Search Results

Search found 2648 results on 106 pages for 'federated identity'.

Page 38/106 | < Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >

  • [app-engine-java-groovy] One-to-Many relationship. Select objects from datastore.

    - by Olexandr
    Hi. I've omitted some code(package declarations, imports, other fields) for shortness. I have here simple One-to-Many relation. It worked fine till this moment. @PersistenceCapable(identityType = IdentityType.APPLICATION, detachable="true") class Restaurant implements Serializable { @PrimaryKey @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) Key id @Persistent(mappedBy = "restaurant") List<RestaurantAddress> addresses = new ArrayList<RestaurantAddress>() } //-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= @PersistenceCapable(identityType = IdentityType.APPLICATION, detachable="true") class RestaurantAddress implements Serializable { @PrimaryKey @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) Key id @Persistent Restaurant restaurant } Now i need to get(select) all the Restaurants from DB: def getRestaurantsToExport(final String dst, final int count) { String field = restaurantExportFields[dst] return transactionExecute() { PersistenceManager pm -> Query q = pm.newQuery(Restaurant.class) q.filter = "$field == null" q.setRange(0, count) return q.execute() } } But there are on problem - query gives me 12 restaurants(as in DB) but every Restaurant has 0 Address but in Datastore every Restaurant has minimum 2 addresses. Have anyone the same problem or knows the solution ?

    Read the article

  • Django - User account with multiple identities

    - by Scott Willman
    Synopsis: Each User account has a UserProfile to hold extended info like phone numbers, addresses, etc. Then, a User account can have multiple Identities. There are multiple types of identities that hold different types of information. The structure would be like so: User |<-FK- UserProfile | |<-FK- IdentityType1 |<-FK- IdentityType1 |<-FK- IdentityType2 |<-FK- IdentityType3 (current) |<-FK- IdentityType3 |<-FK- IdentityType3 The User account can be connected to n number of Identities of different types but can only use one Identity at a time. Seemingly, the Django way would be to collect all of the connected identities (user.IdentityType1_set.select_related()) into a QuerySet and then check each one for some kind of 'current' field. Question: Can anyone think of a better way to select the 'current' marked Identity than doing three DB queries (one for each IdentityType)?

    Read the article

  • Very basic table view but getting errors

    - by user342451
    Hi guys, trying to write this code since 2 days now, but i keep getting error, it would be nice if anyone could sort this out, thanks. Basically its the same thing i doing from the tutorial on youtube. awaiting a reply // // BooksTableViewController.m // Mybooks // // #import "BooksTableViewController.h" #import "BooksDetailViewController.h" #import "MYbooksAppDelegate.h" @implementation BooksTableViewController @synthesize BooksArray; @synthesize BooksDetailViewController; /* - (id)initWithStyle:(UITableViewCellStyle)style reuseIdentifier:(NSString *)reuseIdentifier { if ((self = [super initWithStyle:style reuseIdentifier:reuseIdentifier])) { // Initialization code } return self; } */ - (void)viewDidLoad { [super viewDidLoad]; self.title = NSLocalizedString(@"XYZ",@"GOD is GREAT"); NSMutableArray *array = [[NSArray alloc] initWithObjects:@"H1",@"2",@"3",nil]; self.booksArray = array; [array release]; } /* // Override to allow orientations other than the default portrait orientation. - (BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrientation { // Return YES for supported orientations return (interfaceOrientation == UIInterfaceOrientationPortrait); } */ - (void)didReceiveMemoryWarning { [super didReceiveMemoryWarning]; // Releases the view if it doesn't have a superview // Release anything that's not essential, such as cached data } #pragma mark Table view methods - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { return 1; } // Customize the number of rows in the table view. - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { return [self.booksArray count]; } // Customize the appearance of table view cells. - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *identity = @"Cell"; UITableViewCell *cell = [tableView dequeueReusableCellWithIdentifier:identity]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithFrame:CGRectZero reuseIdentifier:identity] autorelease]; } // Set up the cell... cell.textLabel.text = [booksArray objectAtIndex:indexPath.row]; return cell; } /* - (void)tableView:(UITableView *)tableView didSelectRowAtIndexPath:(NSIndexPath *)indexPath { booksDetailsViewControler *NC = [[booksDetailsViewControler alloc] initWithNibName:@"BooksDetailsView" bundle:nil]; [self.navigationController pushViewController:NC animated:YES]; //[booksDetailViewController changeProductText:[booksArray objectAtIndex:indexPath.row]]; } */ NSInteger row = [indexPath row]; if (self.booksDetailViewController == nil) { BooksiDetailViewController *aCellDetails = [[AartiDetailViewController alloc] initWithNibName:@" BooksDetailViewController" bundle:nil]; self.booksDetailViewController = aCellDetails; [aCellDetails release]; } booksDetailViewController.title = [NSString stringWithFormat:@"%@", [booksArray objectAtIndex:row]]; //DailyPoojaAppDelegate *delegate = [[UIApplication sharedApplication] delegate]; //[delegate.AartiNavController pushViewController:aartiDetailsViewControler animated:YES]; [self.navigationController pushViewController:aartiDetailViewController animated:YES]; } /* NSInteger row = [indexPath row]; if (self.booksDetailsViewControler == nil) { AartiDetailsViewControler *aBookDetail = [[BooksDetailsViewControler alloc] initWithNibName:@"booksDetaislView" bundle:nil]; self.booksDetailsViewControler = aBookDetail; [aBookDetail release]; } booksDetailsViewControler.title = [NSString stringWithFormat:@"%@", [booksArray objectAtIndex:row]]; [self.navigationController pushViewController:booksDetailsViewControler animated:YES]; */ - (void)dealloc { [aartiDetailViewController release]; [super dealloc]; } @end

    Read the article

  • How to push to git on EC2

    - by zengr
    I am trying to follow this instruction. I have a local git repo and when I do a git push, I need the repo to be pushed to my EC2 instance. But, in the above tutorial, when I do a git push origin master, I get Permission denied (publickey) error because I did not specify the identity file. Say, I login to EC2 like this: ssh -i my_key.pem [email protected] So, can I do something similar here to: git -i my_key.pem push origin master or set the identity file in .git/config So, how can I set it up?

    Read the article

  • Insert consecutive numbers

    - by Markus
    Hi. I have a table A (Acons, A1, A2, A3) in which I should insert information from another table B with columns (B1, B2, B3). The Acons is a column in which should contain some consecutive numbers (it is not an identity and I cannot make it identity). I know xmin - starting the from number the sequence has to be computed. How can I insert the rows into the table A, using a single Insert statement? I tried like the following, but it didn't work: DECLARE @i AS INT; SET @i = xmin; INSERT INTO A(Acons, A1, A2, A3) SELECT @i = (Bcons = (@i + 1)), B1, B2, B3 FROM B Unfortunatelly, the above solution does not work;

    Read the article

  • How to create unique user key

    - by Grayson Mitchell
    Scenario: I have a fairly generic table (Data), that has an identity column. The data in this table is grouped (lets say by city). The users need an identifier in order for printing on paper forms, etc. The users can only access their cites data, so if they use the identity column for this purpose they will see odd numbers (e.g. a 'New York' user might see 1,37,2028... as the listed keys. Idealy they would see 1,2,3... (or something similar) The problem of course is concurrency, this being a web application you can't just have something like: UserId = Select Count(*)+1 from Data Where City='New York' Has anyone come up with any cunning ways around this problem?

    Read the article

  • Python - a clean approach to this problem?

    - by Seafoid
    Hi, I am having trouble picking the best data structure for solving a problem. The problem is as below: I have a nested list of identity codes where the sublists are of varying length. li = [['abc', 'ghi', 'lmn'], ['kop'], ['hgi', 'ghy']] I have a file with two entries on each line; an identity code and a number. abc 2.93 ghi 3.87 lmn 5.96 Each sublist represents a cluster. I wish to select the i.d. from each sublist with the highest number associated with it, append that i.d. to a new list and ultimately write it to a new file. What data structure should the file with numbers be read in as? Also, how would you iterate over said data structure to return the i.d. with the highest number that matches the i.d. within a sublist? Thanks, S :-)

    Read the article

  • Parent key of type encoded string?

    - by user246114
    Hi, How do we create a parent key which is an encoded string? Example: class Parent { @PrimaryKey @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) @Extension(vendorName="datanucleus", key="gae.encoded-pk", value="true") private String mEncKey; } class Child { @PrimaryKey @Persistent(valueStrategy = IdGeneratorStrategy.IDENTITY) @Extension(vendorName="datanucleus", key="gae.encoded-pk", value="true") private String mEncKey; // In the doc examples, they have Key as the type here. @Persistent @Extension(vendorName="datanucleus", key="gae.parent-pk", value="true") private String mParentEncKey; } yeah I'm not sure how to make mParentEncKey an encoded string type, because the 'key' label is already being used? I would need something like?: key="gae.parent-pk.encoded-pk" not sure - is that possible? Thanks

    Read the article

  • ASP.NET - How can I cache user details for the duration of their visit?

    - by rockinthesixstring
    I've built a Repository that gets user details Public Function GetUserByOpenID(ByVal openid As String) As User Implements IUserRepository.GetUserByOpenID Dim user = (From u In dc.Users Where u.OpenID = openid Select u).FirstOrDefault Return user End Function And I'd like to be able to pull those details down IF the user is logged in AND IF the cached data is null. What is the best way to create a User object that contains all of the users details, and persist it across the entire site for the duration of their visit? I Was trying this in my Global.asax, but I'm not really happy using Session variables. I'd rather have a single object with all the details inside. Private Sub BaseGlobal_AcquireRequestState(ByVal sender As Object, ByVal e As System.EventArgs) Handles Me.AcquireRequestState If Session("UserName") Is Nothing AndAlso User.Identity.IsAuthenticated Then Dim repo As UrbanNow.Core.IUserRepository = New UrbanNow.Core.UserRepository Dim _user As New UrbanNow.Core.User _user = repo.GetUserByOpenID(User.Identity.Name) Session("UserName") = _user.UserName() Session("UserID") = _user.ID End If End Sub

    Read the article

  • can I change my open ID URL change?

    - by dhruvbird
    I wanted to know if I can change my open ID url from say: www.abc.com/username to www.pqr.com/username while the relying party still thinks I am the same user? or even say: www.abc.com/something/username to www.abc.com/somethingelse/username I intuitively think that this is not possible since if it were, then it is possible for anyone to spoof anyone else's identity. Also, does Open ID specify which fields the relying party should use to ensure secure determination of the user's identity? For example, I would expect it to club the URL provided with the username/email address sent back by the Open ID server.

    Read the article

  • how do i insert into two table all at once in a stored procedure?

    - by user996502
    Doing a project for school so any help would be great thank you! I have two tables how do i insert into two tables? so both tables are linked. First table called Customer with primary key called CID that auto increments CREATE TABLE [dbo].[Customer]( [CID] [int] IDENTITY(1,1) NOT NULL, [LastName] [varchar](255) NOT NULL, [FirstName] [varchar](255) NOT NULL, [MiddleName] [varchar](255) NULL, [EmailAddress] [varchar](255) NOT NULL, [PhoneNumber] [varchar](12) NOT NULL CONSTRAINT [PK__CInforma__C1F8DC5968DD69DC] PRIMARY KEY CLUSTERED ( And a second table called Employment that has a foreign key linked to the parent table CREATE TABLE [dbo].[Employment]( [EID] [int] IDENTITY(1,1) NOT NULL, [CID] [int] NOT NULL, [Employer] [varchar](255) NOT NULL, [Occupation] [varchar](255) NOT NULL, [Income] [varchar](25) NOT NULL, [WPhone] [varchar](12) NOT NULL, CONSTRAINT [PK__Employme__C190170BC7827524] PRIMARY KEY CLUSTERED (

    Read the article

  • Query to select from two different tables

    - by ryan
    I would like to select from two tables and display my result using this query: CREATE TABLE Buy_Table ( buy_id int identity primary key, user_id int, amount decimal (18,2) ); go INSERT INTO Buy_Table (user_id, amount) VALUES ('1', 10), ('1', 8), ('1', 20), ('3', 1), ('2', 2); go CREATE TABLE Sell_Table ( sell_id int identity primary key, user_id int, amount decimal (18,2) ); go INSERT INTO Sell_Table (user_id, amount) VALUES ('1', 10), ('1', 8), ('1', 20), ('3', 3), ('2', 3); go select [user_id], 'Buy' as [Type], buy_id as [ID], amount from Buy_Table union all select [user_id], 'Sell', sell_id, amount from Sell_Table order by [user_id], [ID], [Type] However the above query will return each row of the user_id like this I want to display my result to something like this in a grid: Can this be done in query itself rather manipulating the grid? Thx

    Read the article

  • Issue in setting up VPN connection (IKEv1) using android (ICS vpn client) with Strongswan 4.5.0 server

    - by Kushagra Bhatnagar
    I am facing issues in setting up VPN connection(IKEv1) using android (ICS vpn client) and Strongswan 4.5.0 server. Below is the set up: Strongswan server is running on ubuntu linux machine which is connected to some wifi hotspot. Using the steps in this guide link, I generated CA, server and client certificate. Once certificates are generated, following (clientCert.p12 and caCert.pem) are sent to mobile via mail and installed on android device. Below are the ip addresses assigned to various interfaces Linux server wlan0 interface ip where server is running: 192.168.43.212, android device eth0 interface ip address: 192.168.43.62; Android device is also attached with the same wifi hotspot. On the Android device, I uses IPsec Xauth RSA option for setting up VPN authentication configuration. I am using the following ipsec.conf configuration: # basic configuration config setup plutodebug=all # crlcheckinterval=600 # strictcrlpolicy=yes # cachecrls=yes nat_traversal=yes # charonstart=yes plutostart=yes # Add connections here. # Sample VPN connections conn ios1 keyexchange=ikev1 authby=xauthrsasig xauth=server left=%defaultroute leftsubnet=0.0.0.0/0 leftfirewall=yes leftcert=serverCert.pem right=192.168.43.62 rightsubnet=10.0.0.0/24 rightsourceip=10.0.0.2 rightcert=clientCert.pem pfs=no auto=add      With the above configurations when I enable VPN on android device, VPN connection is not successful and it gets timed out in Authentication phase. I ran wireshark on both the android device and strongswan server, from the tcpdump below are the observations. Initially Identity Protection (Main mode) exchanges happens between device and server and all are successful. After all successful Identity Protection (Main mode) exchanges server is sending Transaction (Config mode) to device. In reply android device is sending Informational message instead of Transaction (Config mode) message. Further server is keep on sending Transaction (Config mode) message and device is again sending Identity Protection (Main mode) messages. Finally timeout happens and connection fails. I also capture Strongswan server logs and below are the snippets from the server logs which also verifies the same(described above). Apr 27 21:09:40 Linux pluto[12105]: | **parse ISAKMP Message: Apr 27 21:09:40 Linux pluto[12105]: | initiator cookie: Apr 27 21:09:40 Linux pluto[12105]: | 06 fd 61 b8 86 82 df ed Apr 27 21:09:40 Linux pluto[12105]: | responder cookie: Apr 27 21:09:40 Linux pluto[12105]: | 73 7a af 76 74 f0 39 8b Apr 27 21:09:40 Linux pluto[12105]: | next payload type: ISAKMP_NEXT_HASH Apr 27 21:09:40 Linux pluto[12105]: | ISAKMP version: ISAKMP Version 1.0 Apr 27 21:09:40 Linux pluto[12105]: | exchange type: ISAKMP_XCHG_INFO Apr 27 21:09:40 Linux pluto[12105]: | flags: ISAKMP_FLAG_ENCRYPTION Apr 27 21:09:40 Linux pluto[12105]: | message ID: a2 80 ad 82 Apr 27 21:09:40 Linux pluto[12105]: | length: 92 Apr 27 21:09:40 Linux pluto[12105]: | ICOOKIE: 06 fd 61 b8 86 82 df ed Apr 27 21:09:40 Linux pluto[12105]: | RCOOKIE: 73 7a af 76 74 f0 39 8b Apr 27 21:09:40 Linux pluto[12105]: | peer: c0 a8 2b 3e Apr 27 21:09:40 Linux pluto[12105]: | state hash entry 25 Apr 27 21:09:40 Linux pluto[12105]: | state object not found Apr 27 21:09:40 Linux pluto[12105]: packet from 192.168.43.62:500: Informational Exchange is for an unknown (expired?) SA Apr 27 21:09:40 Linux pluto[12105]: | next event EVENT_RETRANSMIT in 10 seconds for #9 Can anyone please provide update on this issue. Why the VPN connection gets timed out and why the ISAKMP exchanges are not proper between Android and strongswan server.

    Read the article

  • Incorrect gzipping of http requests, can't find who's doing it

    - by Ned Batchelder
    We're seeing some very strange mangling of HTTP responses, and we can't figure out what is doing it. We have an app server handling JSON requests. Occasionally, the response is returned gzipped, but with incorrect headers that prevent the browser from interpreting it correctly. The problem is intermittent, and changes behavior over time. Yesterday morning it seemed to fail 50% of the time, and in fact, seemed tied to one of our two load-balanced servers. Later in the afternoon, it was failing only 20 times out of 1000, and didn't correlate with an app server. The two app servers are running Apache 2.2 with mod_wsgi and a Django app stack. They have identical Apache configs and source trees, and even identical packages installed on Red Hat. There's a hardware load balancer in front, I don't know the make or model. Akamai is also part of the food chain, though we removed Akamai and still had the problem. Here's a good request and response: * Connected to example.com (97.7.79.129) port 80 (#0) > POST /claim/ HTTP/1.1 > User-Agent: curl/7.19.7 (x86_64-pc-linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15 > Host: example.com > Accept: */* > Referer: http://example.com/apps/ > Accept-Encoding: gzip,deflate > Content-Length: 29 > Content-Type: application/x-www-form-urlencoded > } [data not shown] < HTTP/1.1 200 OK < Server: Apache/2 < Content-Language: en-us < Content-Encoding: identity < Content-Length: 47 < Content-Type: application/x-javascript < Connection: keep-alive < Vary: Accept-Encoding < { [data not shown] * Connection #0 to host example.com left intact * Closing connection #0 {"msg": "", "status": "OK", "printer_name": ""} And here's a bad one: * Connected to example.com (97.7.79.129) port 80 (#0) > POST /claim/ HTTP/1.1 > User-Agent: curl/7.19.7 (x86_64-pc-linux-gnu) libcurl/7.19.7 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15 > Host: example.com > Accept: */* > Referer: http://example.com/apps/ > Accept-Encoding: gzip,deflate > Content-Length: 29 > Content-Type: application/x-www-form-urlencoded > } [data not shown] < HTTP/1.1 200 OK < Server: Apache/2 < Content-Language: en-us < Content-Encoding: identity < Content-Type: application/x-javascript < Content-Encoding: gzip < Content-Length: 59 < Connection: keep-alive < Vary: Accept-Encoding < X-N: S < { [data not shown] * Connection #0 to host example.com left intact * Closing connection #0 ?V?-NW?RPR?QP*.I,)-???A??????????T??Z? ??/ There are two things to notice about the bad response: It has two Content-Encoding headers, and the browsers seem to use the first. So they see an identity encoding header, and gzipped content, so they can't interpret the response. The bad response has an extra "X-N: S" header. Perhaps if I could find out what intermediary adds "X-N: S" headers to responses, I could track down the culprit...

    Read the article

  • SBS2003 to SBS2011 Migration - Installation Error

    - by Shawn Gradwell
    Microsoft Small Business Server 2003 to 2011 Migration. I followed the Migration Guide from Microsoft and the source server had no errors when running the various tests prior to the migration. I have completed the destination server setup using the Answer File and the server is up and running. It all looks good, I can access Exchange and AD and the only problem is the error message when you log in stating that the setup did not complete and to check the logs. Because all looks good I am continuing the migration to the destination server. I also have to state that this client does not use Sharepoint at all. Do I have to redo everything? Herewith the logs: [4992] 121016.225454.5905: Task: Starting Add User or Group access VSS registry. [4992] 121016.225454.7645: TaskManagement: In TaskScheduler.RunTasks(): The "ConfigureSharePointVSSRegistryTask" Task threw an Exception during the Run() call:System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) [4992] 121016.225454.7655: Setup: An error was encountered on the TME thread: System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) [4956] 121016.225455.0685: Setup: _UnhandledExceptionHandler: Setup encountered an error: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> System.Reflection.TargetInvocationException: The TME thread failed (see the inner exception). ---> System.Security.Principal.IdentityNotMappedException: Some or all identity references could not be translated. at System.Security.Principal.NTAccount.Translate(IdentityReferenceCollection sourceAccounts, Type targetType, Boolean forceSuccess) at System.Security.Principal.NTAccount.Translate(Type targetType) at System.Security.AccessControl.CommonObjectSecurity.ModifyAccess(AccessControlModification modification, AccessRule rule, Boolean& modified) at System.Security.AccessControl.CommonObjectSecurity.AddAccessRule(AccessRule rule) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.AddUsersToAccessRegistry(List`1 names) at Microsoft.WindowsServerSolutions.IWorker.Tasks.ConfigureSharePointVSSRegistryTask.Run(ITaskDataLink dl) at Microsoft.WindowsServerSolutions.TaskManagement.Data.Task.Run(ITaskDataLink dataLink) at Microsoft.WindowsServerSolutions.TaskManagement.TaskScheduler.RunTasks(String taskListId, String stateFileName) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter._RunTasks(Object sender, DoWorkEventArgs e) at System.ComponentModel.BackgroundWorker.WorkerThreadStart(Object argument) --- End of inner exception stack trace --- at Microsoft.WindowsServerSolutions.Setup.SBSSetup.ProgressPagePresenter.TasksCompleted(Object sender, RunWorkerCompletedEventArgs e) --- End of inner exception stack trace --- at System.RuntimeMethodHandle._InvokeMethodFast(IRuntimeMethodInfo method, Object target, Object[] arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeType typeOwner) at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean skipVisibilityChecks) at System.Delegate.DynamicInvokeImpl(Object[] args) at System.Windows.Forms.Control.InvokeMarshaledCallbackDo(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbackHelper(Object obj) at System.Threading.ExecutionContext.runTryCode(Object userData) at System.Runtime.CompilerServices.RuntimeHelpers.ExecuteCodeWithGuaranteedCleanup(TryCode code, CleanupCode backoutCode, Object userData) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state, Boolean ignoreSyncCtx) at System.Threading.ExecutionContext.Run(ExecutionContext executionContext, ContextCallback callback, Object state) at System.Windows.Forms.Control.InvokeMarshaledCallback(ThreadMethodEntry tme) at System.Windows.Forms.Control.InvokeMarshaledCallbacks() at System.Windows.Forms.Control.WndProc(Message& m) at System.Windows.Forms.NativeWindow.DebuggableCallback(IntPtr hWnd, Int32 msg, IntPtr wparam, IntPtr lparam) at System.Windows.Forms.UnsafeNativeMethods.DispatchMessageW(MSG& msg) at System.Windows.Forms.Application.ComponentManager.System.Windows.Forms.UnsafeNativeMethods.IMsoComponentManager.FPushMessageLoop(IntPtr dwComponentID, Int32 reason, Int32 pvLoopData) at System.Windows.Forms.Application.ThreadContext.RunMessageLoopInner(Int32 reason, ApplicationContext context) at System.Windows.Forms.Application.ThreadContext.RunMessageLoop(Int32 reason, ApplicationContext context) at Microsoft.WindowsServerSolutions.Common.Wizards.Framework.WizardChainEngine.Launch() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass._LaunchWizard() at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.RealMain(String[] args) at Microsoft.WindowsServerSolutions.Setup.SBSSetup.MainClass.Main(String[] args) [4956] 121016.225455.0865: Setup: Removed the password. [4956] 121016.225455.0905: Setup: Deleting scheduled task at path Microsoft\Windows\Windows Small Business Server 2011 Standard with name Setup [4956] 121016.225455.8055: Setup: Removed SBSSetup from the RunOnce.

    Read the article

  • VPS 512 MB RAM with WordPressMU comes to consumes lots of memory

    - by CAPitalZ
    I have googled for days and gathered all optimization suggestions and tried. My sites are not getting any high hits. May be like 100 hits per day [all my sites combined]. Here are my specs I have 512 MB RAM VPS with burstable 1024 MB. Centos 5 32-bit & cPanel/WHM Apache 2.2 MySQL 5.0 PHP 5.3.2 Here is my Configs I have 2 WordPressMU production sites, and 1 test site my.cnf # The following options will be passed to all MySQL clients [client] #password = your_password port = 3306 socket = /var/lib/mysql/mysql.sock # Here follows entries for some specific programs # The MySQL server [mysqld] port = 3306 socket = /var/lib/mysql/mysql.sock skip-locking skip-bdb skip-innodb key_buffer = 16M max_allowed_packet = 1M table_cache = 64 sort_buffer_size = 512K net_buffer_length = 8K read_buffer_size = 256K read_rnd_buffer_size = 512K myisam_sort_buffer_size = 8M #CAPitalZ thread_cache_size=8 thread_concurrency=4 #query_cache_type=1 #query_cache_limit=1M query_cache_size=16M concurrent_insert=2 low_priority_updates=1 max_connections=50 tmp_table_size=16M max_heap_table_size=16M join_buffer_size=1M interactive_timeout=25 wait_timeout=1000 #connect_timout=10 not able to restart mysql max_connect_errors=10 # Don't listen on a TCP/IP port at all. This can be a security enhancement, # if all processes that need to connect to mysqld run on the same host. # All interaction with mysqld must be made via Unix sockets or named pipes. # Note that using this option without enabling named pipes on Windows # (via the "enable-named-pipe" option) will render mysqld useless! # skip-networking # Disable Federated by default skip-federated # Replication Master Server (default) # binary logging is required for replication log-bin=mysql-bin # required unique id between 1 and 2^32 - 1 # defaults to 1 if master-host is not set # but will not function as a master if omitted server-id = 1 [mysqld_safe] open_files_limit=8192 [mysqldump] quick max_allowed_packet = 16M [mysql] no-auto-rehash # Remove the next comment character if you are not familiar with SQL #safe-updates [isamchk] key_buffer = 20M sort_buffer_size = 20M read_buffer = 2M write_buffer = 2M [myisamchk] key_buffer = 20M sort_buffer_size = 20M read_buffer = 2M write_buffer = 2M [mysqlhotcopy] interactive-timeout httpd.conf I have unselected many modules and recompiled using EasyApache in WHM. Only have the following modules built Deflate Expires Fileprotect Imagemap MPM Prefork Version [default] EAccelerator for PHP Bcmath Calendar CurlSSL [I'm using Curl. But I don't have any https sites] Expat GD [for image cropping] Gettext Imap Mbregex [default] Mbstring [need both Mbregex and Mbstring for utf-8] Mysql of the system MySQL "Improved" extension. Sockets TTF (FreeType) [I'm using custom font] Zlib Under Global Configuration I only have FollowSymLinks enabled I Have TraceEnable, ServerSignature, FileETag OFF ServerTokens ProductOnly DirectoryIndex Priority has index.php as the first one I have removed Clamd [Clam Anti-virus] SpamAssasin is Off Under Tweak Settings Default catch-all/default address behavior for new accounts. This is set to "fail" All stats programs turned off I have eAccelerator installed and checked in phpinfo and its working [Pre VirtualHost Include under WHM] Timeout 20 KeepAlive On MaxKeepAliveRequests 200 KeepAliveTimeout 3 MinSpareServers 1 MaxSpareServers 3 StartServers 1 ServerLimit 50 MaxClients 50 MaxRequestsPerChild 4000 ExtendedStatus Off #ServerType standalone this throws error HostnameLookups Off <Directory "/"> AllowOverride None </Directory> My sites will take ages to load and WHM/CPanel will not even load. adadaa.com/ http://adadaa.net/ kadais.ca/ My average memory consumption is like 1000 MB! [yes always bursting] The process that consumes most CPU and also most memory is mysql But I also get like 15 httpd processes [when its bursting] I already got warning from cpuwatchcheck saying "While processing, the cpu has been maxed out for more than a 6 hour period. The current load/uptime line on the server at the time of this email is 07:00:37 up 11:30, 0 users, load average: 14.64, 16.79, 20.07" I don't know, I have tried switching these config values many different times, but nothing seems to work. Please show some light... Thanks

    Read the article

  • mySQL Optimization Suggestions

    - by Brian Schroeter
    I'm trying to optimize our mySQL configuration for our large Magento website. The reason I believe that mySQL needs to be configured further is because New Relic has shown that our SELECT queries are taking a long time (20,000+ ms) in some categories. I ran MySQLTuner 1.3.0 and got the following results... (Disclaimer: I restarted mySQL earlier after tweaking some settings, and so the results here may not be 100% accurate): >> MySQLTuner 1.3.0 - Major Hayden <[email protected]> >> Bug reports, feature requests, and downloads at http://mysqltuner.com/ >> Run with '--help' for additional options and output filtering [OK] Currently running supported MySQL version 5.5.37-35.0 [OK] Operating on 64-bit architecture -------- Storage Engine Statistics ------------------------------------------- [--] Status: +ARCHIVE +BLACKHOLE +CSV -FEDERATED +InnoDB +MRG_MYISAM [--] Data in MyISAM tables: 7G (Tables: 332) [--] Data in InnoDB tables: 213G (Tables: 8714) [--] Data in PERFORMANCE_SCHEMA tables: 0B (Tables: 17) [--] Data in MEMORY tables: 0B (Tables: 353) [!!] Total fragmented tables: 5492 -------- Security Recommendations ------------------------------------------- [!!] User '@host5.server1.autopartsnetwork.com' has no password set. [!!] User '@localhost' has no password set. [!!] User 'root@%' has no password set. -------- Performance Metrics ------------------------------------------------- [--] Up for: 5h 3m 4s (5M q [317.443 qps], 42K conn, TX: 18B, RX: 2B) [--] Reads / Writes: 95% / 5% [--] Total buffers: 35.5G global + 184.5M per thread (1024 max threads) [!!] Maximum possible memory usage: 220.0G (174% of installed RAM) [OK] Slow queries: 0% (6K/5M) [OK] Highest usage of available connections: 5% (61/1024) [OK] Key buffer size / total MyISAM indexes: 512.0M/3.1G [OK] Key buffer hit rate: 100.0% (102M cached / 45K reads) [OK] Query cache efficiency: 66.9% (3M cached / 5M selects) [!!] Query cache prunes per day: 3486361 [OK] Sorts requiring temporary tables: 0% (0 temp sorts / 812K sorts) [!!] Joins performed without indexes: 1328 [OK] Temporary tables created on disk: 11% (126K on disk / 1M total) [OK] Thread cache hit rate: 99% (61 created / 42K connections) [!!] Table cache hit rate: 19% (9K open / 49K opened) [OK] Open file limit used: 2% (712/25K) [OK] Table locks acquired immediately: 100% (5M immediate / 5M locks) [!!] InnoDB buffer pool / data size: 32.0G/213.4G [OK] InnoDB log waits: 0 -------- Recommendations ----------------------------------------------------- General recommendations: Run OPTIMIZE TABLE to defragment tables for better performance MySQL started within last 24 hours - recommendations may be inaccurate Reduce your overall MySQL memory footprint for system stability Enable the slow query log to troubleshoot bad queries Increasing the query_cache size over 128M may reduce performance Adjust your join queries to always utilize indexes Increase table_cache gradually to avoid file descriptor limits Read this before increasing table_cache over 64: http://bit.ly/1mi7c4C Variables to adjust: *** MySQL's maximum memory usage is dangerously high *** *** Add RAM before increasing MySQL buffer variables *** query_cache_size (> 512M) [see warning above] join_buffer_size (> 128.0M, or always use indexes with joins) table_cache (> 12288) innodb_buffer_pool_size (>= 213G) My my.cnf configuration is as follows... [client] port = 3306 [mysqld_safe] nice = 0 [mysqld] tmpdir = /var/lib/mysql/tmp user = mysql port = 3306 skip-external-locking character-set-server = utf8 collation-server = utf8_general_ci event_scheduler = 0 key_buffer = 512M max_allowed_packet = 64M thread_stack = 512K thread_cache_size = 512 sort_buffer_size = 24M read_buffer_size = 8M read_rnd_buffer_size = 24M join_buffer_size = 128M # for some nightly processes client sessions set the join buffer to 8 GB auto-increment-increment = 1 auto-increment-offset = 1 myisam-recover = BACKUP max_connections = 1024 # max connect errors artificially high to support behaviors of NetScaler monitors max_connect_errors = 999999 concurrent_insert = 2 connect_timeout = 5 wait_timeout = 180 net_read_timeout = 120 net_write_timeout = 120 back_log = 128 # this table_open_cache might be too low because of MySQL bugs #16244691 and #65384) table_open_cache = 12288 tmp_table_size = 512M max_heap_table_size = 512M bulk_insert_buffer_size = 512M open-files-limit = 8192 open-files = 1024 query_cache_type = 1 # large query limit supports SOAP and REST API integrations query_cache_limit = 4M # larger than 512 MB query cache size is problematic; this is typically ~60% full query_cache_size = 512M # set to true on read slaves read_only = false slow_query_log_file = /var/log/mysql/slow.log slow_query_log = 0 long_query_time = 0.2 expire_logs_days = 10 max_binlog_size = 1024M binlog_cache_size = 32K sync_binlog = 0 # SSD RAID10 technically has a write capacity of 10000 IOPS innodb_io_capacity = 400 innodb_file_per_table innodb_table_locks = true innodb_lock_wait_timeout = 30 # These servers have 80 CPU threads; match 1:1 innodb_thread_concurrency = 48 innodb_commit_concurrency = 2 innodb_support_xa = true innodb_buffer_pool_size = 32G innodb_file_per_table innodb_flush_log_at_trx_commit = 1 innodb_log_buffer_size = 2G skip-federated [mysqldump] quick quote-names single-transaction max_allowed_packet = 64M I have a monster of a server here to power our site because our catalog is very large (300,000 simple SKUs), and I'm just wondering if I'm missing anything that I can configure further. :-) Thanks!

    Read the article

  • NHibernate 2 Beginner's Guide Review

    - by Ricardo Peres
    OK, here's the review I promised a while ago. This is a beginner's introduction to NHibernate, so if you have already some experience with NHibernate, you will notice it lacks a lot of concepts and information. It starts with a good description of NHibernate and why would we use it. It goes on describing basic mapping scenarios having primary keys generated with the HiLo or Identity algorithms, without actually explaining why would we choose one over the other. As for mapping, the book talks about XML mappings and provides a simple example of Fluent NHibernate, comparing it to its XML counterpart. When it comes to relations, it covers one-to-many/many-to-one and many-to-many, not one-to-one relations, but only talks briefly about lazy loading, which is, IMO, an important concept. Only Bags are described, not any of the other collection types. The log4net configuration description gets it's own chapter, which I find excessive. The chapter on configuration merely lists the most common properties for configuring NHibernate, both in XML and in code. Querying only talks about loading by ID (using Get, not Load) and using Criteria API, on which a paging example is presented as well as some common filtering options (property equals/like/between to, no examples on conjunction/disjunction, however). There's a chapter fully dedicated to ASP.NET, which explains how we can use NHibernate in web applications. It basically talks about ASP.NET concepts, though. Following it, another chapter explains how we can build our own ASP.NET providers using NHibernate (Membership, Role). The available entity generators for NHibernate are referred and evaluated on a chapter of their own, the list is fine (CodeSmith, nhib-gen, AjGenesis, Visual NHibernate, MyGeneration, NGen, NHModeler, Microsoft T4 (?) and hbm2net), examples are provided whenever possible, however, I have some problems with some of the evaluations: for example, Visual NHibernate scores 5 out of 5 on Visual Studio integration, which simply does not exist! I suspect the author means to say that it can be launched from inside Visual Studio, but then, what can't? Finally, there's a chapter I really don't understand. It seems like a bag where a lot of things are thrown in, like NHibernate Burrow (which actually isn't explained at all), Blog.Net components, CSS template conversion and web.config settings related to the maximum request length for file uploads and ending with XML configuration, with the help of GhostDoc. Like I said, the book is only good for absolute beginners, it does a fair job in explaining the very basics, but lack a lot of not-so-basic concepts. Among other things, it lacks: Inheritance mapping strategies (table per class hierarchy, table per class, table per concrete class) Load versus Get usage Other usefull ISession methods First level cache (Identity Map pattern) Other collection types other that Bag (Set, List, Map, IdBag, etc Fetch options User Types Filters Named queries LINQ examples HQL examples And that's it! I hope you find this review useful. The link to the book site is https://www.packtpub.com/nhibernate-2-x-beginners-guide/book

    Read the article

  • No mapping between account names and security IDs was done

    - by ybbest
    When I try to install SQL Server 2008 R2, I got the error “No mapping between account names and security IDs was done” when I try to set the SQL Server Database engine services identity to a domain user name. The reason I am getting the error is that I create a base VM forgot to run sysprep, before I copy the VM and used to install SQL servers. You need to run the sysprep as follows: References: How to Sysprep in Windows Server 2008 R2 and Windows 7

    Read the article

  • Thinktecture.IdentityModel: WIF Support for WCF REST Services and OData

    - by Your DisplayName here!
    The latest drop of Thinktecture.IdentityModel includes plumbing and support for WIF, claims and tokens for WCF REST services and Data Services (aka OData). Cibrax has an alternative implementation that uses the WCF Rest Starter Kit. His recent post reminded me that I should finally “document” that part of our library. Features include: generic plumbing for all WebServiceHost derived WCF services support for SAML and SWT tokens support for ClaimsAuthenticationManager and ClaimsAuthorizationManager based solely on native WCF extensibility points (and WIF) This post walks you through the setup of an OData / WCF DataServices endpoint with token authentication and claims support. This sample is also included in the codeplex download along a similar sample for plain WCF REST services. Setting up the Data Service To prove the point I have created a simple WCF Data Service that renders the claims of the current client as an OData set. public class ClaimsData {     public IQueryable<ViewClaim> Claims     {         get { return GetClaims().AsQueryable(); }     }       private List<ViewClaim> GetClaims()     {         var claims = new List<ViewClaim>();         var identity = Thread.CurrentPrincipal.Identity as IClaimsIdentity;           int id = 0;         identity.Claims.ToList().ForEach(claim =>             {                 claims.Add(new ViewClaim                 {                    Id = ++id,                    ClaimType = claim.ClaimType,                    Value = claim.Value,                    Issuer = claim.Issuer                 });             });           return claims;     } } …and hooked that up with a read only data service: public class ClaimsDataService : DataService<ClaimsData> {     public static void InitializeService(IDataServiceConfiguration config)     {         config.SetEntitySetAccessRule("*", EntitySetRights.AllRead);     } } Enabling WIF Before you enable WIF, you should generate your client proxies. Afterwards the service will only accept requests with an access token – and svcutil does not support that. All the WIF magic is done in a special service authorization manager called the FederatedWebServiceAuthorizationManager. This code checks incoming calls to see if the Authorization HTTP header (or X-Authorization for environments where you are not allowed to set the authorization header) contains a token. This header must either start with SAML access_token= or WRAP access_token= (for SAML or SWT tokens respectively). For SAML validation, the plumbing uses the normal WIF configuration. For SWT you can either pass in a SimpleWebTokenRequirement or the SwtIssuer, SwtAudience and SwtSigningKey app settings are checked.If the token can be successfully validated, ClaimsAuthenticationManager and ClaimsAuthorizationManager are invoked and the IClaimsPrincipal gets established. The service authorization manager gets wired up by the FederatedWebServiceHostFactory: public class FederatedWebServiceHostFactory : WebServiceHostFactory {     protected override ServiceHost CreateServiceHost(       Type serviceType, Uri[] baseAddresses)     {         var host = base.CreateServiceHost(serviceType, baseAddresses);           host.Authorization.ServiceAuthorizationManager =           new FederatedWebServiceAuthorizationManager();         host.Authorization.PrincipalPermissionMode = PrincipalPermissionMode.Custom;           return host;     } } The last step is to set up the .svc file to use the service host factory (see the sample download). Calling the Service To call the service you need to somehow get a token. This is up to you. You can either use WSTrustChannelFactory (for the full CLR), WSTrustClient (Silverlight) or some other way to obtain a token. The sample also includes code to generate SWT tokens for testing – but the whole WRAP/SWT support will be subject of a separate post. I created some extensions methods for the most common web clients (WebClient, HttpWebRequest, DataServiceContext) that allow easy setting of the token, e.g.: public static void SetAccessToken(this DataServiceContext context,   string token, string type, string headerName) {     context.SendingRequest += (s, e) =>     {         e.RequestHeaders[headerName] = GetHeader(token, type);     }; } Making a query against the Data Service could look like this: static void CallService(string token, string type) {     var data = new ClaimsData(new Uri("https://server/odata.svc/"));     data.SetAccessToken(token, type);       data.Claims.ToList().ForEach(c =>         Console.WriteLine("{0}\n {1}\n ({2})\n", c.ClaimType, c.Value, c.Issuer)); } HTH

    Read the article

  • TechDays 2011 Sweden Videos

    - by Your DisplayName here!
    All the videos from the excellent Örebro event are now online. Dominick Baier: A Technical Introduction to the Windows Identity Foundation (watch) Dominick Baier & Christian Weyer: Securing REST-Services and Web APIs on the Windows Azure Platform (watch) Christian Weyer: Real World Azure - Elasticity from on-premise to the cloud and back (watch) Our interview with Robert (watch)

    Read the article

  • WORD CERTIFIED IMPLEMENTATION SPECIALIST EN LAAT ORACLE UNIVERSITY U ASSISTEREN HIERMEE

    - by mseika
    WORD CERTIFIED IMPLEMENTATION SPECIALIST EN LAAT ORACLE UNIVERSITY U ASSISTEREN HIERMEE Word gespecialiseerd!Oracle weet exact welke competenties implementatie specialisten moeten opbouwen en beseft de bijbehorende inspanning die hiervoor nodig is. Het nieuwe Specialized programma van Oracle PartnerNetwork biedt een scala van certificering mogelijkheden aan (Specializations) die aantonen dat de benodigde kennis en vaardigheden bij u en bij uw teamleden aanwezig zijn.Word erkend! Bevestig uw kennis en vaardigheden en ontvang de beloning die u verdient door examens te halen voor de hele portefeuille van producten en oplossingen die Oracle aanbiedt. Haal het examen en ontvang uw OPN Specialist Certificaat. Stap 1: Kies uw SpecialisatieBekijk de Specialization Guide (PDF) - ons aanbod van Specialisaties voor de individu. Stap 2: Bereik de vereiste kennis en de vaardighedenBoek een Oracle University OPN Only Bootcamp en bereik de vereiste kennis en de vaardigheden om een Certified Implementation Specialist te worden.Wij hebben voor u de volgende Bootcamps geselecteerd en de komende maanden ingepland bij Oracle University in Utrecht, The Netherlands: Boot Camp Duur Data Voorbereiding voor Specialization (Exam Code) Database Oracle Database 11g Specialist 5 21-25 jan 12 Oracle Database 11g Certified Implementation Specialist (1Z0-514) Oracle Data Warehousing 11g Implementation 5 3-7 dec 12 3-7 apr 13 Data Warehousing 11g Certified Implementation Specialist (1Z0-515) Exadata Oracle Exadata 11g Technical Boot Camp 3 28-30 jan 13 Oracle Exadata 11g Certified Implementation Specialist (1Z0-536) Fusion Middleware Oracle AIA 11g Implementation 4 20-22 feb 13 Oracle Application Integration Architecture 11g Certified Implementation Specialist (1Z0-543) Oracle BPM 11g Implementation 4 15-18 okt 12 14-17 jan 12 15-18 apr 13 Oracle Unified Business Process Management Suite 11g Billing Certified Implementation Specialist (1Z0-560) Oracle WebCenter 11g Implementation 4 10-13 okt 12 5-8 feb 13 Oracle WebCenter Portal 11g Certified Implementation Specialist (1Z0-541) Oracle Identity Administration and Analytics 11g Implementation 3 7-9 nov 12 6-8 mrt 13 Identity Administration and Analytics 11g Certified Implementation Specialist (1Z0-545) Business Intelligence and Datawarehousing Oracle BI Enterprise Edition 11g Implementation 5 24-28 sep12 11-15 mrt 13 Boek een Boot Camp: U kunt online boeken of gebruik maken van dit inschrijfformulier Prijzen: U merkt dat de ‘OPN Only’ Boot Camps in prijs sterk gereduceerd zijn en bovendien is uw OPN korting (silver, gold, platinum of diamond) nog steeds van toepassing! Stap 3: Boek en neem uw examen afBezoek de examenregistratie web-pagina en lees de instructies voor het boeken van uw examen bij een Pearson VUE Authorized Testcentrum. Examens kunnen betaald worden door één van de gratis examen vouchers die uw bedrijf heeft, door een voucher aan te schaffen bij Oracle University of met uw creditcard bij het Pearson VUE Testcentrum. Stap 4: Ontvang uw OPN Specialist CertificateGefeliciteerd! U bent nu een Certified Implementation Specialist. Heeft u meer informatie of assistentie nodig?Neem dan contact op met uw Oracle University Account Manager of met onze Education Service Desk: eMail: [email protected]:+ 31 30 66 99 244 Bij het boeken graag de volgende code vermelden: E1229

    Read the article

  • CVE-2014-3520 Privilege Escalation vulnerability in OpenStack Keystone

    - by Ritwik Ghoshal
    CVE DescriptionCVSSv2 Base ScoreComponentProduct and Resolution CVE-2014-3520 Privilege Escalation vulnerability 3.5 OpenStack Identity (Keystone) Solaris 11.2 11.2.1.5.0 This notification describes vulnerabilities fixed in third-party components that are included in Oracle's product distributions.Information about vulnerabilities affecting Oracle products can be found on Oracle Critical Patch Updates and Security Alerts page.

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

< Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >