Search Results

Search found 45031 results on 1802 pages for 'some name'.

Page 370/1802 | < Previous Page | 366 367 368 369 370 371 372 373 374 375 376 377  | Next Page >

  • What Every Developer Should Know About MSI Components

    - by Alois Kraus
    Hopefully nothing. But if you have to do more than simple XCopy deployment and you need to support updates, upgrades and perhaps side by side scenarios there is no way around MSI. You can create Msi files with a Visual Studio Setup project which is severely limited or you can use the Windows Installer Toolset. I cannot talk about WIX with my German colleagues because WIX has a very special meaning. It is funny to always use the long name when I talk about deployment possibilities. Alternatively you can buy commercial tools which help you to author Msi files but I am not sure how good they are. Given enough pain with existing solutions you can also learn the MSI Apis and create your own packaging solution. If I were you I would use either a commercial visual tool when you do easy deployments or use the free Windows Installer Toolset. Once you know the WIX schema you can create well formed wix xml files easily with any editor. Then you can “compile” from the wxs files your Msi package. Recently I had the “pleasure” to get my hands dirty with C++ (again) and the MSI technology. Installation is a complex topic but after several month of digging into arcane MSI issues I can safely say that there should exist an easier way to install and update files as today. I am not alone with this statement as John Robbins (creator of the cool tool Paraffin) states: “.. It's a brittle and scary API in Windows …”. To help other people struggling with installation issues I present you the advice I (and others) found useful and what will happen if you ignore this advice. What is a MSI file? A MSI file is basically a database with tables which reference each other to control how your un/installation should work. The basic idea is that you declare via these tables what you want to install and MSI controls the how to get your stuff onto or off your machine. Your “stuff” consists usually of files, registry keys, shortcuts and environment variables. Therefore the most important tables are File, Registry, Environment and Shortcut table which define what will be un/installed. The key to master MSI is that every resource (file, registry key ,…) is associated with a MSI component. The actual payload consists of compressed files in the CAB format which can either be embedded into the MSI file or reside beside the MSI file or in a subdirectory below it. To examine MSI files you need Orca a free MSI editor provided by MS. There is also another free editor called Super Orca which does support diffs between MSI and it does not lock the MSI files. But since Orca comes with a shell extension I tend to use only Orca because it is so easy to right click on a MSI file and open it with this tool. How Do I Install It? Double click it. This does work for fresh installations as well as major upgrades. Updates need to be installed via the command line via msiexec /i <msi> REINSTALL=ALL REINSTALLMODE=vomus   This tells the installer to reinstall all already installed features (new features will NOT be installed). The reinstallmode letters do force an overwrite of the old cached package in the %WINDIR%\Installer folder. All files, shortcuts and registry keys are redeployed if they are missing or need to be replaced with a newer version. When things did go really wrong and you want to overwrite everything unconditionally use REINSTALLMODE=vamus. How To Enable MSI Logs? You can download a MSI from Microsoft which installs some registry keys to enable full MSI logging. The log files can be found in your %TEMP% folder and are called MSIxxxx.log. Alternatively you can add to your msiexec command line the option msiexec …. /l*vx <LogFileName> Personally I find it rather strange that * does not mean full logging. To really get all logs I need to add v and x which is documented in the msiexec help but I still find this behavior unintuitive. What are MSI components? The whole MSI logic is bound to the concept of MSI components. Nearly every msi table has a Component column which binds an installable resource to a component. Below are the screenshots of the FeatureComponents and Component table of an example MSI. The Feature table defines basically the feature hierarchy.  To find out what belongs to a feature you need to look at the FeatureComponents table where for each feature the components are listed which will be installed when a feature is installed. The MSI components are defined in the  Component table. This table has as first column the component name and as second column the component id which is a GUID. All resources you want to install belong to a MSI component. Therefore nearly all MSI tables have a Component_ column which contains the component name. If you look e.g. a the File table you see that every file belongs to a component which is true for all other tables which install resources. The component table is the glue between all other tables which contain the resources you want to install. So far so easy. Why is MSI then so complex? Most MSI problems arise from the fact that you did violate a MSI component rule in one or the other way. When you install a feature the reference count for all components belonging to this feature will increase by one. If your component is installed by more than one feature it will get a higher refcount. When you uninstall a feature its refcount will drop by one. Interesting things happen if the component reference count reaches zero: Then all associated resources will be deleted. That looks like a reasonable thing and it is. What it makes complex are the strange component rules you have to follow. Below are some important component rules from the Tao of the Windows Installer … Rule 16: Follow Component Rules Components are a very important part of the Installer technology. They are the means whereby the Installer manages the resources that make up your application. The SDK provides the following guidelines for creating components in your package: Never create two components that install a resource under the same name and target location. If a resource must be duplicated in multiple components, change its name or target location in each component. This rule should be applied across applications, products, product versions, and companies. Two components must not have the same key path file. This is a consequence of the previous rule. The key path value points to a particular file or folder belonging to the component that the installer uses to detect the component. If two components had the same key path file, the installer would be unable to distinguish which component is installed. Two components however may share a key path folder. Do not create a version of a component that is incompatible with all previous versions of the component. This rule should be applied across applications, products, product versions, and companies. Do not create components containing resources that will need to be installed into more than one directory on the user’s system. The installer installs all of the resources in a component into the same directory. It is not possible to install some resources into subdirectories. Do not include more than one COM server per component. If a component contains a COM server, this must be the key path for the component. Do not specify more than one file per component as a target for the Start menu or a Desktop shortcut. … And these rules do not even talk about component ids, update packages and upgrades which you need to understand as well. Lets suppose you install two MSIs (MSI1 and MSI2) which have the same ComponentId but different component names. Both do install the same file. What will happen when you uninstall MSI2?   Hm the file should stay there. But the component names are different. Yes and yes. But MSI uses not use the component name as key for the refcount. Instead the ComponentId column of the Component table which contains a GUID is used as identifier under which the refcount is stored. The components Comp1 and Comp2 are identical from the MSI perspective. After the installation of both MSIs the Component with the Id {100000….} has a refcount of two. After uninstallation of one MSI there is still a refcount of one which drops to zero just as expected when we uninstall the last msi. Then the file which was the same for both MSIs is deleted. You should remember that MSI keeps a refcount across MSIs for components with the same component id. MSI does manage components not the resources you did install. The resources associated with a component are then and only then deleted when the refcount of the component reaches zero.   The dependencies between features, components and resources can be described as relations. m,k are numbers >= 1, n can be 0. Inside a MSI the following relations are valid Feature    1  –> n Components Component    1 –> m Features Component      1  –>  k Resources These relations express that one feature can install several components and features can share components between them. Every (meaningful) component will install at least one resource which means that its name (primary key to stay in database speak) does occur in some other table in the Component column as value which installs some resource. Lets make it clear with an example. We want to install with the feature MainFeature some files a registry key and a shortcut. We can then create components Comp1..3 which are referenced by the resources defined in the corresponding tables.   Feature Component Registry File Shortcuts MainFeature Comp1 RegistryKey1     MainFeature Comp2   File.txt   MainFeature Comp3   File2.txt Shortcut to File2.txt   It is illegal that the same resource is part of more than one component since this would break the refcount mechanism. Lets illustrate this:            Feature ComponentId Resource Reference Count Feature1 {1000-…} File1.txt 1 Feature2 {2000-….} File1.txt 1 The installation part works well but what happens when you uninstall Feature2? Component {20000…} gets a refcount of zero where MSI deletes all resources belonging to this component. In this case File1.txt will be deleted. But Feature1 still has another component {10000…} with a refcount of one which means that the file was deleted too early. You just have ruined your installation. To fix it you then need to click on the Repair button under Add/Remove Programs to let MSI reinstall any missing registry keys, files or shortcuts. The vigilant reader might has noticed that there is more in the Component table. Beside its name and GUID it has also an installation directory, attributes and a KeyPath. The KeyPath is a reference to a file or registry key which is used to detect if the component is already installed. This becomes important when you repair or uninstall a component. To find out if the component is already installed MSI checks if the registry key or file referenced by the KeyPath property does exist. When it does not exist it assumes that it was either already uninstalled (can lead to problems during uninstall) or that it is already installed and all is fine. Why is this detail so important? Lets put all files into one component. The KeyPath should be then one of the files of your component to check if it was installed or not. When your installation becomes corrupt because a file was deleted you cannot repair it with the Repair button under Add/Remove Programs because MSI checks the component integrity via the Resource referenced by its KeyPath. As long as you did not delete the KeyPath file MSI thinks all resources with your component are installed and never executes any repair action. You get even more trouble when you try to remove files during an upgrade (you cannot remove files during an update) from your super component which contains all files. The only way out and therefore best practice is to assign for every resource you want to install an extra component. This ensures painless updatability and repairs and you have much less effort to remove specific files during an upgrade. In effect you get this best practice relation Feature 1  –> n Components Component   1  –>  1 Resources MSI Component Rules Rule 1 – One component per resource Every resource you want to install (file, registry key, value, environment value, shortcut, directory, …) must get its own component which does never change between versions as long as the install location is the same. Penalty If you add more than one resources to a component you will break the repair capability of MSI because the KeyPath is used to check if the component needs repair. MSI ComponentId Files MSI 1.0 {1000} File1-5 MSI 2.0 {2000} File2-5 You want to remove File1 in version 2.0 of your MSI. Since you want to keep the other files you create a new component and add them there. MSI will delete all files if the component refcount of {1000} drops to zero. The files you want to keep are added to the new component {2000}. Ok that does work if your upgrade does uninstall the old MSI first. This will cause the refcount of all previously installed components to reach zero which means that all files present in version 1.0 are deleted. But there is a faster way to perform your upgrade by first installing your new MSI and then remove the old one.  If you choose this upgrade path then you will loose File1-5 after your upgrade and not only File1 as intended by your new component design.   Rule 2 – Only add, never remove resources from a component If you did follow rule 1 you will not need Rule 2. You can add in a patch more resources to one component. That is ok. But you can never remove anything from it. There are tricky ways around that but I do not want to encourage bad component design. Penalty Lets assume you have 2 MSI files which install under the same component one file   MSI1 MSI2 {1000} - ComponentId {1000} – ComponentId File1.txt File2.txt   When you install and uninstall both MSIs you will end up with an installation where either File1 or File2 will be left. Why? It seems that MSI does not store the resources associated with each component in its internal database. Instead Windows will simply query the MSI that is currently uninstalled for all resources belonging to this component. Since it will find only one file and not two it will only uninstall one file. That is the main reason why you never can remove resources from a component!   Rule 3 Never Remove A Component From an Update MSI. This is the same as if you change the GUID of a component by accident for your new update package. The resulting update package will not contain all components from the previously installed package. Penalty When you remove a component from a feature MSI will set the feature state during update to Advertised and log a warning message into its log file when you did enable MSI logging. SELMGR: ComponentId '{2DCEA1BA-3E27-E222-484C-D0D66AEA4F62}' is registered to feature 'xxxxxxx, but is not present in the Component table.  Removal of components from a feature is not supported! MSI (c) (24:44) [07:53:13:436]: SELMGR: Removal of a component from a feature is not supported Advertised means that MSI treats all components of this feature as not installed. As a consequence during uninstall nothing will be removed since it is not installed! This is not only bad because uninstall does no longer work but this feature will also not get the required patches. All other features which have followed component versioning rules for update packages will be updated but the one faulty feature will not. This results in very hard to find bugs why an update was only partially successful. Things got better with Windows Installer 4.5 but you cannot rely on that nobody will use an older installer. It is a good idea to add to your update msiexec call MSIENFORCEUPGRADECOMPONENTRULES=1 which will abort the installation if you did violate this rule.

    Read the article

  • SQL SERVER – CTE can be Updated

    - by Pinal Dave
    Today I have received a fantastic email from Matthew Spieth. SQL Server expert from Ohio. He recently had a great conversation with his colleagues in the office and wanted to make sure that everybody who reads this blog knows about this little feature which is commonly confused. Here is his statement and we will start our story with Matthew’s own statement: “Users often confuse CTE with Temp Table but technically they both are different, CTE are like Views and they can be updated just like views.“ Very true statement from Matthew. I totally agree with what he is saying. Just like him, I have enough, time came across a situation when developers think CTE is like temp table. When you update temp table, it remains in the scope of the temp table and it does not propagate it to the table based on which temp table is built. However, this is not the case when it is about CTE, when you update CTE, it updates underlying table just like view does. Here is the working example of the same built by Matthew to illustrate this behavior. Check the value in the base table first. USE AdventureWorks2012; -- Check - The value in the base table is updated SELECT Color FROM [Production].[Product] WHERE ProductNumber = 'CA-6738'; Now let us build CTE with the same data. ;WITH CTEUpd(ProductID, Name, ProductNumber, Color) AS( SELECT ProductID, Name, ProductNumber, Color FROM [Production].[Product] WHERE ProductNumber = 'CA-6738') Now let us update CTE with following code. -- Update CTE UPDATE CTEUpd SET Color = 'Rainbow'; Now let us check the BASE table based on which the CTE was built. -- Check - The value in the base table is updated SELECT Color FROM [Production].[Product] WHERE ProductNumber = 'CA-6738'; That’s it! You can update CTE and it will update the base table. Here is the script which you should execute all together. USE AdventureWorks2012; -- Check - The value in the base table is updated SELECT Color FROM [Production].[Product] WHERE ProductNumber = 'CA-6738'; -- Build CTE ;WITH CTEUpd(ProductID, Name, ProductNumber, Color) AS( SELECT ProductID, Name, ProductNumber, Color FROM [Production].[Product] WHERE ProductNumber = 'CA-6738') -- Update CTE UPDATE CTEUpd SET Color = 'Rainbow'; -- Check - The value in the base table is updated SELECT Color FROM [Production].[Product] WHERE ProductNumber = 'CA-6738'; If you are aware of such scenario, do let me know and I will post this on my blog with due credit to you. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, SQL View, T SQL Tagged: CTE

    Read the article

  • Recover Deleted Files on an NTFS Hard Drive from a Ubuntu Live CD

    - by Trevor Bekolay
    Accidentally deleting a file is a terrible feeling. Not being able to boot into Windows and undelete that file makes that even worse. Fortunately, you can recover deleted files on NTFS hard drives from an Ubuntu Live CD. To show this process, we created four files on the desktop of a Windows XP machine, and then deleted them. We then booted up the same machine with the bootable Ubuntu 9.10 USB Flash Drive that we created last week. Once Ubuntu 9.10 boots up, open a terminal by clicking Applications in the top left of the screen, and then selecting Accessories > Terminal. To undelete our files, we first need to identify the hard drive that we want to undelete from. In the terminal window, type in: sudo fdisk –l and press enter. What you’re looking for is a line that ends with HPSF/NTFS (under the heading System). In our case, the device is “/dev/sda1”. This may be slightly different for you, but it will still begin with /dev/. Note this device name. If you have more than one hard drive partition formatted as NTFS, then you may be able to identify the correct partition by the size. If you look at the second line of text in the screenshot above, it reads “Disk /dev/sda: 136.4 GB, …” This means that the hard drive that Ubuntu has named /dev/sda is 136.4 GB large. If your hard drives are of different size, then this information can help you track down the right device name to use. Alternatively, you can just try them all, though this can be time consuming for large hard drives. Now that you know the name Ubuntu has assigned to your hard drive, we’ll scan it to see what files we can uncover. In the terminal window, type: sudo ntfsundelete <HD name> and hit enter. In our case, the command is: sudo ntfsundelete /dev/sda1 The names of files that can recovered show up in the far right column. The percentage in the third column tells us how much of that file can be recovered. Three of the four files that we originally deleted are showing up in this list, even though we shut down the computer right after deleting the four files – so even in ideal cases, your files may not be recoverable. Nevertheless, we have three files that we can recover – two JPGs and an MPG. Note: ntfsundelete is immediately available in the Ubuntu 9.10 Live CD. If you are in a different version of Ubuntu, or for some other reason get an error when trying to use ntfsundelete, you can install it by entering “sudo apt-get install ntfsprogs” in a terminal window. To quickly recover the two JPGs, we will use the * wildcard to recover all of the files that end with .jpg. In the terminal window, enter sudo ntfsundelete <HD name> –u –m *.jpg which is, in our case, sudo ntfsundelete /dev/sda1 –u –m *.jpg The two files are recovered from the NTFS hard drive and saved in the current working directory of the terminal. By default, this is the home directory of the current user, though we are working in the Desktop folder. Note that the ntfsundelete program does not make any changes to the original NTFS hard drive. If you want to take those files and put them back in the NTFS hard drive, you will have to move them there after they are undeleted with ntfsundelete. Of course, you can also put them on your flash drive or open Firefox and email them to yourself – the sky’s the limit! We have one more file to undelete – our MPG. Note the first column on the far left. It contains a number, its Inode. Think of this as the file’s unique identifier. Note this number. To undelete a file by its Inode, enter the following in the terminal: sudo ntfsundelete <HD name> –u –i <Inode> In our case, this is: sudo ntfsundelete /dev/sda1 –u –i 14159 This recovers the file, along with an identifier that we don’t really care about. All three of our recoverable files are now recovered. However, Ubuntu lets us know visually that we can’t use these files yet. That’s because the ntfsundelete program saves the files as the “root” user, not the “ubuntu” user. We can verify this by typing the following in our terminal window: ls –l We want these three files to be owned by ubuntu, not root. To do this, enter the following in the terminal window: sudo chown ubuntu <Files> If the current folder has other files in it, you may not want to change their owner to ubuntu. However, in our case, we only have these three files in this folder, so we will use the * wildcard to change the owner of all three files. sudo chown ubuntu * The files now look normal, and we can do whatever we want with them. Hopefully you won’t need to use this tip, but if you do, ntfsundelete is a nice command-line utility. It doesn’t have a fancy GUI like many of the similar Windows programs, but it is a powerful tool that can recover your files quickly. See ntfsundelete’s manual page for more detailed usage information Similar Articles Productive Geek Tips Reset Your Ubuntu Password Easily from the Live CDUse Ubuntu Live CD to Backup Files from Your Dead Windows ComputerCreate a Bootable Ubuntu 9.10 USB Flash DriveCreate a Bootable Ubuntu USB Flash Drive the Easy WayGuide to Using Check Disk in Windows Vista TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Windows 7 Easter Theme YoWindoW, a real time weather screensaver Optimize your computer the Microsoft way Stormpulse provides slick, real time weather data Geek Parents – Did you try Parental Controls in Windows 7? Change DNS servers on the fly with DNS Jumper

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • bash command for each file in a folder

    - by Robert
    I have a set of files on which I would like to apply the same command and the output should contain the same name as the processed file but with a different extension. Currently I am doing rename /my/data/Andrew.doc to /my/data/Andrew.txt I would like to do this for all the .doc files from the /my/data/ folder and to preserve the name. I tried several versions but I guess I have something wrong in the syntax as I an new to linux.

