Search Results

Search found 11830 results on 474 pages for 'makefile related'.

Page 38/474 | < Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >

  • How can I restart compiz from tty? (& Related, how can I set up a fallback WM?)

    - by Jon
    So I'm testing Natty, and Compiz keeps crashing on me. I expect this sort of thing from alpha software, of course, but it doesn't always give me the option to restart compiz, and for some reason doesn't have a fallback WM configured. Without a window manager, all my programs are still running, but they're not accepting input from the keyboard, and I can't switch between them. I can, however, press Ctrl+Alt+F1 and get a terminal, and I can killall Xorg to reset everything, but I'd rather just reset compiz if possible. If I try typing compiz --replace there in the tty, it complains "fatal--couldn't open display." Is there a way to have tty1 restart compiz? Like compiz --replace --display=something? Additionally, is there a way to configure a fallback window manager so that there's an easier way to recover from compiz crashing?

    Read the article

  • How to compile Asus-syntec-webcam-driver stk11xx

    - by berot3
    i have asus v1s and some time ago i was able to easily compile and install it. but now compiling fails... i hope u guys know what i can do, if there is anything that can be done... after svn checkout https://syntekdriver.svn.sourceforge.net/svnroot/syntekdriver syntekdriver and cd ./syntekdriver/trunk/driver as well as make -f Makefile.standalone i got: make -C /lib/modules/2.6.36.2/build SUBDIRS=/home/berot3/syntekdriver/trunk/driver modules make[1]: Betrete Verzeichnis '/usr/src/linux-headers-2.6.38-8-generic' CC [M] /home/berot3/syntekdriver/trunk/driver/stk11xx-usb.o CC [M] /home/berot3/syntekdriver/trunk/driver/stk11xx-v4l.o /home/berot3/syntekdriver/trunk/driver/stk11xx-v4l.c:43:28: fatal error: linux/videodev.h: File not found! compilation terminated. make[2]: *** [/home/berot3/syntekdriver/trunk/driver/stk11xx-v4l.o] Error 1 make[1]: *** [_module_/home/berot3/syntekdriver/trunk/driver] Error 2 make[1]: Verlasse Verzeichnis '/usr/src/linux-headers-2.6.38-8-generic' make: *** [driver] Error 2 same for http://bookeldor-net.info/merdier/Makefile-syntekdriver http://webcache.googleusercontent.com/search?q=cache:OM0zVNlYiVQJ:bookeldor-net.info/merdier/Makefile-syntekdriver+http://bookeldor-net.info/merdier/Makefile-syntekdriver&hl=de&strip=1

    Read the article

  • Should I learn GWT (I'm a Java newb) if I eventually want to learn JavaScript and related libraries?

    - by Aaron
    I haven't been working with Java for a long time, and I found GWT to be interesting plus a chance to learn and practice Java. My goal for this year is to learn JavaScript. I'm very interested in HTML5, browser extensions and other cool stuff that JavaScript can do. I think I'm more interested in this than Java at the moment (that's not to say I dislike or would discontinue working with Java) but I would like advice as to whether it's a good idea to proceed with learning GWT (given my interest in JavaScript) or to spend my time learning other Java technology. Thank you.

    Read the article

  • Will taking two years off for school in a related field destroy a mid level development career?

    - by rsteckly
    Hi, I know some people have asked about getting back into programming after a break and this is a potential duplicate. I just am in a position where I can go back to school for a graduate degree in Stat/Applied Math. But I'm very worried about the impact it will have on my career and ability to find a job afterwards. I have 3 years experience in .NET on top of a couple of years in PHP. Right now, I'm a senior software engineer. Do you think taking two years off to do math is going to dramatically hurt my marketability?

    Read the article

  • How are design-by-contract and property-based testing (QuickCheck) related?

    - by Todd Owen
    Is their only similarity the fact that they are not xUnit (or more precisely, not based on enumerating specific test cases), or is it deeper than that? Property-based testing (using QuickCheck, ScalaCheck, etc) seem well-suited to a functional programming style where side-effects are avoided. On the other hand, Design by Contract (as implemented in Eiffel) is more suited to OOP languages: you can express post-conditions about the effects of methods, not just their return values. But both of them involve testing assertions that are true in general (rather than assertions that should be true for a specific test case). And both can be tested using randomly generated inputs (with QuickCheck this is the only way, whereas with Eiffel I believe it is an optional feature of the AutoTest tool). Is there an umbrella term to encompass both approaches? Or am I imagining a relationship that doesn't really exist.

    Read the article

  • Is it normal for 12.04 to occupy almost 4GB? Also, related questions

    - by Grant
    I'm using a ASUS EeePC 901 and have some basic questions/issues. I installed 12.04 on the 4GB drive, selecting the option to erase it before doing so. Immediately after the installation I saw that Update Manager had over 100 updates pending. I attempted to install these, but was told that I had less than 100 MB remaining. Does the OS occupy all the other space? It seems that the best solution is to install 12.04 on the 16GB drive. Is this true? If I do this, what is the best way to erase the 4GB drive afterwards?

    Read the article

  • How are USB ports related to the computer power, and why would they cause my computer to freeze?

    - by BDuelz
    I have an issue with my new Toshiba laptop. Whenever I plug in an external USB device, if the laptop is not plugged in to the wall, the laptop freezes. However, nothing happens if the laptop is plugged in to the wall. When I say the laptop freezes, I mean it really freezes. The only way to recover is to hard reboot. My question is, what could be causing this? Could it be the extra power drain from the sub devices that causes this (even the simplest flash drives cause a freeze)? Please help me out, it's very annoying. Thanks

    Read the article

  • Is there anything software-related I can do, to make ubuntu play high-quality mkv files smoothely?

    - by Roy
    I've noticed that beyond let's say..a 20 MB/s bitrate, a movie would lag, played on my laptop.. It results in me missing the highest bitrated scenes of a movie.. And sometimes having to compromise for watching the movie at a lesser quality.. I was wondering if there's anything I can do software-wise to play movies smoothley..? At the moment Ubuntu is installed with all the default settings on an 60GB SSD I use VLC ofcourse.. I also have 2 1TB HDD - maybe I can use them as pagefiles? I don't really know alot about this so maybe this is irrelevant.. I took the laptop battery out since it was dead..but I think this is also irrelevant.. would appriciate a response, even if there's nothing that can be done software-wise :)

    Read the article

  • Multi threading to execute multiple makefiles

    - by user105205
    The problem is it takes lot of time(20-30 minutes) to build our application. There are around 5000+ files and the code is divided into various subsystems, which can be built independently. Each subsystem has its own makefile. My question is: Is it possible to create a thread for each makefile so that all the subsystems are built in parallel and subsequently run a makefile to merge them all? If it is possible, how to proceed about it?

    Read the article

  • How are the conceptual pairs Abstract/Concrete, Generic/Specific, and Complex/Simple related to one another in software architecture?

    - by tjb1982
    (= 2 (+ 1 1)) take the above. The requirement of the '=' predicate is that its arguments be comparable. Any two structures are comparable in this case, and so the contract/requirement is pretty generic. The '+' predicate requires that its arguments be numbers. That's more specific. (socket domain type protocol) the arguments here are much more specific (even though the arguments are still just numbers and the function itself returns a file descriptor, which is itself an int), but the arguments are more abstract, and the implementation is built up from other functions whose abstractions are less abstract, which are themselves built from less and less abstract abstractions. To the point where the requirements are something like move from one location to another, observe whether the switch at that location is on or off, turn the switch on or off, or leave it the same, etc. But are functions also less and less complex the less abstract they are? And is there a relationship between the number and range of arguments of a function and the complexity of its implementation, as you go from more abstract to less abstract, and vice versa? (= 2 (+ 1 1) 2r10) the '=' predicate is more generic than the '+' predicate, and thus could be more complex in its implementation. The '+' predicate's contract is less generic, and so could be less complex in its implementation. Is this even a little correct? What about the 'socket' function? Each of those arguments is a number of some kind. What they represent, though, is something more elaborate. It also returns a number (just like the others do), which is also a representation of something conceptually much more elaborate than a number. To boil it down, I'm asking if there is a relationship between the following dimensions, and why: Abstract/Concrete Complex/Simple Generic/Specific And more specifically, do different configurations of these dimensions have a specific, measurable impact on the number and range of the arguments (i.e., the contract) of a function?

    Read the article

  • Will taking a job that's web and database related limit my software development opportunities later on?

    - by someone
    I love programming, particularly OOP. My school experience was mostly in Java/OOP, and I had a job for a limited time in Java, Python, and other OOP kind of languages. However, a move necessitated a change in jobs, and what I've ended up with now is a web-development and database intensive job. I may possibly hold this job for several years. My question is, will this limit my choices later on? Will I be able to find another Java / software-development kind of job, or will I be rejected because my experience will be mostly in a different area?

    Read the article

  • Where to ask questions related to ubuntu app developer showdown?

    - by user49557
    i recently saw ubuntu app developer showdown and i am very excited about it. i have some questions about it and i seriously want good answers can you tell me an official or unofficial communities forums or emails where i can get good anwsers thanks. Can I use old code by myself to build on for my entry in the Ubuntu App Showdown contest? How do I participate in the Ubuntu App Showdown? already seen these questions

    Read the article

  • Can't build pyxpcom on OS X 10.6

    - by Gj
    I've been following these instructions at https://developer.mozilla.org/en/Building_PyXPCOM but getting this: $ make make export make[2]: Nothing to be done for `export'. make[4]: Nothing to be done for `export'. make[4]: Nothing to be done for `export'. /opt/local/bin/python2.5 ../../../src/config/nsinstall.py -L /usr/local/pyxpcom/build/xpcom/src -m 644 ../../../src/xpcom/src/PyXPCOM.h ../../dist/include make[3]: Nothing to be done for `export'. /opt/local/bin/python2.5 ../../../../src/config/nsinstall.py -D ../../../dist/idl /opt/local/bin/python2.5 ../../../../src/config/nsinstall.py -D ../../../dist/idl make[4]: *** No rule to make target `_xpidlgen/py_test_component.h', needed by `export'. Stop. make[3]: *** [export] Error 2 make[2]: *** [export] Error 2 make[1]: *** [export] Error 2 make: *** [default] Error 2 Any ideas? An interesting anomaly is that despite me setting the PYTHON env variable to Python 2.6, the configure and make both seem to go after the 2.5... Thanks for any advice! PS here's the configure output: $ ../src/configure --with-libxul-sdk=/Users/me/xulrunner-sdk/ loading cache ./config.cache checking host system type... i386-apple-darwin10.3.0 checking target system type... i386-apple-darwin10.3.0 checking build system type... i386-apple-darwin10.3.0 checking for mawk... (cached) gawk checking for perl5... (cached) /opt/local/bin/perl5 checking for gcc... (cached) gcc checking whether the C compiler (gcc ) works... yes checking whether the C compiler (gcc ) is a cross-compiler... no checking whether we are using GNU C... (cached) yes checking whether gcc accepts -g... (cached) yes checking for c++... (cached) c++ checking whether the C++ compiler (c++ ) works... yes checking whether the C++ compiler (c++ ) is a cross-compiler... no checking whether we are using GNU C++... (cached) yes checking whether c++ accepts -g... (cached) yes checking for ranlib... (cached) ranlib checking for as... (cached) /usr/bin/as checking for ar... (cached) ar checking for ld... (cached) ld checking for strip... (cached) strip checking for windres... no checking whether gcc and cc understand -c and -o together... (cached) yes checking how to run the C preprocessor... (cached) gcc -E checking how to run the C++ preprocessor... (cached) c++ -E checking for a BSD compatible install... (cached) /usr/bin/install -c checking whether ln -s works... (cached) yes checking for minimum required perl version >= 5.006... 5.008009 checking for full perl installation... yes checking for /opt/local/bin/python... (cached) /opt/local/bin/python2.5 checking for doxygen... (cached) : checking for whoami... (cached) /usr/bin/whoami checking for autoconf... (cached) /opt/local/bin/autoconf checking for unzip... (cached) /usr/bin/unzip checking for zip... (cached) /usr/bin/zip checking for makedepend... (cached) /opt/local/bin/makedepend checking for xargs... (cached) /usr/bin/xargs checking for pbbuild... (cached) /usr/bin/xcodebuild checking for sdp... (cached) /usr/bin/sdp checking for gmake... (cached) /opt/local/bin/gmake checking for X... (cached) no checking whether the compiler supports -Wno-invalid-offsetof... yes checking whether ld has archive extraction flags... (cached) no checking that static assertion macros used in autoconf tests work... (cached) yes checking for 64-bit OS... yes checking for minimum required Python version >= 2.4... yes checking for -dead_strip option to ld... yes checking for ANSI C header files... (cached) yes checking for working const... (cached) yes checking for mode_t... (cached) yes checking for off_t... (cached) yes checking for pid_t... (cached) yes checking for size_t... (cached) yes checking for st_blksize in struct stat... (cached) yes checking for siginfo_t... (cached) yes checking for int16_t... (cached) yes checking for int32_t... (cached) yes checking for int64_t... (cached) yes checking for int64... (cached) no checking for uint... (cached) yes checking for uint_t... (cached) no checking for uint16_t... (cached) no checking for uname.domainname... (cached) no checking for uname.__domainname... (cached) no checking for usable char16_t (2 bytes, unsigned)... (cached) no checking for usable wchar_t (2 bytes, unsigned)... (cached) no checking for compiler -fshort-wchar option... (cached) yes checking for visibility(hidden) attribute... (cached) yes checking for visibility(default) attribute... (cached) yes checking for visibility pragma support... (cached) yes checking For gcc visibility bug with class-level attributes (GCC bug 26905)... (cached) yes checking For x86_64 gcc visibility bug with builtins (GCC bug 20297)... (cached) no checking for dirent.h that defines DIR... (cached) yes checking for opendir in -ldir... (cached) no checking for sys/byteorder.h... (cached) no checking for compat.h... (cached) no checking for getopt.h... (cached) yes checking for sys/bitypes.h... (cached) no checking for memory.h... (cached) yes checking for unistd.h... (cached) yes checking for gnu/libc-version.h... (cached) no checking for nl_types.h... (cached) yes checking for malloc.h... (cached) no checking for X11/XKBlib.h... (cached) yes checking for io.h... (cached) no checking for sys/statvfs.h... (cached) yes checking for sys/statfs.h... (cached) no checking for sys/vfs.h... (cached) no checking for sys/mount.h... (cached) yes checking for sys/quota.h... (cached) yes checking for mmintrin.h... (cached) yes checking for new... (cached) yes checking for sys/cdefs.h... (cached) yes checking for gethostbyname_r in -lc_r... (cached) no checking for dladdr... (cached) yes checking for socket in -lsocket... (cached) no checking whether mmap() sees write()s... yes checking whether gcc needs -traditional... (cached) no checking for 8-bit clean memcmp... (cached) yes checking for random... (cached) yes checking for strerror... (cached) yes checking for lchown... (cached) yes checking for fchmod... (cached) yes checking for snprintf... (cached) yes checking for statvfs... (cached) yes checking for memmove... (cached) yes checking for rint... (cached) yes checking for stat64... (cached) yes checking for lstat64... (cached) yes checking for truncate64... (cached) no checking for statvfs64... (cached) no checking for setbuf... (cached) yes checking for isatty... (cached) yes checking for flockfile... (cached) yes checking for getpagesize... (cached) yes checking for localtime_r... (cached) yes checking for strtok_r... (cached) yes checking for wcrtomb... (cached) yes checking for mbrtowc... (cached) yes checking for res_ninit()... (cached) no checking for gnu_get_libc_version()... (cached) no ../src/configure: line 9881: AM_LANGINFO_CODESET: command not found checking for an implementation of va_copy()... (cached) yes checking for an implementation of __va_copy()... (cached) yes checking whether va_lists can be copied by value... (cached) no checking for C++ exceptions flag... (cached) -fno-exceptions checking for gcc 3.0 ABI... (cached) yes checking for C++ "explicit" keyword... (cached) yes checking for C++ "typename" keyword... (cached) yes checking for modern C++ template specialization syntax support... (cached) yes checking whether partial template specialization works... (cached) yes checking whether operators must be re-defined for templates derived from templates... (cached) no checking whether we need to cast a derived template to pass as its base class... (cached) no checking whether the compiler can resolve const ambiguities for templates... (cached) yes checking whether the C++ "using" keyword can change access... (cached) yes checking whether the C++ "using" keyword resolves ambiguity... (cached) yes checking for "std::" namespace... (cached) yes checking whether standard template operator!=() is ambiguous... (cached) unambiguous checking for C++ reinterpret_cast... (cached) yes checking for C++ dynamic_cast to void*... (cached) yes checking whether C++ requires implementation of unused virtual methods... (cached) yes checking for trouble comparing to zero near std::operator!=()... (cached) no checking for LC_MESSAGES... (cached) yes checking for tar archiver... checking for gnutar... (cached) gnutar gnutar checking for wget... checking for wget... (cached) wget wget checking for valid optimization flags... yes checking for gcc -pipe support... yes checking whether compiler supports -Wno-long-long... yes checking whether C compiler supports -fprofile-generate... yes checking for correct temporary object destruction order... yes checking for correct overload resolution with const and templates... no Building Python extensions using python-2.5 from /opt/local/Library/Frameworks/Python.framework/Versions/2.5 creating ./config.status creating config/autoconf.mk creating Makefile creating xpcom/Makefile creating xpcom/src/Makefile creating xpcom/src/loader/Makefile creating xpcom/src/module/Makefile creating xpcom/components/Makefile creating xpcom/test/Makefile creating xpcom/test/test_component/Makefile creating dom/Makefile creating dom/src/Makefile creating dom/test/Makefile creating dom/test/pyxultest/Makefile creating dom/nsdom/Makefile creating dom/nsdom/test/Makefile

    Read the article

  • How to debug into my apache module built using a Makefile?

    - by AJ
    Firstly, I come from Windows-VisualStudio-C++ background. Now I am developing in a Ubuntu environment. With the help of a Makefile, I built a mymodule.so and copied it to the modules folder within apache. Now, it appears that the module is working fine. But I would like to debug into this module to understand it better. So, first, is there any way I can get something similar to the Visual Studio debugger type of feel while debugging this module? Now, i read that i can use gdb to debug into apache modules, can somebody tell me in detail how this is done or point me to some resource that does it. Ideally, i would like to single step and stuff. I am trying Code::Blocks IDE which has some debugging support. Using the IDE and custom make file, I build the module. Copied it to module location, but how do i debug. How do i hook to the apache process. Should I use Attach to Process. I tried that with the pid of httpd, but with no success. Also, while building is there some flag that i should set so that the .so file is debuggable? I am pretty basic with Linux because i come from windows programming background. Kindly suggest how I go about this. Thanks in advance, Arjun

    Read the article

  • Fastest way to copy a set (100+) of related SQLAlchemy objects and change attribute on each one

    - by rebus
    I am developing an app that keeps track of items going in and out of factory. For example, lets say you have 3 kinds of plastic coming in, they are mixed in various ratios and then sent out as a new product. So to keep track of this I've created following database structure: This is very simplified overview of my SQLAlchemy models: IN <- RATIO <- OUT <- REPORT ITEMS -> REPORT IN are products coming in, RATIO is various information on measurements, and OUT is a final product. REPORT is basically a header model which has a lot of REPORT ITEMS attached to it, which in turn relate it to OUT products. This would all work perfectly, but IN and RATION values can change. These changes ultimately change the OUT product which would mean the REPORT values would change. So in order to change an attribute on IN object for example I should copy that object with that attribute changed. I would think this is basically a question about database normalization, because i didn't want to duplicate all the IN, RATIO and OUT information by writing it in REPORT ITEMS table for example, but I've came across this problem (well not really a problem but rather a feature I'd like for a user to have). When the attribute on IN object is changed I want related objects (RATIO and OUT) automatically copied and related to a new IN object. So I was thinking something like: Take an existing instance of model IN that needs to change (call it old_in) Create a new one out of it with some attributes changed (call it new_in) Collect all the RATIO objects that are related to old_in Copy each RATIO and relate them to a new_in Collect all the OUT objects that are related to old RATIO Copy each OUT and relate them to a new RATIO Few questions pop to mind when i look at this problem: Should i just duplicate the data, does all this copying even make sense? If it does, should i rather do it in plain SQL? If no what would be the best approach to do it with Python and SQLAlchemy? Any general answer would suffice really, at least a pointer in right direction. I really want to free then end user for hassle of having create new ratios and out products.

    Read the article

  • How can I copy a SQL record which has related records in other tables to the same database?

    - by DerekVS
    Hi. I created a function in C# which allows me to copy a record and its related children to a new record and new related children in the same database. (This is for an application that allows the use of previous work as a template for new work.) Anyway, it works great... Here's a description of how it accomplishes the copy: It populates a two-column memory-based look-up table with the current primary key of each record. Next, as it individually creates each new copy record, it updates the look-up table with the Identity PK of the new record [retrieved from SCOPE_IDENTITY()]. Now, when it copies over any related children, it can look up the new parent PK to set the FK on the new record. In testing, it only took a minute to copy a relational structure on a local instance of SQL Server 2005 Express Edition. Unfortunately it is proving to be horribly slow in production! My users are dealing with 60,000+ records per parent record over the LAN to our SQL Server! While my copy function still works, each of those records represents an individual SQL UPDATE command and it loads the SQL Server at about 17% CPU from its normal 2% idle. I just finished testing a 50,000 record copy and it took almost 20 minutes! Is there a way to duplicate this functionality in SQL queries or stored procecures to make the SQL server do all of the copy work instead of blasting it over the LAN from each client? (We're running Microsoft SQL Server 2005 Standard Edition.) Thanks! -Derek

    Read the article

  • Need Associated ID Added to a While Loop (php)

    - by user319361
    Been trying to get my head around while loops for the last few days but the code seems very inefficient for what Im trying to achieve. I'm assuming I'm overcomplicating this though nothing I've tried seems to work. Each topic in my forum can have related topic IDs stored in a seperate table. A post ID is also stored in this table, as that specific post references why they are considered related. DB Table contains only: topic_id, related_id, post_id // Get related IDs and post IDs for current topic being viewed $result = $db->query('SELECT related_id, post_id FROM related_topics WHERE topic_id='.$id.''); // If related topics found, put both of the IDs into arrays if ($db->num_rows($result)) { while($cur_related = mysql_fetch_array($result)){ $reltopicarray[] = $cur_related['related_id']; $relpost[] = $cur_related['post_id']; } // If the first array isnt empty, get some additional info about each related ID from another table if(!empty($reltopicarray)) { $pieces = $reltopicarray; $glued = "\"".implode('", "', $pieces)."\""; $fetchtopics = $db->query('SELECT id, subject, author, image, etc FROM topics WHERE id IN('.$glued.')'); } // Print each related topic while($related = mysql_fetch_array($fetchtopics)){ ?> <a href="view.php?id=<?php echo $related['id']; ?>"><?php echo $related['subject']; ?></a> by <?php echo $related['author']; ?> // Id like to show the Post ID below (from the array in the first while loop) // The below link doesnt work as Im outside the while loop by this point. <br /><a href="view.php?post_id=<?php echo $cur_related['post_id']; ?>">View Relationship</a> <?php } ?> The above currently works, however I'm trying to also display the post_id link below each related topic link, as shown above. Would be greatful if someone can lend a hand. Thanks :)

    Read the article

  • Why does this monitor go to sleep but won't wake up, event though all related power options are turned off?

    - by VoidKing
    We have a machine, Windows 7 (64-bit) with ASUS motherboard, in our building that only sometimes seems to go to sleep, but won't wake up. The machine is still running but shaking the mouse or hitting keys on the keyboard won't wake it up. I have tried for days to isolate the problem, but every time we get to a "let's try this" scenario, it happens again, later. All power options related to display being off are set to never, except the simple, "turn display off after..." setting. That is, the hard drive is set to never turn off, and the computer is set to never sleep nor hibernate. All drivers seem to be up to date, but I am afraid I will hose the machine if I do a BIOS update (plus I figured that will probably have nothing to do with the issue and only make something else break). Wasn't sure if there was something obvious I was missing?

    Read the article

  • How is DNS related to Active Directory and what are some common configurations that I should be aware of?

    - by MDMarra
    Please note that I do know the answer to this and have provided one below. I see a lot of newer systems administrators that don't understand the contents of my answer, so I hope that all of the beginner AD DNS questions will be closed as a duplicate of this. If you have a minor improvement, feel free to edit my answer. If you can provide a more comprehensive complete answer, feel free to leave one. How is DNS related to Active Directory and what are some common configurations that I should be aware of?

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • Change master table PK and update related table FK (changing PK from Autoincrement to UUID on Mysql)

    - by eleonzx
    I have two related tables: Groups and Clients. Clients belongs to Groups so I have a foreign key "group_id" that references the group a client belongs to. I'm changing the Group id from an autoincrement to a UUID. So what I need is to generate a UUID for each Group and update the Clients table at once to reflect the changes and keep the records related. Is there a way to do this with multiple-table update on MySQL? Adding tables definitions for clarification. CREATE TABLE `groups` ( `id` char(36) NOT NULL, `name` varchar(255) DEFAULT NULL, `created` datetime DEFAULT NULL, `modified` datetime DEFAULT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB DEFAULT CHARSET=utf8$$ CREATE TABLE `clients` ( `id` char(36) NOT NULL, `name` varchar(255) NOT NULL, `group_id` char(36) DEFAULT NULL, `active` tinyint(1) DEFAULT '1' PRIMARY KEY (`id`), KEY `fkgp` (`group_id`), CONSTRAINT `fkgp` FOREIGN KEY (`group_id`) REFERENCES `groups` (`id`) ON DELETE NO ACTION ON UPDATE CASCADE ) ENGINE=InnoDB DEFAULT CHARSET=utf8$$

    Read the article

  • 301 redirects - can we not delete old pages?

    - by KBS
    First time here :) We have a page on the site which ranks well for an SEO term (top 5) but contains old information. We have added a new page but Google doesn't rank it that well. Information on these pages is time sensitive. Old: example.com/2013-related-information.html New: example.com/2014-related-information.html Obvious solution is to delete old page and do a 301 redirect to the new page. Now, can we still keep the old page by giving it a new URL. Step1: example.com/2013-related-information.html is redirect to example.com/2014-related-information.html Step2: example.com/2014-related-information.html is recreated with a new address such as example.com/new-2013-related-information.html What we are trying to do is to send the user to the fresh page but still not wasting the record copy if someone wants to go and dig up old page. Would appreciate help!! Cheers

    Read the article

< Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >