Search Results

Search found 976 results on 40 pages for 'typedef'.

Page 37/40 | < Previous Page | 33 34 35 36 37 38 39 40  | Next Page >

  • Const references when dereferencing iterator on set, starting from Visual Studio 2010

    - by Patrick
    Starting from Visual Studio 2010, iterating over a set seems to return an iterator that dereferences the data as 'const data' instead of non-const. The following code is an example of something that does compile on Visual Studio 2005, but not on 2010 (this is an artificial example, but clearly illustrates the problem we found on our own code). In this example, I have a class that stores a position together with a temperature. I define comparison operators (not all them, just enough to illustrate the problem) that only use the position, not the temperature. The point is that for me two instances are identical if the position is identical; I don't care about the temperature. #include <set> class DataPoint { public: DataPoint (int x, int y) : m_x(x), m_y(y), m_temperature(0) {} void setTemperature(double t) {m_temperature = t;} bool operator<(const DataPoint& rhs) const { if (m_x==rhs.m_x) return m_y<rhs.m_y; else return m_x<rhs.m_x; } bool operator==(const DataPoint& rhs) const { if (m_x!=rhs.m_x) return false; if (m_y!=rhs.m_y) return false; return true; } private: int m_x; int m_y; double m_temperature; }; typedef std::set<DataPoint> DataPointCollection; void main(void) { DataPointCollection points; points.insert (DataPoint(1,1)); points.insert (DataPoint(1,1)); points.insert (DataPoint(1,2)); points.insert (DataPoint(1,3)); points.insert (DataPoint(1,1)); for (DataPointCollection::iterator it=points.begin();it!=points.end();++it) { DataPoint &point = *it; point.setTemperature(10); } } In the main routine I have a set to which I add some points. To check the correctness of the comparison operator, I add data points with the same position multiple times. When writing the contents of the set, I can clearly see there are only 3 points in the set. The for-loop loops over the set, and sets the temperature. Logically this is allowed, since the temperature is not used in the comparison operators. This code compiles correctly in Visual Studio 2005, but gives compilation errors in Visual Studio 2010 on the following line (in the for-loop): DataPoint &point = *it; The error given is that it can't assign a "const DataPoint" to a [non-const] "DataPoint &". It seems that you have no decent (= non-dirty) way of writing this code in VS2010 if you have a comparison operator that only compares parts of the data members. Possible solutions are: Adding a const-cast to the line where it gives an error Making temperature mutable and making setTemperature a const method But to me both solutions seem rather 'dirty'. It looks like the C++ standards committee overlooked this situation. Or not? What are clean solutions to solve this problem? Did some of you encounter this same problem and how did you solve it? Patrick

    Read the article

  • C program runs in Cygwin but not Linux (Malloc)

    - by Shawn
    I have a heap allocation error that I cant spot in my code that is picked up on vanguard/gdb on Linux but runs perfectly on a Windows cygwin environment. I understand that Linux could be tighter with its heap allocation than Windows but I would really like to have a response that discovers the issue/possible fix. I'm also aware that I shouldn't typecast malloc in C but it's a force of habit and doesn't change my problem from happening. My program actually compiles without error on both Linux & Windows but when I run it in Linux I get a scary looking result: malloc.c:3074: sYSMALLOc: Assertion `(old_top == (((mbinptr) (((char *) &((av)-bins[((1) - 1) * 2])) - __builtin_offsetof (struct malloc_chunk, fd)))) && old_size == 0) || ((unsigned long) (old_size) = (unsigned long)((((__builtin_offsetof (struct malloc_chunk, fd_nextsize))+((2 * (sizeof(size_t))) - 1)) & ~((2 * (sizeof(size_t))) - 1))) && ((old_top)-size & 0x1) && ((unsigned long)old_end & pagemask) == 0)' failed. Aborted Attached snippet from my code that is being pointed to as the error for review: /* Main */ int main(int argc, char * argv[]) { FILE *pFile; unsigned char *buffer; long int lSize; pFile = fopen ( argv[1] , "r" ); if (pFile==NULL) {fputs ("File error on arg[1]",stderr); return 1;} fseek (pFile , 0 , SEEK_END); lSize = ftell (pFile); rewind (pFile); buffer = (char*) malloc(sizeof(char) * lSize+1); if (buffer == NULL) {fputs ("Memory error",stderr); return 2;} bitpair * ppairs = (bitpair *) malloc(sizeof(bitpair) * (lSize+1)); //line 51 below calcpair(ppairs, (lSize+1)); /* irrelevant stuff */ fclose(pFile); free(buffer); free(ppairs); } typedef struct { long unsigned int a; //not actual variable names... Yes I need them to be long unsigned long unsigned int b; long unsigned int c; long unsigned int d; long unsigned int e; } bitpair; void calcpair(bitpair * ppairs, long int bits); void calcPairs(bitpair * ppairs, long int bits) { long int i, top, bot, var_1, var_2; int count = 0; for(i = 0; i < cs; i++) { top = 0; ppairs[top].e = 1; do { bot = count; count++; } while(ppairs[bot].e != 0); ppairs[bot].e = 1; var_1 = bot; var_2 = top; calcpair * bp = &ppairs[var_2]; bp->a = var_2; bp->b = var_1; bp->c = i; bp = &ppairs[var_1]; bp->a = var_2; bp->b = var_1; bp->c = i; } return; } gdb reports: free(): invalid pointer: 0x0000000000603290 * valgrind reports the following message 5 times before exiting due to "VALGRIND INTERNAL ERROR" signal 11 (SIGSEGV): Invalid read of size 8 ==2727== at 0x401043: calcPairs (in /home/user/Documents/5-3/ubuntu test/main) ==2727== by 0x400C9A: main (main.c:51) ==2727== Address 0x5a607a0 is not stack'd, malloc'd or (recently) free'd

    Read the article

  • I don't understand how work call_once

    - by SABROG
    Please help me understand how work call_once Here is thread-safe code. I don't understand why this need Thread Local Storage and global_epoch variables. Variable _fast_pthread_once_per_thread_epoch can be changed to constant/enum like {FAST_PTHREAD_ONCE_INIT, BEING_INITIALIZED, FINISH_INITIALIZED}. Why needed count calls in global_epoch? I think this code can be rewriting with logc: if flag FINISH_INITIALIZED do nothing, else go to block with mutexes and this all. #ifndef FAST_PTHREAD_ONCE_H #define FAST_PTHREAD_ONCE_H #include #include typedef sig_atomic_t fast_pthread_once_t; #define FAST_PTHREAD_ONCE_INIT SIG_ATOMIC_MAX extern __thread fast_pthread_once_t _fast_pthread_once_per_thread_epoch; #ifdef __cplusplus extern "C" { #endif extern void fast_pthread_once( pthread_once_t *once, void (*func)(void) ); inline static void fast_pthread_once_inline( fast_pthread_once_t *once, void (*func)(void) ) { fast_pthread_once_t x = *once; /* unprotected access */ if ( x _fast_pthread_once_per_thread_epoch ) { fast_pthread_once( once, func ); } } #ifdef __cplusplus } #endif #endif FAST_PTHREAD_ONCE_H Source fast_pthread_once.c The source is written in C. The lines of the primary function are numbered for reference in the subsequent correctness argument. #include "fast_pthread_once.h" #include static pthread_mutex_t mu = PTHREAD_MUTEX_INITIALIZER; /* protects global_epoch and all fast_pthread_once_t writes */ static pthread_cond_t cv = PTHREAD_COND_INITIALIZER; /* signalled whenever a fast_pthread_once_t is finalized */ #define BEING_INITIALIZED (FAST_PTHREAD_ONCE_INIT - 1) static fast_pthread_once_t global_epoch = 0; /* under mu */ __thread fast_pthread_once_t _fast_pthread_once_per_thread_epoch; static void check( int x ) { if ( x == 0 ) abort(); } void fast_pthread_once( fast_pthread_once_t *once, void (*func)(void) ) { /*01*/ fast_pthread_once_t x = *once; /* unprotected access */ /*02*/ if ( x _fast_pthread_once_per_thread_epoch ) { /*03*/ check( pthread_mutex_lock(µ) == 0 ); /*04*/ if ( *once == FAST_PTHREAD_ONCE_INIT ) { /*05*/ *once = BEING_INITIALIZED; /*06*/ check( pthread_mutex_unlock(µ) == 0 ); /*07*/ (*func)(); /*08*/ check( pthread_mutex_lock(µ) == 0 ); /*09*/ global_epoch++; /*10*/ *once = global_epoch; /*11*/ check( pthread_cond_broadcast(&cv;) == 0 ); /*12*/ } else { /*13*/ while ( *once == BEING_INITIALIZED ) { /*14*/ check( pthread_cond_wait(&cv;, µ) == 0 ); /*15*/ } /*16*/ } /*17*/ _fast_pthread_once_per_thread_epoch = global_epoch; /*18*/ check (pthread_mutex_unlock(µ) == 0); } } This code from BOOST: #ifndef BOOST_THREAD_PTHREAD_ONCE_HPP #define BOOST_THREAD_PTHREAD_ONCE_HPP // once.hpp // // (C) Copyright 2007-8 Anthony Williams // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #include #include #include #include "pthread_mutex_scoped_lock.hpp" #include #include #include namespace boost { struct once_flag { boost::uintmax_t epoch; }; namespace detail { BOOST_THREAD_DECL boost::uintmax_t& get_once_per_thread_epoch(); BOOST_THREAD_DECL extern boost::uintmax_t once_global_epoch; BOOST_THREAD_DECL extern pthread_mutex_t once_epoch_mutex; BOOST_THREAD_DECL extern pthread_cond_t once_epoch_cv; } #define BOOST_ONCE_INITIAL_FLAG_VALUE 0 #define BOOST_ONCE_INIT {BOOST_ONCE_INITIAL_FLAG_VALUE} // Based on Mike Burrows fast_pthread_once algorithm as described in // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2444.html template void call_once(once_flag& flag,Function f) { static boost::uintmax_t const uninitialized_flag=BOOST_ONCE_INITIAL_FLAG_VALUE; static boost::uintmax_t const being_initialized=uninitialized_flag+1; boost::uintmax_t const epoch=flag.epoch; boost::uintmax_t& this_thread_epoch=detail::get_once_per_thread_epoch(); if(epoch #endif I right understand, boost don't use atomic operation, so code from boost not thread-safe?

    Read the article

  • Marshal a C# struct to C++ VARIANT

    - by jortan
    To start with, I'm not very familiar with the COM-technology, this is the first time I'm working with it so bear with me. I'm trying to call a COM-object function from C#. This is the interface in the idl-file: [id(6), helpstring("vConnectInfo=ConnectInfoType")] HRESULT ConnectTarget([in,out] VARIANT* vConnectInfo); This is the interop interface I got after running tlbimp: void ConnectTarget(ref object vConnectInfo); The c++ code in COM object for the target function: STDMETHODIMP PCommunication::ConnectTarget(VARIANT* vConnectInfo) { if (!((vConnectInfo->vt & VT_ARRAY) && (vConnectInfo->vt & VT_BYREF))) { return E_INVALIDARG; } ConnectInfoType *pConnectInfo = (ConnectInfoType *)((*vConnectInfo->pparray)->pvData); ... } This COM-object is running in another process, it is not in a dll. I can add that the COM object is also used from another program written in C++. In that case there is no problem because in C++ a VARIANT is created and pparray-pvData is set to the connInfo data-structure and then the COM-object is called with the VARIANT as parameter. In C#, as I understand, my struct should be marshalled as a VARIANT automatically. These are two methods I've been using (or actually I've tried a lot more...) to call this method from C#: private void method1_Click(object sender, EventArgs e) { pcom.PCom PCom = new pcom.PCom(); pcom.IGeneralManagementServices mgmt = (pcom.IGeneralManagementServices)PCom; m_ci = new ConnectInfoType(); fillConnInfo(ref m_ci); mgmt.ConnectTarget(m_ci); } In the above case the struct gets marshalled as VT_UNKNOWN. This is a simple case and works if the parameter is not a struct (eg. works for int). private void method4_Click(object sender, EventArgs e) { ConnectInfoType ci = new ConnectInfoType(); fillConnInfo(ref ci); pcom PCom = new pcom.PCom(); pcom.IGeneralManagementServices mgmt = (pcom.IGeneralManagementServices)PCom; ParameterModifier[] pms = new ParameterModifier[1]; ParameterModifier pm = new ParameterModifier(1); pm[0] = true; pms[0] = pm; object[] param = new object[1]; param[0] = ci; object[] args = new object[1]; args[0] = param; mgmt.GetType().InvokeMember("ConnectTarget", BindingFlags.InvokeMethod, null, mgmt, args, pms, null, null); } In this case it gets marshalled as VT_ARRAY | VT_BYREF | VT_VARIANT. The problem is that when debugging the "target-function" ConnectTarget I cannot find the data I send in the SAFEARRAY-struct (or in any other place in memory either) What do I do with a VT_VARIANT? Any ideas on how to get my struct-data? Update: The ConnectInfoType struct: [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Ansi)] public class ConnectInfoType { public short network; public short nodeNumber; [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 51)] public string connTargPassWord; [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 8)] public string sConnectId; [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 16)] public string sConnectPassword; public EnuConnectType eConnectType; public int hConnectHandle; [MarshalAs(UnmanagedType.ByValTStr, SizeConst = 8)] public string sAccessPassword; }; And the corresponding struct in c++: typedef struct ConnectInfoType { short network; short nodeNumber; char connTargPassWord[51]; char sConnectId[8]; char sConnectPassword[16]; EnuConnectType eConnectType; int hConnectHandle; char sAccessPassword[8]; } ConnectInfoType;

    Read the article

  • push_back of STL list got bad performance?

    - by Leon Zhang
    I wrote a simple program to test STL list performance against a simple C list-like data structure. It shows bad performance at "push_back()" line. Any comments on it? $ ./test2 Build the type list : time consumed -> 0.311465 Iterate over all items: time consumed -> 0.00898 Build the simple C List: time consumed -> 0.020275 Iterate over all items: time consumed -> 0.008755 The source code is: #include <stdexcept> #include "high_resolution_timer.hpp" #include <list> #include <algorithm> #include <iostream> #define TESTNUM 1000000 /* The test struct */ struct MyType { int num; }; /* * C++ STL::list Test */ typedef struct MyType* mytype_t; void myfunction(mytype_t t) { } int test_stl_list() { std::list<mytype_t> mylist; util::high_resolution_timer t; /* * Build the type list */ t.restart(); for(int i = 0; i < TESTNUM; i++) { mytype_t aItem = (mytype_t) malloc(sizeof(struct MyType)); if(aItem == NULL) { printf("Error: while malloc\n"); return -1; } aItem->num = i; mylist.push_back(aItem); } std::cout << " Build the type list : time consumed -> " << t.elapsed() << std::endl; /* * Iterate over all item */ t.restart(); std::for_each(mylist.begin(), mylist.end(), myfunction); std::cout << " Iterate over all items: time consumed -> " << t.elapsed() << std::endl; return 0; } /* * a simple C list */ struct MyCList; struct MyCList{ struct MyType m; struct MyCList* p_next; }; int test_simple_c_list() { struct MyCList* p_list_head = NULL; util::high_resolution_timer t; /* * Build it */ t.restart(); struct MyCList* p_new_item = NULL; for(int i = 0; i < TESTNUM; i++) { p_new_item = (struct MyCList*) malloc(sizeof(struct MyCList)); if(p_new_item == NULL) { printf("ERROR : while malloc\n"); return -1; } p_new_item->m.num = i; p_new_item->p_next = p_list_head; p_list_head = p_new_item; } std::cout << " Build the simple C List: time consumed -> " << t.elapsed() << std::endl; /* * Iterate all items */ t.restart(); p_new_item = p_list_head; while(p_new_item->p_next != NULL) { p_new_item = p_new_item->p_next; } std::cout << " Iterate over all items: time consumed -> " << t.elapsed() << std::endl; return 0; } int main(int argc, char** argv) { if(test_stl_list() != 0) { printf("ERROR: error at testcase1\n"); return -1; } if(test_simple_c_list() != 0) { printf("ERROR: error at testcase2\n"); return -1; } return 0; }

    Read the article

  • Function signature-like expressions as C++ template arguments

    - by Jeff Lee
    I was looking at Don Clugston's FastDelegate mini-library and noticed a weird syntactical trick with the following structure: TemplateClass< void( int, int ) > Object; It almost appears as if a function signature is being used as an argument to a template instance declaration. This technique (whose presence in FastDelegate is apparently due to one Jody Hagins) was used to simplify the declaration of template instances with a semi-arbitrary number of template parameters. To wit, it allowed this something like the following: // A template with one parameter template<typename _T1> struct Object1 { _T1 m_member1; }; // A template with two parameters template<typename _T1, typename _T2> struct Object2 { _T1 m_member1; _T2 m_member2; }; // A forward declaration template<typename _Signature> struct Object; // Some derived types using "function signature"-style template parameters template<typename _Dummy, typename _T1> struct Object<_Dummy(_T1)> : public Object1<_T1> {}; template<typename _Dummy, typename _T1, typename _T2> struct Object<_Dummy(_T1, _T2)> : public Object2<_T1, _T2> {}; // A. "Vanilla" object declarations Object1<int> IntObjectA; Object2<int, char> IntCharObjectA; // B. Nifty, but equivalent, object declarations typedef void UnusedType; Object< UnusedType(int) > IntObjectB; Object< UnusedType(int, char) > IntCharObjectB; // C. Even niftier, and still equivalent, object declarations #define DeclareObject( ... ) Object< UnusedType( __VA_ARGS__ ) > DeclareObject( int ) IntObjectC; DeclareObject( int, char ) IntCharObjectC; Despite the real whiff of hackiness, I find this kind of spoofy emulation of variadic template arguments to be pretty mind-blowing. The real meat of this trick seems to be the fact that I can pass textual constructs like "Type1(Type2, Type3)" as arguments to templates. So here are my questions: How exactly does the compiler interpret this construct? Is it a function signature? Or, is it just a text pattern with parentheses in it? If the former, then does this imply that any arbitrary function signature is a valid type as far as the template processor is concerned? A follow-up question would be that since the above code sample is valid code, why doesn't the C++ standard just allow you to do something like the following, which is does not compile? template<typename _T1> struct Object { _T1 m_member1; }; // Note the class identifier is also "Object" template<typename _T1, typename _T2> struct Object { _T1 m_member1; _T2 m_member2; }; Object<int> IntObject; Object<int, char> IntCharObject;

    Read the article

  • Help with infrequent segmentation fault in accessing boost::unordered_multimap or struct

    - by Sarah
    I'm having trouble debugging a segmentation fault. I'd appreciate tips on how to go about narrowing in on the problem. The error appears when an iterator tries to access an element of a struct Infection, defined as: struct Infection { public: explicit Infection( double it, double rt ) : infT( it ), recT( rt ) {} double infT; // infection start time double recT; // scheduled recovery time }; These structs are kept in a special structure, InfectionMap: typedef boost::unordered_multimap< int, Infection > InfectionMap; Every member of class Host has an InfectionMap carriage. Recovery times and associated host identifiers are kept in a priority queue. When a scheduled recovery event arises in the simulation for a particular strain s in a particular host, the program searches through carriage of that host to find the Infection whose recT matches the recovery time (double recoverTime). (For reasons that aren't worth going into, it's not as expedient for me to use recT as the key to InfectionMap; the strain s is more useful, and coinfections with the same strain are possible.) assert( carriage.size() > 0 ); pair<InfectionMap::iterator,InfectionMap::iterator> ret = carriage.equal_range( s ); InfectionMap::iterator it; for ( it = ret.first; it != ret.second; it++ ) { if ( ((*it).second).recT == recoverTime ) { // produces seg fault carriage.erase( it ); } } I get a "Program received signal EXC_BAD_ACCESS, Could not access memory. Reason: KERN_INVALID_ADDRESS at address..." on the line specified above. The recoverTime is fine, and the assert(...) in the code is not tripped. As I said, this seg fault appears 'randomly' after thousands of successful recovery events. How would you go about figuring out what's going on? I'd love ideas about what could be wrong and how I can further investigate the problem. Update I added a new assert and a check just inside the for loop: assert( carriage.size() > 0 ); assert( carriage.count( s ) > 0 ); pair<InfectionMap::iterator,InfectionMap::iterator> ret = carriage.equal_range( s ); InfectionMap::iterator it; cout << "carriage.count(" << s << ")=" << carriage.count(s) << endl; for ( it = ret.first; it != ret.second; it++ ) { cout << "(*it).first=" << (*it).first << endl; // error here if ( ((*it).second).recT == recoverTime ) { carriage.erase( it ); } } The EXC_BAD_ACCESS error now appears at the (*it).first call, again after many thousands of successful recoveries. Can anyone give me tips on how to figure out how this problem arises? I'm trying to use gdb. Frame 0 from the backtrace reads "#0 0x0000000100001d50 in Host::recover (this=0x100530d80, s=0, recoverTime=635.91148029170529) at Host.cpp:317" I'm not sure what useful information I can extract here. Update 2 I added a break; after the carriage.erase(it). This works, but I have no idea why (e.g., why it would remove the seg fault at (*it).first.

    Read the article

  • Boost::Spirit::Qi autorules -- avoiding repeated copying of AST data structures

    - by phooji
    I've been using Qi and Karma to do some processing on several small languages. Most of the grammars are pretty small (20-40 rules). I've been able to use autorules almost exclusively, so my parse trees consist entirely of variants, structs, and std::vectors. This setup works great for the common case: 1) parse something (Qi), 2) make minor manipulations to the parse tree (visitor), and 3) output something (Karma). However, I'm concerned about what will happen if I want to make complex structural changes to a syntax tree, like moving big subtrees around. Consider the following toy example: A grammar for s-expr-style logical expressions that uses autorules... // Inside grammar class; rule names match struct names... pexpr %= pand | por | var | bconst; pand %= lit("(and ") >> (pexpr % lit(" ")) >> ")"; por %= lit("(or ") >> (pexpr % lit(" ")) >> ")"; pnot %= lit("(not ") >> pexpr >> ")"; ... which leads to parse tree representation that looks like this... struct var { std::string name; }; struct bconst { bool val; }; struct pand; struct por; struct pnot; typedef boost::variant<bconst, var, boost::recursive_wrapper<pand>, boost::recursive_wrapper<por>, boost::recursive_wrapper<pnot> > pexpr; struct pand { std::vector<pexpr> operands; }; struct por { std::vector<pexpr> operands; }; struct pnot { pexpr victim; }; // Many Fusion Macros here Suppose I have a parse tree that looks something like this: pand / ... \ por por / \ / \ var var var var (The ellipsis means 'many more children of similar shape for pand.') Now, suppose that I want negate each of the por nodes, so that the end result is: pand / ... \ pnot pnot | | por por / \ / \ var var var var The direct approach would be, for each por subtree: - create pnot node (copies por in construction); - re-assign the appropriate vector slot in the pand node (copies pnot node and its por subtree). Alternatively, I could construct a separate vector, and then replace (swap) the pand vector wholesale, eliminating a second round of copying. All of this seems cumbersome compared to a pointer-based tree representation, which would allow for the pnot nodes to be inserted without any copying of existing nodes. My question: Is there a way to avoid copy-heavy tree manipulations with autorule-compliant data structures? Should I bite the bullet and just use non-autorules to build a pointer-based AST (e.g., http://boost-spirit.com/home/2010/03/11/s-expressions-and-variants/)?

    Read the article

  • How to find minimum weight with maximum cost in 0-1 Knapsack algorithm?

    - by Nitin9791
    I am trying to solve a spoj problem Party Schedule the problem statement is- You just received another bill which you cannot pay because you lack the money. Unfortunately, this is not the first time to happen, and now you decide to investigate the cause of your constant monetary shortness. The reason is quite obvious: the lion's share of your money routinely disappears at the entrance of party localities. You make up your mind to solve the problem where it arises, namely at the parties themselves. You introduce a limit for your party budget and try to have the most possible fun with regard to this limit. You inquire beforehand about the entrance fee to each party and estimate how much fun you might have there. The list is readily compiled, but how do you actually pick the parties that give you the most fun and do not exceed your budget? Write a program which finds this optimal set of parties that offer the most fun. Keep in mind that your budget need not necessarily be reached exactly. Achieve the highest possible fun level, and do not spend more money than is absolutely necessary. Input The first line of the input specifies your party budget and the number n of parties. The following n lines contain two numbers each. The first number indicates the entrance fee of each party. Parties cost between 5 and 25 francs. The second number indicates the amount of fun of each party, given as an integer number ranging from 0 to 10. The budget will not exceed 500 and there will be at most 100 parties. All numbers are separated by a single space. There are many test cases. Input ends with 0 0. Output For each test case your program must output the sum of the entrance fees and the sum of all fun values of an optimal solution. Both numbers must be separated by a single space. Example Sample input: 50 10 12 3 15 8 16 9 16 6 10 2 21 9 18 4 12 4 17 8 18 9 50 10 13 8 19 10 16 8 12 9 10 2 12 8 13 5 15 5 11 7 16 2 0 0 Sample output: 49 26 48 32 now I know that it is an advance version of 0/1 knapsack problem where along with maximum cost we also have to find minimum weight that is less than a a given weight and have maximum cost. so I have used dp to solve this problem but still get a wrong awnser on submission while it is perfectly fine with given test cases. My code is typedef vector<int> vi; #define pb push_back #define FOR(i,n) for(int i=0;i<n;i++) int main() { //freopen("input.txt","r",stdin); while(1) { int W,n; cin>>W>>n; if(W==0 && n==0) break; int K[n+1][W+1]; vi val,wt; FOR(i,n) { int x,y; cin>>x>>y; wt.pb(x); val.pb(y); } FOR(i,n+1) { FOR(w,W+1) { if(i==0 || w==0) { K[i][w]=0; } else if (wt[i-1] <= w) { if(val[i-1] + K[i-1][w-wt[i-1]]>=K[i-1][w]) { K[i][w]=val[i-1] + K[i-1][w-wt[i-1]]; } else { K[i][w]=K[i-1][w]; } } else { K[i][w] = K[i-1][w]; } } } int a1=K[n][W],a2; for(int j=0;j<W;j++) { if(K[n][j]==a1) { a2=j; break; } } cout<<a2<<" "<<a1<<"\n"; } return 0; } Could anyone suggest what am I missing??

    Read the article

  • Trouble in ActiveX multi-thread invoke javascript callback routine

    - by code0tt
    everyone. I'm get some trouble in ActiveX programming with ATL. I try to make a activex which can async-download files from http server to local folder and after download it will invoke javascript callback function. My solution: run a thread M to monitor download thread D, when D is finish the job, M is going to terminal themself and invoke IDispatch inferface to call javascript function. **************** THERE IS MY CODE: **************** /* javascript code */ funciton download() { var xfm = new ActiveXObject("XFileMngr.FileManager.1"); xfm.download( 'http://somedomain/somefile','localdev:\\folder\localfile',function(msg){alert(msg);}); } /* C++ code */ // main routine STDMETHODIMP CFileManager::download(BSTR url, BSTR local, VARIANT scriptCallback) { CString csURL(url); CString csLocal(local); CAsyncDownload download; download.Download(this, csURL, csLocal, scriptCallback); return S_OK; } // parts of CAsyncDownload.h typedef struct tagThreadData { CAsyncDownload* pThis; } THREAD_DATA, *LPTHREAD_DATA; class CAsyncDownload : public IBindStatusCallback { private: LPUNKNOWN pcaller; CString csRemoteFile; CString csLocalFile; CComPtr<IDispatch> spCallback; public: void onDone(HRESULT hr); HRESULT Download(LPUNKNOWN caller, CString& csRemote, CString& csLocal, VARIANT callback); static DWORD __stdcall ThreadProc(void* param); }; // parts of CAsyncDownload.cpp void CAsyncDownload::onDone(HRESULT hr) { if(spCallback) { TRACE(TEXT("invoke callback function\n")); CComVariant vParams[1]; vParams[0] = "callback is working!"; DISPPARAMS params = { vParams, NULL, 1, 0 }; HRESULT hr = spCallback->Invoke(0, IID_NULL, LOCALE_USER_DEFAULT, DISPATCH_METHOD, &params, NULL, NULL, NULL); if(FAILED(hr)) { CString csBuffer; csBuffer.Format(TEXT("invoke failed, result value: %d \n"),hr); TRACE(csBuffer); }else { TRACE(TEXT("invoke was successful\n")); } } } HRESULT CAsyncDownload::Download(LPUNKNOWN caller, CString& csRemote, CString& csLocal, VARIANT callback) { CoInitializeEx(NULL, COINIT_MULTITHREADED); csRemoteFile = csRemote; csLocalFile = csLocal; pcaller = caller; switch(callback.vt){ case VT_DISPATCH: case VT_VARIANT:{ spCallback = callback.pdispVal; } break; default:{ spCallback = NULL; } } LPTHREAD_DATA pData = new THREAD_DATA; pData->pThis = this; // create monitor thread M HANDLE hThread = CreateThread(NULL, 0, ThreadProc, (void*)(pData), 0, NULL); if(!hThread) { delete pData; return HRESULT_FROM_WIN32(GetLastError()); } WaitForSingleObject(hThread, INFINITE); CloseHandle(hThread); CoUninitialize(); return S_OK; } DWORD __stdcall CAsyncDownload::ThreadProc(void* param) { LPTHREAD_DATA pData = (LPTHREAD_DATA)param; // here, we will create http download thread D // when download job is finish, call onDone method; pData->pThis->onDone(S_OK); delete pData; return 0; } **************** CODE FINISH **************** OK, above is parts of my source code, if I call onDone method in sub-thread, I will get OLE ERROR(-2147418113 (8000FFFF) Catastrophic failure.). Did I miss something? please help me to figure it out.

    Read the article

  • [C] Texture management / pointer question

    - by ndg
    I'm working on a texture management and animation solution for a small side project of mine. Although the project uses Allegro for rendering and input, my question mostly revolves around C and memory management. I wanted to post it here to get thoughts and insight into the approach, as I'm terrible when it comes to pointers. Essentially what I'm trying to do is load all of my texture resources into a central manager (textureManager) - which is essentially an array of structs containing ALLEGRO_BITMAP objects. The textures stored within the textureManager are mostly full sprite sheets. From there, I have an anim(ation) struct, which contains animation-specific information (along with a pointer to the corresponding texture within the textureManager). To give you an idea, here's how I setup and play the players 'walk' animation: createAnimation(&player.animations[0], "media/characters/player/walk.png", player.w, player.h); playAnimation(&player.animations[0], 10); Rendering the animations current frame is just a case of blitting a specific region of the sprite sheet stored in textureManager. For reference, here's the code for anim.h and anim.c. I'm sure what I'm doing here is probably a terrible approach for a number of reasons. I'd like to hear about them! Am I opening myself to any pitfalls? Will this work as I'm hoping? anim.h #ifndef ANIM_H #define ANIM_H #define ANIM_MAX_FRAMES 10 #define MAX_TEXTURES 50 struct texture { bool active; ALLEGRO_BITMAP *bmp; }; struct texture textureManager[MAX_TEXTURES]; typedef struct tAnim { ALLEGRO_BITMAP **sprite; int w, h; int curFrame, numFrames, frameCount; float delay; } anim; void setupTextureManager(void); int addTexture(char *filename); int createAnimation(anim *a, char *filename, int w, int h); void playAnimation(anim *a, float delay); void updateAnimation(anim *a); #endif anim.c void setupTextureManager() { int i = 0; for(i = 0; i < MAX_TEXTURES; i++) { textureManager[i].active = false; } } int addTextureToManager(char *filename) { int i = 0; for(i = 0; i < MAX_TEXTURES; i++) { if(!textureManager[i].active) { textureManager[i].bmp = al_load_bitmap(filename); textureManager[i].active = true; if(!textureManager[i].bmp) { printf("Error loading texture: %s", filename); return -1; } return i; } } return -1; } int createAnimation(anim *a, char *filename, int w, int h) { int textureId = addTextureToManager(filename); if(textureId > -1) { a->sprite = textureManager[textureId].bmp; a->w = w; a->h = h; a->numFrames = al_get_bitmap_width(a->sprite) / w; printf("Animation loaded with %i frames, given resource id: %i\n", a->numFrames, textureId); } else { printf("Texture manager full\n"); return 1; } return 0; } void playAnimation(anim *a, float delay) { a->curFrame = 0; a->frameCount = 0; a->delay = delay; } void updateAnimation(anim *a) { a->frameCount ++; if(a->frameCount >= a->delay) { a->frameCount = 0; a->curFrame ++; if(a->curFrame >= a->numFrames) { a->curFrame = 0; } } }

    Read the article

  • STL find performs bettern than hand-crafter loop

    - by dusha
    Hello all, I have some question. Given the following C++ code fragment: #include <boost/progress.hpp> #include <vector> #include <algorithm> #include <numeric> #include <iostream> struct incrementor { incrementor() : curr_() {} unsigned int operator()() { return curr_++; } private: unsigned int curr_; }; template<class Vec> char const* value_found(Vec const& v, typename Vec::const_iterator i) { return i==v.end() ? "no" : "yes"; } template<class Vec> typename Vec::const_iterator find1(Vec const& v, typename Vec::value_type val) { return find(v.begin(), v.end(), val); } template<class Vec> typename Vec::const_iterator find2(Vec const& v, typename Vec::value_type val) { for(typename Vec::const_iterator i=v.begin(), end=v.end(); i<end; ++i) if(*i==val) return i; return v.end(); } int main() { using namespace std; typedef vector<unsigned int>::const_iterator iter; vector<unsigned int> vec; vec.reserve(10000000); boost::progress_timer pt; generate_n(back_inserter(vec), vec.capacity(), incrementor()); //added this line, to avoid any doubts, that compiler is able to // guess the data is sorted random_shuffle(vec.begin(), vec.end()); cout << "value generation required: " << pt.elapsed() << endl; double d; pt.restart(); iter found=find1(vec, vec.capacity()); d=pt.elapsed(); cout << "first search required: " << d << endl; cout << "first search found value: " << value_found(vec, found)<< endl; pt.restart(); found=find2(vec, vec.capacity()); d=pt.elapsed(); cout << "second search required: " << d << endl; cout << "second search found value: " << value_found(vec, found)<< endl; return 0; } On my machine (Intel i7, Windows Vista) STL find (call via find1) runs about 10 times faster than the hand-crafted loop (call via find2). I first thought that Visual C++ performs some kind of vectorization (may be I am mistaken here), but as far as I can see assembly does not look the way it uses vectorization. Why is STL loop faster? Hand-crafted loop is identical to the loop from the STL-find body. I was asked to post program's output. Without shuffle: value generation required: 0.078 first search required: 0.008 first search found value: no second search required: 0.098 second search found value: no With shuffle (caching effects): value generation required: 1.454 first search required: 0.009 first search found value: no second search required: 0.044 second search found value: no Many thanks, dusha. P.S. I return the iterator and write out the result (found or not), because I would like to prevent compiler optimization, that it thinks the loop is not required at all. The searched value is obviously not in the vector.

    Read the article

  • Undefined reference to vtable

    - by RyanG
    So, I'm getting the infamously horrible "undefined reference to 'vtable..." error for the following code (The class in question is CGameModule.) and I cannot for the life of me understand what the problem is. At first, I thought it was related to forgetting to give a virtual function a body, but as far as I understand, everything is all here. The inheritance chain is a little long, but here is the related source code. I'm not sure what other information I should provide. My code: class CGameModule : public CDasherModule { public: CGameModule(Dasher::CEventHandler *pEventHandler, CSettingsStore *pSettingsStore, CDasherInterfaceBase *pInterface, ModuleID_t iID, const char *szName) : CDasherModule(pEventHandler, pSettingsStore, iID, 0, szName) { g_pLogger->Log("Inside game module constructor"); m_pInterface = pInterface; } virtual ~CGameModule() {}; std::string GetTypedTarget(); std::string GetUntypedTarget(); bool DecorateView(CDasherView *pView) { //g_pLogger->Log("Decorating the view"); return false; } void SetDasherModel(CDasherModel *pModel) { m_pModel = pModel; } virtual void HandleEvent(Dasher::CEvent *pEvent); private: CDasherNode *pLastTypedNode; CDasherNode *pNextTargetNode; std::string m_sTargetString; size_t m_stCurrentStringPos; CDasherModel *m_pModel; CDasherInterfaceBase *m_pInterface; }; } Inherits from... class CDasherModule; typedef std::vector<CDasherModule*>::size_type ModuleID_t; /// \ingroup Core /// @{ class CDasherModule : public Dasher::CDasherComponent { public: CDasherModule(Dasher::CEventHandler * pEventHandler, CSettingsStore * pSettingsStore, ModuleID_t iID, int iType, const char *szName); virtual ModuleID_t GetID(); virtual void SetID(ModuleID_t); virtual int GetType(); virtual const char *GetName(); virtual bool GetSettings(SModuleSettings **pSettings, int *iCount) { return false; }; private: ModuleID_t m_iID; int m_iType; const char *m_szName; }; Which inherits from.... namespace Dasher { class CEvent; class CEventHandler; class CDasherComponent; }; /// \ingroup Core /// @{ class Dasher::CDasherComponent { public: CDasherComponent(Dasher::CEventHandler* pEventHandler, CSettingsStore* pSettingsStore); virtual ~CDasherComponent(); void InsertEvent(Dasher::CEvent * pEvent); virtual void HandleEvent(Dasher::CEvent * pEvent) {}; bool GetBoolParameter(int iParameter) const; void SetBoolParameter(int iParameter, bool bValue) const; long GetLongParameter(int iParameter) const; void SetLongParameter(int iParameter, long lValue) const; std::string GetStringParameter(int iParameter) const; void SetStringParameter(int iParameter, const std::string & sValue) const; ParameterType GetParameterType(int iParameter) const; std::string GetParameterName(int iParameter) const; protected: Dasher::CEventHandler *m_pEventHandler; CSettingsStore *m_pSettingsStore; }; /// @} #endif

    Read the article

  • Partial string search in boost::multi_index_container

    - by user361699
    I have a struct to store info about persons and multi_index_contaider to store such objects struct person { std::string m_first_name; std::string m_last_name; std::string m_third_name; std::string m_address; std::string m_phone; person(); person(std::string f, std::string l, std::string t = "", std::string a = DEFAULT_ADDRESS, std::string p = DEFAULT_PHONE) : m_first_name(f), m_last_name(l), m_third_name(t), m_address(a), m_phone(p) {} }; typedef multi_index_container , ordered_non_unique, member, member persons_set; operator< and operator<< implementation for person bool operator<(const person &lhs, const person &rhs) { if(lhs.m_last_name == rhs.m_last_name) { if(lhs.m_first_name == rhs.m_first_name) return (lhs.m_third_name < rhs.m_third_name); return (lhs.m_first_name < rhs.m_first_name); } return (lhs.m_last_name < rhs.m_last_name); } std::ostream& operator<<(std::ostream &s, const person &rhs) { s << "Person's last name: " << rhs.m_last_name << std::endl; s << "Person's name: " << rhs.m_first_name << std::endl; if (!rhs.m_third_name.empty()) s << "Person's third name: " << rhs.m_third_name << std::endl; s << "Phone: " << rhs.m_phone << std::endl; s << "Address: " << rhs.m_address << std::endl; return s; } Add several persons into container: person ("Alex", "Johnson", "Somename"); person ("Alex", "Goodspeed"); person ("Petr", "Parker"); person ("Petr", "Goodspeed"); Now I want to find person by lastname (the first member of the second index in multi_index_container) persons_set::nth_index<1::type &names_index = my_set.get<1(); std::pair::type::const_iterator, persons_set::nth_index<1::type::const_iterator n_it = names_index.equal_range("Goodspeed"); std::copy(n_it.first ,n_it.second, std::ostream_iterator(std::cout)); It works great. Both 'Goodspeed' persons are found. Now lets try to find person by a part of a last name: std::pair::type::const_iterator, persons_set::nth_index<1::type::const_iterator n_it = names_index.equal_range("Good"); std::copy(n_it.first ,n_it.second, std::ostream_iterator(std::cout)); This returns nothing, but partial string search works as a charm in std::set. So I can't realize what's the problem. I only wraped strings by a struct. May be operator< implementation? Thanks in advance for any help.

    Read the article

  • Better Way To Use C++ Named Parameter Idiom?

    - by Head Geek
    I've been developing a GUI library for Windows (as a personal side project, no aspirations of usefulness). For my main window class, I've set up a hierarchy of option classes (using the Named Parameter Idiom), because some options are shared and others are specific to particular types of windows (like dialogs). The way the Named Parameter Idiom works, the functions of the parameter class have to return the object they're called on. The problem is that, in the hierarchy, each one has to be a different class -- the createWindowOpts class for standard windows, the createDialogOpts class for dialogs, and the like. I've dealt with that by making all the option classes templates. Here's an example: template <class T> class _sharedWindowOpts: public detail::_baseCreateWindowOpts { public: /////////////////////////////////////////////////////////////// // No required parameters in this case. _sharedWindowOpts() { }; typedef T optType; // Commonly used options optType& at(int x, int y) { mX=x; mY=y; return static_cast<optType&>(*this); }; // Where to put the upper-left corner of the window; if not specified, the system sets it to a default position optType& at(int x, int y, int width, int height) { mX=x; mY=y; mWidth=width; mHeight=height; return static_cast<optType&>(*this); }; // Sets the position and size of the window in a single call optType& background(HBRUSH b) { mBackground=b; return static_cast<optType&>(*this); }; // Sets the default background to this brush optType& background(INT_PTR b) { mBackground=HBRUSH(b+1); return static_cast<optType&>(*this); }; // Sets the default background to one of the COLOR_* colors; defaults to COLOR_WINDOW optType& cursor(HCURSOR c) { mCursor=c; return static_cast<optType&>(*this); }; // Sets the default mouse cursor for this window; defaults to the standard arrow optType& hidden() { mStyle&=~WS_VISIBLE; return static_cast<optType&>(*this); }; // Windows are visible by default optType& icon(HICON iconLarge, HICON iconSmall=0) { mIcon=iconLarge; mSmallIcon=iconSmall; return static_cast<optType&>(*this); }; // Specifies the icon, and optionally a small icon // ...Many others removed... }; template <class T> class _createWindowOpts: public _sharedWindowOpts<T> { public: /////////////////////////////////////////////////////////////// _createWindowOpts() { }; // These can't be used with child windows, or aren't needed optType& menu(HMENU m) { mMenuOrId=m; return static_cast<optType&>(*this); }; // Gives the window a menu optType& owner(HWND hwnd) { mParentOrOwner=hwnd; return static_cast<optType&>(*this); }; // Sets the optional parent/owner }; class createWindowOpts: public _createWindowOpts<createWindowOpts> { public: /////////////////////////////////////////////////////////////// createWindowOpts() { }; }; It works, but as you can see, it requires a noticeable amount of extra work: a type-cast on the return type for each function, extra template classes, etcetera. My question is, is there an easier way to implement the Named Parameter Idiom in this case, one that doesn't require all the extra stuff?

    Read the article

  • Type for use in template object to compare double values

    - by DaClown
    I got this n-dimensional point object: template <class T, unsigned int dimension> class Obj { protected: T coords[dimension]; static const unsigned int size = dimension; public: Obj() { }; Obj(T def) { for (unsigned int i = 0; i < size; ++i) coords[i]=def; }; Obj(const Obj& o) { for (unsigned int i = 0; i < size; ++i) coords[i] = o.coords[i]; } const Obj& operator= (const Obj& rhs) { if (this != &rhs) for (unsigned int i = 0; i < size; ++i) coords[i] = rhs.coords[i]; return *this; } virtual ~Obj() { }; T get (unsigned int id) { if (id >= size) throw std::out_of_range("out of range"); return coords[id]; } void set (unsigned int id, T t) { if (id >= size) throw std::out_of_range("out of range"); coords[id] = t; } }; and a 3D point class which uses Obj as base class: template <class U> class Point3DBase : public Obj<U,3> { typedef U type; public: U &x, &y, &z; public: Point3DBase() : x(Obj<U,3>::coords[0]), y(Obj<U,3>::coords[1]), z(Obj<U,3>::coords[2]) { }; Point3DBase(U def) : Obj<U,3>(def), x(Obj<U,3>::coords[0]), y(Obj<U,3>::coords[1]), z(Obj<U,3>::coords[2]) { }; Point3DBase(U x_, U y_, U z_) : x(Obj<U,3>::coords[0]), y(Obj<U,3>::coords[1]), z(Obj<U,3>::coords[2]) { x = x_; y = y_; z= z_; }; Point3DBase(const Point3DBase& other) : x(Obj<U,3>::coords[0]), y(Obj<U,3>::coords[1]), z(Obj<U,3>::coords[2]) { x = other.x; y = other.y; z = other.z; } // several operators ... }; The operators, basically the ones for comparison, use the simple compare-the-member-object approach like: virtual friend bool operator== (const Point3DBase<U> &lhs, const Point3DBase<U> rhs) { return (lhs.x == rhs.x && lhs.y == rhs.y && lhs.z == rhs.z); } Then it occured to me that for the comparion of double values the simply equality approach is not very useful since double values should be compared with an error margin. What would be the best approach to introduce an error margin into the point? I thought about an epsDouble type as template parameter but I can't figure out how to achieve this.

    Read the article

  • What am I doing wrong?, linking in C++

    - by Facon
    I'm trying to code a simple base64 encoder/decoder (to test my programming skill). I can compile it, but it doesn't link, I've this message error: C:\Documents and Settings\Facon\Escritoriog++ base64.o main.o -o prueba.exe main.o:main.cpp:(.text+0x24a): undefined reference to `Base64Encode(std::vector const&)' collect2: ld returned 1 exit status Compiler & Linker: Mingw32 3.4.5 SO: Windows XP This is my source code: base64.h: #ifndef BASE64_H #define BASE64_H #include <iostream> #include <vector> typedef unsigned char byte; std::string Base64Encode(const std::vector<byte> &array); std::vector<byte> Base64Decode(const std::string &array); #endif base64.cpp: #include "base64.h" std::string Base64Encode(std::vector<byte> &array) { const char *base64_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; const unsigned int size = array.size(); std::string output; for (unsigned int i = 0; (i < size); i++) { if ((size - i) > 3) { output.push_back(static_cast<char>(base64_table[array[i] >> 2])); output.push_back(static_cast<char>(base64_table[((array[i++] & 0x03) << 4) | ((array[i] & 0xF0) >> 4)])); output.push_back(static_cast<char>(base64_table[((array[i++] & 0x0F) << 2) | ((array[i] & 0xC0) >> 4)])); output.push_back(static_cast<char>(base64_table[array[i] & 0x3F])); } else if ((size - i) == 3) { output.push_back(static_cast<char>(base64_table[array[i] >> 2])); output.push_back(static_cast<char>(base64_table[((array[i++] & 0x03) << 4) | ((array[i] & 0xF0) >> 4)])); output.push_back(static_cast<char>(base64_table[(array[i] & 0x0F) << 2])); output.push_back(static_cast<char>('=')); } else if ((size - i) == 2) { output.push_back(static_cast<char>(base64_table[array[i] >> 2])); output.push_back(static_cast<char>(base64_table[(array[i] & 0x03) << 4])); output.push_back('='); output.push_back('='); } } return output; } std::vector<byte> Base64Decode(const std::string &array) // TODO { const char *base64_table = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; } main.cpp: #include <iostream> #include <vector> #include "base64.h" using namespace std; int main(int argc, char *argv[]) { const char* prueba = "sure."; vector<byte> texto; string codificado; for (unsigned int i = 0; (prueba[i] != 0); i++) { texto.push_back(prueba[i]); } codificado = Base64Encode(texto); cout << codificado; return 0; } PD: Sorry for my bad knowledge of English :P

    Read the article

  • Const-correctness semantics in C++

    - by thirtythreeforty
    For fun and profit™, I'm writing a trie class in C++ (using the C++11 standard.) My trie<T> has an iterator, trie<T>::iterator. (They're all actually functionally const_iterators, because you cannot modify a trie's value_type.) The iterator's class declaration looks partially like this: template<typename T> class trie<T>::iterator : public std::iterator<std::bidirectional_iterator_tag, T> { friend class trie<T>; struct state { state(const trie<T>* const node, const typename std::vector<std::pair<typename T::value_type, std::unique_ptr<trie<T>>>>::const_iterator& node_map_it ) : node{node}, node_map_it{node_map_it} {} // This pointer is to const data: const trie<T>* node; typename std::vector<std::pair<typename T::value_type, std::unique_ptr<trie<T>>>>::const_iterator node_map_it; }; public: typedef const T value_type; iterator() =default; iterator(const trie<T>* node) { parents.emplace(node, node->children.cbegin()); // ... } // ... private: std::stack<state> parents; // ... }; Notice that the node pointer is declared const. This is because (in my mind) the iterator should not be modifying the node that it points to; it is just an iterator. Now, elsewhere in my main trie<T> class, I have an erase function that has a common STL signature--it takes an iterator to data to erase (and returns an iterator to the next object). template<typename T> typename trie<T>::iterator trie<T>::erase(const_iterator it) { // ... // Cannot modify a const object! it.parents.top().node->is_leaf = false; // ... } The compiler complains because the node pointer is read-only! The erase function definitely should modify the trie that the iterator points to, even though the iterator shouldn't. So, I have two questions: Should iterator's constructors be public? trie<T> has the necessary begin() and end() members, and of course trie<T>::iterator and trie<T> are mutual friends, but I don't know what the convention is. Making them private would solve a lot of the angst I'm having about removing the const "promise" from the iterator's constructor. What are the correct const semantics/conventions regarding the iterator and its node pointer here? Nobody has ever explained this to me, and I can't find any tutorials or articles on the Web. This is probably the more important question, but it does require a good deal of planning and proper implementation. I suppose it could be circumvented by just implementing 1, but it's the principle of the thing!

    Read the article

  • a question in NS c programming

    - by bahar
    Hi I added a new patch to my NS and I've seen thise two errors. Does anyone Know what I can do? error: specialization of 'bool std::less<_Tp::operator()(const _Tp&, const _Tp&) const [with _Tp = _AlgorithmTime]' in different namespace from definition of 'bool std::less<_Tp::operator()(const _Tp&, const _Tp&) const [with _Tp = _AlgorithmTime]' and the errors are from this code typedef struct _AlgorithmTime { // Round. int round; // Fase. int fase; // Valore massimo di fase. int last_fase; public: _AlgorithmTime() { round = 0; fase = 0; last_fase = 0; } // Costruttore. _AlgorithmTime(int r, int f, int l) { round = r; fase = f; last_fase = l; } // Costruttore. _AlgorithmTime(const _AlgorithmTime & t) { round = t.round; fase = t.fase; last_fase = t.last_fase; } // Operatore di uguaglianza. bool operator== (struct _AlgorithmTime & t) { return ((t.fase == fase) && (t.round == round)); } // Operatore minore. bool operator < (struct _AlgorithmTime & t) { if (round < t.round) return true; if (round > t.round) return false; if (fase < t.fase) return true; return false; } // Operatore maggiore. bool operator > (struct _AlgorithmTime & t) { if (round > t.round) return true; if (round < t.round) return false; if (fase > t.fase) return true; return false; } void operator++ () { if (fase == last_fase) { round++; fase = 0; return; } fase++; } void operator-- () { if (fase == 0) { round--; fase = last_fase; return; } fase--; } }AlgorithmTime; template< bool std::less::operator()(const AlgorithmTime & t1, const AlgorithmTime & t2)const { if (t1.round < t2.round) return true; if (t1.round t2.round) return false; if (t1.fase < t2.fase) return true; return false; } Thanks

    Read the article

  • C++ Optimize if/else condition

    - by Heye
    I have a single line of code, that consumes 25% - 30% of the runtime of my application. It is a less-than comparator for an std::set (the set is implemented with a Red-Black-Tree). It is called about 180 Million times within 52 seconds. struct Entry { const float _cost; const long _id; // some other vars Entry(float cost, float id) : _cost(cost), _id(id) { } }; template<class T> struct lt_entry: public binary_function <T, T, bool> { bool operator()(const T &l, const T &r) const { // Most readable shape if(l._cost != r._cost) { return r._cost < l._cost; } else { return l._id < r._id; } } }; The entries should be sorted by cost and if the cost is the same by their id. I have many insertions for each extraction of the minimum. I thought about using Fibonacci-Heaps, but I have been told that they are theoretically nice, but suffer from high constants and are pretty complicated to implement. And since insert is in O(log(n)) the runtime increase is nearly constant with large n. So I think its okay to stick to the set. To improve performance I tried to express it in different shapes: return l._cost < r._cost || r._cost > l._cost || l._id < r._id; return l._cost < r._cost || (l._cost == r._cost && l._id < r._id); Even this: typedef union { float _f; int _i; } flint; //... flint diff; diff._f = (l._cost - r._cost); return (diff._i && diff._i >> 31) || l._id < r._id; But the compiler seems to be smart enough already, because I haven't been able to improve the runtime. I also thought about SSE but this problem is really not very applicable for SSE... The assembly looks somewhat like this: movss (%rbx),%xmm1 mov $0x1,%r8d movss 0x20(%rdx),%xmm0 ucomiss %xmm1,%xmm0 ja 0x410600 <_ZNSt8_Rb_tree[..]+96> ucomiss %xmm0,%xmm1 jp 0x4105fd <_ZNSt8_Rb_[..]_+93> jne 0x4105fd <_ZNSt8_Rb_[..]_+93> mov 0x28(%rdx),%rax cmp %rax,0x8(%rbx) jb 0x410600 <_ZNSt8_Rb_[..]_+96> xor %r8d,%r8d I have a very tiny bit experience with assembly language, but not really much. I thought it would be the best (only?) point to squeeze out some performance, but is it really worth the effort? Can you see any shortcuts that could save some cycles? The platform the code will run on is an ubuntu 12 with gcc 4.6 (-stl=c++0x) on a many-core intel machine. Only libraries available are boost, openmp and tbb. I am really stuck on this one, it seems so simple, but takes that much time. I have been crunching my head since days thinking how I could improve this line... Can you give me a suggestion how to improve this part, or is it already at its best?

    Read the article

  • how to get rid off garbage in array of chars?

    - by fang_dejavu
    hi, I'm writing a C program but I keep having problems with my array of chars. I keep getting garbage when I print it using prinf. here is an example of what I get when I print it: char at t.symbol is Aôÿ¿ char at tabl[0].symbol is A char at tabl[1].symbol is a char at tabl[2].symbol is a char at tabl[3].symbol is d char at tabl[4].symbol is e char at tabl[5].symbol is f char at tabl[6].symbol is g char at tabl[7].symbol is h char at tabl[8].symbol is i char at tabl[9].symbol is x char at t[0].symbol is a0AÃ char at t[1].symbol is b)@Ã4 char at t[2].symbol is ckU* char at t[3].symbol is Aôÿ¿ char at t[4].symbol is gØ could someone tell me how to get rid off the garbage in the array of chars? here is my code #define MAX 100 #ifndef SYMBSIZE #define SYMBSIZE 1 #endif typedef struct tableme { char symbol[SYMBSIZE]; int value; int casenmbr; int otherinfo; }tabletype; int main(int argc, char **argv) { tabletype t[MAX]; t[3].symbol[0] = 'A'; t[0].value=1; t[0].casenmbr = 7; t[0].otherinfo = 682; tabletype tabl[MAX]; tabl[0].value = 1; tabl[0].symbol[0] = 'A'; tabl[1].value = 11; tabl[1].symbol[0]= 'a'; tabl[2].value = 12; tabl[2].symbol[0] = 'a'; tabl[3].value = 13; tabl[3].symbol[0] = 'd'; tabl[4].value = 14; tabl[4].symbol[0] = 'e'; tabl[5].value = 15; tabl[5].symbol[0] = 'f'; tabl[6].value = 16; tabl[6].symbol[0] = 'g'; tabl[7].value = 17; tabl[7].symbol[0] = 'h'; tabl[8].symbol[0] = 'i'; tabl[9].symbol[0] = 'x'; t[1].symbol[0] = 'b'; t[0].symbol[0]= 'a'; t[2].symbol[0]= 'c'; t[4].symbol[0]= 'g'; printf("char at t.symbol is %s \n", t[3].symbol); for( x=0;x<10;x++) { printf("char at tabl[%d].symbol is %s \n",x, tabl[x].symbol); } int j; for(j = 0; j<5;j++) { printf("char at t[%d].symbol is %s \n",j, t[j].symbol); } return 0; }

    Read the article

  • Dynamic loaded libraries and shared global symbols

    - by phlipsy
    Since I observed some strange behavior of global variables in my dynamically loaded libraries, I wrote the following test. At first we need a statically linked library: The header test.hpp #ifndef __BASE_HPP #define __BASE_HPP #include <iostream> class test { private: int value; public: test(int value) : value(value) { std::cout << "test::test(int) : value = " << value << std::endl; } ~test() { std::cout << "test::~test() : value = " << value << std::endl; } int get_value() const { return value; } void set_value(int new_value) { value = new_value; } }; extern test global_test; #endif // __BASE_HPP and the source test.cpp #include "base.hpp" test global_test = test(1); Then I wrote a dynamically loaded library: library.cpp #include "base.hpp" extern "C" { test* get_global_test() { return &global_test; } } and a client program loading this library: client.cpp #include <iostream> #include <dlfcn.h> #include "base.hpp" typedef test* get_global_test_t(); int main() { global_test.set_value(2); // global_test from libbase.a std::cout << "client: " << global_test.get_value() << std::endl; void* handle = dlopen("./liblibrary.so", RTLD_LAZY); if (handle == NULL) { std::cout << dlerror() << std::endl; return 1; } get_global_test_t* get_global_test = NULL; void* func = dlsym(handle, "get_global_test"); if (func == NULL) { std::cout << dlerror() << std::endl; return 1; } else get_global_test = reinterpret_cast<get_global_test_t*>(func); test* t = get_global_test(); // global_test from liblibrary.so std::cout << "liblibrary.so: " << t->get_value() << std::endl; std::cout << "client: " << global_test.get_value() << std::endl; dlclose(handle); return 0; } Now I compile the statically loaded library with g++ -Wall -g -c base.cpp ar rcs libbase.a base.o the dynamically loaded library g++ -Wall -g -fPIC -shared library.cpp libbase.a -o liblibrary.so and the client g++ -Wall -g -ldl client.cpp libbase.a -o client Now I observe: The client and the dynamically loaded library possess a different version of the variable global_test. But in my project I'm using cmake. The build script looks like this: CMAKE_MINIMUM_REQUIRED(VERSION 2.6) PROJECT(globaltest) ADD_LIBRARY(base STATIC base.cpp) ADD_LIBRARY(library MODULE library.cpp) TARGET_LINK_LIBRARIES(library base) ADD_EXECUTABLE(client client.cpp) TARGET_LINK_LIBRARIES(client base dl) analyzing the created makefiles I found that cmake builds the client with g++ -Wall -g -ldl -rdynamic client.cpp libbase.a -o client This ends up in a slightly different but fatal behavior: The global_test of the client and the dynamically loaded library are the same but will be destroyed two times at the end of the program. Am I using cmake in a wrong way? Is it possible that the client and the dynamically loaded library use the same global_test but without this double destruction problem?

    Read the article

  • Reordering Variadic Parameters

    - by void-pointer
    I have come across the need to reorder a variadic list of parameters that is supplied to the constructor of a struct. After being reordered based on their types, the parameters will be stored as a tuple. My question is how this can be done so that a modern C++ compiler (e.g. g++-4.7) will not generate unnecessary load or store instructions. That is, when the constructor is invoked with a list of parameters of variable size, it efficiently pushes each parameter into place based on an ordering over the parameters' types. Here is a concrete example. Assume that the base type of every parameter (without references, rvalue references, pointers, or qualifiers) is either char, int, or float. How can I make it so that all the parameters of base type char appear first, followed by all of those of base type int (which leaves the parameters of base type float last). The relative order in which the parameters were given should not be violated within sublists of homogeneous base type. Example: foo::foo() is called with arguments float a, char&& b, const float& c, int&& d, char e. The tuple tupe is std::tuple<char, char, int, float, float>, and it is constructed like so: tuple_type{std::move(b), e, std::move(d), a, c}. Consider the struct defined below, and assume that the metafunction deduce_reordered_tuple_type is already implemented. How would you write the constructor so that it works as intended? If you think that the code for deduce_reodered_tuple_type, would be useful to you, I can provide it; it's a little long. template <class... Args> struct foo { // Assume that the metafunction deduce_reordered_tuple_type is defined. typedef typename deduce_reordered_tuple_type<Args...>::type tuple_type; tuple_type t_; foo(Args&&... args) : t_{reorder_and_forward_parameters<Args>(args)...} {} }; Edit 1 The technique I describe above does have applications in mathematical frameworks that make heavy use of expression templates, variadic templates, and metaprogramming in order to perform aggressive inlining. Suppose that you wish to define an operator that takes the product of several expressions, each of which may be passed by reference, reference to const, or rvalue reference. (In my case, the expressions are conditional probability tables and the operation is the factor product, but something like matrix multiplication works suitably as well.) You need access to the data provided by each expression in order to evaluate the product. Consequently, you must move the expressions passed as rvalue references, copy the expressions passed by reference to const, and take the addresses of expressions passed by reference. Using the technique I describe above now poses several benefits. Other expressions can use uniform syntax to access data elements from this expression, since all of the heavy-lifting metaprogramming work is done beforehand, within the class. We can save stack space by grouping the pointers together and storing the larger expressions towards the end of the tuple. Implementing certain types of queries becomes much easier (e.g. check whether any of the pointers stored in the tuple aliases a given pointer). Thank you very much for your help!

    Read the article

  • error in assigning a const character to an unsigned char array in C++

    - by mekasperasky
    #include <iostream> #include <fstream> #include <cstring> using namespace std; typedef unsigned long int WORD; /* Should be 32-bit = 4 bytes */ #define w 32 /* word size in bits */ #define r 12 /* number of rounds */ #define b 16 /* number of bytes in key */ #define c 4 /* number words in key */ /* c = max(1,ceil(8*b/w)) */ #define t 26 /* size of table S = 2*(r+1) words */ WORD S [t],L[c]; /* expanded key table */ WORD P = 0xb7e15163, Q = 0x9e3779b9; /* magic constants */ /* Rotation operators. x must be unsigned, to get logical right shift*/ #define ROTL(x,y) (((x)<<(y&(w-1))) | ((x)>>(w-(y&(w-1))))) #define ROTR(x,y) (((x)>>(y&(w-1))) | ((x)<<(w-(y&(w-1))))) void RC5_DECRYPT(WORD *ct, WORD *pt) /* 2 WORD input ct/output pt */ { WORD i, B=ct[1], A=ct[0]; for (i=r; i>0; i--) { B = ROTR(B-S [2*i+1],A)^A; A = ROTR(A-S [2*i],B)^B; } pt [1] = B-S [1] ;pt [0] = A-S [0]; } void RC5_SETUP(unsigned char *K) /* secret input key K 0...b-1] */ { WORD i, j, k, u=w/8, A, B, L [c]; /* Initialize L, then S, then mix key into S */ for (i=b-1,L[c-1]=0; i!=-1; i--) L[i/u] = (L[i/u]<<8)+K[ i]; for (S [0]=P,i=1; i<t; i++) S [i] = S [i-1]+Q; for (A=B=i=j=k=0; k<3*t; k++,i=(i+1)%t,j=(j+1)%c) /* 3*t > 3*c */ { A = S[i] = ROTL(S [i]+(A+B),3); B = L[j] = ROTL(L[j]+(A+B),(A+B)); } } void printword(WORD A) { WORD k; for (k=0 ;k<w; k+=8) printf("%02.2lX",(A>>k)&0xFF); } int main() { WORD i, j, k, pt [2], pt2 [2], ct [2] = {0,0}; unsigned char key[b]; ofstream out("cpt.txt"); ifstream in("key.txt"); if(!in) { cout << "Cannot open file.\n"; return 1; } if(!out) { cout << "Cannot open file.\n"; return 1; } key="111111000001111"; RC5_SETUP(key); ct[0]=2185970173; ct[1]=3384368406; for (i=1;i<2;i++) { RC5_DECRYPT(ct,pt2); printf("\n plaintext "); printword(pt [0]); printword(pt[1]); } return 0; } When I compile this code, I get two warnings and also an error saying that I can't assign a char value to my character array. Why is that?

    Read the article

  • c++ protected pointer member to the same class and access privileges

    - by aajmakin
    Hi, Example code is included at the bottom of the message. I'm puzzled about the protected access specifier in a class. I have define a class node which has a protected string member name string name; and a vector of node pointers vector args; Before I thought that a member function of node could not do args[0]-name but a program that does just this does compile and run. However, now I would like to inherit this class and access the name field in one of the args array pointers from this derived class args[0]-name but this does not compile. When I compile the example code below with the commented sections uncommented, the compiler reports: Compiler output: g++ test.cc -o test test.cc: In member function 'void foo::newnode::print_args2()': test.cc:22: error: 'std::string foo::node::name' is protected test.cc:61: error: within this context Compilation exited abnormally with code 1 at Thu Jun 17 12:40:12 Questions: Why can I access the name field of the node pointers in args in class node, because this is what I would excpect from a similarly defined private field in Java. How can I access those fields from the derived class. Example code: #include <iostream> #include <vector> using namespace std; namespace foo { class node; typedef std::vector<node*> nodes; class node { public: node (string _name); void print_args (); void add_node (node* a); protected: nodes args; string name; }; } foo::node::node (string _name) : args(0) { name = _name; } void foo::node::add_node (node* a) { args.push_back(a); } void foo::node::print_args () { for (int i = 0; i < args.size(); i++) { cout << "node " << i << ": " << args[i]->name << endl; } } // namespace foo // { // class newnode : public node // { // public: // newnode (string _name) : node(_name) {} // void print_args2 (); // protected: // }; // } // void foo::newnode::print_args2 () // { // for (int i = 0; i < args.size(); i++) // { // cout << "node " << i << ": " << args[i]->name << endl; // } // } int main (int argc, char** argv) { foo::node a ("a"); foo::node b ("b"); foo::node c ("c"); a.add_node (&b); a.add_node (&c); a.print_args (); // foo::newnode newa ("newa"); // foo::newnode newb ("newb"); // foo::newnode newc ("newc"); // newa.add_node (&newb); // newa.add_node (&newc); // newa.print_args2 (); return 0; }

    Read the article

< Previous Page | 33 34 35 36 37 38 39 40  | Next Page >