Search Results

Search found 10328 results on 414 pages for 'behavior tree'.

Page 372/414 | < Previous Page | 368 369 370 371 372 373 374 375 376 377 378 379  | Next Page >

  • Unexpected behaviour with glFramebufferTexture1D

    - by Roshan
    I am using render to texture concept with glFramebufferTexture1D. I am drawing a cube on non-default FBO with all the vertices as -1,1 (maximum) in X Y Z direction. Now i am setting viewport to X while rendering on non default FBO. My background is blue with white color of cube. For default FBO, i have created 1-D texture and attached this texture to above FBO with color attachment. I am setting width of texture equal to width*height of above FBO view-port. Now, when i render this texture to on another cube, i can see continuous white color on start or end of each face of the cube. That means part of the face is white and rest is blue. I am not sure whether this behavior is correct or not. I expect all the texels should be white as i am using -1 and 1 coordinates for cube rendered on non-default FBO. code: #define WIDTH 3 #define HEIGHT 3 GLfloat vertices8[]={ 1.0f,1.0f,1.0f, -1.0f,1.0f,1.0f, -1.0f,-1.0f,1.0f, 1.0f,-1.0f,1.0f,//face 1 1.0f,-1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 2 1.0f,1.0f,1.0f, 1.0f,-1.0f,1.0f, 1.0f,-1.0f,-1.0f, 1.0f,1.0f,-1.0f,//face 3 -1.0f,1.0f,1.0f, -1.0f,1.0f,-1.0f, -1.0f,-1.0f,-1.0f, -1.0f,-1.0f,1.0f,//face 4 1.0f,1.0f,1.0f, 1.0f,1.0f,-1.0f, -1.0f,1.0f,-1.0f, -1.0f,1.0f,1.0f,//face 5 -1.0f,-1.0f,1.0f, -1.0f,-1.0f,-1.0f, 1.0f,-1.0f,-1.0f, 1.0f,-1.0f,1.0f//face 6 }; GLfloat vertices[]= { 0.5f,0.5f,0.5f, -0.5f,0.5f,0.5f, -0.5f,-0.5f,0.5f, 0.5f,-0.5f,0.5f,//face 1 0.5f,-0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 2 0.5f,0.5f,0.5f, 0.5f,-0.5f,0.5f, 0.5f,-0.5f,-0.5f, 0.5f,0.5f,-0.5f,//face 3 -0.5f,0.5f,0.5f, -0.5f,0.5f,-0.5f, -0.5f,-0.5f,-0.5f, -0.5f,-0.5f,0.5f,//face 4 0.5f,0.5f,0.5f, 0.5f,0.5f,-0.5f, -0.5f,0.5f,-0.5f, -0.5f,0.5f,0.5f,//face 5 -0.5f,-0.5f,0.5f, -0.5f,-0.5f,-0.5f, 0.5f,-0.5f,-0.5f, 0.5f,-0.5f,0.5f//face 6 }; GLuint indices[] = { 0, 2, 1, 0, 3, 2, 4, 5, 6, 4, 6, 7, 8, 9, 10, 8, 10, 11, 12, 15, 14, 12, 14, 13, 16, 17, 18, 16, 18, 19, 20, 23, 22, 20, 22, 21 }; GLfloat texcoord[] = { 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0 }; glGenTextures(1, &id1); glBindTexture(GL_TEXTURE_1D, id1); glGenFramebuffers(1, &Fboid); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glTexParameterf(GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexImage1D(GL_TEXTURE_1D, 0, GL_RGBA, WIDTH*HEIGHT , 0, GL_RGBA, GL_UNSIGNED_BYTE,0); glBindFramebuffer(GL_FRAMEBUFFER, Fboid); glFramebufferTexture1D(GL_DRAW_FRAMEBUFFER,GL_COLOR_ATTACHMENT0,GL_TEXTURE_1D,id1,0); draw_cube(); glBindFramebuffer(GL_FRAMEBUFFER, 0); draw(); } draw_cube() { glViewport(0, 0, WIDTH, HEIGHT); glClearColor(0.0f, 0.0f, 0.5f, 1.0f); glClear(GL_COLOR_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(temp.psId,"position")); glVertexAttribPointer(glGetAttribLocation(temp.psId,"position"), 3, GL_FLOAT, GL_FALSE, 0,vertices8); glDrawArrays (GL_TRIANGLE_FAN, 0, 24); } draw() { glClearColor(1.0f, 0.0f, 0.0f, 1.0f); glClearDepth(1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"tk_position")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"tk_position"), 3, GL_FLOAT, GL_FALSE, 0,vertices); nResult = GL_ERROR_CHECK((GL_NO_ERROR, "glVertexAttribPointer(position, 3, GL_FLOAT, GL_FALSE, 0,vertices);")); glEnableVertexAttribArray(glGetAttribLocation(shader_data.psId,"inputtexcoord")); glVertexAttribPointer(glGetAttribLocation(shader_data.psId,"inputtexcoord"), 2, GL_FLOAT, GL_FALSE, 0,texcoord); glBindTexture(*target11, id1); glDrawElements ( GL_TRIANGLES, 36,GL_UNSIGNED_INT, indices ); when i change WIDTH=HEIGHT=2, and call a glreadpixels with height, width equal to 4 in draw_cube() i can see first 2 pixels with white color, next two with blue(glclearcolor), next two white and then blue and so on.. Now when i change width parameter in glTeximage1D to 16 then ideally i should see alternate patches of white and blue right? But its not the case here. why so?

    Read the article

  • Unmet Dependencies with kdelibs5-data

    - by Jitesh
    I was trying to install Amarok 1.4 on Ubuntu 12.04 (Gnome-classic), by following this instructions. Problem started after giving these two commands dpkg -i kdelibs5-data_4.6.2-0ubuntu4_all.deb dpkg -i kdelibs-data_3.5.10.dfsg.1-5ubuntu2_all.deb Now, immediately after these commands, Ubuntu Updater popped up and gave me an error that the package catalog is broken and needs to be repaired. Nothing can be installed or removed till then. It also offered a suggestion to run apt-get install -f. I tried that, but again got the same error.Also tried apt-get clean followed by apt-get install -f. Again got the following output: jitesh@jitesh-desktop:~$ sudo apt-get clean jitesh@jitesh-desktop:~$ sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done Correcting dependencies... Done The following extra packages will be installed: kdelibs5-data The following packages will be upgraded: kdelibs5-data 1 upgraded, 0 newly installed, 0 to remove and 18 not upgraded. 2 not fully installed or removed. Need to get 2,832 kB of archives. After this operation, 2,998 kB disk space will be freed. Do you want to continue [Y/n]? y Get:1 http: //in.archive.ubuntu.com/ubuntu/precise-updates/main kdelibs5-data all 4:4.8.4a-0ubuntu0.2 [2,832 kB] Fetched 2,832 kB in 32s (86.6 kB/s) dpkg: dependency problems prevent configuration of kdelibs5-data: libplasma3 (4:4.8.4a-0ubuntu0.2) breaks kdelibs5-data (<< 4:4.6.80~) and is installed. Version of kdelibs5-data to be configured is 4:4.6.2-0ubuntu4. kate-data (4:4.8.4-0ubuntu0.1) breaks kdelibs5-data (<< 4:4.6.90) and is installed. Version of kdelibs5-data to be configured is 4:4.6.2-0ubuntu4. katepart (4:4.8.4-0ubuntu0.1) breaks kdelibs5-data (<< 4:4.6.90) and is installed. Version of kdelibs5-data to be configured is 4:4.6.2-0ubuntu4. dpkg: error processing kdelibs5-data (--configure): dependency problems - leaving unconfigured dpkg: dependency problems prevent configuration of kdelibs-data: kdelibs-data depends on kdelibs5-data; however: Package kdelibs5-data is not configured yet. No apport report written because MaxReports is reached already dpkg: error processing kdelibs-data (--configure): dependency problems - leaving unconfigured No apport report written because MaxReports is reached already Errors were encountered while processing: kdelibs5-data kdelibs-data W: Duplicate sources.list entry http://archive.canonical.com/ubuntu/ precise/partner i386 Packages (/var/lib/apt/lists/archive.canonical.com_ubuntu_dists_precise_partner_binary-i386_Packages) W: You may want to run apt-get update to correct these problems E: Sub-process /usr/bin/dpkg returned an error code (1) As I thought the error was related to configuring kdelibs, I tried to configure using dpkg. But got the following errors: jitesh@jitesh-desktop:~$ sudo dpkg --configure -a dpkg: dependency problems prevent configuration of kdelibs5-data: libplasma3 (4:4.8.4a-0ubuntu0.2) breaks kdelibs5-data (<< 4:4.6.80~) and is installed. Version of kdelibs5-data to be configured is 4:4.6.2-0ubuntu4. kate-data (4:4.8.4-0ubuntu0.1) breaks kdelibs5-data (<< 4:4.6.90) and is installed. Version of kdelibs5-data to be configured is 4:4.6.2-0ubuntu4. katepart (4:4.8.4-0ubuntu0.1) breaks kdelibs5-data (<< 4:4.6.90) and is installed. Version of kdelibs5-data to be configured is 4:4.6.2-0ubuntu4. dpkg: error processing kdelibs5-data (--configure): dependency problems - leaving unconfigured dpkg: dependency problems prevent configuration of kdelibs-data: kdelibs-data depends on kdelibs5-data; however: Package kdelibs5-data is not configured yet. dpkg: error processing kdelibs-data (--configure): dependency problems - leaving unconfigured Errors were encountered while processing: kdelibs5-data kdelibs-data jitesh@jitesh-desktop:~$ Now I dont have any idea how to proceed. I am unable to install anything from Software Centre or using Terminal now. Some basic info: Core2Duo, dual booting Ubuntu 12.04 with Win7. Fresh install of Ubuntu 12.04 (not upgrade). Incidentally, I had first upgraded from 10.04 and had succesfully installed Amarok 1.4 following this same method. But due to other issues, i had to format and do a clean install of 12.04. Now when I tried to install Amarok 1.4, I'm getting these errors. I also have digiKam and k3b installed, if that can be of any help. I use digiKam a lot, so removing KDE is not feasible for me. Any help on this issue will be highly appreciated. Thanks in advance.

    Read the article

  • Reference Data Management and Master Data: Are Relation ?