    Read the article

  • Upgrade to Oracle 11g Webcast - 14/04/2010

    - by Alex Blyth
    Hi AllHere are the details for Wednesday's (14th April 2010) webcast on "Upgrading to Oracle 11g" beginning at 1.30pm (Sydney, Australia Time) :Webcast is at http://strtc.oracle.com (IE6, 7 & 8 supported only)Conference ID for the webcast is 6690662Conference Key: upgradeEnrollment is required. Please click here to enroll.Please use your real name in the name field (just makes it easier for us to help you out if we can't answer your questions on the call)Audio details:NZ Toll Free - 0800 888 157 orAU Toll Free - 1800420354 (or +61 2 8064 0613Meeting ID: 7914841Meeting Passcode: 14042010Talk to you all WednesdayAlex

    Read the article

  • Adding Descriptive Flex Field (DFF) through OAF Personalization

    - by Manoj Madhusoodanan
    In this blog I will explain how to add a DFF to a existing OAF page through personalization.I am using Supplier Quick Update Page ( /oracle/apps/pos/supplier/webui/SuppSummPG ). If you want to see how to create DFF please click here. In this scenario I am using a custom DFF. Following are the details. Application -> Payables ( Code: SQLAP )Name -> XXCUST_SUPPLIER_DFFTitle -> XXCUST - Supplier DFFTable Name -> AP_SUPPLIERSDFV View name -> XXCUST_SUPPLIER_DFVReference Fields -> ATTRIBUTE_CATEGORY Following are the Context Field Details. Prompt -> Supplier TypeValue Set -> XXCUST_SUP_TYPE ( Values : External and Internal )Reference Field -> ATTRIBUTE_CATEGORY Below table shows the segment details of XXCUST_SUPPLIER_DFF. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Code Segments Column Value Set Global Data Elements Identification Number ATTRIBUTE1 15 Characters External Type ATTRIBUTE2 XXCUST_EXT_SUP_TYPE Values          Domestic           International Internal Department ATTRIBUTE2 15 Characters Following steps you need to perform to create flex item in the Quick Update page. 1) Click on Personalize Page.In the Personalize Page click on Complete View. 2) Click on Create Item.( Based on where you want to place the DFF choose appropriate layout). 3) Create flex item with following details. 4) If you want to arrange the item in the page click on Reorder. Following is the output.

    Read the article

  • Software center cannot install or remove software

    - by user963386
    I have Ubuntu 12.10 and when I try to install a new software using the software center, it fails with the following error message: Authentication Error Software cannot be installed or removed because the authentication service is not available.(org.freedesktop.PolicyKit.Error.Failed:("system-bus-name",{name:1.475}).org.debian.apt.install-or-remove-packages This is a new problem that I did not have before! Any suggestions?

    Read the article

  • Fragmented Log files could be slowing down your database

    - by Fatherjack
    Something that is sometimes forgotten by a lot of DBAs is the fact that database log files get fragmented in the same way that you get fragmentation in a data file. The cause is very different but the effect is the same – too much effort reading and writing data. Data files get fragmented as data is changed through normal system activity, INSERTs, UPDATEs and DELETEs cause fragmentation and most experienced DBAs are monitoring their indexes for fragmentation and dealing with it accordingly. However, you don’t hear about so many working on their log files. How can a log file get fragmented? I’m glad you asked. When you create a database there are at least two files created on the disk storage; an mdf for the data and an ldf for the log file (you can also have ndf files for extra data storage but that’s off topic for now). It is wholly possible to have more than one log file but in most cases there is little point in creating more than one as the log file is written to in a ‘wrap-around’ method (more on that later). When a log file is created at the time that a database is created the file is actually sub divided into a number of virtual log files (VLFs). The number and size of these VLFs depends on the size chosen for the log file. VLFs are also created in the space added to a log file when a log file growth event takes place. Do you have your log files set to auto grow? Then you have potentially been introducing many VLFs into your log file. Let’s get to see how many VLFs we have in a brand new database. USE master GO CREATE DATABASE VLF_Test ON ( NAME = VLF_Test, FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL10.ROCK_2008\MSSQL\DATA\VLF_Test.mdf', SIZE = 100, MAXSIZE = 500, FILEGROWTH = 50 ) LOG ON ( NAME = VLF_Test_Log, FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL10.ROCK_2008\MSSQL\DATA\VLF_Test_log.ldf', SIZE = 5MB, MAXSIZE = 250MB, FILEGROWTH = 5MB ); go USE VLF_Test go DBCC LOGINFO; The results of this are firstly a new database is created with specified files sizes and the the DBCC LOGINFO results are returned to the script editor. The DBCC LOGINFO results have plenty of interesting information in them but lets first note there are 4 rows of information, this relates to the fact that 4 VLFs have been created in the log file. The values in the FileSize column are the sizes of each VLF in bytes, you will see that the last one to be created is slightly larger than the others. So, a 5MB log file has 4 VLFs of roughly 1.25 MB. Lets alter the CREATE DATABASE script to create a log file that’s a bit bigger and see what happens. Alter the code above so that the log file details are replaced by LOG ON ( NAME = VLF_Test_Log, FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL10.ROCK_2008\MSSQL\DATA\VLF_Test_log.ldf', SIZE = 1GB, MAXSIZE = 25GB, FILEGROWTH = 1GB ); With a bigger log file specified we get more VLFs What if we make it bigger again? LOG ON ( NAME = VLF_Test_Log, FILENAME = 'C:\Program Files\Microsoft SQL Server\MSSQL10.ROCK_2008\MSSQL\DATA\VLF_Test_log.ldf', SIZE = 5GB, MAXSIZE = 250GB, FILEGROWTH = 5GB ); This time we see more VLFs are created within our log file. We now have our 5GB log file comprised of 16 files of 320MB each. In fact these sizes fall into all the ranges that control the VLF creation criteria – what a coincidence! The rules that are followed when a log file is created or has it’s size increased are pretty basic. If the file growth is lower than 64MB then 4 VLFs are created If the growth is between 64MB and 1GB then 8 VLFs are created If the growth is greater than 1GB then 16 VLFs are created. Now the potential for chaos comes if the default values and settings for log file growth are used. By default a database log file gets a 1MB log file with unlimited growth in steps of 10%. The database we just created is 6 MB, let’s add some data and see what happens. USE vlf_test go -- we need somewhere to put the data so, a table is in order IF OBJECT_ID('A_Table') IS NOT NULL DROP TABLE A_Table go CREATE TABLE A_Table ( Col_A int IDENTITY, Col_B CHAR(8000) ) GO -- Let's check the state of the log file -- 4 VLFs found EXECUTE ('DBCC LOGINFO'); go -- We can go ahead and insert some data and then check the state of the log file again INSERT A_Table (col_b) SELECT TOP 500 REPLICATE('a',2000) FROM sys.columns AS sc, sys.columns AS sc2 GO -- insert 500 rows and we get 22 VLFs EXECUTE ('DBCC LOGINFO'); go -- Let's insert more rows INSERT A_Table (col_b) SELECT TOP 2000 REPLICATE('a',2000) FROM sys.columns AS sc, sys.columns AS sc2 GO 10 -- insert 2000 rows, in 10 batches and we suddenly have 107 VLFs EXECUTE ('DBCC LOGINFO'); Well, that escalated quickly! Our log file is split, internally, into 107 fragments after a few thousand inserts. The same happens with any logged transactions, I just chose to illustrate this with INSERTs. Having too many VLFs can cause performance degradation at times of database start up, log backup and log restore operations so it’s well worth keeping a check on this property. How do we prevent excessive VLF creation? Creating the database with larger files and also with larger growth steps and actively choosing to grow your databases rather than leaving it to the Auto Grow event can make sure that the growths are made with a size that is optimal. How do we resolve a situation of a database with too many VLFs? This process needs to be done when the database is under little or no stress so that you don’t affect system users. The steps are: BACKUP LOG YourDBName TO YourBackupDestinationOfChoice Shrink the log file to its smallest possible size DBCC SHRINKFILE(FileNameOfTLogHere, TRUNCATEONLY) * Re-size the log file to the size you want it to, taking in to account your expected needs for the coming months or year. ALTER DATABASE YourDBName MODIFY FILE ( NAME = FileNameOfTLogHere, SIZE = TheSizeYouWantItToBeIn_MB) * – If you don’t know the file name of your log file then run sp_helpfile while you are connected to the database that you want to work on and you will get the details you need. The resize step can take quite a while This is already detailed far better than I can explain it by Kimberley Tripp in her blog 8-Steps-to-better-Transaction-Log-throughput.aspx. The result of this will be a log file with a VLF count according to the bullet list above. Knowing when VLFs are being created By complete coincidence while I have been writing this blog (it’s been quite some time from it’s inception to going live) Jonathan Kehayias from SQLSkills.com has written a great article on how to track database file growth using Event Notifications and Service Broker. I strongly recommend taking a look at it as this is going to catch any sneaky auto grows that take place and let you know about them right away. Hassle free monitoring of VLFs If you are lucky or wise enough to be using SQL Monitor or another monitoring tool that let’s you write your own custom metrics then you can keep an eye on this very easily. There is a custom metric for VLFs (written by Stuart Ainsworth) already on the site and there are some others there are very useful so take a moment or two to look around while you are there. Resources MSDN – http://msdn.microsoft.com/en-us/library/ms179355(v=sql.105).aspx Kimberly Tripp from SQLSkills.com – http://www.sqlskills.com/BLOGS/KIMBERLY/post/8-Steps-to-better-Transaction-Log-throughput.aspx Thomas LaRock at Simple-Talk.com – http://www.simple-talk.com/sql/database-administration/monitoring-sql-server-virtual-log-file-fragmentation/ Disclosure I am a Friend of Red Gate. This means that I am more than likely to say good things about Red Gate DBA and Developer tools. No matter how awesome I make them sound, take the time to compare them with other products before you contact the Red Gate sales team to make your order.

    Read the article

  • How to make your File Adapter pick only one file at a time from a location

    - by anirudh.pucha(at)oracle.com
    In SOA 11g, you use File adapter to read files from the given location.With this read operation it picks all the files at time.You want to configure File Adapters that it should pick one file at time from the given location with given polling interval.Solution :You set the "SingleThreadModel" and "MaxRaiseSize" properties for your file adapter. Edit the adapter's jca file and add the following properties:property name="SingleThreadModel" value="true"property name="MaxRaiseSize" value="1"You can set these properties also through jdeveloper, by opening composite.xml, selecting the adapter and then changing the properties through the properties panel.

    Read the article

  • A simple Dynamic Proxy

    - by Abhijeet Patel
    Frameworks such as EF4 and MOQ do what most developers consider "dark magic". For instance in EF4, when you use a POCO for an entity you can opt-in to get behaviors such as "lazy-loading" and "change tracking" at runtime merely by ensuring that your type has the following characteristics: The class must be public and not sealed. The class must have a public or protected parameter-less constructor. The class must have public or protected properties Adhere to this and your type is magically endowed with these behaviors without any additional programming on your part. Behind the scenes the framework subclasses your type at runtime and creates a "dynamic proxy" which has these additional behaviors and when you navigate properties of your POCO, the framework replaces the POCO type with derived type instances. The MOQ framework does simlar magic. Let's say you have a simple interface:   public interface IFoo      {          int GetNum();      }   We can verify that the GetNum() was invoked on a mock like so:   var mock = new Mock<IFoo>(MockBehavior.Default);   mock.Setup(f => f.GetNum());   var num = mock.Object.GetNum();   mock.Verify(f => f.GetNum());   Beind the scenes the MOQ framework is generating a dynamic proxy by implementing IFoo at runtime. the call to moq.Object returns the dynamic proxy on which we then call "GetNum" and then verify that this method was invoked. No dark magic at all, just clever programming is what's going on here, just not visible and hence appears magical! Let's create a simple dynamic proxy generator which accepts an interface type and dynamically creates a proxy implementing the interface type specified at runtime.     public static class DynamicProxyGenerator   {       public static T GetInstanceFor<T>()       {           Type typeOfT = typeof(T);           var methodInfos = typeOfT.GetMethods();           AssemblyName assName = new AssemblyName("testAssembly");           var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);           var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");           var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);              typeBuilder.AddInterfaceImplementation(typeOfT);           var ctorBuilder = typeBuilder.DefineConstructor(                     MethodAttributes.Public,                     CallingConventions.Standard,                     new Type[] { });           var ilGenerator = ctorBuilder.GetILGenerator();           ilGenerator.EmitWriteLine("Creating Proxy instance");           ilGenerator.Emit(OpCodes.Ret);           foreach (var methodInfo in methodInfos)           {               var methodBuilder = typeBuilder.DefineMethod(                   methodInfo.Name,                   MethodAttributes.Public | MethodAttributes.Virtual,                   methodInfo.ReturnType,                   methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                   );               var methodILGen = methodBuilder.GetILGenerator();               methodILGen.EmitWriteLine("I'm a proxy");               if (methodInfo.ReturnType == typeof(void))               {                   methodILGen.Emit(OpCodes.Ret);               }               else               {                   if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)                   {                       MethodInfo getMethod = typeof(Activator).GetMethod(/span>"CreateInstance",new Type[]{typeof((Type)});                                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                       methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);                       methodILGen.Emit(OpCodes.Call, typeofype).GetMethod("GetTypeFromHandle"));  ));                       methodILGen.Emit(OpCodes.Callvirt, getMethod);                       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);                                                              }                 else                   {                       methodILGen.Emit(OpCodes.Ldnull);                   }                   methodILGen.Emit(OpCodes.Ret);               }               typeBuilder.DefineMethodOverride(methodBuilder, methodInfo);           }                     Type constructedType = typeBuilder.CreateType();           var instance = Activator.CreateInstance(constructedType);           return (T)instance;       }   }   Dynamic proxies are created by calling into the following main types: AssemblyBuilder, TypeBuilder, Modulebuilder and ILGenerator. These types enable dynamically creating an assembly and emitting .NET modules and types in that assembly, all using IL instructions. Let's break down the code above a bit and examine it piece by piece                Type typeOfT = typeof(T);              var methodInfos = typeOfT.GetMethods();              AssemblyName assName = new AssemblyName("testAssembly");              var assBuilder = AppDomain.CurrentDomain.DefineDynamicAssembly(assName, AssemblyBuilderAccess.RunAndSave);              var moduleBuilder = assBuilder.DefineDynamicModule("testModule", "test.dll");              var typeBuilder = moduleBuilder.DefineType(typeOfT.Name + "Proxy", TypeAttributes.Public);   We are instructing the runtime to create an assembly caled "test.dll"and in this assembly we then emit a new module called "testModule". We then emit a new type definition of name "typeName"Proxy into this new module. This is the definition for the "dynamic proxy" for type T                 typeBuilder.AddInterfaceImplementation(typeOfT);               var ctorBuilder = typeBuilder.DefineConstructor(                         MethodAttributes.Public,                         CallingConventions.Standard,                         new Type[] { });               var ilGenerator = ctorBuilder.GetILGenerator();               ilGenerator.EmitWriteLine("Creating Proxy instance");               ilGenerator.Emit(OpCodes.Ret);   The newly created type implements type T and defines a default parameterless constructor in which we emit a call to Console.WriteLine. This call is not necessary but we do this so that we can see first hand that when the proxy is constructed, when our default constructor is invoked.   var methodBuilder = typeBuilder.DefineMethod(                      methodInfo.Name,                      MethodAttributes.Public | MethodAttributes.Virtual,                      methodInfo.ReturnType,                      methodInfo.GetParameters().Select(p => p.GetType()).ToArray()                      );   We then iterate over each method declared on type T and add a method definition of the same name into our "dynamic proxy" definition     if (methodInfo.ReturnType == typeof(void))   {       methodILGen.Emit(OpCodes.Ret);   }   If the return type specified in the method declaration of T is void we simply return.     if (methodInfo.ReturnType.IsValueType || methodInfo.ReturnType.IsEnum)   {                               MethodInfo getMethod = typeof(Activator).GetMethod("CreateInstance",                                                         new Type[]{typeof(Type)});                               LocalBuilder lb = methodILGen.DeclareLocal(methodInfo.ReturnType);                                                     methodILGen.Emit(OpCodes.Ldtoken, lb.LocalType);       methodILGen.Emit(OpCodes.Call, typeof(Type).GetMethod("GetTypeFromHandle"));       methodILGen.Emit(OpCodes.Callvirt, getMethod);       methodILGen.Emit(OpCodes.Unbox_Any, lb.LocalType);   }   If the return type in the method declaration of T is either a value type or an enum, then we need to create an instance of the value type and return that instance the caller. In order to accomplish that we need to do the following: 1) Get a handle to the Activator.CreateInstance method 2) Declare a local variable which represents the Type of the return type(i.e the type object of the return type) specified on the method declaration of T(obtained from the MethodInfo) and push this Type object onto the evaluation stack. In reality a RuntimeTypeHandle is what is pushed onto the stack. 3) Invoke the "GetTypeFromHandle" method(a static method in the Type class) passing in the RuntimeTypeHandle pushed onto the stack previously as an argument, the result of this invocation is a Type object (representing the method's return type) which is pushed onto the top of the evaluation stack. 4) Invoke Activator.CreateInstance passing in the Type object from step 3, the result of this invocation is an instance of the value type boxed as a reference type and pushed onto the top of the evaluation stack. 5) Unbox the result and place it into the local variable of the return type defined in step 2   methodILGen.Emit(OpCodes.Ldnull);   If the return type is a reference type then we just load a null onto the evaluation stack   methodILGen.Emit(OpCodes.Ret);   Emit a a return statement to return whatever is on top of the evaluation stack(null or an instance of a value type) back to the caller     Type constructedType = typeBuilder.CreateType();   var instance = Activator.CreateInstance(constructedType);   return (T)instance;   Now that we have a definition of the "dynamic proxy" implementing all the methods declared on T, we can now create an instance of the proxy type and return that out typed as T. The caller can now invoke the generator and request a dynamic proxy for any type T. In our example when the client invokes GetNum() we get back "0". Lets add a new method on the interface called DayOfWeek GetDay()   public interface IFoo      {          int GetNum();          DayOfWeek GetDay();      }   When GetDay() is invoked, the "dynamic proxy" returns "Sunday" since that is the default value for the DayOfWeek enum This is a very trivial example of dynammic proxies, frameworks like MOQ have a way more sophisticated implementation of this paradigm where in you can instruct the framework to create proxies which return specified values for a method implementation.

    Read the article

  • Using Find/Replace with regular expressions inside a SSIS package

    - by jamiet
    Another one of those might-be-useful-again-one-day-so-I’ll-share-it-in-a-blog-post blog posts I am currently working on a SQL Server Integration Services (SSIS) 2012 implementation where each package contains a parameter called ETLIfcHist_ID: During normal execution this will get altered when the package is executed from the Execute Package Task however we want to make sure that at deployment-time they all have a default value of –1. Of course, they tend to get changed during development so I wanted a way of easily changing them all back to the default value. Opening up each package in turn and editing them was an option but given that we have over 40 packages and we might want to carry out this reset fairly frequently I needed a more automated method so I turned to Visual Studio’s Find/Replace… feature Of course, we don’t know what value will be in that parameter so I can’t simply search for a particular value; hence I opted to use a regular expression to identify the value to be change. In the rest of this blog post I’ll explain how to do that. For demonstration purposes I have taken the contents of a .dtsx file and stripped out everything except the element containing the parameters (<DTS:PackageParameters>), if you want to play along at home you can copy-paste the XML document below into a new XML file and open it up in Visual Studio: <?xml version="1.0"?> <DTS:Executable xmlns:DTS="www.microsoft.com/SqlServer/Dts">   <DTS:PackageParameters>     <DTS:PackageParameter       DTS:CreationName=""       DTS:DataType="3"       DTS:Description="InterfaceHistory_ID: used for Lineage"       DTS:DTSID="{635616DB-EEEE-45C8-89AA-713E25846C7E}"       DTS:ObjectName="ETLIfcHist_ID">       <DTS:Property         DTS:DataType="3"         DTS:Name="ParameterValue">VALUE_TO_BE_CHANGED</DTS:Property>     </DTS:PackageParameter>     <DTS:PackageParameter       DTS:CreationName=""       DTS:DataType="3"       DTS:Description="Some other description"       DTS:DTSID="{635616DB-EEEE-45C8-89AA-713E25845C7E}"       DTS:ObjectName="SomeOtherObjectName">       <DTS:Property         DTS:DataType="3"         DTS:Name="ParameterValue">SomeOtherValue</DTS:Property>     </DTS:PackageParameter>   </DTS:PackageParameters> </DTS:Executable> We are trying to identify the value of the parameter whose name is ETLIfcHist_ID – notice that in the XML document above that value is VALUE_TO_BE_CHANGED. The following regular expression will find the appropriate portion of the XML document: {\<DTS\:PackageParameter[\n ]*DTS\:CreationName="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:DataType="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:Description="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:DTSID="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:ObjectName="ETLIfcHist_ID"\>[\n ]*\<DTS\:Property[\n ]*DTS\:DataType="[A-Za-z0-9\:_\{\}- ]*"[\n ]*DTS\:Name="ParameterValue"\>}[A-Za-z0-9\:_\{\}- ]*{\<\/DTS\:Property\>} I have highlighted the name of the parameter that we’re looking for. I have also highlighted two portions identified by pairs of curly braces “{…}”; these are important because they pick out the two portions either side of the value I want to replace, in other words the portions highlighted here: <DTS:PackageParameters>     <DTS:PackageParameter       DTS:CreationName=""       DTS:DataType="3"       DTS:Description="InterfaceHistory_ID: used for Lineage"       DTS:DTSID="{635616DB-EEEE-45C8-89AA-713E25846C7E}"       DTS:ObjectName="ETLIfcHist_ID">       <DTS:Property         DTS:DataType="3"         DTS:Name="ParameterValue">VALUE_TO_BE_CHANGED</DTS:Property>     </DTS:PackageParameter> Those sections in the curly braces are termed tag expressions and can be identified in the replace expression using a backslash and a number identifying which tag expression you’re referring to according to its ordinal position. Hence, our replace expression is simply: \1-1\2 We’re saying the portion of our file identified by the regular expression should be replaced by the first curly brace section, then the literal –1, then the second curly brace section. Make sense? Give it a go yourself by plugging those two expressions into Visual Studio’s Find and Replace dialog. If you set it to look in “All Open Documents” then you can open up the code-behind of all your packages and change all of them at once. The Find and Replace dialog will look like this: That’s it! I realise that not everyone will be looking to change the value of a parameter but hopefully I have shown you a technique that you can modify to work for your own scenario. Given that this blog post is, y’know, on the web I have no doubt that someone is going to find a fault with my find regex expression and if that person is you….that’s OK. Let me know about it in the comments below and perhaps we can work together to come up with something better! Note that some parameters may have a different set of properties (for example some, but not all, of my parameters have a DTS:Required attribute) so your find regular expression may have to change accordingly. When researching this I found the following article to be invaluable: Visual Studio Find/Replace Regular Expression Usage @Jamiet

    Read the article

  • SQL SERVER – Working with FileTables in SQL Server 2012 – Part 1 – Setting Up Environment

    - by pinaldave
    Filestream is a very interesting feature, and an enhancement of FileTable with Filestream is equally exciting. Today in this post, we will learn how to set up the FileTable Environment in SQL Server. The major advantage of FileTable is it has Windows API compatibility for file data stored within an SQL Server database. In simpler words, FileTables remove a barrier so that SQL Server can be used for the storage and management of unstructured data that are currently residing as files on file servers. Another advantage is that the Windows Application Compatibility for their existing Windows applications enables to see these data as files in the file system. This way, you can use SQL Server to access the data using T-SQL enhancements, and Windows can access the file using its applications. So for the first step, you will need to enable the Filestream feature at the database level in order to use the FileTable. -- Enable Filestream EXEC sp_configure filestream_access_level, 2 RECONFIGURE GO -- Create Database CREATE DATABASE FileTableDB ON PRIMARY (Name = FileTableDB, FILENAME = 'D:\FileTable\FTDB.mdf'), FILEGROUP FTFG CONTAINS FILESTREAM (NAME = FileTableFS, FILENAME='D:\FileTable\FS') LOG ON (Name = FileTableDBLog, FILENAME = 'D:\FileTable\FTDBLog.ldf') WITH FILESTREAM (NON_TRANSACTED_ACCESS = FULL, DIRECTORY_NAME = N'FileTableDB'); GO Now, you can run the following code and figure out if FileStream options are enabled at the database level. -- Check the Filestream Options SELECT DB_NAME(database_id), non_transacted_access, non_transacted_access_desc FROM sys.database_filestream_options; GO You can see the resultset of the above query which returns resultset as the following image shows. As you can see , the file level access is set to 2 (filestream enabled). Now let us create the filetable in the newly created database. -- Create FileTable Table USE FileTableDB GO CREATE TABLE FileTableTb AS FileTable WITH (FileTable_Directory = 'FileTableTb_Dir'); GO Now you can select data using a regular select table. SELECT * FROM FileTableTb GO It will return all the important columns which are related to the file. It will provide details like filesize, archived, file types etc. You can also see the FileTable in SQL Server Management Studio. Go to Databases >> Newly Created Database (FileTableDB) >> Expand Tables Here, you will see a new folder which says “FileTables”. When expanded, it gives the name of the newly created FileTableTb. You can right click on the newly created table and click on “Explore FileTable Directory”. This will open up the folder where the FileTable data will be stored. When you click on the option, it will open up the following folder in my local machine where the FileTable data will be stored: \\127.0.0.1\mssqlserver\FileTableDB\FileTableTb_Dir In tomorrow’s blog post as Part 2, we will go over two methods of inserting the data into this FileTable. Reference : Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Filestream

    Read the article

  • Autoscaling in a modern world&hellip;. Part 3

    - by Steve Loethen
    The Wasabi Hands on Labs give you a good look at the basic mechanics, but I don’t find the setup too practical.  Using a local console application to host the Autoscaler and rules files is probably the (IMHO) least likely architecture.  Far more common would be hosting in a service on premise (if you want to have the Autoscaler local) or most likely, host it in a Azure role of it’s own.  I chose to go the Azure route. First step was to get the rules.xml and the services.xml files into the cloud.  I tend to be a “one step at a time” sort of guy, so running the console application with the rules sitting in a Azure hosted set of blobs seemed to be the logical first step.  Here are the steps: 1) Create a container in the storage account you wish to use.  Name does not matter, you will get a chance to set the container name (as well as the file names) in the app.config 2) Copy the two files from where you created them to your  container.  I used the same files I had locally.  I made the container public to eliminate security issues, but in the final application, a bit of security needs to be applied (one problem at a time).  The content type was set to text/xml.  I found one reference claiming the importance of this step, and it makes sense. 3) Adjust the app.config to set the location of the files.  This will let you set all the storage account and key information needed to reach into the cloud form your console application.  The sections of your app.config will look like this: <rulesStores> <add name="Blob Rules Store" type="Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.Rules.Configuration.BlobXmlFileRulesStore, Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling, Version=5.0.1118.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" blobContainerName="[ContainerName]" blobName="rules.xml" storageAccount="DefaultEndpointsProtocol=https;AccountName=[StorageAccount];AccountKey=[AccountKey]" monitoringRate="00:00:30" certificateThumbprint="" certificateStoreLocation="LocalMachine" checkCertificateValidity="false" /> </rulesStores> <serviceInformationStores> <add name="Blob Service Information Store" type="Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.ServiceModel.Configuration.BlobXmlFileServiceInformationStore, Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling, Version=5.0.1118.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" blobContainerName="[ContainerName]" blobName="services.xml" storageAccount="DefaultEndpointsProtocol=https;AccountName=[StorageAccount];AccountKey=[AccountKey]" monitoringRate="00:00:30" certificateThumbprint="" certificateStoreLocation="LocalMachine" checkCertificateValidity="false" /> </serviceInformationStores> Once I had the files up in the sky, I renamed the local copies to just to make my self feel better about the application using the correct set of rules and services.  Deploy the web role to the cloud.  Once it is up and running, start the console application.  You should find the application scales up and down in response to the buttons on the web site.  Tune in next time for moving the hosting of the Autoscaler to a worker role, discussions on getting the logging information into diagnostics into storage, and a set of discussions about certs and how they play a role.

    Read the article

  • Amazon Web Services (AWS) Plug-in for Oracle Enterprise Manager

    - by Anand Akela
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Contributed by Sunil Kunisetty and Daniel Chan Introduction and ArchitectureAs more and more enterprises deploy some of their non-critical workload on Amazon Web Services (AWS), it’s becoming critical to monitor those public AWS resources along side with their on-premise resources. Oracle recently announced Oracle Enterprise Manager Plug-in for Amazon Web Services (AWS) allows you to achieve that goal. The on-premise Oracle Enterprise Manager (EM12c) acts as a single tool to get a comprehensive view of your public AWS resources as well as your private cloud resources.  By deploying the plug-in within your Cloud Control environment, you gain the following management features: Monitor EBS, EC2 and RDS instances on Amazon Web Services Gather performance metrics and configuration details for AWS instances Raise alerts and violations based on thresholds set on monitoring Generate reports based on the gathered data Users of this Plug-in can leverage the rich Enterprise Manager features such as system promotion, incident generation based on thresholds, integration with 3rd party ticketing applications etc. AWS Monitoring via this Plug-in is enabled via Amazon CloudWatch API and the users of this Plug-in are responsible for supplying credentials for accessing AWS and the CloudWatch API. This Plug-in can only be deployed on an EM12C R2 platform and agent version should be at minimum 12c R2.Here is a pictorial view of the overall architecture: Amazon Elastic Block Store (EBS) Amazon Elastic Compute Cloud (EC2) Amazon Relational Database Service (RDS) Here are a few key features: Rich and exhaustive list of metrics. Metrics can be gathered from an Agent running outside AWS. Critical configuration information. Custom Home Pages with charts and AWS configuration information. Generate incidents based on thresholds set on monitoring data. Discovery and Monitoring AWS instances can be added to EM12C either via the EM12c User Interface (UI) or the EM12c Command Line Interface ( EMCLI)  by providing the AWS credentials (Secret Key and Access Key Id) as well as resource specific properties as target properties. Here is a quick mapping of target types and properties for each AWS resources AWS Resource Type Target Type Resource specific properties EBS Resource Amazon EBS Service CloudWatch base URI, EC2 Base URI, Period, Volume Id, Proxy Server and Port EC2 Resource Amazon EC2 Service CloudWatch base URI, EC2 Base URI, Period, Instance  Id, Proxy Server and Port RDS Resource Amazon RDS Service CloudWatch base URI, RDS Base URI, Period, Instance  Id, Proxy Server and Port Proxy server and port are optional and are only needed if the agent is within the firewall. Here is an emcli example to add an EC2 target. Please read the Installation and Readme guide for more details and step-by-step instructions to deploy  the plugin and adding the AWS the instances. ./emcli add_target \       -name="<target name>" \       -type="AmazonEC2Service" \       -host="<host>" \       -properties="ProxyHost=<proxy server>;ProxyPort=<proxy port>;EC2_BaseURI=http://ec2.<region>.amazonaws.com;BaseURI=http://monitoring.<region>.amazonaws.com;InstanceId=<EC2 instance Id>;Period=<data point periond>"  \     -subseparator=properties="=" ./emcli set_monitoring_credential \                 -set_name="AWSKeyCredentialSet"  \                 -target_name="<target name>"  \                 -target_type="AmazonEC2Service" \                 -cred_type="AWSKeyCredential"  \                 -attributes="AccessKeyId:<access key id>;SecretKey:<secret key>" Emcli utility is found under the ORACLE_HOME of EM12C install. Once the instance is discovered, the target will show up under the ‘All Targets’ list under “Amazon EC2 Service’. Once the instances are added, one can navigate to the custom homepages for these resource types. The custom home pages not only include critical metrics, but also vital configuration parameters and incidents raised for these instances.  By mapping the configuration parameters as instance properties, we can slice-and-dice and group various AWS instance by leveraging the EM12C Config search feature. The following configuration properties and metrics are collected for these Resource types. Resource Type Configuration Properties Metrics EBS Resource Volume Id, Volume Type, Device Name, Size, Availability Zone Response: Status Utilization: QueueLength, IdleTime Volume Statistics: ReadBrandwith, WriteBandwidth, ReadThroughput, WriteThroughput Operation Statistics: ReadSize, WriteSize, ReadLatency, WriteLatency EC2 Resource Instance ID, Owner Id, Root Device type, Instance Type. Availability Zone Response: Status CPU Utilization: CPU Utilization Disk I/O:  DiskReadBytes, DiskWriteBytes, DiskReadOps, DiskWriteOps, DiskReadRate, DiskWriteRate, DiskIOThroughput, DiskReadOpsRate, DiskWriteOpsRate, DiskOperationThroughput Network I/O : NetworkIn, NetworkOut, NetworkInRate, NetworkOutRate, NetworkThroughput RDS Resource Instance ID, Database Engine Name, Database Engine Version, Database Instance Class, Allocated Storage Size, Availability Zone Response: Status Disk I/O:  ReadIOPS, WriteIOPS, ReadLatency, WriteLatency, ReadThroughput, WriteThroughput DB Utilization:  BinLogDiskUsage, CPUUtilization, DatabaseConnections, FreeableMemory, ReplicaLag, SwapUsage Custom Home Pages As mentioned above, we have custom home pages for these target types that include basic configuration information,  last 24 hours availability, top metrics and the incidents generated. Here are few snapshots. EBS Instance Home Page: EC2 Instance Home Page: RDS Instance Home Page: Further Reading: 1)      AWS Plugin download 2)      Installation and  Read Me. 3)      Screenwatch on SlideShare 4)      Extensibility Programmer's Guide 5)      Amazon Web Services

    Read the article

  • On StringComparison Values

    - by Jesse
    When you use the .NET Framework’s String.Equals and String.Compare methods do you use an overloStringComparison enumeration value? If not, you should be because the value provided for that StringComparison argument can have a big impact on the results of your string comparison. The StringComparison enumeration defines values that fall into three different major categories: Culture-sensitive comparison using a specific culture, defaulted to the Thread.CurrentThread.CurrentCulture value (StringComparison.CurrentCulture and StringComparison.CurrentCutlureIgnoreCase) Invariant culture comparison (StringComparison.InvariantCulture and StringComparison.InvariantCultureIgnoreCase) Ordinal (byte-by-byte) comparison of  (StringComparison.Ordinal and StringComparison.OrdinalIgnoreCase) There is a lot of great material available that detail the technical ins and outs of these different string comparison approaches. If you’re at all interested in the topic these two MSDN articles are worth a read: Best Practices For Using Strings in the .NET Framework: http://msdn.microsoft.com/en-us/library/dd465121.aspx How To Compare Strings: http://msdn.microsoft.com/en-us/library/cc165449.aspx Those articles cover the technical details of string comparison well enough that I’m not going to reiterate them here other than to say that the upshot is that you typically want to use the culture-sensitive comparison whenever you’re comparing strings that were entered by or will be displayed to users and the ordinal comparison in nearly all other cases. So where does that leave the invariant culture comparisons? The “Best Practices For Using Strings in the .NET Framework” article has the following to say: “On balance, the invariant culture has very few properties that make it useful for comparison. It does comparison in a linguistically relevant manner, which prevents it from guaranteeing full symbolic equivalence, but it is not the choice for display in any culture. One of the few reasons to use StringComparison.InvariantCulture for comparison is to persist ordered data for a cross-culturally identical display. For example, if a large data file that contains a list of sorted identifiers for display accompanies an application, adding to this list would require an insertion with invariant-style sorting.” I don’t know about you, but I feel like that paragraph is a bit lacking. Are there really any “real world” reasons to use the invariant culture comparison? I think the answer to this question is, “yes”, but in order to understand why we should first think about what the invariant culture comparison really does. The invariant culture comparison is really just a culture-sensitive comparison using a special invariant culture (Michael Kaplan has a great post on the history of the invariant culture on his blog: http://blogs.msdn.com/b/michkap/archive/2004/12/29/344136.aspx). This means that the invariant culture comparison will apply the linguistic customs defined by the invariant culture which are guaranteed not to differ between different machines or execution contexts. This sort of consistently does prove useful if you needed to maintain a list of strings that are sorted in a meaningful and consistent way regardless of the user viewing them or the machine on which they are being viewed. Example: Prototype Names Let’s say that you work for a large multi-national toy company with branch offices in 10 different countries. Each year the company would work on 15-25 new toy prototypes each of which is assigned a “code name” while it is under development. Coming up with fun new code names is a big part of the company culture that everyone really enjoys, so to be fair the CEO of the company spent a lot of time coming up with a prototype naming scheme that would be fun for everyone to participate in, fair to all of the different branch locations, and accessible to all members of the organization regardless of the country they were from and the language that they spoke. Each new prototype will get a code name that begins with a letter following the previously created name using the alphabetical order of the Latin/Roman alphabet. Each new year prototype names would start back at “A”. The country that leads the prototype development effort gets to choose the name in their native language. (An appropriate Romanization system will be used for countries where the primary language is not written in the Latin/Roman alphabet. For example, the Pinyin system could be used for Chinese). To avoid repeating names, a list of all current and past prototype names will be maintained on each branch location’s company intranet site. Assuming that maintaining a single pre-sorted list is not feasible among all of the highly distributed intranet implementations, what string comparison method would you use to sort each year’s list of prototype names so that the list is both meaningful and consistent regardless of the country within which the list is being viewed? Sorting the list with a culture-sensitive comparison using the default configured culture on each country’s intranet server the list would probably work most of the time, but subtle differences between cultures could mean that two different people would see a list that was sorted slightly differently. The CEO wants the prototype names to be a unifying aspect of company culture and is adamant that everyone see the the same list sorted in the same order and there’s no way to guarantee a consistent sort across different cultures using the culture-sensitive string comparison rules. The culture-sensitive sort would produce a meaningful list for the specific user viewing it, but it wouldn’t always be consistent between different users. Sorting with the ordinal comparison would certainly be consistent regardless of the user viewing it, but would it be meaningful? Let’s say that the current year’s prototype name list looks like this: Antílope (Spanish) Babouin (French) Cahoun (Czech) Diamond (English) Flosse (German) If you were to sort this list using ordinal rules you’d end up with: Antílope Babouin Diamond Flosse Cahoun This sort is no good because the entry for “C” appears the bottom of the list after “F”. This is because the Czech entry for the letter “C” makes use of a diacritic (accent mark). The ordinal string comparison does a byte-by-byte comparison of the code points that make up each character in the string and the code point for the “C” with the diacritic mark is higher than any letter without a diacritic mark, which pushes that entry to the bottom of the sorted list. The CEO wants each country to be able to create prototype names in their native language, which means we need to allow for names that might begin with letters that have diacritics, so ordinal sorting kills the meaningfulness of the list. As it turns out, this situation is actually well-suited for the invariant culture comparison. The invariant culture accounts for linguistically relevant factors like the use of diacritics but will provide a consistent sort across all machines that perform the sort. Now that we’ve walked through this example, the following line from the “Best Practices For Using Strings in the .NET Framework” makes a lot more sense: One of the few reasons to use StringComparison.InvariantCulture for comparison is to persist ordered data for a cross-culturally identical display That line describes the prototype name example perfectly: we need a way to persist ordered data for a cross-culturally identical display. While this example is 100% made-up, I think it illustrates that there are indeed real-world situations where the invariant culture comparison is useful.

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • Oracle SOA Security for OUAF Web Services

    - by Anthony Shorten
    With the ability to use Oracle SOA Suite 11g with the Oracle Utilities Application Framework based products, an additional consideration needs to be configured to ensure correct integration. That additional consideration is security. By default, SOA Suite propagates any credentials from the calling application through to the interfacing applications. In most cases, this behavior is not appropriate as the calling application may use different credential stores and also some interfaces are “disconnected” from a calling application (for example, a file based load using the File Adapter). These situations require that the Web Service calls to the Oracle Utilities Application Framework based products have their own valid credentials. To do this the credentials must be attached at design time or at run time to provide the necessary credentials for the call. There are a number of techniques that can be used to do this: At design time, when integrating a Web Service from an Oracle Utilities Application Framework based product you can attach the security policy “oracle/wss_username_token_client_policy” in the composite.xml view. In this view select the Web Service you want to attach the policy to and right click to display the context menu and select “Configure WS Policies” and select the above policy from the list. If you are using SSL then you can use “oracle/wss_username_token_over_ssl_client_policy” instead. At design time, you can also specify the credential key (csf-key) associated with the above policy by selecting the policy and clicking “Edit Config Override Properties”. You name the key appropriately. Everytime the SOA components are deployed the credential configuration is also sent. You can also do this after deployment, or what I call at “runtime”, by specifying the policy and credential key in the Fusion Middleware Control. Refer to the Fusion Middleware Control documentation on how to do this. To complete the configuration you need to add a map and the key specified earlier to the credential store in the Oracle WebLogic instance used for Oracle SOA Suite. From Fusion Middleware Control, you do this by selecting the domain the SOA Suite is installed in a select “Credentials” from the context menu. You now need to add the credentials by adding the map “oracle.wsm.security” (the name is IMPORTANT) and creating a key with the necessary valid credentials. The example below added a key called “mdm.key”. The name I used is for example only. You can name the key anything you like as long as it corresponds to the key you specified in the design time component. Note: I used SYSUSER as an example credentials in the example, in real life you would use another credential as SYSUSER is not appropriate for production use. This key can be reused for other Oracle Utilities Application Framework Web Service integrations or you can use other keys for individual Web Service calls. Once the key is created and the SOA Suite components deployed the transactions should be able to be called as necessary. If you need to change the password for the credentials it can be done using the Fusion Middleware Control functionality.

    Read the article

  • Visual Studio 10 crashed when tried to open one of solutions

    - by Michael Freidgeim
    Visual Studio 10 crashed when I tried to open  one of my solutions. Closing Visual Studio and rebooting the machine didn’t help.The error message that was logged(see below), didn’t give any useful ideas.Finally It was fixed after I’ve deleted MySolution.suo file, which was quite big, and also Resharper folders.Log Name:      ApplicationSource:        Application ErrorEvent ID:      1000Task Category: (100)Level:         ErrorKeywords:      ClassicUser:          N/ADescription:Faulting application name: devenv.exe, version: 10.0.40219.1, time stamp: 0x4d5f2a73Faulting module name: msenv.dll, version: 10.0.40219.1, time stamp: 0x4d5f2d48Exception code: 0xc0000005Fault offset: 0x00355770Faulting process id: 0x1dc0Faulting application start time: 0x01cd1836888599f4Faulting application path: C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\devenv.exeFaulting module path: c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\msenv.dllReport Id: 9924b2f9-844e-11e1-bc19-782bcba513eaEvent Xml:<Event >  <System>    <Provider Name="Application Error" />    <EventID Qualifiers="0">1000</EventID>    <Level>2</Level>    <Task>100</Task>    <Keywords>0x80000000000000</Keywords>    <TimeCreated SystemTime="2012-04-12T03:21:31.000000000Z" />    <EventRecordID>401998</EventRecordID>    <Channel>Application</Channel>    <Security />  </System>  <EventData>    <Data>devenv.exe</Data>    <Data>10.0.40219.1</Data>    <Data>4d5f2a73</Data>    <Data>msenv.dll</Data>    <Data>10.0.40219.1</Data>    <Data>4d5f2d48</Data>    <Data>c0000005</Data>    <Data>00355770</Data>    <Data>1dc0</Data>    <Data>01cd1836888599f4</Data>    <Data>C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\devenv.exe</Data>    <Data>c:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\msenv.dll</Data>    <Data>9924b2f9-844e-11e1-bc19-782bcba513ea</Data>  </EventData></Event>v

    Read the article

  • ID number for sites [closed]

    - by Jonathan
    Possible Duplicate: please add a key fields to stackauth results It would be easier if sites each had an ID, it help with keeping track of them, not only in a numerical way (which is generally easier and smaller than using name strings). Also changes of site names (such as when a site progresses from beta, or decides it's name is not quite right during beta). Everything else has IDs so why not sites?

    Read the article

  • Handling HumanTask attachments in Oracle BPM 11g PS4FP+ (I)

    - by ccasares
    Adding attachments to a HumanTask is a feature that exists in Oracle HWF (Human Workflow) since 10g. However, in 11g there have been many improvements on this feature and this entry will try to summarize them. Oracle BPM 11g 11.1.1.5.1 (aka PS4 Feature Pack or PS4FP) introduced two great features: Ability to link attachments at a Task scope or at a Process scope: "Task" attachments are only visible within the scope (lifetime) of a task. This means that, initially, any member of the assignment pattern of the Human Task will be able to handle (add, review or remove) attachments. However, once the task is completed, subsequent human tasks will not have access to them. This does not mean those attachments got lost. Once the human task is completed, attachments can be retrieved in order to, i.e., check them in to a Content Server or to inject them to a new and different human task. Aside note: a "re-initiated" human task will inherit comments and attachments, along with history and -optionally- payload. See here for more info. "Process" attachments are visible within the scope of the process. This means that subsequent human tasks in the same process instance will have access to them. Ability to use Oracle WebCenter Content (previously known as "Oracle UCM") as the backend for the attachments instead of using HWF database backend. This feature adds all content server document lifecycle capabilities to HWF attachments (versioning, RBAC, metadata management, etc). As of today, only Oracle WCC is supported. However, Oracle BPM Suite does include a license of Oracle WCC for the solely usage of document management within BPM scope. Here are some code samples that leverage the above features. Retrieving uploaded attachments -Non UCM- Non UCM attachments (default ones or those that have existed from 10g, and are stored "as-is" in HWK database backend) can be retrieved after the completion of the Human Task. Firstly, we need to know whether any attachment has been effectively uploaded to the human task. There are two ways to find it out: Through an XPath function: Checking the execData/attachment[] structure. For example: Once we are sure one ore more attachments were uploaded to the Human Task, we want to get them. In this example, by "get" I mean to get the attachment name and the payload of the file. Aside note: Oracle HWF lets you to upload two kind of [non-UCM] attachments: a desktop document and a Web URL. This example focuses just on the desktop document one. In order to "retrieve" an uploaded Web URL, you can get it directly from the execData/attachment[] structure. Attachment content (payload) is retrieved through the getTaskAttachmentContents() XPath function: This example shows how to retrieve as many attachments as those had been uploaded to the Human Task and write them to the server using the File Adapter service. The sample process excerpt is as follows:  A dummy UserTask using "HumanTask1" Human Task followed by a Embedded Subprocess that will retrieve the attachments (we're assuming at least one attachment is uploaded): and once retrieved, we will write each of them back to a file in the server using a File Adapter service: In detail: We've defined an XSD structure that will hold the attachments (both name and payload): Then, we can create a BusinessObject based on such element (attachmentCollection) and create a variable (named attachmentBPM) of such BusinessObject type. We will also need to keep a copy of the HumanTask output's execData structure. Therefore we need to create a variable of type TaskExecutionData... ...and copy the HumanTask output execData to it: Now we get into the embedded subprocess that will retrieve the attachments' payload. First, and using an XSLT transformation, we feed the attachmentBPM variable with the name of each attachment and setting an empty value to the payload: Please note that we're using the XSLT for-each node to create as many target structures as necessary. Also note that we're setting an Empty text to the payload variable. The reason for this is to make sure the <payload></payload> tag gets created. This is needed when we map the payload to the XML variable later. Aside note: We are assuming that we're retrieving non-UCM attachments. However in real life you might want to check the type of attachment you're handling. The execData/attachment[]/storageType contains the values "UCM" for UCM type attachments, "TASK" for non-UCM ones or "URL" for Web URL ones. Those values are part of the "Ext.Com.Oracle.Xmlns.Bpel.Workflow.Task.StorageTypeEnum" enumeration. Once we have fed the attachmentsBPM structure and so it now contains the name of each of the attachments, it is time to iterate through it and get the payload. Therefore we will use a new embedded subprocess of type MultiInstance, that will iterate over the attachmentsBPM/attachment[] element: In every iteration we will use a Script activity to map the corresponding payload element with the result of the XPath function getTaskAttachmentContents(). Please, note how the target array element is indexed with the loopCounter predefined variable, so that we make sure we're feeding the right element during the array iteration:  The XPath function used looks as follows: hwf:getTaskAttachmentContents(bpmn:getDataObject('UserTask1LocalExecData')/ns1:systemAttributes/ns1:taskId, bpmn:getDataObject('attachmentsBPM')/ns:attachment[bpmn:getActivityInstanceAttribute('SUBPROCESS3067107484296', 'loopCounter')]/ns:fileName)  where the input parameters are: taskId of the just completed Human Task attachment name we're retrieving the payload from array index (loopCounter predefined variable)  Aside note: The reason whereby we're iterating the execData/attachment[] structure through embedded subprocess and not, i.e., using XSLT and for-each nodes, is mostly because the getTaskAttachmentContents() XPath function is currently not available in XSLT mappings. So all this example might be considered as a workaround until this gets fixed/enhanced in future releases. Once this embedded subprocess ends, we will have all attachments (name + payload) in the attachmentsBPM variable, which is the main goal of this sample. But in order to test everything runs fine, we finish the sample writing each attachment to a file. To that end we include a final embedded subprocess to concurrently iterate through each attachmentsBPM/attachment[] element: On each iteration we will use a Service activity that invokes a File Adapter write service. In here we have two important parameters to set. First, the payload itself. The file adapter awaits binary data in base64 format (string). We have to map it using XPath (Simple mapping doesn't recognize a String as a base64-binary valid target):  Second, we must set the target filename using the Service Properties dialog box:  Again, note how we're making use of the loopCounter index variable to get the right element within the embedded subprocess iteration. Handling UCM attachments will be part of a different and upcoming blog entry. Once I finish will all posts on this matter, I will upload the whole sample project to java.net.

    Read the article

  • SQL SERVER – Identify Numbers of Non Clustered Index on Tables for Entire Database

    - by pinaldave
    Here is the script which will give you numbers of non clustered indexes on any table in entire database. SELECT COUNT(i.TYPE) NoOfIndex, [schema_name] = s.name, table_name = o.name FROM sys.indexes i INNER JOIN sys.objects o ON i.[object_id] = o.[object_id] INNER JOIN sys.schemas s ON o.[schema_id] = s.[schema_id] WHERE o.TYPE IN ('U') AND i.TYPE = 2 GROUP BY s.name, o.name ORDER BY schema_name, table_name Here is the small story behind why this script was needed. I recently went to meet my friend in his office and he introduced me to his colleague in office as someone who is an expert in SQL Server Indexing. I politely said I am yet learning about Indexing and have a long way to go. My friend’s colleague right away said – he had a suggestion for me with related to Index. According to him he was looking for a script which will count all the non clustered on all the tables in the database and he was not able to find that on SQLAuthority.com. I was a bit surprised as I really do not remember all the details about what I have written so far. I quickly pull up my phone and tried to look for the script on my custom search engine and he was correct. I never wrote a script which will count all the non clustered indexes on tables in the whole database. Excessive indexing is not recommended in general. If you have too many indexes it will definitely negatively affect your performance. The above query will quickly give you details of numbers of indexes on tables on your entire database. You can quickly glance and use the numbers as reference. Please note that the number of the index is not a indication of bad indexes. There is a lot of wisdom I can write here but that is not the scope of this blog post. There are many different rules with Indexes and many different scenarios. For example – a table which is heap (no clustered index) is often not recommended on OLTP workload (here is the blog post to identify them), drop unused indexes with careful observation (here is the script for it), identify missing indexes and after careful testing add them (here is the script for it). Even though I have given few links here it is just the tip of the iceberg. If you follow only above four advices your ship may still sink. Those who wants to learn the subject in depth can watch the videos here after logging in. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Index, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Code refactoring with Visual Studio 2010 Part-1

    - by Jalpesh P. Vadgama
    Visual studio 2010 is a Great IDE(Integrated Development Environment) and we all are using it in day by day for our coding purpose. There are many great features provided by Visual Studio 2010 and Today I am going to show one of great feature called for code refactoring. This feature is one of the most unappreciated features of Visual Studio 2010 as lots of people still not using that and doing stuff manfully. So to explain feature let’s create a simple console application which will print first name and last name like following. And following is code for that. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; Console.WriteLine(string.Format("FirstName:{0}",firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } So as you can see this is a very basic console application and let’s run it to see output. So now lets explore our first feature called extract method in visual studio you can also do that via refractor menu like following. Just select the code for which you want to extract method and then click refractor menu and then click extract method. Now I am selecting three lines of code and clicking on refactor –> Extract Method just like following. Once you click menu a dialog box will appear like following. As you can I have highlighted two thing first is Method Name where I put Print as Method Name and another one Preview method signature where its smart enough to extract parameter also as We have just selected three lines with  console.writeline.  One you click ok it will extract the method and you code will be like this. using System; namespace CodeRefractoring { class Program { static void Main(string[] args) { string firstName = "Jalpesh"; string lastName = "Vadgama"; Print(firstName, lastName); } private static void Print(string firstName, string lastName) { Console.WriteLine(string.Format("FirstName:{0}", firstName)); Console.WriteLine(string.Format("LastName:{0}", lastName)); Console.ReadLine(); } } } So as you can see in above code its has created a static method called Print and also passed parameter for as firstname and lastname. Isn’t that great!!!. It has also created static print method as I am calling it from static void main.  Hope you liked it.. Stay tuned for more..Till that Happy programming.

    Read the article

  • Problem in installation in My Hp g4 1226se

    - by vivek Verma
    1vivek.100 Dual booting error in Hp pavilion g4 1226se Dear sir or Madam, My name is vivek verma.... I am the user of my Hp laptop which series and model name is HP PAVILION G4 1226SE........ i have purchase in the year of 2012 and month is February.....the windows 7 home basic 64 Bit is already installed in in my laptop.... Now i want to install Ubuntu 12.04 Lts or 13.10 lts..... i have try many time to install in my laptop via live CD or USB installer....and i have try many live CD and many pen drive to install Ubuntu ... but it is not done......now i am in very big problem...... when i put my CD or USB drive to boot and install the Ubuntu......my laptop screen is goes the some black (brightness of my laptop screen is very low and there is very low visibility ) and not showing any thing on my laptop screen..... and when i move the my laptop screen.....then there is graphics option in this screen to installation of the Ubuntu option......and when i press the dual boot with setting button and press to continue them my laptop is goes for shutdown after 2 or 5 minutes..... ...... and Hp service center person is saying to me our laptop hardware has no problem.....please contact to Ubuntu tech support............. show please help me if possible..... My laptop configuration is here...... Hardware Product Name g4-1226se Product Number QJ551EA Microprocessor 2.4 GHz Intel Core i5-2430M Microprocessor Cache 3 MB L3 cache Memory 4 GB DDR3 Memory Max Upgradeable to 4 GB DDR3 Video Graphics Intel HD 3000 (up to 1.65 GB) Display 35,5 cm (14,0") High-Definition LED-backlit BrightView Display (1366 x 768) Hard Drive 500 GB SATA (5400 rpm) Multimedia Drive SuperMulti DVD±R/RW with Double Layer Support Network Card Integrated 10/100 BASE-T Ethernet LAN Wireless Connectivity 802.11 b/g/n Sound Altec Lansing speakers Keyboard Full size island-style keyboard with home roll keys Pointing Device TouchPad supporting Multi-Touch gestures with On/Off button PC Card Slots Multi-Format Digital Media Card Reader for Secure Digital cards, Multimedia cards External Ports 1 VGA 1 headphone-out 1 microphone-in 3 USB 2.0 1 RJ45 Dimensions 34.1 x 23.1 x 3.56 cm Weight Starting at 2.1 kg Power 65W AC Power Adapter 6-cell Lithium-Ion (Li-Ion) What's In The Box Webcam with Integrated Digital Microphone (VGA) Software Operating System: Windows 7 Home Basic 64bit....Genuine..... ......... Sir please help me if possible....... Name =vivek verma Contact no.+919911146737 Email [email protected]

    Read the article

  • How to stream H264 Video from camera over FTP?

    - by Jay
    I bought a h264 security camera system last year and set it up to ftp video to my computer. I was able to get the video to play (even though it played a little fast) on Ubuntu 11.04 using mplayer. A few months ago, I did a fresh install of 12.04 and I cannot seem to get the video to play with mplayer, smplayer or VLC. I have the restricted formats video packages installed and when playing with any of the players, all I get is a gray video. When calling mplayer from the command line to play the video with no options, I get a lot of these errors: [h264 @ 0x7f278c61f280]concealing 1320 DC, 1320 AC, 1320 MV errors No pts value from demuxer to use for frame! pts after filters MISSING I'm not a video expert and have been coming up with a lot of dead ends when Googling for this. Could someone offer some advice about how to play these videos? Here is the output of mediainfo for a sample file. mediainfo -f sec-cam01-m-20120921-212454.h264 General Count : 278 Count of stream of this kind : 1 Kind of stream : General Kind of stream : General Stream identifier : 0 Count of video streams : 1 Video_Format_List : AVC Video_Format_WithHint_List : AVC Codecs Video : AVC Complete name : sec-cam01-m-20120921-212454.h264 File name : sec-cam01-m-20120921-212454 File extension : h264 Format : AVC Format : AVC Format/Info : Advanced Video Codec Format/Url : http://developers.videolan.org/x264.html Format/Extensions usually used : avc h264 Commercial name : AVC Internet media type : video/H264 Codec : AVC Codec : AVC Codec/Info : Advanced Video Codec Codec/Url : http://developers.videolan.org/x264.html Codec/Extensions usually used : avc h264 File size : 1097315 File size : 1.05 MiB File size : 1 MiB File size : 1.0 MiB File size : 1.05 MiB File size : 1.046 MiB File last modification date : UTC 2012-09-22 01:27:12 File last modification date (local) : 2012-09-21 21:27:12 Video Count : 205 Count of stream of this kind : 1 Kind of stream : Video Kind of stream : Video Stream identifier : 0 Format : AVC Format/Info : Advanced Video Codec Format/Url : http://developers.videolan.org/x264.html Commercial name : AVC Format profile : [email protected] Format settings : 1 Ref Frames Format settings, CABAC : No Format settings, CABAC : No Format settings, ReFrames : 1 Format settings, ReFrames : 1 frame Format settings, GOP : M=1, N=3 Internet media type : video/H264 Codec : AVC Codec : AVC Codec/Family : AVC Codec/Info : Advanced Video Codec Codec/Url : http://developers.videolan.org/x264.html Codec profile : [email protected] Codec settings : 1 Ref Frames Codec settings, CABAC : No Codec_Settings_RefFrames : 1 Width : 704 Width : 704 pixels Height : 480 Height : 480 pixels Pixel aspect ratio : 1.000 Display aspect ratio : 1.467 Display aspect ratio : 3:2 Standard : NTSC Resolution : 8 Resolution : 8 bits Colorimetry : 4:2:0 Color space : YUV Chroma subsampling : 4:2:0 Bit depth : 8 Bit depth : 8 bits Scan type : Progressive Scan type : Progressive Interlacement : PPF Interlacement : Progressive Edit: Here is a sample video using the same encoding: https://www.dropbox.com/s/l5acwzy8rtqn9xe/sec-cam08-m-20121118-105815.h264 (not the same video as mediainfo output)

    Read the article

< Previous Page | 366 367 368 369 370 371 372 373 374 375 376 377  | Next Page >