I must open the "Music" folder then navigate through the entire directory tree to open the file I want. How do I get a deeper index of files to display in the "Files and Folders" lens? Thanks for your help!

    Read the article

  • Q-Tec Webcam 100 (093a:2460) video quality is horrible at best

    - by Sir Emeth
    I just bought a new usb webcam for my desktop setup of Ubuntu Natty Narwhal. I plugged it in, started up Cheese, and saw my smiling face. But it was green and lined, very poor quality overall. I am skeptical that this is due to a poor quality webcam. :P I tried it in Skype, Google+, and Gchat, but all of those showed only a black screen. They recognized the webcam as present, but showed no stream from it. Kamoso showed a black screen as well, and Camorama had even poorer quality than Cheese. Here are the details for the webcam from lsusb: Bus 001 Device 005: ID 093a:2460 Pixart Imaging, Inc. Q-TEC WEBCAM 100 Am I missing a driver, or are there settings somewhere I need to tweak?

    Read the article

  • The Numbers of Customer Experience

    - by Christie Flanagan
    This week, we’ll be continuing our conversations about Customer Experience (CX) on the Oracle WebCenter blog.  While we all know that customer experience is critically important for acquiring new customers and engendering long term brand loyalty, I thought we could kick this week off by taking a look at the numbers of customer experience.   I’m sure you’ll agree that nothing quite puts things into perspective like numbers and figures. A whopping 86% of consumers say that they are willing to pay more for a better customer experience.  But many companies are failing to step up to the challenge.  And when companies fail deliver on customer experience expectations, they leave money on the table. A huge percentage of customers, 89%, begin doing business with a competitor following a poor customer experience. Breaking up isn’t hard to do and today’s empowered customers have no qualms about taking their business elsewhere when their expectations for customer experience are not met. Over a quarter of consumers, 26%, posted a negative comment on a social networking site like Facebook or Twitter following a poor customer experience. Today, individual customer service failures have the ability to easily snowball.  An unsatisfied customer has the ability to easily share their rancor with their entire social network and chip away at your brand’s reputation. A large number of consumers, 79%,  who shared complaints about poor customer experience online had their complaints ignored.  Companies ignore customer complaints at their own peril.  And unsatisfied customers, when handled effectively, have the potential to become advocates for your brand.  Of the 21% of consumers who did get responses to complaints, more than half had positive reactions to the same company about which they were previously complaining. Half of consumers will give a brand only a week to respond to a question before they stop doing business with them.  The clock is ticking when customers have questions about your brand and a week is an eternity in the realm of customer experience.  The source for these stats is the 2011 Customer Experience Impact (CEI) Report, which explores the relationship between consumers and brands.  The report is based on a survey commissioned by RightNow (acquired by Oracle in 2012) and conducted by Harris Interactive. If you’re interested in seeing more facts and figures about customer experience, download the full report.

    Read the article

  • Should I put an app I wrote on my résumé even if it has low ratings?

    - by charliehorse55
    Last summer I wrote an iPhone app for the Toronto Film Festival. The development was pretty rushed, and the design goals were changed multiple times. In particular, the central film list view controller was redesigned three times in the week before launch. I forgot to update one of my functions to match the changed design, and the app shipped with a serious bug. While the app was fairly popular, this bug crippled the app and it got a lot of poor reviews. I fixed the bug as soon as I got a crash report, but it got stuck in the iTunes review process for the duration of the film festival. Should I put this app on my résumé? The app has poor ratings and most of the reviews mention crashes, but it's also the only work experience I have. Additionally, how should I approach this topic in an interview? Here is the iTunes link for the app: https://itunes.apple.com/ca/app/official-tiff/id550151899?mt=8

    Read the article

  • How to properly remove URL's from Google's index?

    - by ElHaix
    On some of our sites, we now have several thousand pages that dilute our website's keyword density. The website is an MVC site with SEO routing. If I submit a new sitemap with say only the 2000 or so pages that we want indexed, even though navigating to the diluting pages still works, will Google re-index the site with only those 2000 pages, dropping the superfluous ones? For example, I want to keep roughly 2000 of the following: www.mysite.com/some-search-term-1/some-good-keywords www.mysite.com/some-search-term-2/some-more-good-keywords And remove several thousand of the following that have already been indexed. www.mysite.com/some-search-term-xx/some-poor-keywords www.mysite.com/some-search-term-xx/some-poor-more-keywords These pages are not actually "removed" as navigating to these URL's still renders a page. Even though there are potentially hundreds of thousands of pages, I only want say 2000 to be re-indexed and retained. The others removed (without having to do these manually). Thanks.

    Read the article

  • Would you consider using training/mentoring from LearnersParadise.com?

    - by HK1
    My initial question deserves some explanation. I signed up for an account at learnersparadise.com. After signing up I couldn't login so I opted to use their "send password" feature. Upon receiving my password in my email I confirmed two things A) They trimmed off 2 of the last digits of my 10-digit password without informing me and saved it that way in their database B) my password is not saved in their database using a one-way hash since they were able to email me my password. I'm quite certain that both of these are perfectly awful programming practices. I suspect that the mentors/trainers at learnersparadise are not necessarily affiliated with the website and it's design since they are basically people like you and me (hopefully more skill than me) who have signed up to become mentors. However, I'm still uncertain about signing up for training/mentoring at a site that uses such poor programming practices themselves? Would you let learnersparadise poor programming practices affect your opinion of their trainers/mentors?

    Read the article

  • ubuntu is becoming more unstable

    - by Michael Hennessey
    I find ubuntu extremely unstable with mouse freezes (that can be corrected with control key), constant Compiz crashes ( with ATI non proprietary drivers also), problems installing drivers ( why would I want a video driver that fails to play most games, with loss of function of so many games (BZ flag?? has been around for years with no problems). I get the feeling that there is so one in your dept who is intentionally making poor and unstable choices for less than altruistic reasons. Whatever happened has been worsening ever since Unity became a choice. I have tried Kubuntu, Mint, Lubuntu and several other variants with similar poor results. Be aware I have used Ubuntu for many years.

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >