Search Results

Search found 18598 results on 744 pages for 'result'.

Page 37/744 | < Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >

  • PHP + MYSQLI: Variable parameter/result binding with prepared statements.

    - by Brian Warshaw
    In a project that I'm about to wrap up, I've written and implemented an object-relational mapping solution for PHP. Before the doubters and dreamers cry out "how on earth?", relax -- I haven't found a way to make late static binding work -- I'm just working around it in the best way that I possibly can. Anyway, I'm not currently using prepared statements for querying, because I couldn't come up with a way to pass a variable number of arguments to the bind_params() or bind_result() methods. Why do I need to support a variable number of arguments, you ask? Because the superclass of my models (think of my solution as a hacked-up PHP ActiveRecord wannabe) is where the querying is defined, and so the find() method, for example, doesn't know how many parameters it would need to bind. Now, I've already thought of building an argument list and passing a string to eval(), but I don't like that solution very much -- I'd rather just implement my own security checks and pass on statements. Does anyone have any suggestions (or success stories) about how to get this done? If you can help me solve this first problem, perhaps we can tackle binding the result set (something I suspect will be more difficult, or at least more resource-intensive if it involves an initial query to determine table structure).

    Read the article

  • Position Reconstruction from Depth by inverting Perspective Projection

    - by user1294203
    I had some trouble reconstructing position from depth sampled from the depth buffer. I use the equivalent of gluPerspective in GLM. The code in GLM is: template GLM_FUNC_QUALIFIER detail::tmat4x4 perspective ( valType const & fovy, valType const & aspect, valType const & zNear, valType const & zFar ) { valType range = tan(radians(fovy / valType(2))) * zNear; valType left = -range * aspect; valType right = range * aspect; valType bottom = -range; valType top = range; detail::tmat4x4 Result(valType(0)); Result[0][0] = (valType(2) * zNear) / (right - left); Result[1][2] = (valType(2) * zNear) / (top - bottom); Result[2][3] = - (zFar + zNear) / (zFar - zNear); Result[2][4] = - valType(1); Result[3][5] = - (valType(2) * zFar * zNear) / (zFar - zNear); return Result; } There doesn't seem to be any errors in the code. So I tried to invert the projection, the formula for the z and w coordinates after projection are: and dividing z' with w' gives the post-projective depth (which lies in the depth buffer), so I need to solve for z, which finally gives: Now, the problem is I don't get the correct position (I have compared the one reconstructed with a rendered position). I then tried using the respective formula I get by doing the same for this Matrix. The corresponding formula is: For some reason, using the above formula gives me the correct position. I really don't understand why this is the case. Have I done something wrong? Could someone enlighten me please?

    Read the article

  • Making particle bounce off a line with friction

    - by Dlaor
    So I'm making a game and I need a particle to bounce off a line. I've got this so far: public static Vector2f Reflect(this Vector2f vec, Vector2f axis) //vec is velocity { Vector2f result = vec - 2f * axis * axis.Dot(vec); return result; } Which works fine, but then I decided I wanted to be able to change the bounciness and friction of the bounce. I got bounciness down... public static Vector2f Reflect(this Vector2f vec, Vector2f axis, float bounciness) //Bounciness goes from 0 to 1, 0 being not bouncy and 1 being perfectly bouncy { var reflect = (1 + bounciness); //2f Vector2f result = vec - reflect * axis * axis.Dot(vec); return result; } But when I tried to add friction, everything went to hell and back... public static Vector2f Reflect(this Vector2f vec, Vector2f axis, float bounciness, float friction) //Does not work at all! { var reflect = (1 + bounciness); //2f Vector2f subtract = reflect * axis * axis.Dot(vec); Vector2f subtract2 = axis * axis.Dot(vec); Vector2f result = vec - subtract; result -= axis.PerpendicularLeft() * subtract2.Length() * friction; return result; } Any physics guys willing to help me out with this? (if you're not sure what I mean with the friction of a bounce see this: http://www.metanetsoftware.com/technique/diagrams/A-1_particle_collision.swf)

    Read the article

  • Stepping into Ruby Meta-Programming: Generating proxy methods for multiple internal methods

    - by mstksg
    Hi all; I've multiply heard Ruby touted for its super spectacular meta-programming capabilities, and I was wondering if anyone could help me get started with this problem. I have a class that works as an "archive" of sorts, with internal methods that process and output data based on an input. However, the items in the archive in the class itself are represented and processed with integers, for performance purposes. The actual items outside of the archive are known by their string representation, which is simply number_representation.to_s(36). Because of this, I have hooked up each internal method with a "proxy method" that converts the input into the integer form that the archive recognizes, runs the internal method, and converts the output (either a single other item, or a collection of them) back into strings. The naming convention is this: internal methods are represented by _method_name; their corresponding proxy method is represented by method_name, with no leading underscore. For example: class Archive ## PROXY METHODS ## ## input: string representation of id's ## output: string representation of id's def do_something_with id result = _do_something_with id.to_i(36) return nil if result == nil return result.to_s(36) end def do_something_with_pair id_1,id_2 result = _do_something_with_pair id_1.to_i(36), id_2.to_i(36) return nil if result == nil return result.to_s(36) end def do_something_with_these ids result = _do_something_with_these ids.map { |n| n.to_i(36) } return nil if result == nil return result.to_s(36) end def get_many_from id result = _get_many_from id return nil if result == nil # no sparse arrays returned return result.map { |n| n.to_s(36) } end ## INTERNAL METHODS ## ## input: integer representation of id's ## output: integer representation of id's def _do_something_with id # does something with one integer-represented id, # returning an id represented as an integer end def do_something_with_pair id_1,id_2 # does something with two integer-represented id's, # returning an id represented as an integer end def _do_something_with_these ids # does something with multiple integer ids, # returning an id represented as an integer end def _get_many_from id # does something with one integer-represented id, # returns a collection of id's represented as integers end end There are a couple of reasons why I can't just convert them if id.class == String at the beginning of the internal methods: These internal methods are somewhat computationally-intensive recursive functions, and I don't want the overhead of checking multiple times at every step There is no way, without adding an extra parameter, to tell whether or not to re-convert at the end I want to think of this as an exercise in understanding ruby meta-programming Does anyone have any ideas? edit The solution I'd like would preferably be able to take an array of method names @@PROXY_METHODS = [:do_something_with, :do_something_with_pair, :do_something_with_these, :get_many_from] iterate through them, and in each iteration, put out the proxy method. I'm not sure what would be done with the arguments, but is there a way to test for arguments of a method? If not, then simple duck typing/analogous concept would do as well.

    Read the article

  • Is this possible: JPA/Hibernate query with list property in result ?

    - by Kdeveloper
    In hibernate I want to run this JPQL / HQL query: select new org.test.userDTO( u.id, u.name, u.securityRoles) FROM User u WHERE u.name = :name userDTO class: public class UserDTO { private Integer id; private String name; private List<SecurityRole> securityRoles; public UserDTO(Integer id, String name, List<SecurityRole> securityRoles) { this.id = id; this.name = name; this.securityRoles = securityRoles; } ...getters and setters... } User Entity: @Entity public class User { @id private Integer id; private String name; @ManyToMany @JoinTable(name = "user_has_role", joinColumns = { @JoinColumn(name = "user_id") }, inverseJoinColumns = {@JoinColumn(name = "security_role_id") } ) private List<SecurityRole> securityRoles; ...getters and setters... } But when Hibernate 3.5 (JPA 2) starts I get this error: org.hibernate.hql.ast.QuerySyntaxException: Unable to locate appropriate constructor on class [org.test.UserDTO] [SELECT NEW org.test.UserDTO (u.id, u.name, u.securityRoles) FROM nl.test.User u WHERE u.name = :name ] Is a select that includes a list as a result not possible? Should I just create 2 seperate queries?

    Read the article

  • I need to convert the result of a stored procedure in a dbml file to IQueryable to view a list in an

    - by RJ
    I have a MVC project that has a Linq to SQL dbml class. It is a table called Clients that houses client information. I can easily get the information to display in a View using the code I followed in Nerd Dinner but I have added a stored procedure to the dbml and it's result set is of IQueryable, not IQueryable. I need to convert IQueryable to IQueryable so I can display it in the same View. The reason for the sproc is so I can pass a search string tothe sproc and return the same information as a full list but filtered on the search. I know I can use Linq to filter the whole list but I don't want the whole list so I am using the sproc. Here is the code in my ClientRepository with a comment where I need to convert. What code goes in the commented spot. public IQueryable<Client> SelectClientsBySearch(String search) { IQueryable<SelectClientsBySearchResult> spClientList = (from p in db.SelectClientsBySearch(search) select p).AsQueryable(); //what is the code to convert IQueryable<SelectClientsBySearchResult> to IQueryable<Client> return clientList; }

    Read the article

  • Why does multiple calls to xalloc result in delayed output?

    - by Me myself and I
    When I print the id of a stream in a single expression it prints it backwards. Normally this is what comes out: std::stringstream ss; std::cout << ss.xalloc() << '\n'; std::cout << ss.xalloc() << '\n'; std::cout << ss.xalloc(); Output is: 4 5 6 But when I do it in one expression it prints backwards, why? std::stringstream ss; std::cout << ss.xalloc() << '\n' << ss.xalloc() << '\n' << ss.xalloc(); Output: 6 5 4 I know the order of evaluation is unspecified but then why does the following always result in the correct order: std::cout << 4 << 5 << 6; Can someone explain why xalloc behaves differently? Thanks.

    Read the article

  • Python - Compress Ascii String

    - by n0idea
    I'm looking for a way to compress an ascii-based string, any help? I need also need to decompress it. I tried zlib but with no help. What can I do to compress the string into lesser length? code: def compress(request): if request.POST: data = request.POST.get('input') if is_ascii(data): result = zlib.compress(data) return render_to_response('index.html', {'result': result, 'input':data}, context_instance = RequestContext(request)) else: result = "Error, the string is not ascii-based" return render_to_response('index.html', {'result':result}, context_instance = RequestContext(request)) else: return render_to_response('index.html', {}, context_instance = RequestContext(request))

    Read the article

  • How to Avoid a Busy Loop Inside a Function That Returns the Object That's Being Waited For

    - by Carl Smith
    I have a function which has the same interface as Python's input builtin, but it works in a client-server environment. When it's called, the function, which runs in the server, sends a message to the client, asking it to get some input from the user. The user enters some stuff, or dismisses the prompt, and the result is passed back to the server, which passes it to the function. The function then returns the result. The function must work like Python's input [that's the spec], so it must block until it has the result. This is all working, but it uses a busy loop, which, in practice, could easily be spinning for many minutes. Currently, the function tells the client to get the input, passing an id. The client returns the result with the id. The server puts the result in a dictionary, with the id as the key. The function basically waits for that key to exist. def input(): '''simplified example''' key = unique_key() tell_client_to_get_input(key) while key not in dictionary: pass return dictionary.pop(pin) Using a callback would be the normal way to go, but the input function must block until the result is available, so I can't see how that could work. The spec can't change, as Python will be using the new input function for stuff like help and pdb, which provide their own little REPLs. I have a lot of flexibility in terms of how everything works overall, but just can't budge on the function acting exactly like Python's. Is there any way to return the result as soon as it's available, without the busy loop?

    Read the article

  • In Scrum, should a team remove points from (defect) stories that don't result in a code change?

    - by CanIgtAW00tW00t
    My work uses a Scrum-like process to manage projects. I say Scrum-like, because we call it Scrum, but our project managers exclude aspects of Scrum that are inconvenient (most notably customer interaction). One of the stories in our current sprint was to correct a defect. After spending almost an entire day working on the issue, I determined the issue was the result of a permissions issue, so I didn't end up modifying any code. Our Scrum master / project manager decided that no code change equals zero points. I know that Scrum points are supposed to measure size / complexity and not time, but our Scrum master invests a lot of time in preparing graphs and statistical information from past sprints (average velocity, average points completed, etc.) I've always been of the opinion that for statistics to be meaningful in any way, the data must be as accurate as possible. All of our data is fuzzy to begin with, because, from time to time, we're encouraged by the Scrum master to "adjust" our size / complexity estimates, both increasing and decreasing them. I'd like to hear some other developers / Scrum team members thoughts on the merits of statistics based on past sprints, and also whether they think it's appropriate to "adjust" size / complexity estimates in the middle of a sprint, or the remove all points from a story all together for situations similar to what I've just described.

    Read the article

  • How to merge arraylist element ?

    - by tiendv
    I have a string example = " Can somebody provide an algorithm sample code in your reply ", after token and do some i want on string example i have arraylist like : ArrayList <token > arl = " "Can somebody provide ", "code in your ", "somebody provide an algorith", " in your reply" ) "Can somebody provide ", i know position start and end in string test : star = 1 end = 3 " code in your ", i know position stat = 7 end = 10, "somebody provide an algorith", i know position stat = 7 end = 10, "in your reply" i know position stat = 11 end = 14, we can see,some element in arl overlaping :"Can somebody provide "," code in your ","somebody provide an algorith". The problem here is how can i merge overlaping element to recived arraylist like ArrayList result ="" Can somebody provide an algorithm sample code","" in your reply""; Here my code : but it only merge fist elecment if check is overloaping public ArrayList<TextChunks> finalTextChunks(ArrayList<TextChunks> textchunkswithkeyword) { ArrayList<TextChunks > result = (ArrayList<TextChunks>) textchunkswithkeyword.clone(); //System.out.print(result.size()); int j; for(int i=0;i< result.size() ;i++) { int index = i; if(i+1>=result.size()){ break; } j=i+1; if(result.get(i).checkOverlapingTwoTextchunks(result.get(j))== true) { TextChunks temp = new TextChunks(); temp = handleOverlaping(textchunkswithkeyword.get(i),textchunkswithkeyword.get(j),resultSearchEngine); result.set(i, temp); result.remove(j); i = index; continue; } } return result; } Thanks in avadce

    Read the article

  • How to save/retrieve words to/from SQlite database?

    - by user998032
    Sorry if I repeat my question but I have still had no clues of what to do and how to deal with the question. My app is a dictionary. I assume that users will need to add words that they want to memorise to a Favourite list. Thus, I created a Favorite button that works on two phases: short-click to save the currently-view word into the Favourite list; and long-click to view the Favourite list so that users can click on any words to look them up again. I go for using a SQlite database to store the favourite words but I wonder how I can do this task. Specifically, my questions are: Should I use the current dictionary SQLite database or create a new SQLite database to favorite words? In each case, what codes do I have to write to cope with the mentioned task? Could anyone there kindly help? Here is the dictionary code: package mydict.app; import java.util.ArrayList; import android.database.Cursor; import android.database.sqlite.SQLiteDatabase; import android.database.sqlite.SQLiteException; import android.util.Log; public class DictionaryEngine { static final private String SQL_TAG = "[MyAppName - DictionaryEngine]"; private SQLiteDatabase mDB = null; private String mDBName; private String mDBPath; //private String mDBExtension; public ArrayList<String> lstCurrentWord = null; public ArrayList<String> lstCurrentContent = null; //public ArrayAdapter<String> adapter = null; public DictionaryEngine() { lstCurrentContent = new ArrayList<String>(); lstCurrentWord = new ArrayList<String>(); } public DictionaryEngine(String basePath, String dbName, String dbExtension) { //mDBExtension = getResources().getString(R.string.dbExtension); //mDBExtension = dbExtension; lstCurrentContent = new ArrayList<String>(); lstCurrentWord = new ArrayList<String>(); this.setDatabaseFile(basePath, dbName, dbExtension); } public boolean setDatabaseFile(String basePath, String dbName, String dbExtension) { if (mDB != null) { if (mDB.isOpen() == true) // Database is already opened { if (basePath.equals(mDBPath) && dbName.equals(mDBName)) // the opened database has the same name and path -> do nothing { Log.i(SQL_TAG, "Database is already opened!"); return true; } else { mDB.close(); } } } String fullDbPath=""; try { fullDbPath = basePath + dbName + "/" + dbName + dbExtension; mDB = SQLiteDatabase.openDatabase(fullDbPath, null, SQLiteDatabase.OPEN_READWRITE|SQLiteDatabase.NO_LOCALIZED_COLLATORS); } catch (SQLiteException ex) { ex.printStackTrace(); Log.i(SQL_TAG, "There is no valid dictionary database " + dbName +" at path " + basePath); return false; } if (mDB == null) { return false; } this.mDBName = dbName; this.mDBPath = basePath; Log.i(SQL_TAG,"Database " + dbName + " is opened!"); return true; } public void getWordList(String word) { String query; // encode input String wordEncode = Utility.encodeContent(word); if (word.equals("") || word == null) { query = "SELECT id,word FROM " + mDBName + " LIMIT 0,15" ; } else { query = "SELECT id,word FROM " + mDBName + " WHERE word >= '"+wordEncode+"' LIMIT 0,15"; } //Log.i(SQL_TAG, "query = " + query); Cursor result = mDB.rawQuery(query,null); int indexWordColumn = result.getColumnIndex("Word"); int indexContentColumn = result.getColumnIndex("Content"); if (result != null) { int countRow=result.getCount(); Log.i(SQL_TAG, "countRow = " + countRow); lstCurrentWord.clear(); lstCurrentContent.clear(); if (countRow >= 1) { result.moveToFirst(); String strWord = Utility.decodeContent(result.getString(indexWordColumn)); String strContent = Utility.decodeContent(result.getString(indexContentColumn)); lstCurrentWord.add(0,strWord); lstCurrentContent.add(0,strContent); int i = 0; while (result.moveToNext()) { strWord = Utility.decodeContent(result.getString(indexWordColumn)); strContent = Utility.decodeContent(result.getString(indexContentColumn)); lstCurrentWord.add(i,strWord); lstCurrentContent.add(i,strContent); i++; } } result.close(); } } public Cursor getCursorWordList(String word) { String query; // encode input String wordEncode = Utility.encodeContent(word); if (word.equals("") || word == null) { query = "SELECT id,word FROM " + mDBName + " LIMIT 0,15" ; } else { query = "SELECT id,content,word FROM " + mDBName + " WHERE word >= '"+wordEncode+"' LIMIT 0,15"; } //Log.i(SQL_TAG, "query = " + query); Cursor result = mDB.rawQuery(query,null); return result; } public Cursor getCursorContentFromId(int wordId) { String query; // encode input if (wordId <= 0) { return null; } else { query = "SELECT id,content,word FROM " + mDBName + " WHERE Id = " + wordId ; } //Log.i(SQL_TAG, "query = " + query); Cursor result = mDB.rawQuery(query,null); return result; } public Cursor getCursorContentFromWord(String word) { String query; // encode input if (word == null || word.equals("")) { return null; } else { query = "SELECT id,content,word FROM " + mDBName + " WHERE word = '" + word + "' LIMIT 0,1"; } //Log.i(SQL_TAG, "query = " + query); Cursor result = mDB.rawQuery(query,null); return result; } public void closeDatabase() { mDB.close(); } public boolean isOpen() { return mDB.isOpen(); } public boolean isReadOnly() { return mDB.isReadOnly(); } } And here is the code below the Favourite button to save to and load the Favourite list: btnAddFavourite = (ImageButton) findViewById(R.id.btnAddFavourite); btnAddFavourite.setOnClickListener(new View.OnClickListener() { @Override public void onClick(View v) { // Add code here to save the favourite, e.g. in the db. Toast toast = Toast.makeText(ContentView.this, R.string.messageWordAddedToFarvourite, Toast.LENGTH_SHORT); toast.show(); } }); btnAddFavourite.setOnLongClickListener(new View.OnLongClickListener() { @Override public boolean onLongClick(View v) { // Open the favourite Activity, which in turn will fetch the saved favourites, to show them. Intent intent = new Intent(getApplicationContext(), FavViewFavourite.class); intent.setFlags(Intent.FLAG_ACTIVITY_NEW_TASK); getApplicationContext().startActivity(intent); return false; } }); }

    Read the article

  • How do I sort an activerecord result set on a i18n translated column?

    - by PlanetMaster
    Hi, I have the following line in a view: <%= f.select(:province_id, options_from_collection_for_select(Province.find(:all, :conditions => { :country_id => @property.country_id }, :order => "provinces.name ASC"), :id, :name) %> In the province model I have the following: def name I18n.t(super) end Problem is that the :name field is translated (through the province model) and that the ordering is done by activerecord on the english name. The non-english result set can be wrongly sorted this way. We have a province in Belgium called 'Oost-Vlaanderen'. In english that is 'East-Flanders". Not good for sorting:) I need something like this, but it does not work: <%= f.select(:province_id, options_from_collection_for_select(Province.find(:all, :conditions => { :country_id => @property.country_id }, :order => "provinces.I18n.t(name) ASC"), :id, :name) %> What would be the best approach to solve this? As you may have noticed, my coding knowledge is very limited, sorry for that.

    Read the article

  • How to insert result of mysql_real_escape_string() into oracle database?

    - by Prat
    For inserting special characters in data like (,')etc., I am using musql_real_escape_string() function & it's working fine. Now I want to use same variable while inserting values in Oracle. $str = 'N.G.Palace\'s Building', 'xyzcity', '12345678','India','100001',12 Here $str is result of mysql_real_escape_string(). so it escapes special character. Now my code for oracle is like this-: $qry ="INSERT INTO Ora_table(ship_to_street, ship_to_city,ship_to_country, ship_to_telephone, order_id, record_no) VALUES(".$str); So my doubt is Oracle is not accepting values return by mysql_real_escape_string i.e. Palace\'s (like this as this mysql function attach \ before 'single quote)? So can anybody tell me ho9w can I use that variable $str to insert data into Oracle? Also I tried like this also-: "q"."'"."c".$str."c"."'" can we use this for multiple values like in my case...though still I am unable to inser data in oracle? plz help.

    Read the article

  • In Lua, can I easily select the Nth result without custom functions?

    - by romkyns
    Suppose I am inserting a string into a table as follows: table.insert(tbl, mystring) and that mystring is generated by replacing all occurrences of "a" with "b" in input: mystring = string.gsub(input, "a", "b") The obvious way to combine the two into one statement doesn't work, because gsub returns two results: table.insert(tbl, string.gsub(input, "a", "b")) -- error! -- (second result of gsub is passed into table.insert) which, I suppose, is the price paid for supporting multiple return values. The question is, is there a standard, built-in way to select just the first return value? When I found select I thought that was exactly what it did, but alas, it actually selects all results from N onwards, and so doesn't help in this scenario. Now I know I can define my own select as follows: function select1(n, ...) return arg[n] end table.insert(tbl, select1(1, string.gsub(input, "a", "b"))) but this doesn't look right, since I'd expect a built-in way of doing this. So, am I missing some built-in construct? If not, do Lua developers tend to use a separate variable to extract the correct argument or write their own select1 functions?

    Read the article

  • Javascript Global Variable in Array

    - by user1387727
    My question may be very easy to lots of people, but I am new to Javascript. I really do not know what is wrong with the following codes. var newValue = 1; function getCurrentAmount() { return [newValue,2,3]; } var result = getCurrentAmount(); console.log(result[0] + "" + result[1] + result[2]); In the above code, the result shown in console is: undefined23 Why is the result not "123"? I am trying to use global variable because I want to increment newValue by 1 each time when the function is called. I want something like the following: var newValue = 1; function getCurrentAmount() { newValue ++; return [newValue,2,3]; } setInterval(function(){ var result = getCurrentAmount(); console.log(result[0] + "" + result[1] + result[2]); }, 1000); Also, I just tired the following codes and it works as expected. var newValue =1; function test() { newValue ++; return newValue; } console.log(test()); So I think the problem is about the Array. I hope my question is clear enough. Thanks in advance.

    Read the article

  • How to get a result from output parameter(SYS_REFCURSOR) of Oracle stored procedure in iBATIS 3(by u

    - by yjacket
    I got an example how to call oracle SP in iBATIS 3 without a map file. And now I understand how to call it. But I got another problem that how to get a result from output parameter(Oracle cursor). A part of exception messages is "There is no setter for property named 'rs' in 'class java.lang.Class". Below is my code. Does anyone can help me? Oracle Stored Procedure: CREATE OR REPLACE PROCEDURE getProducts ( rs OUT SYS_REFCURSOR ) IS BEGIN OPEN rs FOR SELECT * FROM Products; END getProducts; Interface: public interface ProductMapper { @Select("call getProducts(#{rs,mode=OUT,jdbcType=CURSOR})") @Options(statementType = StatementType.CALLABLE) List<Product> getProducts(); } DAO: public class ProductDAO { public List<Product> getProducts() { return mapper.getProducts(); // mapper is ProductMapper } } Full Error Message: Exception in thread "main" org.apache.ibatis.exceptions.IbatisException: ### Error querying database. Cause: org.apache.ibatis.reflection.ReflectionException: Could not set property 'rs' of 'class org.apache.ibatis.reflection.MetaObject$NullObject' with value 'oracle.jdbc.driver.OracleResultSetImpl@1a001ff' Cause: org.apache.ibatis.reflection.ReflectionException: There is no setter for property named 'rs' in 'class java.lang.Class' ### The error may involve defaultParameterMap ### The error occurred while setting parameters ### Cause: org.apache.ibatis.reflection.ReflectionException: Could not set property 'rs' of 'class org.apache.ibatis.reflection.MetaObject$NullObject' with value 'oracle.jdbc.driver.OracleResultSetImpl@1a001ff' Cause: org.apache.ibatis.reflection.ReflectionException: There is no setter for property named 'rs' in 'class java.lang.Class' at org.apache.ibatis.exceptions.ExceptionFactory.wrapException(ExceptionFactory.java:8) at org.apache.ibatis.session.defaults.DefaultSqlSession.selectList(DefaultSqlSession.java:61) at org.apache.ibatis.session.defaults.DefaultSqlSession.selectList(DefaultSqlSession.java:53) at org.apache.ibatis.binding.MapperMethod.executeForList(MapperMethod.java:82) at org.apache.ibatis.binding.MapperMethod.execute(MapperMethod.java:63) at org.apache.ibatis.binding.MapperProxy.invoke(MapperProxy.java:35) at $Proxy8.getList(Unknown Source) at com.dao.ProductDAO.getList(ProductDAO.java:42) at com.Ibatis3Test.main(Ibatis3Test.java:30) Caused by: org.apache.ibatis.reflection.ReflectionException: Could not set property 'rs' of 'class org.apache.ibatis.reflection.MetaObject$NullObject' with value 'oracle.jdbc.driver.OracleResultSetImpl@1a001ff' Cause: org.apache.ibatis.reflection.ReflectionException: There is no setter for property named 'rs' in 'class java.lang.Class' at org.apache.ibatis.reflection.wrapper.BeanWrapper.setBeanProperty(BeanWrapper.java:154) at org.apache.ibatis.reflection.wrapper.BeanWrapper.set(BeanWrapper.java:36) at org.apache.ibatis.reflection.MetaObject.setValue(MetaObject.java:120) at org.apache.ibatis.executor.resultset.FastResultSetHandler.handleOutputParameters(FastResultSetHandler.java:69) at org.apache.ibatis.executor.statement.CallableStatementHandler.query(CallableStatementHandler.java:44) at org.apache.ibatis.executor.statement.RoutingStatementHandler.query(RoutingStatementHandler.java:55) at org.apache.ibatis.executor.SimpleExecutor.doQuery(SimpleExecutor.java:41) at org.apache.ibatis.executor.BaseExecutor.query(BaseExecutor.java:94) at org.apache.ibatis.executor.CachingExecutor.query(CachingExecutor.java:72) at org.apache.ibatis.session.defaults.DefaultSqlSession.selectList(DefaultSqlSession.java:59) ... 7 more Caused by: org.apache.ibatis.reflection.ReflectionException: There is no setter for property named 'rs' in 'class java.lang.Class' at org.apache.ibatis.reflection.Reflector.getSetInvoker(Reflector.java:300) at org.apache.ibatis.reflection.MetaClass.getSetInvoker(MetaClass.java:97) at org.apache.ibatis.reflection.wrapper.BeanWrapper.setBeanProperty(BeanWrapper.java:146) ... 16 more

    Read the article

  • How do I handle the Maybe result of at in Control.Lens.Indexed without a Monoid instance

    - by Matthias Hörmann
    I recently discovered the lens package on Hackage and have been trying to make use of it now in a small test project that might turn into a MUD/MUSH server one very distant day if I keep working on it. Here is a minimized version of my code illustrating the problem I am facing right now with the at lenses used to access Key/Value containers (Data.Map.Strict in my case) {-# LANGUAGE OverloadedStrings, GeneralizedNewtypeDeriving, TemplateHaskell #-} module World where import Control.Applicative ((<$>),(<*>), pure) import Control.Lens import Data.Map.Strict (Map) import qualified Data.Map.Strict as DM import Data.Maybe import Data.UUID import Data.Text (Text) import qualified Data.Text as T import System.Random (Random, randomIO) newtype RoomId = RoomId UUID deriving (Eq, Ord, Show, Read, Random) newtype PlayerId = PlayerId UUID deriving (Eq, Ord, Show, Read, Random) data Room = Room { _roomId :: RoomId , _roomName :: Text , _roomDescription :: Text , _roomPlayers :: [PlayerId] } deriving (Eq, Ord, Show, Read) makeLenses ''Room data Player = Player { _playerId :: PlayerId , _playerDisplayName :: Text , _playerLocation :: RoomId } deriving (Eq, Ord, Show, Read) makeLenses ''Player data World = World { _worldRooms :: Map RoomId Room , _worldPlayers :: Map PlayerId Player } deriving (Eq, Ord, Show, Read) makeLenses ''World mkWorld :: IO World mkWorld = do r1 <- Room <$> randomIO <*> (pure "The Singularity") <*> (pure "You are standing in the only place in the whole world") <*> (pure []) p1 <- Player <$> randomIO <*> (pure "testplayer1") <*> (pure $ r1^.roomId) let rooms = at (r1^.roomId) ?~ (set roomPlayers [p1^.playerId] r1) $ DM.empty players = at (p1^.playerId) ?~ p1 $ DM.empty in do return $ World rooms players viewPlayerLocation :: World -> PlayerId -> RoomId viewPlayerLocation world playerId= view (worldPlayers.at playerId.traverse.playerLocation) world Since rooms, players and similar objects are referenced all over the code I store them in my World state type as maps of Ids (newtyped UUIDs) to their data objects. To retrieve those with lenses I need to handle the Maybe returned by the at lens (in case the key is not in the map this is Nothing) somehow. In my last line I tried to do this via traverse which does typecheck as long as the final result is an instance of Monoid but this is not generally the case. Right here it is not because playerLocation returns a RoomId which has no Monoid instance. No instance for (Data.Monoid.Monoid RoomId) arising from a use of `traverse' Possible fix: add an instance declaration for (Data.Monoid.Monoid RoomId) In the first argument of `(.)', namely `traverse' In the second argument of `(.)', namely `traverse . playerLocation' In the second argument of `(.)', namely `at playerId . traverse . playerLocation' Since the Monoid is required by traverse only because traverse generalizes to containers of sizes greater than one I was now wondering if there is a better way to handle this that does not require semantically nonsensical Monoid instances on all types possibly contained in one my objects I want to store in the map. Or maybe I misunderstood the issue here completely and I need to use a completely different bit of the rather large lens package?

    Read the article

  • How can I receive CameraActivities result in a DIFFERENT Activity (i.e. not in the launching one)?

    - by steff
    Hi, I hope the title says it all: I've got Activity A which fires up the Camera intent via: Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE); startActivityForResult(intent, REQUEST_CAMERA); After the picture is taken I can easily grab the picture in: @Override protected void onActivityResult(int requestCode, int resultCode, Intent data) But I'd like to receive the result in Activity B in which the image can be edited. Right now I'm receiving the result in Activity A and pass it over to Activity B which results in showing the GUI of Activity A for a short while: Intent i = new Intent().setAction("DisplayJPEG"); i.setClass(this, EditImageActivity.class); i.putExtra("IMAGE_URI", uri); startActivityForResult(i, REQUEST_EDIT_IMAGE); Of course, I will need the result from Activity B in Activity A after the image has been edited. But that should work with: setResult(resultCode, data); So there has to be a way to do what I need. Please point me into the right direction. Thanks in advance, steff

    Read the article

  • Using jQuery to Insert a New Database Record

    - by Stephen Walther
    The goal of this blog entry is to explore the easiest way of inserting a new record into a database using jQuery and .NET. I’m going to explore two approaches: using Generic Handlers and using a WCF service (In a future blog entry I’ll take a look at OData and WCF Data Services). Create the ASP.NET Project I’ll start by creating a new empty ASP.NET application with Visual Studio 2010. Select the menu option File, New Project and select the ASP.NET Empty Web Application project template. Setup the Database and Data Model I’ll use my standard MoviesDB.mdf movies database. This database contains one table named Movies that looks like this: I’ll use the ADO.NET Entity Framework to represent my database data: Select the menu option Project, Add New Item and select the ADO.NET Entity Data Model project item. Name the data model MoviesDB.edmx and click the Add button. In the Choose Model Contents step, select Generate from database and click the Next button. In the Choose Your Data Connection step, leave all of the defaults and click the Next button. In the Choose Your Data Objects step, select the Movies table and click the Finish button. Unfortunately, Visual Studio 2010 cannot spell movie correctly :) You need to click on Movy and change the name of the class to Movie. In the Properties window, change the Entity Set Name to Movies. Using a Generic Handler In this section, we’ll use jQuery with an ASP.NET generic handler to insert a new record into the database. A generic handler is similar to an ASP.NET page, but it does not have any of the overhead. It consists of one method named ProcessRequest(). Select the menu option Project, Add New Item and select the Generic Handler project item. Name your new generic handler InsertMovie.ashx and click the Add button. Modify your handler so it looks like Listing 1: Listing 1 – InsertMovie.ashx using System.Web; namespace WebApplication1 { /// <summary> /// Inserts a new movie into the database /// </summary> public class InsertMovie : IHttpHandler { private MoviesDBEntities _dataContext = new MoviesDBEntities(); public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; // Extract form fields var title = context.Request["title"]; var director = context.Request["director"]; // Create movie to insert var movieToInsert = new Movie { Title = title, Director = director }; // Save new movie to DB _dataContext.AddToMovies(movieToInsert); _dataContext.SaveChanges(); // Return success context.Response.Write("success"); } public bool IsReusable { get { return true; } } } } In Listing 1, the ProcessRequest() method is used to retrieve a title and director from form parameters. Next, a new Movie is created with the form values. Finally, the new movie is saved to the database and the string “success” is returned. Using jQuery with the Generic Handler We can call the InsertMovie.ashx generic handler from jQuery by using the standard jQuery post() method. The following HTML page illustrates how you can retrieve form field values and post the values to the generic handler: Listing 2 – Default.htm <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Add Movie</title> <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> </head> <body> <form> <label>Title:</label> <input name="title" /> <br /> <label>Director:</label> <input name="director" /> </form> <button id="btnAdd">Add Movie</button> <script type="text/javascript"> $("#btnAdd").click(function () { $.post("InsertMovie.ashx", $("form").serialize(), insertCallback); }); function insertCallback(result) { if (result == "success") { alert("Movie added!"); } else { alert("Could not add movie!"); } } </script> </body> </html>     When you open the page in Listing 2 in a web browser, you get a simple HTML form: Notice that the page in Listing 2 includes the jQuery library. The jQuery library is included with the following SCRIPT tag: <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> The jQuery library is included on the Microsoft Ajax CDN so you can always easily include the jQuery library in your applications. You can learn more about the CDN at this website: http://www.asp.net/ajaxLibrary/cdn.ashx When you click the Add Movie button, the jQuery post() method is called to post the form data to the InsertMovie.ashx generic handler. Notice that the form values are serialized into a URL encoded string by calling the jQuery serialize() method. The serialize() method uses the name attribute of form fields and not the id attribute. Notes on this Approach This is a very low-level approach to interacting with .NET through jQuery – but it is simple and it works! And, you don’t need to use any JavaScript libraries in addition to the jQuery library to use this approach. The signature for the jQuery post() callback method looks like this: callback(data, textStatus, XmlHttpRequest) The second parameter, textStatus, returns the HTTP status code from the server. I tried returning different status codes from the generic handler with an eye towards implementing server validation by returning a status code such as 400 Bad Request when validation fails (see http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html ). I finally figured out that the callback is not invoked when the textStatus has any value other than “success”. Using a WCF Service As an alternative to posting to a generic handler, you can create a WCF service. You create a new WCF service by selecting the menu option Project, Add New Item and selecting the Ajax-enabled WCF Service project item. Name your WCF service InsertMovie.svc and click the Add button. Modify the WCF service so that it looks like Listing 3: Listing 3 – InsertMovie.svc using System.ServiceModel; using System.ServiceModel.Activation; namespace WebApplication1 { [ServiceBehavior(IncludeExceptionDetailInFaults=true)] [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class MovieService { private MoviesDBEntities _dataContext = new MoviesDBEntities(); [OperationContract] public bool Insert(string title, string director) { // Create movie to insert var movieToInsert = new Movie { Title = title, Director = director }; // Save new movie to DB _dataContext.AddToMovies(movieToInsert); _dataContext.SaveChanges(); // Return movie (with primary key) return true; } } }   The WCF service in Listing 3 uses the Entity Framework to insert a record into the Movies database table. The service always returns the value true. Notice that the service in Listing 3 includes the following attribute: [ServiceBehavior(IncludeExceptionDetailInFaults=true)] You need to include this attribute if you want to get detailed error information back to the client. When you are building an application, you should always include this attribute. When you are ready to release your application, you should remove this attribute for security reasons. Using jQuery with the WCF Service Calling a WCF service from jQuery requires a little more work than calling a generic handler from jQuery. Here are some good blog posts on some of the issues with using jQuery with WCF: http://encosia.com/2008/06/05/3-mistakes-to-avoid-when-using-jquery-with-aspnet-ajax/ http://encosia.com/2008/03/27/using-jquery-to-consume-aspnet-json-web-services/ http://weblogs.asp.net/scottgu/archive/2007/04/04/json-hijacking-and-how-asp-net-ajax-1-0-mitigates-these-attacks.aspx http://www.west-wind.com/Weblog/posts/896411.aspx http://www.west-wind.com/weblog/posts/324917.aspx http://professionalaspnet.com/archive/tags/WCF/default.aspx The primary requirement when calling WCF from jQuery is that the request use JSON: The request must include a content-type:application/json header. Any parameters included with the request must be JSON encoded. Unfortunately, jQuery does not include a method for serializing JSON (Although, oddly, jQuery does include a parseJSON() method for deserializing JSON). Therefore, we need to use an additional library to handle the JSON serialization. The page in Listing 4 illustrates how you can call a WCF service from jQuery. Listing 4 – Default2.aspx <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>Add Movie</title> <script src="http://ajax.microsoft.com/ajax/jquery/jquery-1.4.2.js" type="text/javascript"></script> <script src="Scripts/json2.js" type="text/javascript"></script> </head> <body> <form> <label>Title:</label> <input id="title" /> <br /> <label>Director:</label> <input id="director" /> </form> <button id="btnAdd">Add Movie</button> <script type="text/javascript"> $("#btnAdd").click(function () { // Convert the form into an object var data = { title: $("#title").val(), director: $("#director").val() }; // JSONify the data data = JSON.stringify(data); // Post it $.ajax({ type: "POST", contentType: "application/json; charset=utf-8", url: "MovieService.svc/Insert", data: data, dataType: "json", success: insertCallback }); }); function insertCallback(result) { // unwrap result result = result["d"]; if (result === true) { alert("Movie added!"); } else { alert("Could not add movie!"); } } </script> </body> </html> There are several things to notice about Listing 4. First, notice that the page includes both the jQuery library and Douglas Crockford’s JSON2 library: <script src="Scripts/json2.js" type="text/javascript"></script> You need to include the JSON2 library to serialize the form values into JSON. You can download the JSON2 library from the following location: http://www.json.org/js.html When you click the button to submit the form, the form data is converted into a JavaScript object: // Convert the form into an object var data = { title: $("#title").val(), director: $("#director").val() }; Next, the data is serialized into JSON using the JSON2 library: // JSONify the data var data = JSON.stringify(data); Finally, the form data is posted to the WCF service by calling the jQuery ajax() method: // Post it $.ajax({   type: "POST",   contentType: "application/json; charset=utf-8",   url: "MovieService.svc/Insert",   data: data,   dataType: "json",   success: insertCallback }); You can’t use the standard jQuery post() method because you must set the content-type of the request to be application/json. Otherwise, the WCF service will reject the request for security reasons. For details, see the Scott Guthrie blog post: http://weblogs.asp.net/scottgu/archive/2007/04/04/json-hijacking-and-how-asp-net-ajax-1-0-mitigates-these-attacks.aspx The insertCallback() method is called when the WCF service returns a response. This method looks like this: function insertCallback(result) {   // unwrap result   result = result["d"];   if (result === true) {       alert("Movie added!");   } else {     alert("Could not add movie!");   } } When we called the jQuery ajax() method, we set the dataType to JSON. That causes the jQuery ajax() method to deserialize the response from the WCF service from JSON into a JavaScript object automatically. The following value is passed to the insertCallback method: {"d":true} For security reasons, a WCF service always returns a response with a “d” wrapper. The following line of code removes the “d” wrapper: // unwrap result result = result["d"]; To learn more about the “d” wrapper, I recommend that you read the following blog posts: http://encosia.com/2009/02/10/a-breaking-change-between-versions-of-aspnet-ajax/ http://encosia.com/2009/06/29/never-worry-about-asp-net-ajaxs-d-again/ Summary In this blog entry, I explored two methods of inserting a database record using jQuery and .NET. First, we created a generic handler and called the handler from jQuery. This is a very low-level approach. However, it is a simple approach that works. Next, we looked at how you can call a WCF service using jQuery. This approach required a little more work because you need to serialize objects into JSON. We used the JSON2 library to perform the serialization. In the next blog post, I want to explore how you can use jQuery with OData and WCF Data Services.

    Read the article

  • Windows Azure Service Bus Scatter-Gather Implementation

    - by Alan Smith
    One of the more challenging enterprise integration patterns that developers may wish to implement is the Scatter-Gather pattern. In this article I will show the basic implementation of a scatter-gather pattern using the topic-subscription model of the windows azure service bus. I’ll be using the implementation in demos, and also as a lab in my training courses, and the pattern will also be included in the next release of my free e-book the “Windows Azure Service Bus Developer Guide”. The Scatter-Gather pattern answers the following scenario. How do you maintain the overall message flow when a message needs to be sent to multiple recipients, each of which may send a reply? Use a Scatter-Gather that broadcasts a message to multiple recipients and re-aggregates the responses back into a single message. The Enterprise Integration Patterns website provides a description of the Scatter-Gather pattern here.   The scatter-gather pattern uses a composite of the publish-subscribe channel pattern and the aggregator pattern. The publish-subscribe channel is used to broadcast messages to a number of receivers, and the aggregator is used to gather the response messages and aggregate them together to form a single message. Scatter-Gather Scenario The scenario for this scatter-gather implementation is an application that allows users to answer questions in a poll based voting scenario. A poll manager application will be used to broadcast questions to users, the users will use a voting application that will receive and display the questions and send the votes back to the poll manager. The poll manager application will receive the users’ votes and aggregate them together to display the results. The scenario should be able to scale to support a large number of users.   Scatter-Gather Implementation The diagram below shows the overall architecture for the scatter-gather implementation.       Messaging Entities Looking at the scatter-gather pattern diagram it can be seen that the topic-subscription architecture is well suited for broadcasting a message to a number of subscribers. The poll manager application can send the question messages to a topic, and each voting application can receive the question message on its own subscription. The static limit of 2,000 subscriptions per topic in the current release means that 2,000 voting applications can receive question messages and take part in voting. The vote messages can then be sent to the poll manager application using a queue. The voting applications will send their vote messages to the queue, and the poll manager will receive and process the vote messages. The questions topic and answer queue are created using the Windows Azure Developer Portal. Each instance of the voting application will create its own subscription in the questions topic when it starts, allowing the question messages to be broadcast to all subscribing voting applications. Data Contracts Two simple data contracts will be used to serialize the questions and votes as brokered messages. The code for these is shown below.   [DataContract] public class Question {     [DataMember]     public string QuestionText { get; set; } }     To keep the implementation of the voting functionality simple and focus on the pattern implementation, the users can only vote yes or no to the questions.   [DataContract] public class Vote {     [DataMember]     public string QuestionText { get; set; }       [DataMember]     public bool IsYes { get; set; } }     Poll Manager Application The poll manager application has been implemented as a simple WPF application; the user interface is shown below. A question can be entered in the text box, and sent to the topic by clicking the Add button. The topic and subscriptions used for broadcasting the messages are shown in a TreeView control. The questions that have been broadcast and the resulting votes are shown in a ListView control. When the application is started any existing subscriptions are cleared form the topic, clients are then created for the questions topic and votes queue, along with background workers for receiving and processing the vote messages, and updating the display of subscriptions.   public MainWindow() {     InitializeComponent();       // Create a new results list and data bind it.     Results = new ObservableCollection<Result>();     lsvResults.ItemsSource = Results;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Clear out any old subscriptions.     NamespaceManager = new NamespaceManager(serviceBusUri, credentials);     IEnumerable<SubscriptionDescription> subs =         NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);     foreach (SubscriptionDescription sub in subs)     {         NamespaceManager.DeleteSubscription(sub.TopicPath, sub.Name);     }       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create the topic and queue clients.     ScatterGatherTopicClient =         factory.CreateTopicClient(AccountDetails.ScatterGatherTopic);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker threads.     VotesBackgroundWorker = new BackgroundWorker();     VotesBackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     VotesBackgroundWorker.RunWorkerAsync();       SubscriptionsBackgroundWorker = new BackgroundWorker();     SubscriptionsBackgroundWorker.DoWork += new DoWorkEventHandler(UpdateSubscriptions);     SubscriptionsBackgroundWorker.RunWorkerAsync(); }     When the poll manager user nters a question in the text box and clicks the Add button a question message is created and sent to the topic. This message will be broadcast to all the subscribing voting applications. An instance of the Result class is also created to keep track of the votes cast, this is then added to an observable collection named Results, which is data-bound to the ListView control.   private void btnAddQuestion_Click(object sender, RoutedEventArgs e) {     // Create a new result for recording votes.     Result result = new Result()     {         Question = txtQuestion.Text     };     Results.Add(result);       // Send the question to the topic     Question question = new Question()     {         QuestionText = result.Question     };     BrokeredMessage msg = new BrokeredMessage(question);     ScatterGatherTopicClient.Send(msg);       txtQuestion.Text = ""; }     The Results class is implemented as follows.   public class Result : INotifyPropertyChanged {     public string Question { get; set; }       private int m_YesVotes;     private int m_NoVotes;       public event PropertyChangedEventHandler PropertyChanged;       public int YesVotes     {         get { return m_YesVotes; }         set         {             m_YesVotes = value;             NotifyPropertyChanged("YesVotes");         }     }       public int NoVotes     {         get { return m_NoVotes; }         set         {             m_NoVotes = value;             NotifyPropertyChanged("NoVotes");         }     }       private void NotifyPropertyChanged(string prop)     {         if(PropertyChanged != null)         {             PropertyChanged(this, new PropertyChangedEventArgs(prop));         }     } }     The INotifyPropertyChanged interface is implemented so that changes to the number of yes and no votes will be updated in the ListView control. Receiving the vote messages from the voting applications is done asynchronously, using a background worker thread.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         // Receive a vote message from the queue         BrokeredMessage msg = ScatterGatherQueueClient.Receive();         if (msg != null)         {             // Deserialize the message.             Vote vote = msg.GetBody<Vote>();               // Update the results.             foreach (Result result in Results)             {                 if (result.Question.Equals(vote.QuestionText))                 {                     if (vote.IsYes)                     {                         result.YesVotes++;                     }                     else                     {                         result.NoVotes++;                     }                     break;                 }             }               // Mark the message as complete.             msg.Complete();         }       } }     When a vote message is received, the result that matches the vote question is updated with the vote from the user. The message is then marked as complete. A second background thread is used to update the display of subscriptions in the TreeView, with a dispatcher used to update the user interface. // This runs on a background worker. private void UpdateSubscriptions(object sender, DoWorkEventArgs e) {     while (true)     {         // Get a list of subscriptions.         IEnumerable<SubscriptionDescription> subscriptions =             NamespaceManager.GetSubscriptions(AccountDetails.ScatterGatherTopic);           // Update the user interface.         SimpleDelegate setQuestion = delegate()         {             trvSubscriptions.Items.Clear();             TreeViewItem topicItem = new TreeViewItem()             {                 Header = AccountDetails.ScatterGatherTopic             };               foreach (SubscriptionDescription subscription in subscriptions)             {                 TreeViewItem subscriptionItem = new TreeViewItem()                 {                     Header = subscription.Name                 };                 topicItem.Items.Add(subscriptionItem);             }             trvSubscriptions.Items.Add(topicItem);               topicItem.ExpandSubtree();         };         this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);           Thread.Sleep(3000);     } }       Voting Application The voting application is implemented as another WPF application. This one is more basic, and allows the user to vote “Yes” or “No” for the questions sent by the poll manager application. The user interface for that application is shown below. When an instance of the voting application is created it will create a subscription in the questions topic using a GUID as the subscription name. The application can then receive copies of every question message that is sent to the topic. Clients for the new subscription and the votes queue are created, along with a background worker to receive the question messages. The voting application is set to receiving mode, meaning it is ready to receive a question message from the subscription.   public MainWindow() {     InitializeComponent();       // Set the mode to receiving.     IsReceiving = true;       // Create a token provider with the relevant credentials.     TokenProvider credentials =         TokenProvider.CreateSharedSecretTokenProvider         (AccountDetails.Name, AccountDetails.Key);       // Create a URI for the serivce bus.     Uri serviceBusUri = ServiceBusEnvironment.CreateServiceUri         ("sb", AccountDetails.Namespace, string.Empty);       // Create the MessagingFactory     MessagingFactory factory = MessagingFactory.Create(serviceBusUri, credentials);       // Create a subcription for this instance     NamespaceManager mgr = new NamespaceManager(serviceBusUri, credentials);     string subscriptionName = Guid.NewGuid().ToString();     mgr.CreateSubscription(AccountDetails.ScatterGatherTopic, subscriptionName);       // Create the subscription and queue clients.     ScatterGatherSubscriptionClient = factory.CreateSubscriptionClient         (AccountDetails.ScatterGatherTopic, subscriptionName);     ScatterGatherQueueClient =         factory.CreateQueueClient(AccountDetails.ScatterGatherQueue);       // Start the background worker thread.     BackgroundWorker = new BackgroundWorker();     BackgroundWorker.DoWork += new DoWorkEventHandler(ReceiveMessages);     BackgroundWorker.RunWorkerAsync(); }     I took the inspiration for creating the subscriptions in the voting application from the chat application that uses topics and subscriptions blogged by Ovais Akhter here. The method that receives the question messages runs on a background thread. If the application is in receive mode, a question message will be received from the subscription, the question will be displayed in the user interface, the voting buttons enabled, and IsReceiving set to false to prevent more questing from being received before the current one is answered.   // This runs on a background worker. private void ReceiveMessages(object sender, DoWorkEventArgs e) {     while (true)     {         if (IsReceiving)         {             // Receive a question message from the topic.             BrokeredMessage msg = ScatterGatherSubscriptionClient.Receive();             if (msg != null)             {                 // Deserialize the message.                 Question question = msg.GetBody<Question>();                   // Update the user interface.                 SimpleDelegate setQuestion = delegate()                 {                     lblQuestion.Content = question.QuestionText;                     btnYes.IsEnabled = true;                     btnNo.IsEnabled = true;                 };                 this.Dispatcher.BeginInvoke(DispatcherPriority.Send, setQuestion);                 IsReceiving = false;                   // Mark the message as complete.                 msg.Complete();             }         }         else         {             Thread.Sleep(1000);         }     } }     When the user clicks on the Yes or No button, the btnVote_Click method is called. This will create a new Vote data contract with the appropriate question and answer and send the message to the poll manager application using the votes queue. The user voting buttons are then disabled, the question text cleared, and the IsReceiving flag set to true to allow a new message to be received.   private void btnVote_Click(object sender, RoutedEventArgs e) {     // Create a new vote.     Vote vote = new Vote()     {         QuestionText = (string)lblQuestion.Content,         IsYes = ((sender as Button).Content as string).Equals("Yes")     };       // Send the vote message.     BrokeredMessage msg = new BrokeredMessage(vote);     ScatterGatherQueueClient.Send(msg);       // Update the user interface.     lblQuestion.Content = "";     btnYes.IsEnabled = false;     btnNo.IsEnabled = false;     IsReceiving = true; }     Testing the Application In order to test the application, an instance of the poll manager application is started; the user interface is shown below. As no instances of the voting application have been created there are no subscriptions present in the topic. When an instance of the voting application is created the subscription will be displayed in the poll manager. Now that a voting application is subscribing, a questing can be sent from the poll manager application. When the message is sent to the topic, the voting application will receive the message and display the question. The voter can then answer the question by clicking on the appropriate button. The results of the vote are updated in the poll manager application. When two more instances of the voting application are created, the poll manager will display the new subscriptions. More questions can then be broadcast to the voting applications. As the question messages are queued up in the subscription for each voting application, the users can answer the questions in their own time. The vote messages will be received by the poll manager application and aggregated to display the results. The screenshots of the applications part way through voting are shown below. The messages for each voting application are queued up in sequence on the voting application subscriptions, allowing the questions to be answered at different speeds by the voters.

    Read the article

  • System.InvalidOperationException: Unable to generate a temporary class (result=1).

    - by keepsmilinyaar
    Hi, I have developed an application using .net 3.5 and have deployed it as an .exe on a number of machines with the same environment. However, on one particular machine I get the following error. Am puttin in the Stack Trace. See the end of this message for details on invoking just-in-time (JIT) debugging instead of this dialog box. ********** Exception Text ********** System.InvalidOperationException: Unable to generate a temporary class (result=1). error CS2001: Source file 'C:\WINDOWS\TEMP\wz58eig4.0.cs' could not be found error CS2008: No inputs specified at System.Xml.Serialization.Compiler.Compile(Assembly parent, String ns, XmlSerializerCompilerParameters xmlParameters, Evidence evidence) at System.Xml.Serialization.TempAssembly.GenerateAssembly(XmlMapping[] xmlMappings, Type[] types, String defaultNamespace, Evidence evidence, XmlSerializerCompilerParameters parameters, Assembly assembly, Hashtable assemblies) at System.Xml.Serialization.TempAssembly..ctor(XmlMapping[] xmlMappings, Type[] types, String defaultNamespace, String location, Evidence evidence) at System.Xml.Serialization.XmlSerializer.GetSerializersFromCache(XmlMapping[] mappings, Type type) at System.Xml.Serialization.XmlSerializer.FromMappings(XmlMapping[] mappings, Type type) at System.Web.Services.Protocols.SoapClientType..ctor(Type type) at System.Web.Services.Protocols.SoapHttpClientProtocol..ctor() at SSOClient..ctor() at sc.tradesvc.SSOManager..ctor() at sc.tradesvc.SSOManager.get_Inst() at sc.cashflowgenerator.Controls.LoginForm.btnLogin_Click(Object sender, EventArgs e) at System.Windows.Forms.Control.OnClick(EventArgs e) at System.Windows.Forms.Button.OnClick(EventArgs e) at System.Windows.Forms.Button.PerformClick() at System.Windows.Forms.Form.ProcessDialogKey(Keys keyData) at System.Windows.Forms.TextBoxBase.ProcessDialogKey(Keys keyData) at System.Windows.Forms.Control.PreProcessMessage(Message& msg) at System.Windows.Forms.Control.PreProcessControlMessageInternal(Control target, Message& msg) at System.Windows.Forms.Application.ThreadContext.PreTranslateMessage(MSG& msg) ********** Loaded Assemblies ********** mscorlib Assembly Version: 2.0.0.0 Win32 Version: 2.0.50727.1433 (REDBITS.050727-1400) CodeBase: file:///C:/WINDOWS/Microsoft.NET/Framework/v2.0.50727/mscorlib.dll CashflowGenerator Assembly Version: 1.0.0.0 Win32 Version: 1.0.0.0 CodeBase: file:///C:/DATA/DEVEL/Output/CashflowGenerator.exe System.Windows.Forms Assembly Version: 2.0.0.0 Win32 Version: 2.0.50727.1433 (REDBITS.050727-1400) CodeBase: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Windows.Forms/2.0.0.0__b77a5c561934e089/System.Windows.Forms.dll System Assembly Version: 2.0.0.0 Win32 Version: 2.0.50727.1433 (REDBITS.050727-1400) CodeBase: file:///C:/WINDOWS/assembly/GAC_MSIL/System/2.0.0.0__b77a5c561934e089/System.dll System.Drawing Assembly Version: 2.0.0.0 Win32 Version: 2.0.50727.1433 (REDBITS.050727-1400) CodeBase: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Drawing/2.0.0.0__b03f5f7f11d50a3a/System.Drawing.dll System.Configuration Assembly Version: 2.0.0.0 Win32 Version: 2.0.50727.1433 (REDBITS.050727-1400) CodeBase: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Configuration/2.0.0.0__b03f5f7f11d50a3a/System.Configuration.dll System.Xml Assembly Version: 2.0.0.0 Win32 Version: 2.0.50727.1433 (REDBITS.050727-1400) CodeBase: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Xml/2.0.0.0__b77a5c561934e089/System.Xml.dll System.Core Assembly Version: 3.5.0.0 Win32 Version: 3.5.21022.8 built by: RTM CodeBase: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Core/3.5.0.0__b77a5c561934e089/System.Core.dll System.Web.Services Assembly Version: 2.0.0.0 Win32 Version: 2.0.50727.1433 (REDBITS.050727-1400) CodeBase: file:///C:/WINDOWS/assembly/GAC_MSIL/System.Web.Services/2.0.0.0__b03f5f7f11d50a3a/System.Web.Services.dll ********** JIT Debugging ********** To enable just-in-time (JIT) debugging, the .config file for this application or computer (machine.config) must have the jitDebugging value set in the system.windows.forms section. The application must also be compiled with debugging enabled. For example: When JIT debugging is enabled, any unhandled exception will be sent to the JIT debugger registered on the computer rather than be handled by this dialog box. Could someone help me with this? As I am new to .net could someone also tell me when why a temporary class needs to be created in the first place? Thank you very much.

    Read the article

  • convert remote object result to array collection in flex...........

    - by user364199
    HI guys, im using zend_amf and flex. My problem is i have to populate my advance datagrid using array collection. this array collection have a children. example: [Bindable] private var dpHierarchy:ArrayCollection = new ArrayCollection([ {trucks:"Truck", children: [ {trucks:"AMC841", total_trip:1, start_time:'3:46:40 AM'}, {trucks:"AMC841", total_trip:1, start_time:'3:46:40 AM'}]) ]}; but the datasource of my datagrid should come from a database, how can i convert the result from remote object to array collection that has the same format like in my example, or any other way. here is my advance datagrid <mx:AdvancedDataGrid id="datagrid" width="500" height="200" lockedColumnCount="1" lockedRowCount="0" horizontalScrollPolicy="on" includeIn="loggedIn" x="67" y="131"> <mx:dataProvider> <mx:HierarchicalData id="dpHierarchytest" source="{dp}"/> </mx:dataProvider> <mx:groupedColumns> <mx:AdvancedDataGridColumn dataField="trucks" headerText="Trucks"/> <mx:AdvancedDataGridColumn dataField="total_trip" headerText="Total Trip"/> <mx:AdvancedDataGridColumnGroup headerText="PRECOOLING"> <mx:AdvancedDataGridColumnGroup headerText="Before Loading"> <mx:AdvancedDataGridColumn dataField="start_time" headerText="Start Time"/> <mx:AdvancedDataGridColumn dataField="end_time" headerText="End Time"/> <mx:AdvancedDataGridColumn dataField="precooling_time" headerText="Precooling Time"/> <mx:AdvancedDataGridColumn dataField="precooling_temp" headerText="Precooling Temp"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumnGroup headerText="Before Dispatch"> <mx:AdvancedDataGridColumn dataField="bd_start_time" headerText="Start Time"/> <mx:AdvancedDataGridColumn dataField="bd_end_time" headerText="End Time"/> <mx:AdvancedDataGridColumn dataField="bd_precooling_time" headerText="Precooling Time"/> <mx:AdvancedDataGridColumn dataField="bd_precooling_temp" headerText="Precooling Temp"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumn dataField="remarks" headerText="Remarks"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumnGroup headerText="Temperature Compliance"> <mx:AdvancedDataGridColumn dataField="total_hit" headerText="Total Hit"/> <mx:AdvancedDataGridColumn dataField="total_miss" headerText="Total Miss"/> <mx:AdvancedDataGridColumn dataField="cold_chain_compliance" headerText="Cold Chain Compliance"/> <mx:AdvancedDataGridColumn dataField="average_temp" headerText="Average Temp"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumnGroup headerText="Productivity"> <mx:AdvancedDataGridColumn dataField="total_drop_points" headerText="Total Drop Points"/> <mx:AdvancedDataGridColumn dataField="total_delivery_time" headerText="Total Delivery Time"/> <mx:AdvancedDataGridColumn dataField="total_distance" headerText="Total Distance"/> </mx:AdvancedDataGridColumnGroup> <mx:AdvancedDataGridColumnGroup headerText="Trip Exceptions"> <mx:AdvancedDataGridColumn dataField="total_doc" headerText="Total DOC"/> <mx:AdvancedDataGridColumn dataField="total_eng" headerText="Total ENG"/> <mx:AdvancedDataGridColumn dataField="total_fenv" headerText="Total FENV"/> <mx:AdvancedDataGridColumn dataField="average_speed" headerText="Average Speed"/> </mx:AdvancedDataGridColumnGroup> </mx:groupedColumns> </mx:AdvancedDataGrid> Thanks, and i really need some help.

    Read the article

  • i want to show the result of my code on a web page because it is being showed on a console??

    - by lojayna
    package collabsoft.backlog_reports.c4; import java.sql.CallableStatement; import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.ResultSetMetaData; import java.sql.Statement; //import collabsoft.backlog_reports.c4.Report; public class Report { private Connection con; public Report(){ connectUsingJDBC(); } public static void main(String args[]){ Report dc = new Report(); dc.reviewMeeting(6, 8, 10); dc.createReport("dede",100); //dc.viewReport(100); // dc.custRent(3344,123,22,11-11-2009); } /** the following method is used to connect to the database **/ public void connectUsingJDBC() { // This is the name of the ODBC data source String dataSourceName = "Simple_DB"; try { // loading the driver in the memory Class.forName("sun.jdbc.odbc.JdbcOdbcDriver"); // This is the connection URL String dbURL = "jdbc:odbc:" + dataSourceName; con = DriverManager.getConnection("jdbc:mysql://localhost:3306/Collabsoft","root",""); // This line is used to print the name of the driver and it would throw an exception if a problem occured System.out.println("User connected using driver: " + con.getMetaData().getDriverName()); //Addcustomer(con,1111,"aaa","aaa","aa","aam","111","2222","111"); //rentedMovies(con); //executePreparedStatement(con); //executeCallableStatement(con); //executeBatch(con); } catch (Exception e) { e.printStackTrace(); } } /** *this code is to link the SQL code with the java for the task *as an admin I should be able to create a report of a review meeting including notes, tasks and users *i will take the task id and user id and note id that will be needed to be added in the review meeting report and i will display the information related to these ida */ public void reviewMeeting(int taskID, int userID, int noteID)// law el proc bt return table { try{ CallableStatement callableStatement = con.prepareCall("{CALL report_review_meeting(?,?,?)}"); callableStatement.setInt(1,taskID); callableStatement.setInt(2,userID); callableStatement.setInt(3,noteID); ResultSet resultSet = callableStatement.executeQuery(); // or executeupdate() or updateQuery ResultSetMetaData rsm = resultSet.getMetaData(); int numOfColumns = rsm.getColumnCount(); System.out.println("lojayna"); while (resultSet.next()) { System.out.println("New Row:"); for (int i = 1; i <= numOfColumns; i++) System.out.print(rsm.getColumnName(i) + ": " + resultSet.getObject(i) + " "); System.out.println(); } } catch(Exception e) { System.out.println("E"); } } ////////////////////////////////// ///////////////////////////////// public void allproject(int projID)// law el proc bt return table { try{ CallableStatement callableStatement = con.prepareCall("{CALL all_project(?)}"); callableStatement.setInt(1,projID); //callableStatement.setInt(2,userID); //callableStatement.setInt(3,noteID); ResultSet resultSet = callableStatement.executeQuery(); // or executeupdate() or updateQuery ResultSetMetaData rsm = resultSet.getMetaData(); int numOfColumns = rsm.getColumnCount(); System.out.println("lojayna"); while (resultSet.next()) { System.out.println("New Row:"); for (int i = 1; i <= numOfColumns; i++) System.out.print(rsm.getColumnName(i) + ": " + resultSet.getObject(i) + " "); System.out.println(); } } catch(Exception e) { System.out.println("E"); } } /////////////////////////////// /** * here i take the event id and i take a string report and then * i relate the report with the event **/ public void createReport(String report,int E_ID )// law el proc bt return table { try{ Statement st = con.createStatement(); st.executeUpdate("UPDATE e_vent SET e_vent.report=report WHERE e_vent.E_ID= E_ID;"); /* CallableStatement callableStatement = con.prepareCall("{CALL Create_report(?,?)}"); callableStatement.setString(1,report); callableStatement.setInt(2,E_ID); ResultSet resultSet = callableStatement.executeQuery(); // or executeupdate() or updateQuery ResultSetMetaData rsm = resultSet.getMetaData(); int numOfColumns = rsm.getColumnCount(); System.out.println("lojayna"); while (resultSet.next()) { System.out.println("New Row:"); for (int i = 1; i <= numOfColumns; i++) System.out.print(rsm.getColumnName(i) + ": " + resultSet.getObject(i) + " "); System.out.println(); }*/ } catch(Exception e) { System.out.println("E"); System.out.println(e); } } /** in the following method i view the report of the event having the ID eventID */ public void viewReport(int eventID)// law el proc bt return table { try{ CallableStatement callableStatement = con.prepareCall("{CALL view_report(?)}"); callableStatement.setInt(1,eventID); ResultSet resultSet = callableStatement.executeQuery(); // or executeupdate() or updateQuery ResultSetMetaData rsm = resultSet.getMetaData(); int numOfColumns = rsm.getColumnCount(); System.out.println("lojayna"); while (resultSet.next()) { System.out.println("New Row:"); for (int i = 1; i <= numOfColumns; i++) System.out.print(rsm.getColumnName(i) + ": " + resultSet.getObject(i) + " "); System.out.println(); } } catch(Exception e) { System.out.println("E"); } } } // the result of these methods is being showed on the console , i am using WIcket and i want it 2 be showed on the web how is that done ?! thnxxx

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40 41 42 43 44  | Next Page >