    - by Mala Narasimharajan
    Submitted By:  Rahul Kamath  Oracle Data Relationship Management (DRM) has always been extremely powerful as an Enterprise Master Data Management (MDM) solution that can help manage changes to master data in a way that influences enterprise structure, whether it be mastering chart of accounts to enable financial transformation, or revamping organization structures to drive business transformation and operational efficiencies, or restructuring sales territories to enable equitable distribution of leads to sales teams following the acquisition of new products, or adding additional cost centers to enable fine grain control over expenses. Increasingly, DRM is also being utilized by Oracle customers for reference data management, an emerging solution space that deserves some explanation. What is reference data? How does it relate to Master Data? Reference data is a close cousin of master data. While master data is challenged with problems of unique identification, may be more rapidly changing, requires consensus building across stakeholders and lends structure to business transactions, reference data is simpler, more slowly changing, but has semantic content that is used to categorize or group other information assets – including master data – and gives them contextual value. In fact, the creation of a new master data element may require new reference data to be created. For example, when a European company acquires a US business, chances are that they will now need to adapt their product line taxonomy to include a new category to describe the newly acquired US product line. Further, the cross-border transaction will also result in a revised geo hierarchy. The addition of new products represents changes to master data while changes to product categories and geo hierarchy are examples of reference data changes.1 The following table contains an illustrative list of examples of reference data by type. Reference data types may include types and codes, business taxonomies, complex relationships & cross-domain mappings or standards. Types & Codes Taxonomies Relationships / Mappings Standards Transaction Codes Industry Classification Categories and Codes, e.g., North America Industry Classification System (NAICS) Product / Segment; Product / Geo Calendars (e.g., Gregorian, Fiscal, Manufacturing, Retail, ISO8601) Lookup Tables (e.g., Gender, Marital Status, etc.) Product Categories City à State à Postal Codes Currency Codes (e.g., ISO) Status Codes Sales Territories (e.g., Geo, Industry Verticals, Named Accounts, Federal/State/Local/Defense) Customer / Market Segment; Business Unit / Channel Country Codes (e.g., ISO 3166, UN) Role Codes Market Segments Country Codes / Currency Codes / Financial Accounts Date/Time, Time Zones (e.g., ISO 8601) Domain Values Universal Standard Products and Services Classification (UNSPSC), eCl@ss International Classification of Diseases (ICD) e.g., ICD9 à IC10 mappings Tax Rates Why manage reference data? Reference data carries contextual value and meaning and therefore its use can drive business logic that helps execute a business process, create a desired application behavior or provide meaningful segmentation to analyze transaction data. Further, mapping reference data often requires human judgment. Sample Use Cases of Reference Data Management Healthcare: Diagnostic Codes The reference data challenges in the healthcare industry offer a case in point. Part of being HIPAA compliant requires medical practitioners to transition diagnosis codes from ICD-9 to ICD-10, a medical coding scheme used to classify diseases, signs and symptoms, causes, etc. The transition to ICD-10 has a significant impact on business processes, procedures, contracts, and IT systems. Since both code sets ICD-9 and ICD-10 offer diagnosis codes of very different levels of granularity, human judgment is required to map ICD-9 codes to ICD-10. The process requires collaboration and consensus building among stakeholders much in the same way as does master data management. Moreover, to build reports to understand utilization, frequency and quality of diagnoses, medical practitioners may need to “cross-walk” mappings -- either forward to ICD-10 or backwards to ICD-9 depending upon the reporting time horizon. Spend Management: Product, Service & Supplier Codes Similarly, as an enterprise looks to rationalize suppliers and leverage their spend, conforming supplier codes, as well as product and service codes requires supporting multiple classification schemes that may include industry standards (e.g., UNSPSC, eCl@ss) or enterprise taxonomies. Aberdeen Group estimates that 90% of companies rely on spreadsheets and manual reviews to aggregate, classify and analyze spend data, and that data management activities account for 12-15% of the sourcing cycle and consume 30-50% of a commodity manager’s time. Creating a common map across the extended enterprise to rationalize codes across procurement, accounts payable, general ledger, credit card, procurement card (P-card) as well as ACH and bank systems can cut sourcing costs, improve compliance, lower inventory stock, and free up talent to focus on value added tasks. Change Management: Point of Sales Transaction Codes and Product Codes In the specialty finance industry, enterprises are confronted with usury laws – governed at the state and local level – that regulate financial product innovation as it relates to consumer loans, check cashing and pawn lending. To comply, it is important to demonstrate that transactions booked at the point of sale are posted against valid product codes that were on offer at the time of booking the sale. Since new products are being released at a steady stream, it is important to ensure timely and accurate mapping of point-of-sale transaction codes with the appropriate product and GL codes to comply with the changing regulations. Multi-National Companies: Industry Classification Schemes As companies grow and expand across geographies, a typical challenge they encounter with reference data represents reconciling various versions of industry classification schemes in use across nations. While the United States, Mexico and Canada conform to the North American Industry Classification System (NAICS) standard, European Union countries choose different variants of the NACE industry classification scheme. Multi-national companies must manage the individual national NACE schemes and reconcile the differences across countries. Enterprises must invest in a reference data change management application to address the challenge of distributing reference data changes to downstream applications and assess which applications were impacted by a given change. References 1 Master Data versus Reference Data, Malcolm Chisholm, April 1, 2006.

    Read the article

  • Grid Layouts in ADF Faces using Trinidad

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} ADF Faces does provide a data table component but none to define grid layouts. Grids are common in web design and developers often try HTML table markup wrapped in an f:verbatim tag or directly added the page to build a desired layout. Usually these attempts fail, showing unpredictable results, However, ADF Faces does not provide a table layout component, but Apache MyFaces Trinidad does. The Trinidad trh:tableLayout component is a thin wrapper around the HTML table element and contains a series of row layout elements, trh:rowLayout. Each trh:rowLayout component may contain one or many trh:cellLayout components to format cells content. <trh:tableLayout id="tl1" halign="left">   <trh:rowLayout id="rl1" valign="top" halign="left">     <trh:cellFormat id="cf1" width="100" header="true">        <af:outputLabel value="Label 1" id="ol1"/>     </trh:cellFormat>     <trh:cellFormat id="cf2" header="true"                               width="300">        <af:outputLabel value="Label 2" id="outputLabel1"/>        </trh:cellFormat>      </trh:rowLayout>      <trh:rowLayout id="rowLayout1" valign="top" halign="left">        <trh:cellFormat id="cellFormat1" width="100" header="false">           <af:outputLabel value="Label 3" id="outputLabel2"/>        </trh:cellFormat>     </trh:rowLayout>        ... </trh:tableLayout> To add the Trinidad tag library to your ADF Faces projects ... Open the Component Palette and right mouse click into it Choose "Edit Tag Libraries" and select the Trinidad components. Move them to the "Selected Libraries" section and Ok the dialog.The first time you drag a Trinidad component to a page, the web.xml file is updated with the required filters Note: The Trinidad tags don't participate in the ADF Faces RC geometry management. However, they are JSF components that are part of the JSF request lifecycle. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} ADF Faces RC components work well with Trinidad layout components that don't use PPR. The PPR implementation of Trinidad is different from the one in ADF Faces. However, when you mix ADF Faces components with Trinidad components, avoid Trinidad components that have integrated PPR behavior. Only use passive Trinidad components.See:http://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_tableLayout.htmlhttp://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_rowLayout.htmlhttp://myfaces.apache.org/trinidad/trinidad-api/tagdoc/trh_cellFormat.html .

    Read the article

  • How-to hide the close icon for task flows opened in dialogs

    - by frank.nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} ADF bounded task flows can be opened in an external dialog and return values to the calling application as documented in chapter 19 of Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework11g: http://download.oracle.com/docs/cd/E15523_01/web.1111/b31974/taskflows_dialogs.htm#BABBAFJB Setting the task flow call activity property Run as Dialog to true and the Display Type property to inline-popup opens the bounded task flow in an inline popup. To launch the dialog, a command item is used that references the control flow case to the task flow call activity <af:commandButton text="Lookup" id="cb6"         windowEmbedStyle="inlineDocument" useWindow="true"         windowHeight="300" windowWidth="300"         action="lookup" partialSubmit="true"/> By default, the dialog that contains the task flow has a close icon defined that if pressed closes the dialog and returns to the calling page. However, no event is sent to the calling page to handle the close case. To avoid users closing the dialog without the calling application to be notified in a return listener, the close icon shown in the opened dialog can be hidden using ADF Faces skinning. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The following skin selector hides the close icon in the dialog af|panelWindow::close-icon-style{ display:none; } To learn about skinning, see chapter 20 of Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework http://download.oracle.com/docs/cd/E15523_01/web.1111/b31973/af_skin.htm#BAJFEFCJ However, the skin selector that is shown above hides the close icon from all af:panelWindow usages, which may not be intended. To only hide the close icon from dialogs opened by a bounded task flow call activity, the ADF Faces component styleClass property can be used. The af:panelWindow component shown below has a "withCloseWindow" style class property name defined. This name is referenced in the following skin selector, ensuring that the close icon is displayed af|panelWindow.withCloseIcon::close-icon-style{ display:block; } In summary, to hide the close icon shown for bounded task flows that are launched in inline popup dialogs, the default display behavior of the close icon of the af:panelWindow needs to be reversed. Instead to always display the close icon, the close icon is always hidden, using the first skin selector. To show the disclosed icon in other usages of the af:panelWindow component, the component is flagged with a styleClass property value as shown below <af:popup id="p1">   <af:panelWindow id="pw1" contentWidth="300" contentHeight="300"                                 styleClass="withCloseIcon"/> </af:popup> The "withCloseIcon" value is referenced in the second skin definition af|panelWindow.withCloseIcon::close-icon-style{ display:block; } The complete entry of the skin CSS file looks as shown below: af|panelWindow::close-icon-style{ display:none; } af|panelWindow.withCloseIcon::close-icon-style{ display:block; }

    Read the article

  • Using Event Driven Programming in games, when is it beneficial?

    - by Arthur Wulf White
    I am learning ActionScript 3 and I see the Event flow adheres to the W3C recommendations. From what I learned events can only be captured by the dispatcher unless, the listener capturing the event is a DisplayObject on stage and a parent of the object firing the event. You can capture the events in the capture(before) or bubbling(after) phase depending on Listner and Event setup you use. Does this system lend itself well for game programming? When is this system useful? Could you give an example of a case where using events is a lot better than going without them? Are they somehow better for performance in games? Please do not mention events you must use to get a game running, like Event.ENTER_FRAME Or events that are required to get input from the user like, KeyboardEvent.KEY_DOWN and MouseEvent.CLICK. I am asking if there is any use in firing events that have nothing to do with user input, frame rendering and the likes(that are necessary). I am referring to cases where objects are communicating. Is this used to avoid storing a collection of objects that are on the stage? Thanks Here is some code I wrote as an example of event behavior in ActionScript 3, enjoy. package regression { import flash.display.Shape; import flash.display.Sprite; import flash.events.Event; import flash.events.EventDispatcher; import flash.events.KeyboardEvent; import flash.events.MouseEvent; import flash.events.EventPhase; /** * ... * @author ... */ public class Check_event_listening_1 extends Sprite { public const EVENT_DANCE : String = "dance"; public const EVENT_PLAY : String = "play"; public const EVENT_YELL : String = "yell"; private var baby : Shape = new Shape(); private var mom : Sprite = new Sprite(); private var stranger : EventDispatcher = new EventDispatcher(); public function Check_event_listening_1() { if (stage) init(); else addEventListener(Event.ADDED_TO_STAGE, init); } private function init(e:Event = null):void { trace("test begun"); addChild(mom); mom.addChild(baby); stage.addEventListener(EVENT_YELL, onEvent); this.addEventListener(EVENT_YELL, onEvent); mom.addEventListener(EVENT_YELL, onEvent); baby.addEventListener(EVENT_YELL, onEvent); stranger.addEventListener(EVENT_YELL, onEvent); trace("\nTest1 - Stranger yells with no bubbling"); stranger.dispatchEvent(new Event(EVENT_YELL, false)); trace("\nTest2 - Stranger yells with bubbling"); stranger.dispatchEvent(new Event(EVENT_YELL, true)); stage.addEventListener(EVENT_PLAY, onEvent); this.addEventListener(EVENT_PLAY, onEvent); mom.addEventListener(EVENT_PLAY, onEvent); baby.addEventListener(EVENT_PLAY, onEvent); stranger.addEventListener(EVENT_PLAY, onEvent); trace("\nTest3 - baby plays with no bubbling"); baby.dispatchEvent(new Event(EVENT_PLAY, false)); trace("\nTest4 - baby plays with bubbling"); baby.dispatchEvent(new Event(EVENT_PLAY, true)); trace("\nTest5 - baby plays with bubbling but is not a child of mom"); mom.removeChild(baby); baby.dispatchEvent(new Event(EVENT_PLAY, true)); mom.addChild(baby); stage.addEventListener(EVENT_DANCE, onEvent, true); this.addEventListener(EVENT_DANCE, onEvent, true); mom.addEventListener(EVENT_DANCE, onEvent, true); baby.addEventListener(EVENT_DANCE, onEvent); trace("\nTest6 - Mom dances without bubbling - everyone is listening during capture phase(not target and bubble phase)"); mom.dispatchEvent(new Event(EVENT_DANCE, false)); trace("\nTest7 - Mom dances with bubbling - everyone is listening during capture phase(not target and bubble phase)"); mom.dispatchEvent(new Event(EVENT_DANCE, true)); } private function onEvent(e : Event):void { trace("Event was captured"); trace("\nTYPE : ", e.type, "\nTARGET : ", objToName(e.target), "\nCURRENT TARGET : ", objToName(e.currentTarget), "\nPHASE : ", phaseToString(e.eventPhase)); } private function phaseToString(phase : int):String { switch(phase) { case EventPhase.AT_TARGET : return "TARGET"; case EventPhase.BUBBLING_PHASE : return "BUBBLING"; case EventPhase.CAPTURING_PHASE : return "CAPTURE"; default: return "UNKNOWN"; } } private function objToName(obj : Object):String { if (obj == stage) return "STAGE"; else if (obj == this) return "MAIN"; else if (obj == mom) return "Mom"; else if (obj == baby) return "Baby"; else if (obj == stranger) return "Stranger"; else return "Unknown" } } } /*result : test begun Test1 - Stranger yells with no bubbling Event was captured TYPE : yell TARGET : Stranger CURRENT TARGET : Stranger PHASE : TARGET Test2 - Stranger yells with bubbling Event was captured TYPE : yell TARGET : Stranger CURRENT TARGET : Stranger PHASE : TARGET Test3 - baby plays with no bubbling Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Test4 - baby plays with bubbling Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Mom PHASE : BUBBLING Event was captured TYPE : play TARGET : Baby CURRENT TARGET : MAIN PHASE : BUBBLING Event was captured TYPE : play TARGET : Baby CURRENT TARGET : STAGE PHASE : BUBBLING Test5 - baby plays with bubbling but is not a child of mom Event was captured TYPE : play TARGET : Baby CURRENT TARGET : Baby PHASE : TARGET Test6 - Mom dances without bubbling - everyone is listening during capture phase(not target and bubble phase) Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : STAGE PHASE : CAPTURE Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : MAIN PHASE : CAPTURE Test7 - Mom dances with bubbling - everyone is listening during capture phase(not target and bubble phase) Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : STAGE PHASE : CAPTURE Event was captured TYPE : dance TARGET : Mom CURRENT TARGET : MAIN PHASE : CAPTURE */

    Read the article

  • InnoDB Compression Improvements in MySQL 5.6

    - by Inaam Rana
    MySQL 5.6 comes with significant improvements for the compression support inside InnoDB. The enhancements that we'll talk about in this piece are also a good example of community contributions. The work on these was conceived, implemented and contributed by the engineers at Facebook. Before we plunge into the details let us familiarize ourselves with some of the key concepts surrounding InnoDB compression. In InnoDB compressed pages are fixed size. Supported sizes are 1, 2, 4, 8 and 16K. The compressed page size is specified at table creation time. InnoDB uses zlib for compression. InnoDB buffer pool will attempt to cache compressed pages like normal pages. However, whenever a page is actively used by a transaction, we'll always have the uncompressed version of the page as well i.e.: we can have a page in the buffer pool in compressed only form or in a state where we have both the compressed page and uncompressed version but we'll never have a page in uncompressed only form. On-disk we'll always only have the compressed page. When both compressed and uncompressed images are present in the buffer pool they are always kept in sync i.e.: changes are applied to both atomically. Recompression happens when changes are made to the compressed data. In order to minimize recompressions InnoDB maintains a modification log within a compressed page. This is the extra space available in the page after compression and it is used to log modifications to the compressed data thus avoiding recompressions. DELETE (and ROLLBACK of DELETE) and purge can be performed without recompressing the page. This is because the delete-mark bit and the system fields DB_TRX_ID and DB_ROLL_PTR are stored in uncompressed format on the compressed page. A record can be purged by shuffling entries in the compressed page directory. This can also be useful for updates of indexed columns, because UPDATE of a key is mapped to INSERT+DELETE+purge. A compression failure happens when we attempt to recompress a page and it does not fit in the fixed size. In such case, we first try to reorganize the page and attempt to recompress and if that fails as well then we split the page into two and recompress both pages. Now lets talk about the three major improvements that we made in MySQL 5.6.Logging of Compressed Page Images:InnoDB used to log entire compressed data on the page to the redo logs when recompression happens. This was an extra safety measure to guard against the rare case where an attempt is made to do recovery using a different zlib version from the one that was used before the crash. Because recovery is a page level operation in InnoDB we have to be sure that all recompress attempts must succeed without causing a btree page split. However, writing entire compressed data images to the redo log files not only makes the operation heavy duty but can also adversely affect flushing activity. This happens because redo space is used in a circular fashion and when we generate much more than normal redo we fill up the space much more quickly and in order to reuse the redo space we have to flush the corresponding dirty pages from the buffer pool.Starting with MySQL 5.6 a new global configuration parameter innodb_log_compressed_pages. The default value is true which is same as the current behavior. If you are sure that you are not going to attempt to recover from a crash using a different version of zlib then you should set this parameter to false. This is a dynamic parameter.Compression Level:You can now set the compression level that zlib should choose to compress the data. The global parameter is innodb_compression_level - the default value is 6 (the zlib default) and allowed values are 1 to 9. Again the parameter is dynamic i.e.: you can change it on the fly.Dynamic Padding to Reduce Compression Failures:Compression failures are expensive in terms of CPU. We go through the hoops of recompress, failure, reorganize, recompress, failure and finally page split. At the same time, how often we encounter compression failure depends largely on the compressibility of the data. In MySQL 5.6, courtesy of Facebook engineers, we have an adaptive algorithm based on per-index statistics that we gather about compression operations. The idea is that if a certain index/table is experiencing too many compression failures then we should try to pack the 16K uncompressed version of the page less densely i.e.: we let some space in the 16K page go unused in an attempt that the recompression won't end up in a failure. In other words, we dynamically keep adding 'pad' to the 16K page till we get compression failures within an agreeable range. It works the other way as well, that is we'll keep removing the pad if failure rate is fairly low. To tune the padding effort two configuration variables are exposed. innodb_compression_failure_threshold_pct: default 5, range 0 - 100,dynamic, implies the percentage of compress ops to fail before we start using to padding. Value 0 has a special meaning of disabling the padding. innodb_compression_pad_pct_max: default 50, range 0 - 75, dynamic, the  maximum percentage of uncompressed data page that can be reserved as pad.

    Read the article

  • Configuring Application/User Settings in WPF the easy way.

    - by mbcrump
    In this tutorial, we are going to configure the application/user settings in a WPF application the easy way. Most example that I’ve seen on the net involve the ConfigurationManager class and involve creating your own XML file from scratch. I am going to show you a easier way to do it. (in my humble opinion) First, the definitions: User Setting – is designed to be something specific to the user. For example, one user may have a requirement to see certain stocks, news articles or local weather. This can be set at run-time. Application Setting – is designed to store information such as a database connection string. These settings are read-only at run-time. 1) Lets create a new WPF Project and play with a few settings. Once you are inside VS, then paste the following code snippet inside the <Grid> tags. <Grid> <TextBox Height="23" HorizontalAlignment="Left" Margin="12,11,0,0" Name="textBox1" VerticalAlignment="Top" Width="285" Grid.ColumnSpan="2" /> <Button Content="Set Title" Name="button2" Click="button2_Click" Margin="108,40,96,114" /> <TextBlock Height="23" Name="textBlock1" Text="TextBlock" VerticalAlignment="Bottom" Width="377" /> </Grid> Basically, its just a Textbox, Button and TextBlock. The main Window should look like the following:   2) Now we are going to setup our Configuration Settings. Look in the Solution Explorer and double click on the Settings.settings file. Make sure that your settings file looks just like mine included below:   What just happened was the designer created an XML file and created the Settings.Designer.cs file which looks like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace WPFExam.Properties { [global::System.Runtime.CompilerServices.CompilerGeneratedAttribute()] [global::System.CodeDom.Compiler.GeneratedCodeAttribute("Microsoft.VisualStudio.Editors.SettingsDesigner.SettingsSingleFileGenerator", "10.0.0.0")] internal sealed partial class Settings : global::System.Configuration.ApplicationSettingsBase { private static Settings defaultInstance = ((Settings)(global::System.Configuration.ApplicationSettingsBase.Synchronized(new Settings()))); public static Settings Default { get { return defaultInstance; } } [global::System.Configuration.UserScopedSettingAttribute()] [global::System.Diagnostics.DebuggerNonUserCodeAttribute()] [global::System.Configuration.DefaultSettingValueAttribute("ApplicationName")] public string ApplicationName { get { return ((string)(this["ApplicationName"])); } set { this["ApplicationName"] = value; } } [global::System.Configuration.ApplicationScopedSettingAttribute()] [global::System.Diagnostics.DebuggerNonUserCodeAttribute()] [global::System.Configuration.DefaultSettingValueAttribute("SQL_SRV342")] public string DatabaseServerName { get { return ((string)(this["DatabaseServerName"])); } } } } The XML File is named app.config and looks like this: <?xml version="1.0" encoding="utf-8" ?> <configuration> <configSections> <sectionGroup name="userSettings" type="System.Configuration.UserSettingsGroup, System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" > <section name="WPFExam.Properties.Settings" type="System.Configuration.ClientSettingsSection, System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" allowExeDefinition="MachineToLocalUser" requirePermission="false" /> </sectionGroup> <sectionGroup name="applicationSettings" type="System.Configuration.ApplicationSettingsGroup, System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" > <section name="WPFExam.Properties.Settings" type="System.Configuration.ClientSettingsSection, System, Version=4.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089" requirePermission="false" /> </sectionGroup> </configSections> <userSettings> <WPFExam.Properties.Settings> <setting name="ApplicationName" serializeAs="String"> <value>ApplicationName</value> </setting> </WPFExam.Properties.Settings> </userSettings> <applicationSettings> <WPFExam.Properties.Settings> <setting name="DatabaseServerName" serializeAs="String"> <value>SQL_SRV342</value> </setting> </WPFExam.Properties.Settings> </applicationSettings> </configuration> 3) The only left now is the code behind the button. Double click the button and replace the MainWindow() method with the following code snippet. public MainWindow() { InitializeComponent(); this.Title = Properties.Settings.Default.ApplicationName; textBox1.Text = Properties.Settings.Default.ApplicationName; textBlock1.Text = Properties.Settings.Default.DatabaseServerName; } private void button2_Click(object sender, RoutedEventArgs e) { Properties.Settings.Default.ApplicationName = textBox1.Text.ToString(); Properties.Settings.Default.Save(); } Run the application and type something in the textbox and hit the Set Title button. Now, restart the application and you should see the text that you entered earlier.   If you look at the button2 click event, you will see that it was actually 2 lines of codes to save to the configuration file. I hope this helps, for more information consult MSDN.

    Read the article

  • Mapping Repeating Sequence Groups in BizTalk

    - by Paul Petrov
    Repeating sequence groups can often be seen in real life XML documents. It happens when certain sequence of elements repeats in the instance document. Here’s fairly abstract example of schema definition that contains sequence group: <xs:schemaxmlns:b="http://schemas.microsoft.com/BizTalk/2003"            xmlns:xs="http://www.w3.org/2001/XMLSchema"            xmlns="NS-Schema1"            targetNamespace="NS-Schema1" >  <xs:elementname="RepeatingSequenceGroups">     <xs:complexType>       <xs:sequencemaxOccurs="1"minOccurs="0">         <xs:sequencemaxOccurs="unbounded">           <xs:elementname="A"type="xs:string" />           <xs:elementname="B"type="xs:string" />           <xs:elementname="C"type="xs:string"minOccurs="0" />         </xs:sequence>       </xs:sequence>     </xs:complexType>  </xs:element> </xs:schema> And here’s corresponding XML instance document: <ns0:RepeatingSequenceGroupsxmlns:ns0="NS-Schema1">  <A>A1</A>  <B>B1</B>  <C>C1</C>  <A>A2</A>  <B>B2</B>  <A>A3</A>  <B>B3</B>  <C>C3</C> </ns0:RepeatingSequenceGroups> As you can see elements A, B, and C are children of anonymous xs:sequence element which in turn can be repeated N times. Let’s say we need do simple mapping to the schema with similar structure but with different element names: <ns0:Destinationxmlns:ns0="NS-Schema2">  <Alpha>A1</Alpha>  <Beta>B1</Beta>  <Gamma>C1</Gamma>  <Alpha>A2</Alpha>  <Beta>B2</Beta>  <Gamma>C2</Gamma> </ns0:Destination> The basic map for such typical task would look pretty straightforward: If we test this map without any modification it will produce following result: <ns0:Destinationxmlns:ns0="NS-Schema2">  <Alpha>A1</Alpha>  <Alpha>A2</Alpha>  <Alpha>A3</Alpha>  <Beta>B1</Beta>  <Beta>B2</Beta>  <Beta>B3</Beta>  <Gamma>C1</Gamma>  <Gamma>C3</Gamma> </ns0:Destination> The original order of the elements inside sequence is lost and that’s not what we want. Default behavior of the BizTalk 2009 and 2010 Map Editor is to generate compatible map with older versions that did not have ability to preserve sequence order. To enable this feature simply open map file (*.btm) in text/xml editor and find attribute PreserveSequenceOrder of the root <mapsource> element. Set its value to Yes and re-test the map: <ns0:Destinationxmlns:ns0="NS-Schema2">  <Alpha>A1</Alpha>  <Beta>B1</Beta>  <Gamma>C1</Gamma>  <Alpha>A2</Alpha>  <Beta>B2</Beta>  <Alpha>A3</Alpha>  <Beta>B3</Beta>  <Gamma>C3</Gamma> </ns0:Destination> The result is as expected – all corresponding elements are in the same order as in the source document. Under the hood it is achieved by using one common xsl:for-each statement that pulls all elements in original order (rather than using individual for-each statement per element name in default mode) and xsl:if statements to test current element in the loop:  <xsl:templatematch="/s0:RepeatingSequenceGroups">     <ns0:Destination>       <xsl:for-eachselect="A|B|C">         <xsl:iftest="local-name()='A'">           <Alpha>             <xsl:value-ofselect="./text()" />           </Alpha>         </xsl:if>         <xsl:iftest="local-name()='B'">           <Beta>             <xsl:value-ofselect="./text()" />           </Beta>         </xsl:if>         <xsl:iftest="local-name()='C'">           <Gamma>             <xsl:value-ofselect="./text()" />           </Gamma>         </xsl:if>       </xsl:for-each>     </ns0:Destination>  </xsl:template> BizTalk Map editor became smarter so learn and use this lesser known feature of XSLT 2.0 in your maps and XSL stylesheets.

    Read the article

  • Five development tools I can't live without

    - by bconlon
    When applying to join Geeks with Blogs I had to specify the development tools I use every day. That got me thinking, it's taken a long time to whittle my tools of choice down to the selection I use, so it might be worth sharing. Before I begin, I appreciate we all have our preferred development tools, but these are the ones that work for me. Microsoft Visual Studio Microsoft Visual Studio has been my development tool of choice for more years than I care to remember. I first used this when it was Visual C++ 1.5 (hats off to those who started on 1.0) and by 2.2 it had everything I needed from a C++ IDE. Versions 4 and 5 followed and if I had to guess I would expect more Windows applications are written in VC++ 6 and VB6 than any other language. Then came the not so great versions Visual Studio .Net 2002 (7.0) and 2003 (7.1). If I'm honest I was still using v6. 2005 was better and 2008 was simply brilliant. Everything worked, the compiler was super fast and I was happy again...then came 2010...oh dear. 2010 is a big step backwards for me. It's not encouraging for my upcoming WPF exploits that 2010 is fronted in WPF technology, with the forever growing Find/Replace dialog, the issues with C++ intellisense, and the buggy debugger. That said it is still my tool of choice but I hope they sort the issue in SP1. I've tried other IDEs like Visual Age and Eclipse, but for me Visual Studio is the best. A really great tool. Liquid XML Studio XML development is a tricky business. The W3C standards are often difficult to get to the bottom of so it's great to have a graphical tool to help. I first used Liquid Technologies 5 or 6 years back when I needed to process XML data in C++. Their excellent XML Data Binding tool has an easy to use Wizard UI (as compared to Castor or JAXB command line tools) and allows you to generate code from an XML Schema. So instead of having to deal with untyped nodes like with a DOM parser, instead you get an Object Model providing a custom API in C++, C#, VB etc. More recently they developed a graphical XML IDE with XML Editor, XSLT, XQuery debugger and other XML tools. So now I can develop an XML Schema graphically, click a button to generate a Sample XML document, and click another button to run the Wizard to generate code including a Sample Application that will then load my Sample XML document into the generated object model. This is a very cool toolset. Note: XML Data Binding is nothing to do with WPF Data Binding, but I hope to cover both in more detail another time. .Net Reflector Note: I've just noticed that starting form the end of February 2011 this will no longer be a free tool !! .Net Reflector turns .Net byte code back into C# source code. But how can it work this magic? Well the clue is in the name, it uses reflection to inspect a compiled .Net assembly. The assembly is compiled to byte code, it doesn't get compiled to native machine code until its needed using a just-in-time (JIT) compiler. The byte code still has all of the information needed to see classes, variables. methods and properties, so reflector gathers this information and puts it in a handy tree. I have used .Net Reflector for years in order to understand what the .Net Framework is doing as it sometimes has undocumented, quirky features. This really has been invaluable in certain instances and I cannot praise enough kudos on the original developer Lutz Roeder. Smart Assembly In order to stop nosy geeks looking at our code using a tool like .Net Reflector, we need to obfuscate (mess up) the byte code. Smart Assembly is a tool that does this. Again I have used this for a long time. It is very quick and easy to use. Another excellent tool. Coincidentally, .Net Reflector and Smart Assembly are now both owned by Red Gate. Again kudos goes to the original developer Jean-Sebastien Lange. TortoiseSVN SVN (Apache Subversion) is a Source Control System developed as an open source project. TortoiseSVN is a graphical UI wrapper over SVN that hooks into Windows Explorer to enable files to be Updated, Committed, Merged etc. from the right click menu. This is an essential tool for keeping my hard work safe! Many years ago I used Microsoft Source Safe and I disliked CVS type systems. But TortoiseSVN is simply the best source control tool I have ever used. --- So there you have it, my top 5 development tools that I use (nearly) every day and have helped to make my working life a little easier. I'm sure there are other great tools that I wish I used but have never heard of, but if you have not used any of the above, I would suggest you check them out as they are all very, very cool products. #

    Read the article

  • Creating ADF Faces Comamnd Button at Runtime

    - by Frank Nimphius
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In ADF Faces, the command button is an instance of RichCommandButton and can be created at runtime. While creating the button is not difficult at all, adding behavior to it requires knowing about how to dynamically create and add an action listener reference. The example code below shows two methods: The first method, handleButtonPress is a public method exposed on a managed bean. public void handleButtonPress(ActionEvent event){   System.out.println("Event handled");   //optional: partially refresh changed components if command   //issued as a partial submit } The second method is called in response to a user interaction or on page load and dynamically creates and adds a command button. When the button is pressed, the managed bean method – the action handler – defined above is called. The action handler is referenced using EL in the created MethodExpression instance. If the managed bean is in viewScope, backingBeanScope or pageFlowsScope, then you need to add these scopes as a prefix to the EL (as you would when configuring the managed bean reference at design time) //Create command button and add it as a child to the parent component that is passed as an //argument to this method private void reateCommandButton(UIComponent parent){   RichCommandButton edit = new RichCommandButton();   //make the request partial   edit.setPartialSubmit(true);   edit.setText("Edit");                             //compose the method expression to invoke the event handler   FacesContext fctx = FacesContext.getCurrentInstance();   Application application = fctx.getApplication();   ExpressionFactory elFactory = application.getExpressionFactory();   ELContext elContext = facesCtx.getELContext();   MethodExpression methodExpressio = null;   //Make sure the EL expression references a valid managed bean method. Ensure   //the bean scope is properly addressed    methodExpression =  elFactory.createMethodExpression(                              elContext,"#{myRequestScopeBean.handleButtonPress}",                             Object.class,new Class[] {ActionEvent.class});   //Create the command buttonaction listener reference   MethodExpressionActionListener al = null;          al= new MethodExpressionActionListener(methodExpression);    edit.addActionListener(al);     //add new command button to parent component and PPR the component for     //the button to show    parent.getChildren().add(edit);    AdfFacesContext adfFacesContext = AdfFacesContext.getCurrentInstance();     adfFacesContext.addPartialTarget(parent);  }

    Read the article

  • XmlWriter and lower ASCII characters

    - by Rick Strahl
    Ran into an interesting problem today on my CodePaste.net site: The main RSS and ATOM feeds on the site were broken because one code snippet on the site contained a lower ASCII character (CHR(3)). I don't think this was done on purpose but it was enough to make the feeds fail. After quite a bit of debugging and throwing in a custom error handler into my actual feed generation code that just spit out the raw error instead of running it through the ASP.NET MVC and my own error pipeline I found the actual error. The lovely base exception and error trace I got looked like this: Error: '', hexadecimal value 0x03, is an invalid character. at System.Xml.XmlUtf8RawTextWriter.InvalidXmlChar(Int32 ch, Byte* pDst, Boolean entitize)at System.Xml.XmlUtf8RawTextWriter.WriteElementTextBlock(Char* pSrc, Char* pSrcEnd)at System.Xml.XmlUtf8RawTextWriter.WriteString(String text)at System.Xml.XmlWellFormedWriter.WriteString(String text)at System.Xml.XmlWriter.WriteElementString(String localName, String ns, String value)at System.ServiceModel.Syndication.Rss20FeedFormatter.WriteItemContents(XmlWriter writer, SyndicationItem item, Uri feedBaseUri)at System.ServiceModel.Syndication.Rss20FeedFormatter.WriteItem(XmlWriter writer, SyndicationItem item, Uri feedBaseUri)at System.ServiceModel.Syndication.Rss20FeedFormatter.WriteItems(XmlWriter writer, IEnumerable`1 items, Uri feedBaseUri)at System.ServiceModel.Syndication.Rss20FeedFormatter.WriteFeed(XmlWriter writer)at System.ServiceModel.Syndication.Rss20FeedFormatter.WriteTo(XmlWriter writer)at CodePasteMvc.Controllers.ApiControllerBase.GetFeed(Object instance) in C:\Projects2010\CodePaste\CodePasteMvc\Controllers\ApiControllerBase.cs:line 131 XML doesn't like extended ASCII Characters It turns out the issue is that XML in general does not deal well with lower ASCII characters. According to the XML spec it looks like any characters below 0x09 are invalid. If you generate an XML document in .NET with an embedded &#x3; entity (as mine did to create the error above), you tend to get an XML document error when displaying it in a viewer. For example, here's what the result of my  feed output looks like with the invalid character embedded inside of Chrome which displays RSS feeds as raw XML by default: Other browsers show similar error messages. The nice thing about Chrome is that you can actually view source and jump down to see the line that causes the error which allowed me to track down the actual message that failed. If you create an XML document that contains a 0x03 character the XML writer fails outright with the error: '', hexadecimal value 0x03, is an invalid character. The good news is that this behavior is overridable so XML output can at least be created by using the XmlSettings object when configuring the XmlWriter instance. In my RSS configuration code this looks something like this:MemoryStream ms = new MemoryStream(); var settings = new XmlWriterSettings() { CheckCharacters = false }; XmlWriter writer = XmlWriter.Create(ms,settings); and voila the feed now generates. Now generally this is probably NOT a good idea, because as mentioned above these characters are illegal and if you view a raw XML document you'll get validation errors. Luckily though most RSS feed readers however don't care and happily accept and display the feed correctly, which is good because it got me over an embarrassing hump until I figured out a better solution. How to handle extended Characters? I was glad to get the feed fixed for the time being, but now I was still stuck with an interesting dilemma. CodePaste.net accepts user input for code snippets and those code snippets can contain just about anything. This means that ASP.NET's standard request filtering cannot be applied to this content. The code content displayed is encoded before display so for the HTML end the CHR(3) input is not really an issue. While invisible characters are hardly useful in user input it's not uncommon that odd characters show up in code snippets. You know the old fat fingering that happens when you're in the middle of a coding session and those invisible characters do end up sometimes in code editors and then end up pasted into the HTML textbox for pasting as a Codepaste.net snippet. The question is how to filter this text? Looking back at the XML Charset Spec it looks like all characters below 0x20 (space) except for 0x09 (tab), 0x0A (LF), 0x0D (CR) are illegal. So applying the following filter with a RegEx should work to remove invalid characters:string code = Regex.Replace(item.Code, @"[\u0000-\u0008,\u000B,\u000C,\u000E-\u001F]", ""); Applying this RegEx to the code snippet (and title) eliminates the problems and the feed renders cleanly.© Rick Strahl, West Wind Technologies, 2005-2012Posted in .NET  XML   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • YouTube Scalability Lessons

    - by Bertrand Matthelié
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Calibri"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }h2 { margin: 12pt 0cm 3pt; page-break-after: avoid; font-size: 14pt; font-family: "Times New Roman"; font-style: italic; }a:link, span.MsoHyperlink { color: blue; text-decoration: underline; }a:visited, span.MsoHyperlinkFollowed { color: purple; text-decoration: underline; }span.Heading2Char { font-family: Calibri; font-weight: bold; font-style: italic; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Very interesting blog post by Todd Hoff at highscalability.com presenting “7 Years of YouTube Scalability Lessons in 30 min” based on a presentation from Mike Solomon, one of the original engineers at YouTube: …. The key takeaway away of the talk for me was doing a lot with really simple tools. While many teams are moving on to more complex ecosystems, YouTube really does keep it simple. They program primarily in Python, use MySQL as their database, they’ve stuck with Apache, and even new features for such a massive site start as a very simple Python program. That doesn’t mean YouTube doesn’t do cool stuff, they do, but what makes everything work together is more a philosophy or a way of doing things than technological hocus pocus. What made YouTube into one of the world’s largest websites? Read on and see... Stats @font-face { font-family: "Arial"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; } 4 billion Views a day 60 hours of video is uploaded every minute 350+ million devices are YouTube enabled Revenue double in 2010 The number of videos has gone up 9 orders of magnitude and the number of developers has only gone up two orders of magnitude. 1 million lines of Python code Stack @font-face { font-family: "Arial"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; } Python - most of the lines of code for YouTube are still in Python. Everytime you watch a YouTube video you are executing a bunch of Python code. Apache - when you think you need to get rid of it, you don’t. Apache is a real rockstar technology at YouTube because they keep it simple. Every request goes through Apache. Linux - the benefit of Linux is there’s always a way to get in and see how your system is behaving. No matter how bad your app is behaving, you can take a look at it with Linux tools like strace and tcpdump. MySQL - is used a lot. When you watch a video you are getting data from MySQL. Sometime it’s used a relational database or a blob store. It’s about tuning and making choices about how you organize your data. Vitess- a  new project released by YouTube, written in Go, it’s a frontend to MySQL. It does a lot of optimization on the fly, it rewrites queries and acts as a proxy. Currently it serves every YouTube database request. It’s RPC based. Zookeeper - a distributed lock server. It’s used for configuration. Really interesting piece of technology. Hard to use correctly so read the manual Wiseguy - a CGI servlet container. Spitfire - a templating system. It has an abstract syntax tree that let’s them do transformations to make things go faster. Serialization formats - no matter which one you use, they are all expensive. Measure. Don’t use pickle. Not a good choice. Found protocol buffers slow. They wrote their own BSON implementation, which is 10-15 time faster than the one you can download. ...Contiues. Read the blog Watch the video

    Read the article

  • How do I cleanly design a central render/animation loop?

    - by mtoast
    I'm learning some graphics programming, and am in the midst of my first such project of any substance. But, I am really struggling at the moment with how to architect it cleanly. Let me explain. To display complicated graphics in my current language of choice (JavaScript -- have you heard of it?), you have to draw graphical content onto a <canvas> element. And to do animation, you must clear the <canvas> after every frame (unless you want previous graphics to remain). Thus, most canvas-related JavaScript demos I've seen have a function like this: function render() { clearCanvas(); // draw stuff here requestAnimationFrame(render); } render, as you may surmise, encapsulates the drawing of a single frame. What a single frame contains at a specific point in time, well... that is determined by the program state. So, in order for my program to do its thing, I just need to look at the state, and decide what to render. Right? Right. But that is more complicated than it seems. My program is called "Critter Clicker". In my program, you see several cute critters bouncing around the screen. Clicking on one of them agitates it, making it bounce around even more. There is also a start screen, which says "Click to start!" prior to the critters being displayed. Here are a few of the objects I'm working with in my program: StartScreenView // represents the start screen CritterTubView // represents the area in which the critters live CritterList // a collection of all the critters Critter // a single critter model CritterView // view of a single critter Nothing too egregious with this, I think. Yet, when I set out to flesh out my render function, I get stuck, because everything I write seems utterly ugly and reminiscent of a certain popular Italian dish. Here are a couple of approaches I've attempted, with my internal thought process included, and unrelated bits excluded for clarity. Approach 1: "It's conditions all the way down" // "I'll just write the program as I think it, one frame at a time." if (assetsLoaded) { if (userClickedToStart) { if (critterTubDisplayed) { if (crittersDisplayed) { forEach(crittersList, function(c) { if (c.wasClickedRecently) { c.getAgitated(); } }); } else { displayCritters(); } } else { displayCritterTub(); } } else { displayStartScreen(); } } That's a very much simplified example. Yet even with only a fraction of all the rendering conditions visible, render is already starting to get out of hand. So, I dispense with that and try another idea: Approach 2: Under the Rug // "Each view object shall be responsible for its own rendering. // "I'll pass each object the program state, and each can render itself." startScreen.render(state); critterTub.render(state); critterList.render(state); In this setup, I've essentially just pushed those crazy nested conditions to a deeper level in the code, hiding them from view. In other words, startScreen.render would check state to see if it needed actually to be drawn or not, and take the correct action. But this seems more like it only solves a code-aesthetic problem. The third and final approach I'm considering that I'll share is the idea that I could invent my own "wheel" to take care of this. I'm envisioning a function that takes a data structure that defines what should happen at any given point in the render call -- revealing the conditions and dependencies as a kind of tree. Approach 3: Mad Scientist renderTree({ phases: ['startScreen', 'critterTub', 'endCredits'], dependencies: { startScreen: ['assetsLoaded'], critterTub: ['startScreenClicked'], critterList ['critterTubDisplayed'] // etc. }, exclusions: { startScreen: ['startScreenClicked'], // etc. } }); That seems kind of cool. I'm not exactly sure how it would actually work, but I can see it being a rather nifty way to express things, especially if I flex some of JavaScript's events. In any case, I'm a little bit stumped because I don't see an obvious way to do this. If you couldn't tell, I'm coming to this from the web development world, and finding that doing animation is a bit more exotic than arranging an MVC application for handling simple requests - responses. What is the clean, established solution to this common-I-would-think problem?

    Read the article

  • Why do we use Pythagoras in game physics?

    - by Starkers
    I've recently learned that we use Pythagoras a lot in our physics calculations and I'm afraid I don't really get the point. Here's an example from a book to make sure an object doesn't travel faster than a MAXIMUM_VELOCITY constant in the horizontal plane: MAXIMUM_VELOCITY = <any number>; SQUARED_MAXIMUM_VELOCITY = MAXIMUM_VELOCITY * MAXIMUM_VELOCITY; function animate(){ var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; x_velocity = x_velocity / scalar; z_velocity = x_velocity / scalar; } } Let's try this with some numbers: An object is attempting to move 5 units in x and 5 units in z. It should only be able to move 5 units horizontally in total! MAXIMUM_VELOCITY = 5; SQUARED_MAXIMUM_VELOCITY = 5 * 5; SQUARED_MAXIMUM_VELOCITY = 25; function animate(){ var x_velocity = 5; var z_velocity = 5; var squared_horizontal_velocity = (x_velocity * x_velocity) + (z_velocity * z_velocity); var squared_horizontal_velocity = 5 * 5 + 5 * 5; var squared_horizontal_velocity = 25 + 25; var squared_horizontal_velocity = 50; // if( squared_horizontal_velocity <= SQUARED_MAXIMUM_VELOCITY ){ if( 50 <= 25 ){ scalar = squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY; scalar = 50 / 25; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Now this works well, but we can do the same thing without Pythagoras: MAXIMUM_VELOCITY = 5; function animate(){ var x_velocity = 5; var z_velocity = 5; var horizontal_velocity = x_velocity + z_velocity; var horizontal_velocity = 5 + 5; var horizontal_velocity = 10; // if( horizontal_velocity >= MAXIMUM_VELOCITY ){ if( 10 >= 5 ){ scalar = horizontal_velocity / MAXIMUM_VELOCITY; scalar = 10 / 5; scalar = 2.0; x_velocity = x_velocity / scalar; x_velocity = 5 / 2.0; x_velocity = 2.5; z_velocity = z_velocity / scalar; z_velocity = 5 / 2.0; z_velocity = 2.5; // new_horizontal_velocity = x_velocity + z_velocity // new_horizontal_velocity = 2.5 + 2.5 // new_horizontal_velocity = 5 } } Benefits of doing it without Pythagoras: Less lines Within those lines, it's easier to read what's going on ...and it takes less time to compute, as there are less multiplications Seems to me like computers and humans get a better deal without Pythagoras! However, I'm sure I'm wrong as I've seen Pythagoras' theorem in a number of reputable places, so I'd like someone to explain me the benefit of using Pythagoras to a maths newbie. Does this have anything to do with unit vectors? To me a unit vector is when we normalize a vector and turn it into a fraction. We do this by dividing the vector by a larger constant. I'm not sure what constant it is. The total size of the graph? Anyway, because it's a fraction, I take it, a unit vector is basically a graph that can fit inside a 3D grid with the x-axis running from -1 to 1, z-axis running from -1 to 1, and the y-axis running from -1 to 1. That's literally everything I know about unit vectors... not much :P And I fail to see their usefulness. Also, we're not really creating a unit vector in the above examples. Should I be determining the scalar like this: // a mathematical work-around of my own invention. There may be a cleverer way to do this! I've also made up my own terms such as 'divisive_scalar' so don't bother googling var divisive_scalar = (squared_horizontal_velocity / SQUARED_MAXIMUM_VELOCITY); var divisive_scalar = ( 50 / 25 ); var divisive_scalar = 2; var multiplicative_scalar = (divisive_scalar / (2*divisive_scalar)); var multiplicative_scalar = (2 / (2*2)); var multiplicative_scalar = (2 / 4); var multiplicative_scalar = 0.5; x_velocity = x_velocity * multiplicative_scalar x_velocity = 5 * 0.5 x_velocity = 2.5 Again, I can't see why this is better, but it's more "unit-vector-y" because the multiplicative_scalar is a unit_vector? As you can see, I use words such as "unit-vector-y" so I'm really not a maths whiz! Also aware that unit vectors might have nothing to do with Pythagoras so ignore all of this if I'm barking up the wrong tree. I'm a very visual person (3D modeller and concept artist by trade!) and I find diagrams and graphs really, really helpful so as many as humanely possible please!

    Read the article

  • Oracle NoSQL Database Exceeds 1 Million Mixed YCSB Ops/Sec

    - by Charles Lamb
    We ran a set of YCSB performance tests on Oracle NoSQL Database using SSD cards and Intel Xeon E5-2690 CPUs with the goal of achieving 1M mixed ops/sec on a 95% read / 5% update workload. We used the standard YCSB parameters: 13 byte keys and 1KB data size (1,102 bytes after serialization). The maximum database size was 2 billion records, or approximately 2 TB of data. We sized the shards to ensure that this was not an "in-memory" test (i.e. the data portion of the B-Trees did not fit into memory). All updates were durable and used the "simple majority" replica ack policy, effectively 'committing to the network'. All read operations used the Consistency.NONE_REQUIRED parameter allowing reads to be performed on any replica. In the past we have achieved 100K ops/sec using SSD cards on a single shard cluster (replication factor 3) so for this test we used 10 shards on 15 Storage Nodes with each SN carrying 2 Rep Nodes and each RN assigned to its own SSD card. After correcting a scaling problem in YCSB, we blew past the 1M ops/sec mark with 8 shards and proceeded to hit 1.2M ops/sec with 10 shards.  Hardware Configuration We used 15 servers, each configured with two 335 GB SSD cards. We did not have homogeneous CPUs across all 15 servers available to us so 12 of the 15 were Xeon E5-2690, 2.9 GHz, 2 sockets, 32 threads, 193 GB RAM, and the other 3 were Xeon E5-2680, 2.7 GHz, 2 sockets, 32 threads, 193 GB RAM.  There might have been some upside in having all 15 machines configured with the faster CPU, but since CPU was not the limiting factor we don't believe the improvement would be significant. The client machines were Xeon X5670, 2.93 GHz, 2 sockets, 24 threads, 96 GB RAM. Although the clients had 96 GB of RAM, neither the NoSQL Database or YCSB clients require anywhere near that amount of memory and the test could have just easily been run with much less. Networking was all 10GigE. YCSB Scaling Problem We made three modifications to the YCSB benchmark. The first was to allow the test to accommodate more than 2 billion records (effectively int's vs long's). To keep the key size constant, we changed the code to use base 32 for the user ids. The second change involved to the way we run the YCSB client in order to make the test itself horizontally scalable.The basic problem has to do with the way the YCSB test creates its Zipfian distribution of keys which is intended to model "real" loads by generating clusters of key collisions. Unfortunately, the percentage of collisions on the most contentious keys remains the same even as the number of keys in the database increases. As we scale up the load, the number of collisions on those keys increases as well, eventually exceeding the capacity of the single server used for a given key.This is not a workload that is realistic or amenable to horizontal scaling. YCSB does provide alternate key distribution algorithms so this is not a shortcoming of YCSB in general. We decided that a better model would be for the key collisions to be limited to a given YCSB client process. That way, as additional YCSB client processes (i.e. additional load) are added, they each maintain the same number of collisions they encounter themselves, but do not increase the number of collisions on a single key in the entire store. We added client processes proportionally to the number of records in the database (and therefore the number of shards). This change to the use of YCSB better models a use case where new groups of users are likely to access either just their own entries, or entries within their own subgroups, rather than all users showing the same interest in a single global collection of keys. If an application finds every user having the same likelihood of wanting to modify a single global key, that application has no real hope of getting horizontal scaling. Finally, we used read/modify/write (also known as "Compare And Set") style updates during the mixed phase. This uses versioned operations to make sure that no updates are lost. This mode of operation provides better application behavior than the way we have typically run YCSB in the past, and is only practical at scale because we eliminated the shared key collision hotspots.It is also a more realistic testing scenario. To reiterate, all updates used a simple majority replica ack policy making them durable. Scalability Results In the table below, the "KVS Size" column is the number of records with the number of shards and the replication factor. Hence, the first row indicates 400m total records in the NoSQL Database (KV Store), 2 shards, and a replication factor of 3. The "Clients" column indicates the number of YCSB client processes. "Threads" is the number of threads per process with the total number of threads. Hence, 90 threads per YCSB process for a total of 360 threads. The client processes were distributed across 10 client machines. Shards KVS Size Clients Mixed (records) Threads OverallThroughput(ops/sec) Read Latencyav/95%/99%(ms) Write Latencyav/95%/99%(ms) 2 400m(2x3) 4 90(360) 302,152 0.76/1/3 3.08/8/35 4 800m(4x3) 8 90(720) 558,569 0.79/1/4 3.82/16/45 8 1600m(8x3) 16 90(1440) 1,028,868 0.85/2/5 4.29/21/51 10 2000m(10x3) 20 90(1800) 1,244,550 0.88/2/6 4.47/23/53

    Read the article

  • Provocative Tweets From the Dachis Social Business Summit

    - by Mike Stiles
    On June 20, all who follow social business and how social is changing how we do business and internal business structures, gathered in London for the Dachis Social Business Summit. In addition to Oracle SVP Product Development, Reggie Bradford, brands and thought leaders posed some thought-provoking ideas and figures. Here are some of the most oft-tweeted points, and our thoughts that they provoked. Tweet: The winners will be those who use data to improve performance.Thought: Everyone is dwelling on ROI. Why isn’t everyone dwelling on the opportunity to make their product or service better (as if that doesn’t have an effect on ROI)? Big data can improve you…let it. Tweet: High performance hinges on integrated teams that interact with each other.Thought: Team members may work well with each other, but does the team as a whole “get” what other teams are doing? That’s the key to an integrated, companywide workforce. (Internal social platforms can facilitate that by the way). Tweet: Performance improvements come from making the invisible visible.Thought: Many of the factors that drive customer behavior and decisions are invisible. Through social, customers are now showing us what we couldn’t see before…if we’re paying attention. Tweet: Games have continuous feedback, which is why they’re so engaging.  Apply that to business operations.Thought: You think your employees have an obligation to be 100% passionate and engaged at all times about making you richer. Think again. Like customers, they must be motivated. Visible insight that they’re advancing on their goals helps. Tweet: Who can add value to the data?  Data will tend to migrate to where it will be most effective.Thought: Not everybody needs all the data. One team will be able to make sense of, use, and add value to data that may be irrelevant to another team. Like a strategized football play, the data has to get sent to the spot on the field where it’s needed most. Tweet: The sale isn’t the light at the end of the tunnel, it’s the start of a new marketing cycle.Thought: Another reason the ROI question is fundamentally flawed. The sale is not the end of the potential return on investment. After-the-sale service and nurturing begins where the sales “victory” ends. Tweet: A dead sale is one that’s not shared.  People must be incentivized to share.Thought: Guess what, customers now know their value to you as marketers on your behalf. They’ll tell people about your product, but you’ve got to answer, “Why should I?” And you’ve got to answer it with something substantial, not lame trinkets. Tweet: Social user motivations are competition, affection, excellence and curiosity.Thought: Your followers will engage IF; they can get something for doing it, love your culture so much they want you to win, are consistently stunned at the perfection and coolness of your products, or have been stimulated enough to want to know more. Tweet: In Europe, 92% surveyed said they couldn’t care less about brands.Thought: Oh well, so much for loving you or being impressed enough with your products & service that they want you to win. We’ve got a long way to go. Tweet: A complaint is a gift.Thought: Our instinct where complaints are concerned is to a) not listen, b) dismiss the one who complains as a kook, c) make excuses, and d) reassure ourselves with internal group-think that they’re wrong and we’re right. It’s the perfect recipe for how to never, ever grow or get better. In a way, this customer cares more than you do. Tweet: 78% of consumers think peer recommendation is the best form of advertising.  Eventually, engagement is going to eat advertising.Thought: Why is peer recommendation best? Trust. If a friend tells me how great a movie was, I believe him. He has credibility with me. He’s seen it, and he could care less if I buy a ticket. He’s telling me it was awesome because he sincerely believes that it was.  That’s gold. Tweet: 86% of customers are willing to pay more for a better customer experience. Thought: This “how mad can we make our customers without losing them” strategy has to end. The customer experience has actual monetary value, money you’re probably leaving on the table. @mikestilesPhoto: stock.xchng

    Read the article

  • SQLIO Writes

    - by Grant Fritchey
    SQLIO is a fantastic utility for testing the abilities of the disks in your system. It has a very unfortunate name though, since it's not really a SQL Server testing utility at all. It really is a disk utility. They ought to call it DiskIO because they'd get more people using I think. Anyway, branding is not the point of this blog post. Writes are the point of this blog post. SQLIO works by slamming your disk. It performs as mean reads as it can or it performs as many writes as it can depending on how you've configured your tests. There are much smarter people than me who will get into all the various types of tests you should run. I'd suggest reading a bit of what Jonathan Kehayias (blog|twitter) has to say or wade into Denny Cherry's (blog|twitter) work. They're going to do a better job than I can describing all the benefits and mechanisms around using this excellent piece of software. My concerns are very focused. I needed to set up a series of tests to see how well our product SQL Storage Compress worked. I wanted to know the effects it would have on a system, the disk for sure, but also memory and CPU. How to stress the system? SQLIO of course. But when I set it up and ran it, following the documentation that comes with it, I was seeing better than 99% compression on the files. Don't get me wrong. Our product is magnificent, wonderful, all things great and beautiful, gets you coffee in the morning and is made mostly from bacon. But 99% compression. No, it's not that good. So what's up? Well, it's the configuration. The default mechanism is to load up a file, something large that will overwhelm your disk cache. You're instructed to load the file with a character 0x0. I never got a computer science degree. I went to film school. Because of this, I didn't memorize ASCII tables so when I saw this, I thought it was zero's or something. Nope. It's NULL. That's right, you're making a very large file, but you're filling it with NULL values. That's actually ok when all you're testing is the disk sub-system. But, when you want to test a compression and decompression, that can be an issue. I got around this fairly quickly. Instead of generating a file filled with NULL values, I just copied a database file for my tests. And to test it with SQL Storage Compress, I used a database file that had already been run through compression (about 40% compression on that file if you're interested). Now the reads were taken care of. I am seeing very realistic performance from decompressing the information for reads through SQLIO. But what about writes? Well, the issue is, what does SQLIO write? I don't have access to the code. But I do have access to the results. I did two different tests, just to be sure of what I was seeing. First test, use the .DAT file as described in the documentation. I opened the .DAT file after I was done with SQLIO, using WordPad. Guess what? It's a giant file full of air. SQLIO writes NULL values. What does that do to compression? I did the test again on a copy of an uncompressed database file. Then I ran the original and the SQLIO modified copy through ZIP to see what happened. I got better than 99% compression out of the SQLIO modified file (original file of 624,896kb went to 275,871kb compressed, after SQLIO it went to 608kb compressed). So, what does SQLIO write? It writes air. If you're trying to test it with compression or maybe some other type of file storage mechanism like dedupe, you need to know this because your tests really won't be valid. Should I find some other mechanism for testing? Yeah, if all I'm interested in is establishing performance to my own satisfaction, yes. But, I want to be able to compare my results with other people's results and we all need to be using the same tool in order for that to happen. SQLIO is the common mechanism that most people I know use to establish disk performance behavior. It'd be better if we could get SQLIO to do writes in some other fashion. Oh, and before I go, I get to brag a bit. Measuring IOPS, SQL Storage Compress outperforms my disk alone by about 30%.

    Read the article

  • Profiling Startup Of VS2012 &ndash; YourKit Profiler

    - by Alois Kraus
    The YourKit (v7.0.5) profiler is interesting in terms of price (79€ single place license, 409€ + 1 year support and upgrades) and feature set. You do get a performance and memory profiler in one package for which you normally need also to pay extra from the other vendors. As an interesting side note the profiler UI is written in Java because they do also sell Java profilers with the same feature set. To get all methods of a VS startup you need first to configure it to include System* in the profiled methods and you need to configure * to measure wall clock time. By default it does record only CPU times which allows you to optimize CPU hungry operations. But you will never see a Thread.Sleep(10000) in the profiler blocking the UI in this mode. It can profile as all others processes started from within the profiler but it can also profile the next or all started processes. As usual it can profile in sampling and tracing mode. But since it is a memory profiler as well it does by default also record all object allocations > 1MB. With allocation recording enabled VS2012 did crash but without allocation recording there were no problems. The CPU tab contains the time line of the application and when you click in the graph you the call stacks of all threads at this time. This is really a nice feature. When you select a time region you the CPU Usage estimation for this time window. I have seen many applications consuming 100% CPU only because they did create garbage like crazy. For this is the Garbage Collection tab interesting in conjunction with a time range. This view is like the CPU table only that the CPU graph (green) is missing. All relevant information except for GCs/s is already visible in the CPU tab. Very handy to pinpoint excessive GC or CPU bound issues. The Threads tab does show the thread names and their lifetime. This is useful to see thread interactions or which thread is hottest in terms of CPU consumption. On the CPU tab the call tree does exist in a merged and thread specific view. When you click on a method you get below a list of all called methods. There you can sort for methods with a high own time which are worth optimizing. In the Method List you can select which scope you want to see. Back Traces are the methods which did call you. Callees ist the list of methods called directly or indirectly by your method as a flat list. This is not a call stack but still very useful to see which methods were slow so you can see the “root” cause quite quickly without the need to click trough long call stacks. The last view Merged Calles is a call stacked view of the previous view. This does help a lot to understand did call each method at run time. You would get the same view with a debugger for one call invocation but here you get the full statistics (invocation count) as well. Since YourKit is also a memory profiler you can directly see which objects you have on your managed heap and which objects do hold most of your precious memory. You can in in the Object Explorer view also examine the contents of your objects (strings or whatsoever) to get a better understanding which objects where potentially allocating this stuff.   YourKit is a very easy to use combined memory and performance profiler in one product. The unbeatable single license price makes it very attractive to straightly buy it. Although it is a Java UI it is very responsive and the memory consumption is considerably lower compared to dotTrace and ANTS profiler. What I do really like is to start the YourKit ui and then start the processes I want to profile as usual. There is no need to alter your own application code to be able to inject a profiler into your new started processes. For performance and memory profiling you can simply select the process you want to investigate from the list of started processes. That's the way I like to use profilers. Just get out of the way and let the application run without any special preparations.   Next: Telerik JustTrace

    Read the article

  • Null Values And The T-SQL IN Operator

    - by Jesse
    I came across some unexpected behavior while troubleshooting a failing test the other day that took me long enough to figure out that I thought it was worth sharing here. I finally traced the failing test back to a SELECT statement in a stored procedure that was using the IN t-sql operator to exclude a certain set of values. Here’s a very simple example table to illustrate the issue: Customers CustomerId INT, NOT NULL, Primary Key CustomerName nvarchar(100) NOT NULL SalesRegionId INT NULL   The ‘SalesRegionId’ column contains a number representing the sales region that the customer belongs to. This column is nullable because new customers get created all the time but assigning them to sales regions is a process that is handled by a regional manager on a periodic basis. For the purposes of this example, the Customers table currently has the following rows: CustomerId CustomerName SalesRegionId 1 Customer A 1 2 Customer B NULL 3 Customer C 4 4 Customer D 2 5 Customer E 3   How could we write a query against this table for all customers that are NOT in sales regions 2 or 4? You might try something like this: 1: SELECT 2: CustomerId, 3: CustomerName, 4: SalesRegionId 5: FROM Customers 6: WHERE SalesRegionId NOT IN (2,4)   Will this work? In short, no; at least not in the way that you might expect. Here’s what this query will return given the example data we’re working with: CustomerId CustomerName SalesRegionId 1 Customer A 1 5 Customer E 5   I was expecting that this query would also return ‘Customer B’, since that customer has a NULL SalesRegionId. In my mind, having a customer with no sales region should be included in a set of customers that are not in sales regions 2 or 4.When I first started troubleshooting my issue I made note of the fact that this query should probably be re-written without the NOT IN clause, but I didn’t suspect that the NOT IN clause was actually the source of the issue. This particular query was only one minor piece in a much larger process that was being exercised via an automated integration test and I simply made a poor assumption that the NOT IN would work the way that I thought it should. So why doesn’t this work the way that I thought it should? From the MSDN documentation on the t-sql IN operator: If the value of test_expression is equal to any value returned by subquery or is equal to any expression from the comma-separated list, the result value is TRUE; otherwise, the result value is FALSE. Using NOT IN negates the subquery value or expression. The key phrase out of that quote is, “… is equal to any expression from the comma-separated list…”. The NULL SalesRegionId isn’t included in the NOT IN because of how NULL values are handled in equality comparisons. From the MSDN documentation on ANSI_NULLS: The SQL-92 standard requires that an equals (=) or not equal to (<>) comparison against a null value evaluates to FALSE. When SET ANSI_NULLS is ON, a SELECT statement using WHERE column_name = NULL returns zero rows even if there are null values in column_name. A SELECT statement using WHERE column_name <> NULL returns zero rows even if there are nonnull values in column_name. In fact, the MSDN documentation on the IN operator includes the following blurb about using NULL values in IN sub-queries or expressions that are used with the IN operator: Any null values returned by subquery or expression that are compared to test_expression using IN or NOT IN return UNKNOWN. Using null values in together with IN or NOT IN can produce unexpected results. If I were to include a ‘SET ANSI_NULLS OFF’ command right above my SELECT statement I would get ‘Customer B’ returned in the results, but that’s definitely not the right way to deal with this. We could re-write the query to explicitly include the NULL value in the WHERE clause: 1: SELECT 2: CustomerId, 3: CustomerName, 4: SalesRegionId 5: FROM Customers 6: WHERE (SalesRegionId NOT IN (2,4) OR SalesRegionId IS NULL)   This query works and properly includes ‘Customer B’ in the results, but I ultimately opted to re-write the query using a LEFT OUTER JOIN against a table variable containing all of the values that I wanted to exclude because, in my case, there could potentially be several hundred values to be excluded. If we were to apply the same refactoring to our simple sales region example we’d end up with: 1: DECLARE @regionsToIgnore TABLE (IgnoredRegionId INT) 2: INSERT @regionsToIgnore values (2),(4) 3:  4: SELECT 5: c.CustomerId, 6: c.CustomerName, 7: c.SalesRegionId 8: FROM Customers c 9: LEFT OUTER JOIN @regionsToIgnore r ON r.IgnoredRegionId = c.SalesRegionId 10: WHERE r.IgnoredRegionId IS NULL By performing a LEFT OUTER JOIN from Customers to the @regionsToIgnore table variable we can simply exclude any rows where the IgnoredRegionId is null, as those represent customers that DO NOT appear in the ignored regions list. This approach will likely perform better if the number of sales regions to ignore gets very large and it also will correctly include any customers that do not yet have a sales region.

    Read the article

  • A Patent for Workload Management Based on Service Level Objectives

    - by jsavit
    I'm very pleased to announce that after a tiny :-) wait of about 5 years, my patent application for a workload manager was finally approved. Background Many operating systems have a resource manager which lets you control machine resources. For example, Solaris provides controls for CPU with several options: shares for proportional CPU allocation. If you have twice as many shares as me, and we are competing for CPU, you'll get about twice as many CPU cycles), dedicated CPU allocation in which a number of CPUs are exclusively dedicated to an application's use. You can say that a zone or project "owns" 8 CPUs on a 32 CPU machine, for example. And, capped CPU in which you specify the upper bound, or cap, of how much CPU an application gets. For example, you can throttle an application to 0.125 of a CPU. (This isn't meant to be an exhaustive list of Solaris RM controls.) Workload management Useful as that is (and tragic that some other operating systems have little resource management and isolation, and frighten people into running only 1 app per OS instance - and wastefully size every server for the peak workload it might experience) that's not really workload management. With resource management one controls the resources, and hope that's enough to meet application service objectives. In fact, we hold resource distribution constant, see if that was good enough, and adjust resource distribution if that didn't meet service level objectives. Here's an example of what happens today: Let's try 30% dedicated CPU. Not enough? Let's try 80% Oh, that's too much, and we're achieving much better response time than the objective, but other workloads are starving. Let's back that off and try again. It's not the process I object to - it's that we to often do this manually. Worse, we sometimes identify and adjust the wrong resource and fiddle with that to no useful result. Back in my days as a customer managing large systems, one of my users would call me up to beg for a "CPU boost": Me: "it won't make any difference - there's plenty of spare CPU to be had, and your application is completely I/O bound." User: "Please do it anyway." Me: "oh, all right, but it won't do you any good." (I did, because he was a friend, but it didn't help.) Prior art There are some operating environments that take a stab about workload management (rather than resource management) but I find them lacking. I know of one that uses synthetic "service units" composed of the sum of CPU, I/O and memory allocations multiplied by weighting factors. A workload is set to make a target rate of service units consumed per second. But this seems to be missing a key point: what is the relationship between artificial 'service units' and actually meeting a throughput or response time objective? What if I get plenty of one of the components (so am getting enough service units), but not enough of the resource whose needed to remove the bottleneck? Actual workload management That's not really the answer either. What is needed is to specify a workload's service levels in terms of externally visible metrics that are meaningful to a business, such as response times or transactions per second, and have the workload manager figure out which resources are not being adequately provided, and then adjust it as needed. If an application is not meeting its service level objectives and the reason is that it's not getting enough CPU cycles, adjust its CPU resource accordingly. If the reason is that the application isn't getting enough RAM to keep its working set in memory, then adjust its RAM assignment appropriately so it stops swapping. Simple idea, but that's a task we keep dumping on system administrators. In other words - don't hold the number of CPU shares constant and watch the achievement of service level vary. Instead, hold the service level constant, and dynamically adjust the number of CPU shares (or amount of other resources like RAM or I/O bandwidth) in order to meet the objective. Instrumenting non-instrumented applications There's one little problem here: how do I measure application performance in a way relating to a service level. I don't want to do it based on internal resources like number of CPU seconds it received per minute - We need to make resource decisions based on externally visible and meaningful measures of performance, not synthetic items or internal resource counters. If I have a way of marking the beginning and end of a transaction, I can then measure whether or not the application is meeting an objective based on it. If I can observe the delay factors for an application, I can see which resource shortages are slowing an application enough to keep it from meeting its objectives. I can then adjust resource allocations to relieve those shortages. Fortunately, Solaris provides facilities for both marking application progress and determining what factors cause application latency. The Solaris DTrace facility let's me introspect on application behavior: in particular I can see events like "receive a web hit" and "respond to that web hit" so I can get transaction rate and response time. DTrace (and tools like prstat) let me see where latency is being added to an application, so I know which resource to adjust. Summary After a delay of a mere few years, I am the proud creator of a patent (advice to anyone interested in going through the process: don't hold your breath!). The fundamental idea is fairly simple: instead of holding resource constant and suffering variable levels of success meeting service level objectives, properly characterise the service level objective in meaningful terms, instrument the application to see if it's meeting the objective, and then have a workload manager change resource allocations to remove delays preventing service level attainment. I've done it by hand for a long time - I think that's what a computer should do for me.

    Read the article

  • Inside BackgroundWorker

    - by João Angelo
    The BackgroundWorker is a reusable component that can be used in different contexts, but sometimes with unexpected results. If you are like me, you have mostly used background workers while doing Windows Forms development due to the flexibility they offer for running a background task. They support cancellation and give events that signal progress updates and task completion. When used in Windows Forms, these events (ProgressChanged and RunWorkerCompleted) get executed back on the UI thread where you can freely access your form controls. However, the logic of the progress changed and worker completed events being invoked in the thread that started the background worker is not something you get directly from the BackgroundWorker, but instead from the fact that you are running in the context of Windows Forms. Take the following example that illustrates the use of a worker in three different scenarios: – Console Application or Windows Service; – Windows Forms; – WPF. using System; using System.ComponentModel; using System.Threading; using System.Windows.Forms; using System.Windows.Threading; class Program { static AutoResetEvent Synch = new AutoResetEvent(false); static void Main() { var bw1 = new BackgroundWorker(); var bw2 = new BackgroundWorker(); var bw3 = new BackgroundWorker(); Console.WriteLine("DEFAULT"); var unspecializedThread = new Thread(() => { OutputCaller(1); SynchronizationContext.SetSynchronizationContext( new SynchronizationContext()); bw1.DoWork += (sender, e) => OutputWork(1); bw1.RunWorkerCompleted += (sender, e) => OutputCompleted(1); // Uses default SynchronizationContext bw1.RunWorkerAsync(); }); unspecializedThread.IsBackground = true; unspecializedThread.Start(); Synch.WaitOne(); Console.WriteLine(); Console.WriteLine("WINDOWS FORMS"); var windowsFormsThread = new Thread(() => { OutputCaller(2); SynchronizationContext.SetSynchronizationContext( new WindowsFormsSynchronizationContext()); bw2.DoWork += (sender, e) => OutputWork(2); bw2.RunWorkerCompleted += (sender, e) => OutputCompleted(2); // Uses WindowsFormsSynchronizationContext bw2.RunWorkerAsync(); Application.Run(); }); windowsFormsThread.IsBackground = true; windowsFormsThread.SetApartmentState(ApartmentState.STA); windowsFormsThread.Start(); Synch.WaitOne(); Console.WriteLine(); Console.WriteLine("WPF"); var wpfThread = new Thread(() => { OutputCaller(3); SynchronizationContext.SetSynchronizationContext( new DispatcherSynchronizationContext()); bw3.DoWork += (sender, e) => OutputWork(3); bw3.RunWorkerCompleted += (sender, e) => OutputCompleted(3); // Uses DispatcherSynchronizationContext bw3.RunWorkerAsync(); Dispatcher.Run(); }); wpfThread.IsBackground = true; wpfThread.SetApartmentState(ApartmentState.STA); wpfThread.Start(); Synch.WaitOne(); } static void OutputCaller(int workerId) { Console.WriteLine( "bw{0}.{1} | Thread: {2} | IsThreadPool: {3}", workerId, "RunWorkerAsync".PadRight(18), Thread.CurrentThread.ManagedThreadId, Thread.CurrentThread.IsThreadPoolThread); } static void OutputWork(int workerId) { Console.WriteLine( "bw{0}.{1} | Thread: {2} | IsThreadPool: {3}", workerId, "DoWork".PadRight(18), Thread.CurrentThread.ManagedThreadId, Thread.CurrentThread.IsThreadPoolThread); } static void OutputCompleted(int workerId) { Console.WriteLine( "bw{0}.{1} | Thread: {2} | IsThreadPool: {3}", workerId, "RunWorkerCompleted".PadRight(18), Thread.CurrentThread.ManagedThreadId, Thread.CurrentThread.IsThreadPoolThread); Synch.Set(); } } Output: //DEFAULT //bw1.RunWorkerAsync | Thread: 3 | IsThreadPool: False //bw1.DoWork | Thread: 4 | IsThreadPool: True //bw1.RunWorkerCompleted | Thread: 5 | IsThreadPool: True //WINDOWS FORMS //bw2.RunWorkerAsync | Thread: 6 | IsThreadPool: False //bw2.DoWork | Thread: 5 | IsThreadPool: True //bw2.RunWorkerCompleted | Thread: 6 | IsThreadPool: False //WPF //bw3.RunWorkerAsync | Thread: 7 | IsThreadPool: False //bw3.DoWork | Thread: 5 | IsThreadPool: True //bw3.RunWorkerCompleted | Thread: 7 | IsThreadPool: False As you can see the output between the first and remaining scenarios is somewhat different. While in Windows Forms and WPF the worker completed event runs on the thread that called RunWorkerAsync, in the first scenario the same event runs on any thread available in the thread pool. Another scenario where you can get the first behavior, even when on Windows Forms or WPF, is if you chain the creation of background workers, that is, you create a second worker in the DoWork event handler of an already running worker. Since the DoWork executes in a thread from the pool the second worker will use the default synchronization context and the completed event will not run in the UI thread.

    Read the article

  • JPRT: A Build & Test System

    - by kto
    DRAFT A while back I did a little blogging on a system called JPRT, the hardware used and a summary on my java.net weblog. This is an update on the JPRT system. JPRT ("JDK Putback Reliablity Testing", but ignore what the letters stand for, I change what they mean every day, just to annoy people :\^) is a build and test system for the JDK, or any source base that has been configured for JPRT. As I mentioned in the above blog, JPRT is a major modification to a system called PRT that the HotSpot VM development team has been using for many years, very successfully I might add. Keeping the source base always buildable and reliable is the first step in the 12 steps of dealing with your product quality... or was the 12 steps from Alcoholics Anonymous... oh well, anyway, it's the first of many steps. ;\^) Internally when we make changes to any part of the JDK, there are certain procedures we are required to perform prior to any putback or commit of the changes. The procedures often vary from team to team, depending on many factors, such as whether native code is changed, or if the change could impact other areas of the JDK. But a common requirement is a verification that the source base with the changes (and merged with the very latest source base) will build on many of not all 8 platforms, and a full 'from scratch' build, not an incremental build, which can hide full build problems. The testing needed varies, depending on what has been changed. Anyone that was worked on a project where multiple engineers or groups are submitting changes to a shared source base knows how disruptive a 'bad commit' can be on everyone. How many times have you heard: "So And So made a bunch of changes and now I can't build!". But multiply the number of platforms by 8, and make all the platforms old and antiquated OS versions with bizarre system setup requirements and you have a pretty complicated situation (see http://download.java.net/jdk6/docs/build/README-builds.html). We don't tolerate bad commits, but our enforcement is somewhat lacking, usually it's an 'after the fact' correction. Luckily the Source Code Management system we use (another antique called TeamWare) allows for a tree of repositories and 'bad commits' are usually isolated to a small team. Punishment to date has been pretty drastic, the Queen of Hearts in 'Alice in Wonderland' said 'Off With Their Heads', well trust me, you don't want to be the engineer doing a 'bad commit' to the JDK. With JPRT, hopefully this will become a thing of the past, not that we have had many 'bad commits' to the master source base, in general the teams doing the integrations know how important their jobs are and they rarely make 'bad commits'. So for these JDK integrators, maybe what JPRT does is keep them from chewing their finger nails at night. ;\^) Over the years each of the teams have accumulated sets of machines they use for building, or they use some of the shared machines available to all of us. But the hunt for build machines is just part of the job, or has been. And although the issues with consistency of the build machines hasn't been a horrible problem, often you never know if the Solaris build machine you are using has all the right patches, or if the Linux machine has the right service pack, or if the Windows machine has it's latest updates. Hopefully the JPRT system can solve this problem. When we ship the binary JDK bits, it is SO very important that the build machines are correct, and we know how difficult it is to get them setup. Sure, if you need to debug a JDK problem that only shows up on Windows XP or Solaris 9, you'll still need to hunt down a machine, but not as a regular everyday occurance. I'm a big fan of a regular nightly build and test system, constantly verifying that a source base builds and tests out. There are many examples of automated build/tests, some that trigger on any change to the source base, some that just run every night. Some provide a protection gateway to the 'golden' source base which only gets changes that the nightly process has verified are good. The JPRT (and PRT) system is meant to guard the source base before anything is sent to it, guarding all source bases from the evil developer, well maybe 'evil' isn't the right word, I haven't met many 'evil' developers, more like 'error prone' developers. ;\^) Humm, come to think about it, I may be one from time to time. :\^{ But the point is that by spreading the build up over a set of machines, and getting the turnaround down to under an hour, it becomes realistic to completely build on all platforms and test it, on every putback. We have the technology, we can build and rebuild and rebuild, and it will be better than it was before, ha ha... Anybody remember the Six Million Dollar Man? Man, I gotta get out more often.. Anyway, now the nightly build and test can become a 'fetch the latest JPRT build bits' and start extensive testing (the testing not done by JPRT, or the platforms not tested by JPRT). Is it Open Source? No, not yet. Would you like to be? Let me know. Or is it more important that you have the ability to use such a system for JDK changes? So enough blabbering on about this JPRT system, tell me what you think. And let me know if you want to hear more about it or not. Stay tuned for the next episode, same Bloody Bat time, same Bloody Bat channel. ;\^) -kto

    Read the article

  • Performance triage

    - by Dave
    Folks often ask me how to approach a suspected performance issue. My personal strategy is informed by the fact that I work on concurrency issues. (When you have a hammer everything looks like a nail, but I'll try to keep this general). A good starting point is to ask yourself if the observed performance matches your expectations. Expectations might be derived from known system performance limits, prototypes, and other software or environments that are comparable to your particular system-under-test. Some simple comparisons and microbenchmarks can be useful at this stage. It's also useful to write some very simple programs to validate some of the reported or expected system limits. Can that disk controller really tolerate and sustain 500 reads per second? To reduce the number of confounding factors it's better to try to answer that question with a very simple targeted program. And finally, nothing beats having familiarity with the technologies that underlying your particular layer. On the topic of confounding factors, as our technology stacks become deeper and less transparent, we often find our own technology working against us in some unexpected way to choke performance rather than simply running into some fundamental system limit. A good example is the warm-up time needed by just-in-time compilers in Java Virtual Machines. I won't delve too far into that particular hole except to say that it's rare to find good benchmarks and methodology for java code. Another example is power management on x86. Power management is great, but it can take a while for the CPUs to throttle up from low(er) frequencies to full throttle. And while I love "turbo" mode, it makes benchmarking applications with multiple threads a chore as you have to remember to turn it off and then back on otherwise short single-threaded runs may look abnormally fast compared to runs with higher thread counts. In general for performance characterization I disable turbo mode and fix the power governor at "performance" state. Another source of complexity is the scheduler, which I've discussed in prior blog entries. Lets say I have a running application and I want to better understand its behavior and performance. We'll presume it's warmed up, is under load, and is an execution mode representative of what we think the norm would be. It should be in steady-state, if a steady-state mode even exists. On Solaris the very first thing I'll do is take a set of "pstack" samples. Pstack briefly stops the process and walks each of the stacks, reporting symbolic information (if available) for each frame. For Java, pstack has been augmented to understand java frames, and even report inlining. A few pstack samples can provide powerful insight into what's actually going on inside the program. You'll be able to see calling patterns, which threads are blocked on what system calls or synchronization constructs, memory allocation, etc. If your code is CPU-bound then you'll get a good sense where the cycles are being spent. (I should caution that normal C/C++ inlining can diffuse an otherwise "hot" method into other methods. This is a rare instance where pstack sampling might not immediately point to the key problem). At this point you'll need to reconcile what you're seeing with pstack and your mental model of what you think the program should be doing. They're often rather different. And generally if there's a key performance issue, you'll spot it with a moderate number of samples. I'll also use OS-level observability tools to lock for the existence of bottlenecks where threads contend for locks; other situations where threads are blocked; and the distribution of threads over the system. On Solaris some good tools are mpstat and too a lesser degree, vmstat. Try running "mpstat -a 5" in one window while the application program runs concurrently. One key measure is the voluntary context switch rate "vctx" or "csw" which reflects threads descheduling themselves. It's also good to look at the user; system; and idle CPU percentages. This can give a broad but useful understanding if your threads are mostly parked or mostly running. For instance if your program makes heavy use of malloc/free, then it might be the case you're contending on the central malloc lock in the default allocator. In that case you'd see malloc calling lock in the stack traces, observe a high csw/vctx rate as threads block for the malloc lock, and your "usr" time would be less than expected. Solaris dtrace is a wonderful and invaluable performance tool as well, but in a sense you have to frame and articulate a meaningful and specific question to get a useful answer, so I tend not to use it for first-order screening of problems. It's also most effective for OS and software-level performance issues as opposed to HW-level issues. For that reason I recommend mpstat & pstack as my the 1st step in performance triage. If some other OS-level issue is evident then it's good to switch to dtrace to drill more deeply into the problem. Only after I've ruled out OS-level issues do I switch to using hardware performance counters to look for architectural impediments.

    Read the article

  • 2D Particle Explosion

    - by TheBroodian
    I'm developing a 2D action game, and in said game I've given my primary character an ability he can use to throw a fireball. I'm trying to design an effect so that when said fireball collides (be it with terrain or with an enemy) that the fireball will explode. For the explosion effect I've created a particle that once placed into game space will follow random, yet autonomic behavior based on random variables. Here is my question: When I generate my explosion (essentially 90 of these particles) I get one of two behaviors, 1) They are all generated with the same random variables, and don't resemble an explosion at all, more like a large mass of clumped sprites that all follow the same randomly generated path. 2) If I assign each particle a unique seed to its random number generator, they are a little bit -more- spread out, yet clumping is still visible (they seem to fork out into 3 different directions) Does anybody have any tips for producing particle-based 2D explosions? I'll include the code for my particle and the event I'm generating them in. Fire particle class: public FireParticle(xTile.Dimensions.Location StartLocation, ContentManager content) { worldLocation = StartLocation; fireParticleAnimation = new FireParticleAnimation(content); random = new Random(); int rightorleft = random.Next(0, 3); int upordown = random.Next(1, 3); int xVelocity = random.Next(0, 101); int yVelocity = random.Next(0, 101); Vector2 tempVector2 = new Vector2(0,0); if (rightorleft == 1) { tempVector2 = new Vector2(xVelocity, tempVector2.Y); } else if (rightorleft == 2) { tempVector2 = new Vector2(-xVelocity, tempVector2.Y); } if (upordown == 1) { tempVector2 = new Vector2(tempVector2.X, -yVelocity); } else if (upordown == 2) { tempVector2 = new Vector2(tempVector2.X, yVelocity); } velocity = tempVector2; scale = random.Next(1, 11); upwardForce = -10; dead = false; } public FireParticle(xTile.Dimensions.Location StartLocation, ContentManager content, int seed) { worldLocation = StartLocation; fireParticleAnimation = new FireParticleAnimation(content); random = new Random(seed); int rightorleft = random.Next(0, 3); int upordown = random.Next(1, 3); int xVelocity = random.Next(0, 101); int yVelocity = random.Next(0, 101); Vector2 tempVector2 = new Vector2(0, 0); if (rightorleft == 1) { tempVector2 = new Vector2(xVelocity, tempVector2.Y); } else if (rightorleft == 2) { tempVector2 = new Vector2(-xVelocity, tempVector2.Y); } if (upordown == 1) { tempVector2 = new Vector2(tempVector2.X, -yVelocity); } else if (upordown == 2) { tempVector2 = new Vector2(tempVector2.X, yVelocity); } velocity = tempVector2; scale = random.Next(1, 11); upwardForce = -10; dead = false; } #endregion #region Update and Draw public void Update(GameTime gameTime) { elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; fireParticleAnimation.Update(gameTime); Vector2 moveAmount = velocity * elapsed; xTile.Dimensions.Location newPosition = new xTile.Dimensions.Location(worldLocation.X + (int)moveAmount.X, worldLocation.Y + (int)moveAmount.Y); worldLocation = newPosition; velocity.Y += upwardForce; if (fireParticleAnimation.finishedPlaying) { dead = true; } } public void Draw(SpriteBatch spriteBatch) { spriteBatch.Draw( fireParticleAnimation.image.Image, new Rectangle((int)drawLocation.X, (int)drawLocation.Y, scale, scale), fireParticleAnimation.image.SizeAndsource, Color.White * fireParticleAnimation.image.Alpha); } Fireball explosion event: public override void Update(GameTime gameTime) { if (enabled) { float elapsed = (float)gameTime.ElapsedGameTime.TotalSeconds; foreach (Heart_of_Fire.World_Objects.Particles.FireParticle particle in explosionParticles.ToList()) { particle.Update(gameTime); if (particle.Dead) { explosionParticles.Remove(particle); } } collisionRectangle = new Microsoft.Xna.Framework.Rectangle((int)wrldPstn.X, (int)wrldPstn.Y, 5, 5); explosionCheck = exploded; if (!exploded) { coreGraphic.Update(gameTime); tailGraphic.Update(gameTime); Vector2 moveAmount = velocity * elapsed; moveAmount = horizontalCollision(moveAmount, layer); moveAmount = verticalCollision(moveAmount, layer); Vector2 newPosition = new Vector2(wrldPstn.X + moveAmount.X, wrldPstn.Y + moveAmount.Y); if (hasCollidedHorizontally || hasCollidedVertically) { exploded = true; } wrldPstn = newPosition; worldLocation = new xTile.Dimensions.Location((int)wrldPstn.X, (int)wrldPstn.Y); } if (explosionCheck != exploded) { for (int i = 0; i < 90; i++) { explosionParticles.Add(new World_Objects.Particles.FireParticle( new Location( collisionRectangle.X + random.Next(0, 6), collisionRectangle.Y + random.Next(0, 6)), contentMgr)); } } if (exploded && explosionParticles.Count() == 0) { //enabled = false; } } }

    Read the article

< Previous Page | 368 369 370 371 372 373 374 375 376 377 378 379  | Next Page >