Search Results

Search found 6869 results on 275 pages for 'tek systems'.

Page 38/275 | < Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >

  • Highlight image borders with Ajax request.

    - by Tek
    First, some visualization of the code. I have the following images that are dynamically generated from jquery. They're made upon user request: <img id="i13133" src="someimage.jpg" /> <img id="i13232" src="someimage1.jpg" /> <img id="i14432" src="someimage2.jpg" /> <img id="i16432" src="someimage3.jpg" /> <img id="i18422" src="someimage4.jpg" /> I have an AJAX loop that repeats every 15 seconds using jQuery and it contains the following code: Note: The if statement is inside the Ajax loop. Where imgId is the requested ID from the Ajax call. //Passes the IDs retrieved from Ajax, if the IDs exist on the page the animation is triggered. if ( $('#i' + imgId ).length ) { var pickimage = '#i' + imgId; var stop = false; function highlight(pickimage) { $(pickimage).animate({color: "yellow"}, 1000, function () { $(pickimage ).animate({color: "black"}, 1000, function () { if (!stop) highlight(pickimage); }); }); } // Start the loop highlight(pickimage); } It works great, even with multiple images. But I had originally used this with one image. The problem is I need an interrupt. Something like: $(img).click(function () { stop = true; }); There's two problems: 1.)This obviously stops all animations. I can't wrap my head around how I could write something that only stops the animation of the image that's clicked. 2.)The Ajax retrieves IDs, sometimes those IDs appear more than once every few minutes, which means it would repeat the animations on top of each other if the image exists. I could use some help figuring out how to detect if an animation is already running on an image, and do nothing if the animation is already triggered on an image.

    Read the article

  • border highlighting loop with jquery

    - by Tek
    I'm having trouble coming up with a loop that changes the border color of an image from black to yellow and yellow to black over x seconds. Then applying an interrupt to the loop when the image gets clicked on. I don't know where to start, can someone point me in the right direction? I think I may be using the wrong tools to properly write this. Here's what I've come up so far, though if there's a better way to write this, do share! for( i = 100; i >= 0; i--) { $("#imgid").css("border-color", 'rgb(' + i + '%,' + i + '%,0)'); } I'm having trouble picturing how I could combine two loops so that I can also count upwards as well so that it will turn into yellow and back to black. I also don't know how to go about controlling the amount of time it takes for that loop to execute and creating an interrupt when #imigid is clicked. Which is where I'm not sure how to write.

    Read the article

  • Which way to go in Linux 3D programming?

    - by Tek
    I'm looking for some answers for a project I'm thinking of. I've searched and from what I understand (correct me if I'm wrong) the only way the program I want to make will work is through 3D application. Let me explain. I plan to make a studio production program but it's unique in the fact that I want to be able to make it fluid. Let me explain. Imagine Microsoft's Surface program where you're able to touch and drag pictures across the screen. Instead of pictures I want them to be sound samples (wavs,mp3,etc). Of course instead the input will be with the mouse but if I ever do finish the project I would totally add touch screen input compatibility! Anyway, I'm guessing there's "physics" to do with it which is why I'm thinking that even though it'll be a 2D application I'll need to code it in a 3D environment. Assuming that I'm correct in how I want to approach my project, where can I start learning about 3D programming? I actually come from PHP programming which will make C++ easier for me to learn. But I don't even know where to start. If I'm not wrong OpenGL is the most up to date API as far as I know. Anyway, please give me your insights guys. I could really use some guidance here since I could totally be wrong in everything that I wrote :)

    Read the article

  • High CPU usage with Team Speak 3.0.0-rc2

    - by AlexTheBird
    The CPU usage is always around 40 percent. I use push-to-talk and I had uninstalled pulseaudio. Now I use Alsa. I don't even have to connect to a Server. By simply starting TS the cpu usage goes up 40 percent and stays there. The CPU usage of 3.0.0-rc1 [Build: 14468] is constantly 14 percent. This is the output of top, mpstat and ps aux while I am running TS3 ... of course: alexandros@alexandros-laptop:~$ top top - 18:20:07 up 2:22, 3 users, load average: 1.02, 0.85, 0.77 Tasks: 163 total, 1 running, 162 sleeping, 0 stopped, 0 zombie Cpu(s): 5.3%us, 1.9%sy, 0.1%ni, 91.8%id, 0.7%wa, 0.1%hi, 0.1%si, 0.0%st Mem: 2061344k total, 964028k used, 1097316k free, 69116k buffers Swap: 3997688k total, 0k used, 3997688k free, 449032k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2714 alexandr 20 0 206m 31m 24m S 37 1.6 0:12.78 ts3client_linux 868 root 20 0 47564 27m 10m S 8 1.4 3:21.73 Xorg 1 root 20 0 2804 1660 1204 S 0 0.1 0:00.53 init 2 root 20 0 0 0 0 S 0 0.0 0:00.00 kthreadd 3 root RT 0 0 0 0 S 0 0.0 0:00.01 migration/0 4 root 20 0 0 0 0 S 0 0.0 0:00.45 ksoftirqd/0 5 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/0 6 root RT 0 0 0 0 S 0 0.0 0:00.00 migration/1 7 root 20 0 0 0 0 S 0 0.0 0:00.08 ksoftirqd/1 8 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/1 9 root 20 0 0 0 0 S 0 0.0 0:01.17 events/0 10 root 20 0 0 0 0 S 0 0.0 0:00.81 events/1 11 root 20 0 0 0 0 S 0 0.0 0:00.00 cpuset 12 root 20 0 0 0 0 S 0 0.0 0:00.00 khelper 13 root 20 0 0 0 0 S 0 0.0 0:00.00 async/mgr 14 root 20 0 0 0 0 S 0 0.0 0:00.00 pm 16 root 20 0 0 0 0 S 0 0.0 0:00.00 sync_supers 17 root 20 0 0 0 0 S 0 0.0 0:00.00 bdi-default 18 root 20 0 0 0 0 S 0 0.0 0:00.00 kintegrityd/0 19 root 20 0 0 0 0 S 0 0.0 0:00.00 kintegrityd/1 20 root 20 0 0 0 0 S 0 0.0 0:00.05 kblockd/0 21 root 20 0 0 0 0 S 0 0.0 0:00.02 kblockd/1 22 root 20 0 0 0 0 S 0 0.0 0:00.00 kacpid 23 root 20 0 0 0 0 S 0 0.0 0:00.00 kacpi_notify 24 root 20 0 0 0 0 S 0 0.0 0:00.00 kacpi_hotplug 25 root 20 0 0 0 0 S 0 0.0 0:00.99 ata/0 26 root 20 0 0 0 0 S 0 0.0 0:00.92 ata/1 27 root 20 0 0 0 0 S 0 0.0 0:00.00 ata_aux 28 root 20 0 0 0 0 S 0 0.0 0:00.00 ksuspend_usbd 29 root 20 0 0 0 0 S 0 0.0 0:00.00 khubd alexandros@alexandros-laptop:~$ mpstat Linux 2.6.32-32-generic (alexandros-laptop) 16.06.2011 _i686_ (2 CPU) 18:20:15 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle 18:20:15 all 5,36 0,09 1,91 0,68 0,07 0,06 0,00 0,00 91,83 alexandros@alexandros-laptop:~$ ps aux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.0 0.0 2804 1660 ? Ss 15:58 0:00 /sbin/init root 2 0.0 0.0 0 0 ? S 15:58 0:00 [kthreadd] root 3 0.0 0.0 0 0 ? S 15:58 0:00 [migration/0] root 4 0.0 0.0 0 0 ? S 15:58 0:00 [ksoftirqd/0] root 5 0.0 0.0 0 0 ? S 15:58 0:00 [watchdog/0] root 6 0.0 0.0 0 0 ? S 15:58 0:00 [migration/1] root 7 0.0 0.0 0 0 ? S 15:58 0:00 [ksoftirqd/1] root 8 0.0 0.0 0 0 ? S 15:58 0:00 [watchdog/1] root 9 0.0 0.0 0 0 ? S 15:58 0:01 [events/0] root 10 0.0 0.0 0 0 ? S 15:58 0:00 [events/1] root 11 0.0 0.0 0 0 ? S 15:58 0:00 [cpuset] root 12 0.0 0.0 0 0 ? S 15:58 0:00 [khelper] root 13 0.0 0.0 0 0 ? S 15:58 0:00 [async/mgr] root 14 0.0 0.0 0 0 ? S 15:58 0:00 [pm] root 16 0.0 0.0 0 0 ? S 15:58 0:00 [sync_supers] root 17 0.0 0.0 0 0 ? S 15:58 0:00 [bdi-default] root 18 0.0 0.0 0 0 ? S 15:58 0:00 [kintegrityd/0] root 19 0.0 0.0 0 0 ? S 15:58 0:00 [kintegrityd/1] root 20 0.0 0.0 0 0 ? S 15:58 0:00 [kblockd/0] root 21 0.0 0.0 0 0 ? S 15:58 0:00 [kblockd/1] root 22 0.0 0.0 0 0 ? S 15:58 0:00 [kacpid] root 23 0.0 0.0 0 0 ? S 15:58 0:00 [kacpi_notify] root 24 0.0 0.0 0 0 ? S 15:58 0:00 [kacpi_hotplug] root 25 0.0 0.0 0 0 ? S 15:58 0:00 [ata/0] root 26 0.0 0.0 0 0 ? S 15:58 0:00 [ata/1] root 27 0.0 0.0 0 0 ? S 15:58 0:00 [ata_aux] root 28 0.0 0.0 0 0 ? S 15:58 0:00 [ksuspend_usbd] root 29 0.0 0.0 0 0 ? S 15:58 0:00 [khubd] root 30 0.0 0.0 0 0 ? S 15:58 0:00 [kseriod] root 31 0.0 0.0 0 0 ? S 15:58 0:00 [kmmcd] root 34 0.0 0.0 0 0 ? S 15:58 0:00 [khungtaskd] root 35 0.0 0.0 0 0 ? S 15:58 0:00 [kswapd0] root 36 0.0 0.0 0 0 ? SN 15:58 0:00 [ksmd] root 37 0.0 0.0 0 0 ? S 15:58 0:00 [aio/0] root 38 0.0 0.0 0 0 ? S 15:58 0:00 [aio/1] root 39 0.0 0.0 0 0 ? S 15:58 0:00 [ecryptfs-kthrea] root 40 0.0 0.0 0 0 ? S 15:58 0:00 [crypto/0] root 41 0.0 0.0 0 0 ? S 15:58 0:00 [crypto/1] root 48 0.0 0.0 0 0 ? S 15:58 0:03 [scsi_eh_0] root 50 0.0 0.0 0 0 ? S 15:58 0:00 [scsi_eh_1] root 53 0.0 0.0 0 0 ? S 15:58 0:00 [kstriped] root 54 0.0 0.0 0 0 ? S 15:58 0:00 [kmpathd/0] root 55 0.0 0.0 0 0 ? S 15:58 0:00 [kmpathd/1] root 56 0.0 0.0 0 0 ? S 15:58 0:00 [kmpath_handlerd] root 57 0.0 0.0 0 0 ? S 15:58 0:00 [ksnapd] root 58 0.0 0.0 0 0 ? S 15:58 0:03 [kondemand/0] root 59 0.0 0.0 0 0 ? S 15:58 0:02 [kondemand/1] root 60 0.0 0.0 0 0 ? S 15:58 0:00 [kconservative/0] root 61 0.0 0.0 0 0 ? S 15:58 0:00 [kconservative/1] root 213 0.0 0.0 0 0 ? S 15:58 0:00 [scsi_eh_2] root 222 0.0 0.0 0 0 ? S 15:58 0:00 [scsi_eh_3] root 234 0.0 0.0 0 0 ? S 15:58 0:00 [scsi_eh_4] root 235 0.0 0.0 0 0 ? S 15:58 0:01 [usb-storage] root 255 0.0 0.0 0 0 ? S 15:58 0:00 [jbd2/sda5-8] root 256 0.0 0.0 0 0 ? S 15:58 0:00 [ext4-dio-unwrit] root 257 0.0 0.0 0 0 ? S 15:58 0:00 [ext4-dio-unwrit] root 290 0.0 0.0 0 0 ? S 15:58 0:00 [flush-8:0] root 318 0.0 0.0 2316 888 ? S 15:58 0:00 upstart-udev-bridge --daemon root 321 0.0 0.0 2616 1024 ? S<s 15:58 0:00 udevd --daemon root 526 0.0 0.0 0 0 ? S 15:58 0:00 [kpsmoused] root 528 0.0 0.0 0 0 ? S 15:58 0:00 [led_workqueue] root 650 0.0 0.0 0 0 ? S 15:58 0:00 [radeon/0] root 651 0.0 0.0 0 0 ? S 15:58 0:00 [radeon/1] root 652 0.0 0.0 0 0 ? S 15:58 0:00 [ttm_swap] root 654 0.0 0.0 2612 984 ? S< 15:58 0:00 udevd --daemon root 656 0.0 0.0 0 0 ? S 15:58 0:00 [hd-audio0] root 657 0.0 0.0 2612 916 ? S< 15:58 0:00 udevd --daemon root 674 0.6 0.0 0 0 ? S 15:58 0:57 [phy0] syslog 715 0.0 0.0 34812 1776 ? Sl 15:58 0:00 rsyslogd -c4 102 731 0.0 0.0 3236 1512 ? Ss 15:58 0:02 dbus-daemon --system --fork root 740 0.0 0.1 19088 3380 ? Ssl 15:58 0:00 gdm-binary root 744 0.0 0.1 18900 4032 ? Ssl 15:58 0:01 NetworkManager avahi 749 0.0 0.0 2928 1520 ? S 15:58 0:00 avahi-daemon: running [alexandros-laptop.local] avahi 752 0.0 0.0 2928 544 ? Ss 15:58 0:00 avahi-daemon: chroot helper root 753 0.0 0.1 4172 2300 ? S 15:58 0:00 /usr/sbin/modem-manager root 762 0.0 0.1 20584 3152 ? Sl 15:58 0:00 /usr/sbin/console-kit-daemon --no-daemon root 836 0.0 0.1 20856 3864 ? Sl 15:58 0:00 /usr/lib/gdm/gdm-simple-slave --display-id /org/gnome/DisplayManager/Display1 root 856 0.0 0.1 4836 2388 ? S 15:58 0:00 /sbin/wpa_supplicant -u -s root 868 2.3 1.3 36932 27924 tty7 Rs+ 15:58 3:22 /usr/bin/X :0 -nr -verbose -auth /var/run/gdm/auth-for-gdm-a46T4j/database -nolisten root 891 0.0 0.0 1792 564 tty4 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty4 root 901 0.0 0.0 1792 564 tty5 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty5 root 908 0.0 0.0 1792 564 tty2 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty2 root 910 0.0 0.0 1792 568 tty3 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty3 root 913 0.0 0.0 1792 564 tty6 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty6 root 917 0.0 0.0 2180 1072 ? Ss 15:58 0:00 acpid -c /etc/acpi/events -s /var/run/acpid.socket daemon 924 0.0 0.0 2248 432 ? Ss 15:58 0:00 atd root 927 0.0 0.0 2376 900 ? Ss 15:58 0:00 cron root 950 0.0 0.0 11736 1372 ? Ss 15:58 0:00 /usr/sbin/winbindd root 958 0.0 0.0 11736 1184 ? S 15:58 0:00 /usr/sbin/winbindd root 974 0.0 0.1 6832 2580 ? Ss 15:58 0:00 /usr/sbin/cupsd -C /etc/cups/cupsd.conf root 1078 0.0 0.0 1792 564 tty1 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty1 gdm 1097 0.0 0.0 3392 772 ? S 15:58 0:00 /usr/bin/dbus-launch --exit-with-session root 1112 0.0 0.1 19216 3292 ? Sl 15:58 0:00 /usr/lib/gdm/gdm-session-worker root 1116 0.0 0.1 5540 2932 ? S 15:58 0:01 /usr/lib/upower/upowerd root 1131 0.0 0.1 6308 3824 ? S 15:58 0:00 /usr/lib/policykit-1/polkitd 108 1163 0.0 0.2 16788 4360 ? Ssl 15:58 0:01 /usr/sbin/hald root 1164 0.0 0.0 3536 1300 ? S 15:58 0:00 hald-runner root 1188 0.0 0.0 3612 1256 ? S 15:58 0:00 hald-addon-input: Listening on /dev/input/event6 /dev/input/event5 /dev/input/event2 root 1194 0.0 0.0 3612 1224 ? S 15:58 0:00 /usr/lib/hal/hald-addon-rfkill-killswitch root 1200 0.0 0.0 3608 1240 ? S 15:58 0:00 /usr/lib/hal/hald-addon-generic-backlight root 1202 0.0 0.0 3616 1236 ? S 15:58 0:02 hald-addon-storage: polling /dev/sr0 (every 2 sec) root 1204 0.0 0.0 3616 1236 ? S 15:58 0:00 hald-addon-storage: polling /dev/sdb (every 2 sec) root 1211 0.0 0.0 3624 1220 ? S 15:58 0:00 /usr/lib/hal/hald-addon-cpufreq 108 1212 0.0 0.0 3420 1200 ? S 15:58 0:00 hald-addon-acpi: listening on acpid socket /var/run/acpid.socket 1000 1222 0.0 0.1 24196 2816 ? Sl 15:58 0:00 /usr/bin/gnome-keyring-daemon --daemonize --login 1000 1240 0.0 0.3 28228 7312 ? Ssl 15:58 0:00 gnome-session 1000 1274 0.0 0.0 3284 356 ? Ss 15:58 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --exit-with-session gnome-session 1000 1277 0.0 0.0 3392 772 ? S 15:58 0:00 /usr/bin/dbus-launch --exit-with-session gnome-session 1000 1278 0.0 0.0 3160 1652 ? Ss 15:58 0:00 /bin/dbus-daemon --fork --print-pid 5 --print-address 7 --session 1000 1281 0.0 0.2 8172 4636 ? S 15:58 0:00 /usr/lib/libgconf2-4/gconfd-2 1000 1287 0.0 0.5 24228 10896 ? Ss 15:58 0:03 /usr/lib/gnome-settings-daemon/gnome-settings-daemon 1000 1290 0.0 0.1 6468 2364 ? S 15:58 0:00 /usr/lib/gvfs/gvfsd 1000 1293 0.0 0.6 38104 13004 ? S 15:58 0:03 metacity 1000 1296 0.0 0.1 30280 2628 ? Ssl 15:58 0:00 /usr/lib/gvfs//gvfs-fuse-daemon /home/alexandros/.gvfs 1000 1301 0.0 0.0 3344 988 ? S 15:58 0:03 syndaemon -i 0.5 -k 1000 1303 0.0 0.1 8060 3488 ? S 15:58 0:00 /usr/lib/gvfs/gvfs-gdu-volume-monitor root 1306 0.0 0.1 15692 3104 ? Sl 15:58 0:00 /usr/lib/udisks/udisks-daemon 1000 1307 0.4 1.0 50748 21684 ? S 15:58 0:34 python -u /usr/share/screenlets/DigiClock/DigiClockScreenlet.py 1000 1308 0.0 0.9 35608 18564 ? S 15:58 0:00 python /usr/share/screenlets-manager/screenlets-daemon.py 1000 1309 0.0 0.3 19524 6468 ? S 15:58 0:00 /usr/lib/policykit-1-gnome/polkit-gnome-authentication-agent-1 1000 1311 0.0 0.5 37412 11788 ? S 15:58 0:01 gnome-power-manager 1000 1312 0.0 1.0 50772 22628 ? S 15:58 0:03 gnome-panel 1000 1313 0.1 1.5 102648 31184 ? Sl 15:58 0:10 nautilus root 1314 0.0 0.0 5188 996 ? S 15:58 0:02 udisks-daemon: polling /dev/sdb /dev/sr0 1000 1315 0.0 0.6 51948 12464 ? SL 15:58 0:01 nm-applet --sm-disable 1000 1317 0.0 0.1 16956 2364 ? Sl 15:58 0:00 /usr/lib/gvfs/gvfs-afc-volume-monitor 1000 1318 0.0 0.3 20164 7792 ? S 15:58 0:00 bluetooth-applet 1000 1321 0.0 0.1 7260 2384 ? S 15:58 0:00 /usr/lib/gvfs/gvfs-gphoto2-volume-monitor 1000 1323 0.0 0.5 37436 12124 ? S 15:58 0:00 /usr/lib/notify-osd/notify-osd 1000 1324 0.0 1.9 197928 40456 ? Ssl 15:58 0:06 /home/alexandros/.dropbox-dist/dropbox 1000 1329 0.0 0.3 20136 7968 ? S 15:58 0:00 /usr/bin/gnome-screensaver --no-daemon 1000 1331 0.0 0.1 7056 3112 ? S 15:58 0:00 /usr/lib/gvfs/gvfsd-trash --spawner :1.6 /org/gtk/gvfs/exec_spaw/0 root 1340 0.0 0.0 2236 1008 ? S 15:58 0:00 /sbin/dhclient -d -sf /usr/lib/NetworkManager/nm-dhcp-client.action -pf /var/run/dhcl 1000 1348 0.0 0.1 42252 3680 ? Ssl 15:58 0:00 /usr/lib/bonobo-activation/bonobo-activation-server --ac-activate --ior-output-fd=19 1000 1384 0.0 1.7 80244 35480 ? Sl 15:58 0:02 /usr/bin/python /usr/lib/deskbar-applet/deskbar-applet/deskbar-applet --oaf-activate- 1000 1388 0.0 0.5 26196 11804 ? S 15:58 0:01 /usr/lib/gnome-panel/wnck-applet --oaf-activate-iid=OAFIID:GNOME_Wncklet_Factory --oa 1000 1393 0.1 0.5 25876 11548 ? S 15:58 0:08 /usr/lib/gnome-applets/multiload-applet-2 --oaf-activate-iid=OAFIID:GNOME_MultiLoadAp 1000 1394 0.0 0.5 25600 11140 ? S 15:58 0:03 /usr/lib/gnome-applets/cpufreq-applet --oaf-activate-iid=OAFIID:GNOME_CPUFreqApplet_F 1000 1415 0.0 0.5 39192 11156 ? S 15:58 0:01 /usr/lib/gnome-power-manager/gnome-inhibit-applet --oaf-activate-iid=OAFIID:GNOME_Inh 1000 1417 0.0 0.7 53544 15488 ? Sl 15:58 0:00 /usr/lib/gnome-applets/mixer_applet2 --oaf-activate-iid=OAFIID:GNOME_MixerApplet_Fact 1000 1419 0.0 0.4 23816 9068 ? S 15:58 0:00 /usr/lib/gnome-panel/notification-area-applet --oaf-activate-iid=OAFIID:GNOME_Notific 1000 1488 0.0 0.3 20964 7548 ? S 15:58 0:00 /usr/lib/gnome-disk-utility/gdu-notification-daemon 1000 1490 0.0 0.1 6608 2484 ? S 15:58 0:00 /usr/lib/gvfs/gvfsd-burn --spawner :1.6 /org/gtk/gvfs/exec_spaw/1 1000 1510 0.0 0.1 6348 2084 ? S 15:58 0:00 /usr/lib/gvfs/gvfsd-metadata 1000 1531 0.0 0.3 19472 6616 ? S 15:58 0:00 /usr/lib/gnome-user-share/gnome-user-share 1000 1535 0.0 0.4 77128 8392 ? Sl 15:58 0:00 /usr/lib/evolution/evolution-data-server-2.28 --oaf-activate-iid=OAFIID:GNOME_Evoluti 1000 1601 0.0 0.5 69576 11800 ? Sl 15:59 0:00 /usr/lib/evolution/2.28/evolution-alarm-notify 1000 1604 0.0 0.7 33924 15888 ? S 15:59 0:00 python /usr/share/system-config-printer/applet.py 1000 1701 0.0 0.5 37116 11968 ? S 15:59 0:00 update-notifier 1000 1892 4.5 7.0 406720 145312 ? Sl 17:11 3:09 /opt/google/chrome/chrome 1000 1896 0.0 0.1 69812 3680 ? S 17:11 0:02 /opt/google/chrome/chrome 1000 1898 0.0 0.6 91420 14080 ? S 17:11 0:00 /opt/google/chrome/chrome --type=zygote 1000 1916 0.2 1.3 140780 27220 ? Sl 17:11 0:12 /opt/google/chrome/chrome --type=extension --disable-client-side-phishing-detection - 1000 1918 0.7 1.8 155720 37912 ? Sl 17:11 0:31 /opt/google/chrome/chrome --type=extension --disable-client-side-phishing-detection - 1000 1921 0.0 1.0 135904 21052 ? Sl 17:11 0:02 /opt/google/chrome/chrome --type=extension --disable-client-side-phishing-detection - 1000 1927 6.5 3.6 194604 74960 ? Sl 17:11 4:32 /opt/google/chrome/chrome --type=renderer --disable-client-side-phishing-detection -- 1000 2156 0.4 0.7 48344 14896 ? Rl 18:03 0:04 gnome-terminal 1000 2157 0.0 0.0 1988 712 ? S 18:03 0:00 gnome-pty-helper 1000 2158 0.0 0.1 6504 3860 pts/0 Ss 18:03 0:00 bash 1000 2564 0.2 0.1 6624 3984 pts/1 Ss+ 18:17 0:00 bash 1000 2711 0.0 0.0 4208 1352 ? S 18:19 0:00 /bin/bash /home/alexandros/Programme/TeamSpeak3-Client-linux_x86_back/ts3client_runsc 1000 2714 36.5 1.5 210872 31960 ? SLl 18:19 0:18 ./ts3client_linux_x86 1000 2743 0.0 0.0 2716 1068 pts/0 R+ 18:20 0:00 ps aux Output of vmstat: alexandros@alexandros-laptop:~$ vmstat procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 0 0 0 1093324 69840 449496 0 0 27 10 476 667 6 2 91 1 Output of lsusb alexandros@alexandros-laptop:~$ lspci 00:00.0 Host bridge: Silicon Integrated Systems [SiS] 671MX 00:01.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 00:02.0 ISA bridge: Silicon Integrated Systems [SiS] SiS968 [MuTIOL Media IO] (rev 01) 00:02.5 IDE interface: Silicon Integrated Systems [SiS] 5513 [IDE] (rev 01) 00:03.0 USB Controller: Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) 00:03.1 USB Controller: Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) 00:03.3 USB Controller: Silicon Integrated Systems [SiS] USB 2.0 Controller 00:05.0 IDE interface: Silicon Integrated Systems [SiS] SATA Controller / IDE mode (rev 03) 00:06.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 00:07.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 00:0d.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) 00:0f.0 Audio device: Silicon Integrated Systems [SiS] Azalia Audio Controller 01:00.0 VGA compatible controller: ATI Technologies Inc Mobility Radeon X2300 02:00.0 Ethernet controller: Atheros Communications Inc. AR5001 Wireless Network Adapter (rev 01) The Team Speak log file : 2011-06-19 19:04:04.223522|INFO | | | Logging started, clientlib version: 3.0.0-rc2 [Build: 14642] 2011-06-19 19:04:04.761149|ERROR |SoundBckndIntf| | /home/alexandros/Programme/TeamSpeak3-Client-linux_x86_back/soundbackends/libpulseaudio_linux_x86.so error: NOT_CONNECTED 2011-06-19 19:04:05.871770|INFO |ClientUI | | Failed to init text to speech engine 2011-06-19 19:04:05.894623|INFO |ClientUI | | TeamSpeak 3 client version: 3.0.0-rc2 [Build: 14642] 2011-06-19 19:04:05.895421|INFO |ClientUI | | Qt version: 4.7.2 2011-06-19 19:04:05.895571|INFO |ClientUI | | Using configuration location: /home/alexandros/.ts3client/ts3clientui_qt.conf 2011-06-19 19:04:06.559596|INFO |ClientUI | | Last update check was: Sa. Jun 18 00:08:43 2011 2011-06-19 19:04:06.560506|INFO | | | Checking for updates... 2011-06-19 19:04:07.357869|INFO | | | Update check, my version: 14642, latest version: 14642 2011-06-19 19:05:52.978481|INFO |PreProSpeex | 1| Speex version: 1.2rc1 2011-06-19 19:05:54.055347|INFO |UIHelpers | | setClientVolumeModifier: 10 -8 2011-06-19 19:05:54.057196|INFO |UIHelpers | | setClientVolumeModifier: 11 2 Thanks for taking the time to read my message. UPDATE: Thanks to nickguletskii's link I googled for "alsa cpu usage" (without quotes) and it brought me to a forum. A user wrote that by directly selecting the hardware with "plughw:x.x" won't impact the performance of the system. I have selected it in the TS 3 configuration and it worked. But this solution is not optimal because now no other program can access the sound output. If you need any further information or my question is unclear than please tell me.

    Read the article

  • Managing access to multiple linux system

    - by Swartz
    A searched for answers but have found nothing on here... Long story short: a non-profit organization is in dire need of modernizing its infrastructure. First thing is to find an alternatives to managing user accounts on a number of Linux hosts. We have 12 servers (both physical and virtual) and about 50 workstations. We have 500 potential users for these systems. The individual who built and maintained the systems over the years has retired. He wrote his own scripts to manage it all. It still works. No complaints there. However, a lot of the stuff is very manual and error-prone. Code is messy and after updates often needs to be tweaked. Worst part is there is little to no docs written. There are just a few ReadMe's and random notes which may or may not be relevant anymore. So maintenance has become a difficult task. Currently accounts are managed via /etc/passwd on each system. Updates are distributed via cron scripts to correct systems as accounts are added on the "main" server. Some users have to have access to all systems (like a sysadmin account), others need access to shared servers, while others may need access to workstations or only a subset of those. Is there a tool that can help us manage accounts that meets the following requirements? Preferably open source (i.e. free as budget is VERY limited) mainstream (i.e. maintained) preferably has LDAP integration or could be made to interface with LDAP or AD service for user authentication (will be needed in the near future to integrate accounts with other offices) user management (adding, expiring, removing, lockout, etc) allows to manage what systems (or group of systems) each user has access to - not all users are allowed on all systems support for user accounts that could have different homedirs and mounts available depending on what system they are logged into. For example sysadmin logged into "main" server has main://home/sysadmin/ as homedir and has all shared mounts sysadmin logged into staff workstations would have nas://user/s/sysadmin as homedir(different from above) and potentially limited set of mounts, a logged in client would have his/her homedir at different location and no shared mounts. If there is an easy management interface that would be awesome. And if this tool is cross-platform (Linux / MacOS / *nix), that will be a miracle! I have searched the web and so have found nothing suitable. We are open to any suggestions. Thank you. EDIT: This question has been incorrectly marked as a duplicate. The linked to answer only talks about having same homedirs on all systems, whereas we need to have different homedirs based on what system user is currently logged into(MULTIPLE homedirs). Also access needs to be granted only to some machinees not the whole lot. Mods, please understand the full extent of the problem instead of merely marking it as duplicate for points...

    Read the article

  • 64-bit Archives Needed

    - by user9154181
    A little over a year ago, we received a question from someone who was trying to build software on Solaris. He was getting errors from the ar command when creating an archive. At that time, the ar command on Solaris was a 32-bit command. There was more than 2GB of data, and the ar command was hitting the file size limit for a 32-bit process that doesn't use the largefile APIs. Even in 2011, 2GB is a very large amount of code, so we had not heard this one before. Most of our toolchain was extended to handle 64-bit sized data back in the 1990's, but archives were not changed, presumably because there was no perceived need for it. Since then of course, programs have continued to get larger, and in 2010, the time had finally come to investigate the issue and find a way to provide for larger archives. As part of that process, I had to do a deep dive into the archive format, and also do some Unix archeology. I'm going to record what I learned here, to document what Solaris does, and in the hope that it might help someone else trying to solve the same problem for their platform. Archive Format Details Archives are hardly cutting edge technology. They are still used of course, but their basic form hasn't changed in decades. Other than to fix a bug, which is rare, we don't tend to touch that code much. The archive file format is described in /usr/include/ar.h, and I won't repeat the details here. Instead, here is a rough overview of the archive file format, implemented by System V Release 4 (SVR4) Unix systems such as Solaris: Every archive starts with a "magic number". This is a sequence of 8 characters: "!<arch>\n". The magic number is followed by 1 or more members. A member starts with a fixed header, defined by the ar_hdr structure in/usr/include/ar.h. Immediately following the header comes the data for the member. Members must be padded at the end with newline characters so that they have even length. The requirement to pad members to an even length is a dead giveaway as to the age of the archive format. It tells you that this format dates from the 1970's, and more specifically from the era of 16-bit systems such as the PDP-11 that Unix was originally developed on. A 32-bit system would have required 4 bytes, and 64-bit systems such as we use today would probably have required 8 bytes. 2 byte alignment is a poor choice for ELF object archive members. 32-bit objects require 4 byte alignment, and 64-bit objects require 64-bit alignment. The link-editor uses mmap() to process archives, and if the members have the wrong alignment, we have to slide (copy) them to the correct alignment before we can access the ELF data structures inside. The archive format requires 2 byte padding, but it doesn't prohibit more. The Solaris ar command takes advantage of this, and pads ELF object members to 8 byte boundaries. Anything else is padded to 2 as required by the format. The archive header (ar_hdr) represents all numeric values using an ASCII text representation rather than as binary integers. This means that an archive that contains only text members can be viewed using tools such as cat, more, or a text editor. The original designers of this format clearly thought that archives would be used for many file types, and not just for objects. Things didn't turn out that way of course — nearly all archives contain relocatable objects for a single operating system and machine, and are used primarily as input to the link-editor (ld). Archives can have special members that are created by the ar command rather than being supplied by the user. These special members are all distinguished by having a name that starts with the slash (/) character. This is an unambiguous marker that says that the user could not have supplied it. The reason for this is that regular archive members are given the plain name of the file that was inserted to create them, and any path components are stripped off. Slash is the delimiter character used by Unix to separate path components, and as such cannot occur within a plain file name. The ar command hides the special members from you when you list the contents of an archive, so most users don't know that they exist. There are only two possible special members: A symbol table that maps ELF symbols to the object archive member that provides it, and a string table used to hold member names that exceed 15 characters. The '/' convention for tagging special members provides room for adding more such members should the need arise. As I will discuss below, we took advantage of this fact to add an alternate 64-bit symbol table special member which is used in archives that are larger than 4GB. When an archive contains ELF object members, the ar command builds a special archive member known as the symbol table that maps all ELF symbols in the object to the archive member that provides it. The link-editor uses this symbol table to determine which symbols are provided by the objects in that archive. If an archive has a symbol table, it will always be the first member in the archive, immediately following the magic number. Unlike member headers, symbol tables do use binary integers to represent offsets. These integers are always stored in big-endian format, even on a little endian host such as x86. The archive header (ar_hdr) provides 15 characters for representing the member name. If any member has a name that is longer than this, then the real name is written into a special archive member called the string table, and the member's name field instead contains a slash (/) character followed by a decimal representation of the offset of the real name within the string table. The string table is required to precede all normal archive members, so it will be the second member if the archive contains a symbol table, and the first member otherwise. The archive format is not designed to make finding a given member easy. Such operations move through the archive from front to back examining each member in turn, and run in O(n) time. This would be bad if archives were commonly used in that manner, but in general, they are not. Typically, the ar command is used to build an new archive from scratch, inserting all the objects in one operation, and then the link-editor accesses the members in the archive in constant time by using the offsets provided by the symbol table. Both of these operations are reasonably efficient. However, listing the contents of a large archive with the ar command can be rather slow. Factors That Limit Solaris Archive Size As is often the case, there was more than one limiting factor preventing Solaris archives from growing beyond the 32-bit limits of 2GB (32-bit signed) and 4GB (32-bit unsigned). These limits are listed in the order they are hit as archive size grows, so the earlier ones mask those that follow. The original Solaris archive file format can handle sizes up to 4GB without issue. However, the ar command was delivered as a 32-bit executable that did not use the largefile APIs. As such, the ar command itself could not create a file larger than 2GB. One can solve this by building ar with the largefile APIs which would allow it to reach 4GB, but a simpler and better answer is to deliver a 64-bit ar, which has the ability to scale well past 4GB. Symbol table offsets are stored as 32-bit big-endian binary integers, which limits the maximum archive size to 4GB. To get around this limit requires a different symbol table format, or an extension mechanism to the current one, similar in nature to the way member names longer than 15 characters are handled in member headers. The size field in the archive member header (ar_hdr) is an ASCII string capable of representing a 32-bit unsigned value. This places a 4GB size limit on the size of any individual member in an archive. In considering format extensions to get past these limits, it is important to remember that very few archives will require the ability to scale past 4GB for many years. The old format, while no beauty, continues to be sufficient for its purpose. This argues for a backward compatible fix that allows newer versions of Solaris to produce archives that are compatible with older versions of the system unless the size of the archive exceeds 4GB. Archive Format Differences Among Unix Variants While considering how to extend Solaris archives to scale to 64-bits, I wanted to know how similar archives from other Unix systems are to those produced by Solaris, and whether they had already solved the 64-bit issue. I've successfully moved archives between different Unix systems before with good luck, so I knew that there was some commonality. If it turned out that there was already a viable defacto standard for 64-bit archives, it would obviously be better to adopt that rather than invent something new. The archive file format is not formally standardized. However, the ar command and archive format were part of the original Unix from Bell Labs. Other systems started with that format, extending it in various often incompatible ways, but usually with the same common shared core. Most of these systems use the same magic number to identify their archives, despite the fact that their archives are not always fully compatible with each other. It is often true that archives can be copied between different Unix variants, and if the member names are short enough, the ar command from one system can often read archives produced on another. In practice, it is rare to find an archive containing anything other than objects for a single operating system and machine type. Such an archive is only of use on the type of system that created it, and is only used on that system. This is probably why cross platform compatibility of archives between Unix variants has never been an issue. Otherwise, the use of the same magic number in archives with incompatible formats would be a problem. I was able to find information for a number of Unix variants, described below. These can be divided roughly into three tribes, SVR4 Unix, BSD Unix, and IBM AIX. Solaris is a SVR4 Unix, and its archives are completely compatible with those from the other members of that group (GNU/Linux, HP-UX, and SGI IRIX). AIX AIX is an exception to rule that Unix archive formats are all based on the original Bell labs Unix format. It appears that AIX supports 2 formats (small and big), both of which differ in fundamental ways from other Unix systems: These formats use a different magic number than the standard one used by Solaris and other Unix variants. They include support for removing archive members from a file without reallocating the file, marking dead areas as unused, and reusing them when new archive items are inserted. They have a special table of contents member (File Member Header) which lets you find out everything that's in the archive without having to actually traverse the entire file. Their symbol table members are quite similar to those from other systems though. Their member headers are doubly linked, containing offsets to both the previous and next members. Of the Unix systems described here, AIX has the only format I saw that will have reasonable insert/delete performance for really large archives. Everyone else has O(n) performance, and are going to be slow to use with large archives. BSD BSD has gone through 4 versions of archive format, which are described in their manpage. They use the same member header as SVR4, but their symbol table format is different, and their scheme for long member names puts the name directly after the member header rather than into a string table. GNU/Linux The GNU toolchain uses the SVR4 format, and is compatible with Solaris. HP-UX HP-UX seems to follow the SVR4 model, and is compatible with Solaris. IRIX IRIX has 32 and 64-bit archives. The 32-bit format is the standard SVR4 format, and is compatible with Solaris. The 64-bit format is the same, except that the symbol table uses 64-bit integers. IRIX assumes that an archive contains objects of a single ELFCLASS/MACHINE, and any archive containing ELFCLASS64 objects receives a 64-bit symbol table. Although they only use it for 64-bit objects, nothing in the archive format limits it to ELFCLASS64. It would be perfectly valid to produce a 64-bit symbol table in an archive containing 32-bit objects, text files, or anything else. Tru64 Unix (Digital/Compaq/HP) Tru64 Unix uses a format much like ours, but their symbol table is a hash table, making specific symbol lookup much faster. The Solaris link-editor uses archives by examining the entire symbol table looking for unsatisfied symbols for the link, and not by looking up individual symbols, so there would be no benefit to Solaris from such a hash table. The Tru64 ld must use a different approach in which the hash table pays off for them. Widening the existing SVR4 archive symbol tables rather than inventing something new is the simplest path forward. There is ample precedent for this approach in the ELF world. When ELF was extended to support 64-bit objects, the approach was largely to take the existing data structures, and define 64-bit versions of them. We called the old set ELF32, and the new set ELF64. My guess is that there was no need to widen the archive format at that time, but had there been, it seems obvious that this is how it would have been done. The Implementation of 64-bit Solaris Archives As mentioned earlier, there was no desire to improve the fundamental nature of archives. They have always had O(n) insert/delete behavior, and for the most part it hasn't mattered. AIX made efforts to improve this, but those efforts did not find widespread adoption. For the purposes of link-editing, which is essentially the only thing that archives are used for, the existing format is adequate, and issues of backward compatibility trump the desire to do something technically better. Widening the existing symbol table format to 64-bits is therefore the obvious way to proceed. For Solaris 11, I implemented that, and I also updated the ar command so that a 64-bit version is run by default. This eliminates the 2 most significant limits to archive size, leaving only the limit on an individual archive member. We only generate a 64-bit symbol table if the archive exceeds 4GB, or when the new -S option to the ar command is used. This maximizes backward compatibility, as an archive produced by Solaris 11 is highly likely to be less than 4GB in size, and will therefore employ the same format understood by older versions of the system. The main reason for the existence of the -S option is to allow us to test the 64-bit format without having to construct huge archives to do so. I don't believe it will find much use outside of that. Other than the new ability to create and use extremely large archives, this change is largely invisible to the end user. When reading an archive, the ar command will transparently accept either form of symbol table. Similarly, the ELF library (libelf) has been updated to understand either format. Users of libelf (such as the link-editor ld) do not need to be modified to use the new format, because these changes are encapsulated behind the existing functions provided by libelf. As mentioned above, this work did not lift the limit on the maximum size of an individual archive member. That limit remains fixed at 4GB for now. This is not because we think objects will never get that large, for the history of computing says otherwise. Rather, this is based on an estimation that single relocatable objects of that size will not appear for a decade or two. A lot can change in that time, and it is better not to overengineer things by writing code that will sit and rot for years without being used. It is not too soon however to have a plan for that eventuality. When the time comes when this limit needs to be lifted, I believe that there is a simple solution that is consistent with the existing format. The archive member header size field is an ASCII string, like the name, and as such, the overflow scheme used for long names can also be used to handle the size. The size string would be placed into the archive string table, and its offset in the string table would then be written into the archive header size field using the same format "/ddd" used for overflowed names.

    Read the article

  • 10 Reasons Why Java is the Top Embedded Platform

    - by Roger Brinkley
    With the release of Oracle ME Embedded 3.2 and Oracle Java Embedded Suite, Java is now ready to fully move into the embedded developer space, what many have called the "Internet of Things". Here are 10 reasons why Java is the top embedded platform. 1. Decouples software development from hardware development cycle Development is typically split between both hardware and software in a traditional design flow . This leads to complicated co-design and requires prototype hardware to be built. This parallel and interdependent hardware / software design process typically leads to two or more re-development phases. With Embedded Java, all specific work is carried out in software, with the (processor) hardware implementation fully decoupled. This with eliminate or at least reduces the need for re-spins of software or hardware and the original development efforts can be carried forward directly into product development and validation. 2. Development and testing can be done (mostly) using standard desktop systems through emulation Because the software and hardware are decoupled it now becomes easier to test the software long before it reaches the hardware through hardware emulation. Emulation is the ability of a program in an electronic device to imitate another program or device. In the past Java tools like the Java ME SDK and the SunSPOTs Solarium provided developers with emulation for a complete set of mobile telelphones and SunSpots. This often included network interaction or in the case of SunSPOTs radio communication. What emulation does is speed up the development cycle by refining the software development process without the need of hardware. The software is fixed, redefined, and refactored without the timely expense of hardware testing. With tools like the Java ME 3.2 SDK, Embedded Java applications can be be quickly developed on Windows based platforms. In the end of course developers should do a full set of testing on the hardware as incompatibilities between emulators and hardware will exist, but the amount of time to do this should be significantly reduced. 3. Highly productive language, APIs, runtime, and tools mean quick time to market Charles Nutter probably said it best in twitter blog when he tweeted, "Every time I see a piece of C code I need to port, my heart dies a little. Then I port it to 1/4 as much Java, and feel better." The Java environment is a very complex combination of a Java Virtual Machine, the Java Language, and it's robust APIs. Combine that with the Java ME SDK for small devices or just Netbeans for the larger devices and you have a development environment where development time is reduced significantly meaning the product can be shipped sooner. Of course this is assuming that the engineers don't get slap happy adding new features given the extra time they'll have.  4. Create high-performance, portable, secure, robust, cross-platform applications easily The latest JIT compilers for the Oracle JVM approach the speed of C/C++ code, and in some memory allocation intensive circumstances, exceed it. And specifically for the embedded devices both ME Embedded and SE Embedded have been optimized for the smaller footprints.  In portability Java uses Bytecode to make the language platform independent. This creates a write once run anywhere environment that allows you to develop on one platform and execute on others and avoids a platform vendor lock in. For security, Java achieves protection by confining a Java program to a Java execution environment and not allowing it to access other parts of computer.  In variety of systems the program must execute reliably to be robust. Finally, Oracle Java ME Embedded is a cross-industry and cross-platform product optimized in release version 3.2 for chipsets based on the ARM architectures. Similarly Oracle Java SE Embedded works on a variety of ARM V5, V6, and V7, X86 and Power Architecture Linux. 5. Java isolates your apps from language and platform variations (e.g. C/C++, kernel, libc differences) This has been a key factor in Java from day one. Developers write to Java and don't have to worry about underlying differences in the platform variations. Those platform variations are being managed by the JVM. Gone are the C/C++ problems like memory corruptions, stack overflows, and other such bugs which are extremely difficult to isolate. Of course this doesn't imply that you won't be able to get away from native code completely. There could be some situations where you have to write native code in either assembler or C/C++. But those instances should be limited. 6. Most popular embedded processors supported allowing design flexibility Java SE Embedded is now available on ARM V5, V6, and V7 along with Linux on X86 and Power Architecture platforms. Java ME Embedded is available on system based on ARM architecture SOCs with low memory footprints and a device emulation environment for x86/Windows desktop computers, integrated with the Java ME SDK 3.2. A standard binary of Oracle Java ME Embedded 3.2 for ARM KEIL development boards based on ARM Cortex M-3/4 (KEIL MCBSTM32F200 using ST Micro SOC STM32F207IG) will soon be available for download from the Oracle Technology Network (OTN). 7. Support for key embedded features (low footprint, power mgmt., low latency, etc) All embedded devices by there very nature are constrained in some way. Economics may dictate a device with a less RAM and ROM. The CPU needs can dictate a less powerful device. Power consumption is another major resource in some embedded devices as connecting to consistent power source not always desirable or possible. For others they have to constantly on. Often many of these systems are headless (in the embedded space it's almost always Halloween).  For memory resources ,Java ME Embedded can run in environment as low as 130KB RAM/350KB ROM for a minimal, customized configuration up to 700KB RAM/1500KB ROM for the full, standard configuration. Java SE Embedded is designed for environments starting at 32MB RAM/39MB  ROM. Key functionality of embedded devices such as auto-start and recovery, flexible networking are fully supported. And while Java SE Embedded has been optimized for mid-range to high-end embedded systems, Java ME Embedded is a Java runtime stack optimized for small embedded systems. It provides a robust and flexible application platform with dedicated embedded functionality for always-on, headless (no graphics/UI), and connected devices. 8. Leverage huge Java developer ecosystem (expertise, existing code) There are over 9 million developers in world that work on Java, and while not all of them work on embedded systems, their wealth of expertise in developing applications is immense. In short, getting a java developer to work on a embedded system is pretty easy, you probably have a java developer living in your subdivsion.  Then of course there is the wealth of existing code. The Java Embedded Community on Java.net is central gathering place for embedded Java developers. Conferences like Embedded Java @ JavaOne and the a variety of hardware vendor conferences like Freescale Technlogy Forums offer an excellent opportunity for those interested in embedded systems. 9. Easily create end-to-end solutions integrated with Java back-end services In the "Internet of Things" things aren't on an island doing an single task. For instance and embedded drink dispenser doesn't just dispense a beverage, but could collect money from a credit card and also send information about current sales. Similarly, an embedded house power monitoring system doesn't just manage the power usage in a house, but can also send that data back to the power company. In both cases it isn't about the individual thing, but monitoring a collection of  things. How much power did your block, subdivsion, area of town, town, county, state, nation, world use? How many Dr Peppers were purchased from thing1, thing2, thingN? The point is that all this information can be collected and transferred securely  (and believe me that is key issue that Java fully supports) to back end services for further analysis. And what better back in service exists than a Java back in service. It's interesting to note that on larger embedded platforms that support the Java Embedded Suite some of the analysis might be done on the embedded device itself as JES has a glassfish server and Java Database as part of the installation. The result is an end to end Java solution. 10. Solutions from constrained devices to server-class systems Just take a look at some of the embedded Java systems that have already been developed and you'll see a vast range of solutions. Livescribe pen, Kindle, each and every Blu-Ray player, Cisco's Advanced VOIP phone, KronosInTouch smart time clock, EnergyICT smart metering, EDF's automated meter management, Ricoh Printers, and Stanford's automated car  are just a few of the list of embedded Java implementation that continues to grow. Conclusion Now if your a Java Developer you probably look at some of the 10 reasons and say "duh", but for the embedded developers this is should be an eye opening list. And with the release of ME Embedded 3.2 and the Java Embedded Suite the embedded developers life is now a whole lot easier. For the Java developer your employment opportunities are about to increase. For both it's a great time to start developing Java for the "Internet of Things".

    Read the article

  • Orchestrating the Virtual Enterprise

    - by John Murphy
    During the American Industrial Revolution, the Ford Motor Company did it all. It turned raw materials into a showroom full of Model Ts. It owned a steel mill, a glass factory, and an automobile assembly line. The company was both self-sufficient and innovative and went on to become one of the largest and most profitable companies in the world. Nowadays, it's unusual for any business to follow this vertical integration model because its much harder to be best in class across such a wide a range of capabilities and services. Instead, businesses focus on their core competencies and outsource other business functions to specialized suppliers. They exchange vertical integration for collaboration. When done well, all parties benefit from this arrangement and the collaboration leads to the creation of an agile, lean and successful "virtual enterprise." Case in point: For Sun hardware, Oracle outsources most of its manufacturing and all of its logistics to third parties. These are vital activities, but ones where Oracle doesn't have a core competency, so we shift them to business partners who do. Within our enterprise, we always retain the core functions of product development, support, and most of the sales function, because that's what constitutes our core value to our customers. This is a perfect example of a virtual enterprise.  What are the implications of this? It means that we must exchange direct internal control for indirect external collaboration. This fundamentally changes the relative importance of different business processes, the boundaries of security and information sharing, and the relationship of the supply chain systems to the ERP. The challenge is that the systems required to support this virtual paradigm are still mired in "island enterprise" thinking. But help is at hand. Developments such as the Web, social networks, collaboration, and rules-based orchestration offer great potential to fundamentally re-architect supply chain systems to better support the virtual enterprise.  Supply Chain Management Systems in a Virtual Enterprise Historically enterprise software was constructed to automate the ERP - and then the supply chain systems extended the ERP. They were joined at the hip. In virtual enterprises, the supply chain system needs to be ERP agnostic, sitting above each of the ERPs that are distributed across the virtual enterprise - most of which are operating in other businesses. This is vital so that the supply chain system can manage the flow of material and the related information through the multiple enterprises. It has to have strong collaboration tools. It needs to be highly flexible. Users need to be able to see information that's coming from multiple sources and be able to react and respond to events across those sources.  Oracle Fusion Distributed Order Orchestration (DOO) is a perfect example of a supply chain system designed to operate in this virtual way. DOO embraces the idea that a company's fulfillment challenge is a distributed, multi-enterprise problem. It enables users to manage the process and the trading partners in a uniform way and deliver a consistent user experience while operating over a heterogeneous, virtual enterprise. This is a fundamental shift at the core of managing supply chains. It forces virtual enterprises to think architecturally about how best to construct their supply chain systems.  Case in point, almost everyone has ordered from Amazon.com at one time or another. Our orders are as likely to be fulfilled by third parties as they are by Amazon itself. To deliver the order promptly and efficiently, Amazon has to send it to the right fulfillment location and know the availability in that location. It needs to be able to track status of the fulfillment and deal with exceptions. As a virtual enterprise, Amazon's operations, using thousands of trading partners, requires a very different approach to fulfillment than the traditional 'take an order and ship it from your own warehouse' model. Amazon had no choice but to develop a complex, expensive and custom solution to tackle this problem as there used to be no product solution available. Now, other companies who want to follow similar models have a better off-the-shelf choice -- Oracle Distributed Order Orchestration (DOO).  Consider how another of our customers is using our distributed orchestration solution. This major airplane manufacturer has a highly complex business and interacts regularly with the U.S. Government and major airlines. It sits in the middle of an intricate supply chain and needed to improve visibility across its many different entities. Oracle Fusion DOO gives the company an orchestration mechanism so it could improve quality, speed, flexibility, and consistency without requiring an organ transplant of these highly complex legacy systems. Many retailers face the challenge of dealing with brick and mortar, Web, and reseller channels. They all need to be knitted together into a virtual enterprise experience that is consistent for their customers. When a large U.K. grocer with a strong brick and mortar retail operation added an online business, they turned to Oracle Fusion DOO to bring these entities together. Disturbing the Peace with Acquisitions Quite often a company's ERP system is disrupted when it acquires a new company. An acquisition can inject a new set of processes and systems -- or even introduce an entirely new business like Sun's hardware did at Oracle. This challenge has been a driver for some of our DOO customers. A large power management company is using Oracle Fusion DOO to provide the flexibility to rapidly integrate additional products and services into its central fulfillment operation. The Flip Side of Fulfillment Meanwhile, we haven't ignored similar challenges on the supply side of the equation. Specifically, how to manage complex supply in a flexible way when there are multiple trading parties involved? How to manage the supply to suppliers? How to manage critical components that need to merge in a tier two or tier three supply chain? By investing in supply orchestration solutions for the virtual enterprise, we plan to give users better visibility into their network of suppliers to help them drive down costs. We also think this technology and full orchestration process can be applied to the financial side of organizations. An example is transactions that flow through complex internal structures to minimize tax exposure. We can help companies manage those transactions effectively by thinking about the internal organization as a virtual enterprise and bringing the same solution set to this internal challenge.  The Clear Front Runner No other company is investing in solving the virtual enterprise supply chain issues like Oracle is. Oracle is in a unique position to become the gold standard in this market space. We have the infrastructure of Oracle technology. We already have an Oracle Fusion DOO application which embraces the best of what's required in this area. And we're absolutely committed to extending our Fusion solution to other use cases and delivering even more business value.

    Read the article

  • Building an OpenStack Cloud for Solaris Engineering, Part 1

    - by Dave Miner
    One of the signature features of the recently-released Solaris 11.2 is the OpenStack cloud computing platform.  Over on the Solaris OpenStack blog the development team is publishing lots of details about our version of OpenStack Havana as well as some tips on specific features, and I highly recommend reading those to get a feel for how we've leveraged Solaris's features to build a top-notch cloud platform.  In this and some subsequent posts I'm going to look at it from a different perspective, which is that of the enterprise administrator deploying an OpenStack cloud.  But this won't be just a theoretical perspective: I've spent the past several months putting together a deployment of OpenStack for use by the Solaris engineering organization, and now that it's in production we'll share how we built it and what we've learned so far.In the Solaris engineering organization we've long had dedicated lab systems dispersed among our various sites and a home-grown reservation tool for developers to reserve those systems; various teams also have private systems for specific testing purposes.  But as a developer, it can still be difficult to find systems you need, especially since most Solaris changes require testing on both SPARC and x86 systems before they can be integrated.  We've added virtual resources over the years as well in the form of LDOMs and zones (both traditional non-global zones and the new kernel zones).  Fundamentally, though, these were all still deployed in the same model: our overworked lab administrators set up pre-configured resources and we then reserve them.  Sounds like pretty much every traditional IT shop, right?  Which means that there's a lot of opportunity for efficiencies from greater use of virtualization and the self-service style of cloud computing.  As we were well into development of OpenStack on Solaris, I was recruited to figure out how we could deploy it to both provide more (and more efficient) development and test resources for the organization as well as a test environment for Solaris OpenStack.At this point, let's acknowledge one fact: deploying OpenStack is hard.  It's a very complex piece of software that makes use of sophisticated networking features and runs as a ton of service daemons with myriad configuration files.  The web UI, Horizon, doesn't often do a good job of providing detailed errors.  Even the command-line clients are not as transparent as you'd like, though at least you can turn on verbose and debug messaging and often get some clues as to what to look for, though it helps if you're good at reading JSON structure dumps.  I'd already learned all of this in doing a single-system Grizzly-on-Linux deployment for the development team to reference when they were getting started so I at least came to this job with some appreciation for what I was taking on.  The good news is that both we and the community have done a lot to make deployment much easier in the last year; probably the easiest approach is to download the OpenStack Unified Archive from OTN to get your hands on a single-system demonstration environment.  I highly recommend getting started with something like it to get some understanding of OpenStack before you embark on a more complex deployment.  For some situations, it may in fact be all you ever need.  If so, you don't need to read the rest of this series of posts!In the Solaris engineering case, we need a lot more horsepower than a single-system cloud can provide.  We need to support both SPARC and x86 VM's, and we have hundreds of developers so we want to be able to scale to support thousands of VM's, though we're going to build to that scale over time, not immediately.  We also want to be able to test both Solaris 11 updates and a release such as Solaris 12 that's under development so that we can work out any upgrade issues before release.  One thing we don't have is a requirement for extremely high availability, at least at this point.  We surely don't want a lot of down time, but we can tolerate scheduled outages and brief (as in an hour or so) unscheduled ones.  Thus I didn't need to spend effort on trying to get high availability everywhere.The diagram below shows our initial deployment design.  We're using six systems, most of which are x86 because we had more of those immediately available.  All of those systems reside on a management VLAN and are connected with a two-way link aggregation of 1 Gb links (we don't yet have 10 Gb switching infrastructure in place, but we'll get there).  A separate VLAN provides "public" (as in connected to the rest of Oracle's internal network) addresses, while we use VxLANs for the tenant networks. One system is more or less the control node, providing the MySQL database, RabbitMQ, Keystone, and the Nova API and scheduler as well as the Horizon console.  We're curious how this will perform and I anticipate eventually splitting at least the database off to another node to help simplify upgrades, but at our present scale this works.I had a couple of systems with lots of disk space, one of which was already configured as the Automated Installation server for the lab, so it's just providing the Glance image repository for OpenStack.  The other node with lots of disks provides Cinder block storage service; we also have a ZFS Storage Appliance that will help back-end Cinder in the near future, I just haven't had time to get it configured in yet.There's a separate system for Neutron, which is our Elastic Virtual Switch controller and handles the routing and NAT for the guests.  We don't have any need for firewalling in this deployment so we're not doing so.  We presently have only two tenants defined, one for the Solaris organization that's funding this cloud, and a separate tenant for other Oracle organizations that would like to try out OpenStack on Solaris.  Each tenant has one VxLAN defined initially, but we can of course add more.  Right now we have just a single /24 network for the floating IP's, once we get demand up to where we need more then we'll add them.Finally, we have started with just two compute nodes; one is an x86 system, the other is an LDOM on a SPARC T5-2.  We'll be adding more when demand reaches the level where we need them, but as we're still ramping up the user base it's less work to manage fewer nodes until then.My next post will delve into the details of building this OpenStack cloud's infrastructure, including how we're using various Solaris features such as Automated Installation, IPS packaging, SMF, and Puppet to deploy and manage the nodes.  After that we'll get into the specifics of configuring and running OpenStack itself.

    Read the article

  • Right-Time Retail Part 1

    - by David Dorf
    This is the first in a three-part series. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Right-Time Revolution Technology enables some amazing feats in retail. I can order flowers for my wife while flying 30,000 feet in the air. I can order my groceries in the subway and have them delivered later that day. I can even see how clothes look on me without setting foot in a store. Who knew that a TV, diamond necklace, or even a car would someday be as easy to purchase as a candy bar? Can technology make a mattress an impulse item? Wake-up and your back is hurting, so you rollover and grab your iPad, then a new mattress is delivered the next day. Behind the scenes the many processes are being choreographed to make the sale happen. This includes moving data between systems with the least amount for friction, which in some cases is near real-time. But real-time isn’t appropriate for all the integrations. Think about what a completely real-time retailer would look like. A consumer grabs toothpaste off the shelf, and all systems are immediately notified so that the backroom clerk comes running out and pushes the consumer aside so he can replace the toothpaste on the shelf. Such a system is not only cost prohibitive, but it’s also very inefficient and ineffectual. Retailers must balance the realities of people, processes, and systems to find the right speed of execution. That’ what “right-time retail” means. Retailers used to sell during the day and count the money and restock at night, but global expansion and the Web have complicated that simplistic viewpoint. Our 24hr society demands not only access but also speed, which constantly pushes the boundaries of our IT systems. In the last twenty years, there have been three major technology advancements that have moved us closer to real-time systems. Networking is the first technology that drove the real-time trend. As systems became connected, it became easier to move data between them. In retail we no longer had to mail the daily business report back to corporate each day as the dial-up modem could transfer the data. That was soon replaced with trickle-polling, when sale transactions were occasionally sent from stores to corporate throughout the day, often through VSAT. Then we got terrestrial networks like DSL and Ethernet that allowed the constant stream of data between stores and corporate. When corporate could see the sales transactions coming from stores, it could better plan for replenishment and promotions. That drove the need for speed into the supply chain and merchandising, but for many years those systems were stymied by the huge volumes of data. Nordstrom has 150 million SKU/Store combinations when planning (RPAS); The Gap generates 110 million price changes during end-of-season (RPM); Argos does 1.78 billion calculations executed each day for replenishment planning (AIP). These areas are now being alleviated by the second technology, storage. The typical laptop disk drive runs at 5,400rpm with PCs stepping up to 7,200rpm and servers hitting 15,000rpm. But the platters can only spin so fast, so to squeeze more performance we’ve had to rely on things like disk striping. Then solid state drives (SSDs) were introduced and prices continue to drop. (Augmenting your harddrive with a SSD is the single best PC upgrade these days.) RAM continues to be expensive, but compressing data in memory has allowed more efficient use. So a few years back, Oracle decided to build a box that incorporated all these advancements to move us closer to real-time. This family of products, often categorized as engineered systems, combines the hardware and software so that they work together to provide better performance. How much better? If Exadata powered a 747, you’d go from New York to Paris in 42 minutes, and it would carry 5,000 passengers. If Exadata powered baseball, games would last only 18 minutes and Boston’s Fenway would hold 370,000 fans. The Exa-family enables processing more data in less time. So with faster networks and storage, that brings us to the third and final ingredient. If we continue to process data in traditional ways, we won’t be able to take advantage of the faster networks and storage. Enter what Harvard calls “The Sexiest Job of the 21st Century” – the data scientist. New technologies like the Hadoop-powered Oracle Big Data Appliance, Oracle Advanced Analytics, and Oracle Endeca Information Discovery change the way in which we organize data. These technologies allow us to extract actionable information from raw data at incredible speeds, often ad-hoc. So the foundation to support the real-time enterprise exists, but how does a retailer begin to take advantage? The most visible way is through real-time marketing, but I’ll save that for part 3 and instead begin with improved integrations for the assets you already have in part 2.

    Read the article

  • /usr/bin/sshd isn't linked against PAM on one of my systems. What is wrong and how can I fix it?

    - by marc.riera
    Hi, I'm using AD as my user account server with ldap. Most of the servers run with UsePam yes except this one, it has lack of pam support on sshd. root@linserv9:~# ldd /usr/sbin/sshd linux-vdso.so.1 => (0x00007fff621fe000) libutil.so.1 => /lib/libutil.so.1 (0x00007fd759d0b000) libz.so.1 => /usr/lib/libz.so.1 (0x00007fd759af4000) libnsl.so.1 => /lib/libnsl.so.1 (0x00007fd7598db000) libcrypto.so.0.9.8 => /usr/lib/libcrypto.so.0.9.8 (0x00007fd75955b000) libcrypt.so.1 => /lib/libcrypt.so.1 (0x00007fd759323000) libc.so.6 => /lib/libc.so.6 (0x00007fd758fc1000) libdl.so.2 => /lib/libdl.so.2 (0x00007fd758dbd000) /lib64/ld-linux-x86-64.so.2 (0x00007fd759f0e000) I have this packages installed root@linserv9:~# dpkg -l|grep -E 'pam|ssh' ii denyhosts 2.6-2.1 an utility to help sys admins thwart ssh hac ii libpam-modules 0.99.7.1-5ubuntu6.1 Pluggable Authentication Modules for PAM ii libpam-runtime 0.99.7.1-5ubuntu6.1 Runtime support for the PAM library ii libpam-ssh 1.91.0-9.2 enable SSO behavior for ssh and pam ii libpam0g 0.99.7.1-5ubuntu6.1 Pluggable Authentication Modules library ii libpam0g-dev 0.99.7.1-5ubuntu6.1 Development files for PAM ii openssh-blacklist 0.1-1ubuntu0.8.04.1 list of blacklisted OpenSSH RSA and DSA keys ii openssh-client 1:4.7p1-8ubuntu1.2 secure shell client, an rlogin/rsh/rcp repla ii openssh-server 1:4.7p1-8ubuntu1.2 secure shell server, an rshd replacement ii quest-openssh 5.2p1_q13-1 Secure shell root@linserv9:~# What I'm doing wrong? thanks. Edit: root@linserv9:~# cat /etc/pam.d/sshd # PAM configuration for the Secure Shell service # Read environment variables from /etc/environment and # /etc/security/pam_env.conf. auth required pam_env.so # [1] # In Debian 4.0 (etch), locale-related environment variables were moved to # /etc/default/locale, so read that as well. auth required pam_env.so envfile=/etc/default/locale # Standard Un*x authentication. @include common-auth # Disallow non-root logins when /etc/nologin exists. account required pam_nologin.so # Uncomment and edit /etc/security/access.conf if you need to set complex # access limits that are hard to express in sshd_config. # account required pam_access.so # Standard Un*x authorization. @include common-account # Standard Un*x session setup and teardown. @include common-session # Print the message of the day upon successful login. session optional pam_motd.so # [1] # Print the status of the user's mailbox upon successful login. session optional pam_mail.so standard noenv # [1] # Set up user limits from /etc/security/limits.conf. session required pam_limits.so # Set up SELinux capabilities (need modified pam) # session required pam_selinux.so multiple # Standard Un*x password updating. @include common-password Edit2: UsePAM yes fails With this configuration ssh fails to start : root@linserv9:/home/admmarc# cat /etc/ssh/sshd_config |grep -vE "^[ \t]*$|^#" Port 22 Protocol 2 ListenAddress 0.0.0.0 RSAAuthentication yes PubkeyAuthentication yes AuthorizedKeysFile .ssh/authorized_keys ChallengeResponseAuthentication yes UsePAM yes Subsystem sftp /usr/lib/sftp-server root@linserv9:/home/admmarc# The error it gives is as follows root@linserv9:/home/admmarc# /etc/init.d/ssh start * Starting OpenBSD Secure Shell server sshd /etc/ssh/sshd_config: line 75: Bad configuration option: UsePAM /etc/ssh/sshd_config: terminating, 1 bad configuration options ...fail! root@linserv9:/home/admmarc#

    Read the article

  • ACORD LOMA Session Highlights Policy Administration Trends

    - by [email protected]
    Helen Pitts, senior product marketing manager for Oracle Insurance, attended and is blogging from the ACORD LOMA Insurance Forum this week. Above: Paul Vancheri, Chief Information Officer, Fidelity Investments Life Insurance Company. Vancheri gave a presentation during the ACORD LOMA Insurance Systems Forum about the key elements of modern policy administration systems and how insurers can mitigate risk during legacy system migrations to safely introduce new technologies. When I had a few particularly challenging honors courses in college my father, a long-time technology industry veteran, used to say, "If you don't know how to do something go ask the experts. Find someone who has been there and done that, don't be afraid to ask the tough questions, and apply and build upon what you learn." (Actually he still offers this same advice today.) That's probably why my favorite sessions at industry events, like the ACORD LOMA Insurance Forum this week, are those that include insight on industry trends and case studies from carriers who share their experiences and offer best practices based upon their own lessons learned. I had the opportunity to attend a particularly insightful session Wednesday as Craig Weber, senior vice president of Celent's Insurance practice, and Paul Vancheri, CIO of Fidelity Life Investments, presented, "Managing the Dynamic Insurance Landscape: Enabling Growth and Profitability with a Modern Policy Administration System." Policy Administration Trends Growing the business is the top issue when it comes to IT among both life and annuity and property and casualty carriers according to Weber. To drive growth and capture market share from competitors, carriers are looking to modernize their core insurance systems, with 65 percent of those CIOs participating in recent Celent research citing plans to replace their policy administration systems. Weber noted that there has been continued focus and investment, particularly in the last three years, by software and technology vendors to offer modern, rules-based, configurable policy administration solutions. He added that these solutions are continuing to evolve with the ongoing aim of helping carriers rapidly meet shifting business needs--whether it is to launch new products to market faster than the competition, adapt existing products to meet shifting consumer and /or regulatory demands, or to exit unprofitable markets. He closed by noting the top four trends for policy administration either in the process of being adopted today or on the not-so-distant horizon for the future: Underwriting and service desktops New business automation Convergence of ultra-configurable and domain content-rich systems Better usability and screen design Mitigating the Risk When Making the Decision to Modernize Third-party analyst research from advisory firms like Celent was a key part of the due diligence process for Fidelity as it sought a replacement for its legacy policy administration system back in 2005, according to Vancheri. The company's business opportunities were outrunning system capability. Its legacy system had not been upgraded in several years and was deficient from a functionality and currency standpoint. This was constraining the carrier's ability to rapidly configure and bring new and complex products to market. The company sought a new, modern policy administration system, one that would enable it to keep pace with rapid and often unexpected industry changes and ahead of the competition. A cross-functional team that included representatives from finance, actuarial, operations, client services and IT conducted an extensive selection process. This process included deep documentation review, pilot evaluations, demonstrations of required functionality and complex problem-solving, infrastructure integration capability, and the ability to meet the company's desired cost model. The company ultimately selected an adaptive policy administration system that met its requirements to: Deliver ease of use - eliminating paper and rework, while easing the burden on representatives to sell and service annuities Provide customer parity - offering Web-based capabilities in alignment with the company's focus on delivering a consistent customer experience across its business Deliver scalability, efficiency - enabling automation, while simplifying and standardizing systems across its technology stack Offer desired functionality - supporting Fidelity's product configuration / rules management philosophy, focus on customer service and technology upgrade requirements Meet cost requirements - including implementation, professional services and licenses fees and ongoing maintenance Deliver upon business requirements - enabling the ability to drive time to market for new products and flexibility to make changes Best Practices for Addressing Implementation Challenges Based upon lessons learned during the company's implementation, Vancheri advised carriers to evaluate staffing capabilities and cultural impacts, review business requirements to avoid rebuilding legacy processes, factor in dependent systems, and review policies and practices to secure customer data. His formula for success: upfront planning + clear requirements = precision execution. Achieving a Return on Investment Vancheri said the decision to replace their legacy policy administration system and deploy a modern, rules-based system--before the economic downturn occurred--has been integral in helping the company adapt to shifting market conditions, while enabling growth in its direct channel sales of variable annuities. Since deploying its new policy admin system, the company has reduced its average time to market for new products from 12-15 months to 4.5 months. The company has since migrated its other products to the new system and retired its legacy system, significantly decreasing its overall product development cycle. From a processing standpoint Vancheri noted the company has achieved gains in automation, information, and ease of use, resulting in improved real-time data edits, controls for better quality, and tax handling capability. Plus, with by having only one platform to manage, the company has simplified its IT environment and is well positioned to deliver system enhancements for greater efficiencies. Commitment to Continuing the Investment In the short and longer term future Vancheri said the company plans to enhance business functionality to support money movement, wire automation, divorce processing on payout contracts and cost-based tracking improvements. It also plans to continue system upgrades to remain current as well as focus on further reducing cycle time, driving down maintenance costs, and integrating with other products. Helen Pitts is senior product marketing manager for Oracle Insurance focused on life/annuities and enterprise document automation.

    Read the article

  • Cloud Computing Forces Better Design Practices

    - by Herve Roggero
    Is cloud computing simply different than on premise development, or is cloud computing actually forcing you to create better applications than you normally would? In other words, is cloud computing merely imposing different design principles, or forcing better design principles?  A little while back I got into a discussion with a developer in which I was arguing that cloud computing, and specifically Windows Azure in his case, was forcing developers to adopt better design principles. His opinion was that cloud computing was not yielding better systems; just different systems. In this blog, I will argue that cloud computing does force developers to use better design practices, and hence better applications. So the first thing to define, of course, is the word “better”, in the context of application development. Looking at a few definitions online, better means “superior quality”. As it relates to this discussion then, I stipulate that cloud computing can yield higher quality applications in terms of scalability, everything else being equal. Before going further I need to also outline the difference between performance and scalability. Performance and scalability are two related concepts, but they don’t mean the same thing. Scalability is the measure of system performance given various loads. So when developers design for performance, they usually give higher priority to a given load and tend to optimize for the given load. When developers design for scalability, the actual performance at a given load is not as important; the ability to ensure reasonable performance regardless of the load becomes the objective. This can lead to very different design choices. For example, if your objective is to obtains the fastest response time possible for a service you are building, you may choose the implement a TCP connection that never closes until the client chooses to close the connection (in other words, a tightly coupled service from a connectivity standpoint), and on which a connection session is established for faster processing on the next request (like SQL Server or other database systems for example). If you objective is to scale, you may implement a service that answers to requests without keeping session state, so that server resources are released as quickly as possible, like a REST service for example. This alternate design would likely have a slower response time than the TCP service for any given load, but would continue to function at very large loads because of its inherently loosely coupled design. An example of a REST service is the NO-SQL implementation in the Microsoft cloud called Azure Tables. Now, back to cloud computing… Cloud computing is designed to help you scale your applications, specifically when you use Platform as a Service (PaaS) offerings. However it’s not automatic. You can design a tightly-coupled TCP service as discussed above, and as you can imagine, it probably won’t scale even if you place the service in the cloud because it isn’t using a connection pattern that will allow it to scale [note: I am not implying that all TCP systems do not scale; I am just illustrating the scalability concepts with an imaginary TCP service that isn’t designed to scale for the purpose of this discussion]. The other service, using REST, will have a better chance to scale because, by design, it minimizes resource consumption for individual requests and doesn’t tie a client connection to a specific endpoint (which means you can easily deploy this service to hundreds of machines without much trouble, as long as your pockets are deep enough). The TCP and REST services discussed above are both valid designs; the TCP service is faster and the REST service scales better. So is it fair to say that one service is fundamentally better than the other? No; not unless you need to scale. And if you don’t need to scale, then you don’t need the cloud in the first place. However, it is interesting to note that if you do need to scale, then a loosely coupled system becomes a better design because it can almost always scale better than a tightly-coupled system. And because most applications grow overtime, with an increasing user base, new functional requirements, increased data and so forth, most applications eventually do need to scale. So in my humble opinion, I conclude that a loosely coupled system is not just different than a tightly coupled system; it is a better design, because it will stand the test of time. And in my book, if a system stands the test of time better than another, it is of superior quality. Because cloud computing demands loosely coupled systems so that its underlying service architecture can be leveraged, developers ultimately have no choice but to design loosely coupled systems for the cloud. And because loosely coupled systems are better… … the cloud forces better design practices. My 2 cents.

    Read the article

  • select from varchar2 column with numeric value sometimes gives invalid number error

    - by Rene
    I'm trying to understand why, on some systems, I get an invalid number error message when I'm trying to select a value from a varchar2 column while on other systems I don't get the error while doing the exact same thing. The table is something like this: ID Column_1 Column_2 1 V text 2 D 1 3 D 2 4 D 3 and a query: select ID from table where column_1='D' and column_2 = :some_number_value :some_number_value is always numeric but can be null. We've fixed the query: select ID from table where column_1='D' and column_2 = to_char(:some_number_value) This original query runs fine on most systems but on some systems gives an "invalid number" error. The question is why? Why does it work on most systems and not on some?

    Read the article

  • When to use Hibernate?

    - by Ramo
    Hi All, I was asked in an interview this question so I answered with the following: -Better Performance: - Efficient queries. - 1st and 2nd level caching. - Good caching gives better scalability. - Good Database Portability: - Changing the DB is as easy as changing the dialect configuration. - Increased Developer Productivity: - Think only in object terms not in query language terms. But I also feel that systems fall in one of the below categories, and Hibernate may not be suited for all these cases, I'm interested in your thoughts about this, do you agree with me? please let me know when would use HB in the following case and why. Write Only Systems: Read Only Systems: Write Mostly Systems: Read Mostly Systems: Regards Ramo

    Read the article

  • Unleash the Power of Cryptography on SPARC T4

    - by B.Koch
    by Rob Ludeman Oracle’s SPARC T4 systems are architected to deliver enhanced value for customer via the inclusion of many integrated features.  One of the best examples of this approach is demonstrated in the on-chip cryptographic support that delivers wire speed encryption capabilities without any impact to application performance.  The Evolution of SPARC Encryption SPARC T-Series systems have a long history of providing this capability, dating back to the release of the first T2000 systems that featured support for on-chip RSA encryption directly in the UltraSPARC T1 processor.  Successive generations have built on this approach by support for additional encryption ciphers that are tightly coupled with the Oracle Solaris 10 and Solaris 11 encryption framework.  While earlier versions of this technology were implemented using co-processors, the SPARC T4 was redesigned with new crypto instructions to eliminate some of the performance overhead associated with the former approach, resulting in much higher performance for encrypted workloads. The Superiority of the SPARC T4 Approach to Crypto As companies continue to engage in more and more e-commerce, the need to provide greater degrees of security for these transactions is more critical than ever before.  Traditional methods of securing data in transit by applications have a number of drawbacks that are addressed by the SPARC T4 cryptographic approach. 1. Performance degradation – cryptography is highly compute intensive and therefore, there is a significant cost when using other architectures without embedded crypto functionality.  This performance penalty impacts the entire system, slowing down performance of web servers (SSL), for example, and potentially bogging down the speed of other business applications.  The SPARC T4 processor enables customers to deliver high levels of security to internal and external customers while not incurring an impact to overall SLAs in their IT environment. 2. Added cost – one of the methods to avoid performance degradation is the addition of add-in cryptographic accelerator cards or external offload engines in other systems.  While these solutions provide a brute force mechanism to avoid the problem of slower system performance, it usually comes at an added cost.  Customers looking to encrypt datacenter traffic without the overhead and expenditure of extra hardware can rely on SPARC T4 systems to deliver the performance necessary without the need to purchase other hardware or add-on cards. 3. Higher complexity – the addition of cryptographic cards or leveraging load balancers to perform encryption tasks results in added complexity from a management standpoint.  With SPARC T4, encryption keys and the framework built into Solaris 10 and 11 means that administrators generally don’t need to spend extra cycles determining how to perform cryptographic functions.  In fact, many of the instructions are built-in and require no user intervention to be utilized.  For example, For OpenSSL on Solaris 11, SPARC T4 crypto is available directly with a new built-in OpenSSL 1.0 engine, called the "t4 engine."  For a deeper technical dive into the new instructions included in SPARC T4, consult Dan Anderson’s blog. Conclusion In summary, SPARC T4 systems offer customers much more value for applications than just increased performance. The integration of key virtualization technologies, embedded encryption, and a true Enterprise Operating System, Oracle Solaris, provides direct business benefits that supersedes the commodity approach to data center computing.   SPARC T4 removes the roadblocks to secure computing by offering integrated crypto accelerators that can save IT organizations in operating cost while delivering higher levels of performance and meeting objectives around compliance. For more on the SPARC T4 family of products, go to here.

    Read the article

  • Are there too many qualified software development engineers chasing too few jobs?

    - by T Gregory
    I am trying to write this question in a non-argumentative way, but it is quite emotionally charged for some, so please bear with me. In the U.S., we hear constantly from CEOs that they cannot find enough qualified software engineers. In fact, it is the position of the U.S. government that demand for software engineering talent outpaces supply. This position can be clearly seen in the granting of tens of thousands of H1B visas, but also in the following excerpt from the official 2010-11 Bureau of Labor Statistics Occupational Outlook Handbook: Employment of computer software engineers is expected to increase by 32 percent from 2008-2018, which is much faster than the average for all occupations. In addition, this occupation will see a large number of new jobs, with more than 295,000 created between 2008 and 2018. Demand for computer software engineers will increase as computer networking continues to grow. For example, expanding Internet technologies have spurred demand for computer software engineers who can develop Internet, intranet, and World Wide Web applications. Likewise, electronic data-processing systems in business, telecommunications, healthcare, government, and other settings continue to become more sophisticated and complex. Implementing, safeguarding, and updating computer systems and resolving problems will fuel the demand for growing numbers of systems software engineers. New growth areas will also continue to arise from rapidly evolving technologies. The increasing uses of the Internet, the proliferation of Web sites, and mobile technology such as the wireless Internet have created a demand for a wide variety of new products. As more software is offered over the Internet, and as businesses demand customized software to meet their specific needs, applications and systems software engineers will be needed in greater numbers. In addition, the growing use of handheld computers will create demand for new mobile applications and software systems. As these devices become a larger part of the business environment, it will be necessary to integrate current computer systems with this new, more mobile technology. However, from the the employee side of the equation, we often hear the opposite. Many of the stories of SDEs with graduate degrees and decades of experience on the unemployment line, or the big tech interview war stories, are anecdotal, for sure. But, there is one piece of data that is neither anecdotal nor transitory, and that is the aggregate decisions of millions of undergraduates of what degree to pursue. Here, a different picture emerges from the data, and that picture is not good for the software profession. According the most recent Taulbee Survey from Computer Research Association, undergrad degree production in CS and CE has fallen nearly 60% since 2004. (Undergrad enrollments have ticked up in the past two years, but only modestly). Here we see that a basic disconnect between what corporate CEOs and the US government are saying and what potential employees really think about job prospects in software engineering. So my questions are these. Who are we to believe? Is there an acute talent shortage, or is there a long-term structural oversupply in the SDE labor market? Can anyone provide reliable data on long-term unemployment among SDEs? How many are leaving the profession due to lack of work? Real data is most helpful. Thanks.

    Read the article

  • Enterprise Integration: Can Companies Afford It?

    - by Ralph Wheaton
    Each year, my company holds a global sales conference where employees and partners from around the world some together to collaborate, share knowledge and ideas and learn about future plans.  As a member of the professional services division, several of us had been asked to make a presentation, an elevator pitch in 3 minutes or less that relates to a success we have worked on or directly relates to our tag (that is, our primary technology focus).  Mine happens to be Enterprise Integration as it relates Business Intelligence.  I found it rather difficult to present that pitch in a short amount of time and had to pare it down.  At any rate, in just a little over 3 minutes, this is the presentation I submitted.  Here is a link to the full presentation video in WMV format.   Many companies today subscribe to a buy versus build mentality in an attempt to drive down costs and improve time to implementation. Sometimes this makes sense, especially as it relates to specialized software or software that performs a small number of tasks extremely well. However, if not carefully considered or planned out, this oftentimes leads to multiple disparate systems with silos of data or multiple versions of the same data. For instance, client data (contact information, addresses, phone numbers, opportunities, sales) stored in your CRM system may not play well with Accounts Receivables. Employee data may be stored across multiple systems such as HR, Time Entry and Payroll. Other data (such as member data) may not originate internally, but be provided by multiple outside sources in multiple formats. And to top it all off, some data may have to be manually entered into multiple systems to keep it all synchronized. When left to grow out of control like this, overall performance is lacking, stability is questionable and maintenance is frequent and costly. Worse yet, in many cases, this topology, this hodgepodge of data creates a reporting nightmare. Decision makers are forced to try to put together pieces of the puzzle attempting to find the information they need, wading through multiple systems to find what they think is the single version of the truth. More often than not, they find they are missing pieces, pieces that may be crucial to growing the business rather than closing the business. across applications. Master data owners are defined to establish single sources of data (such as the CRM system owns client data). Other systems subscribe to the master data and changes are replicated to subscribers as they are made. This can be one way (no changes are allowed on the subscriber systems) or bi-directional. But at all times, the master data owner is current or up to date. And all data, whether internal or external, use the same processes and methods to move data from one place to another, leveraging the same validations, lookups and transformations enterprise wide, eliminating inconsistencies and siloed data. Once implemented, an enterprise integration solution improves performance and stability by reducing the number of moving parts and eliminating inconsistent data. Overall maintenance costs are mitigated by reducing touch points or the number of places that require modification when a business rule is changed or another data element is added. Most importantly, however, now decision makers can easily extract and piece together the information they need to grow their business, improve customer satisfaction and so on. So, in implementing an enterprise integration solution, companies can position themselves for the future, allowing for easy transition to data marts, data warehousing and, ultimately, business intelligence. Along this path, companies can achieve growth in size, intelligence and complexity. Truly, the question is not can companies afford to implement an enterprise integration solution, but can they afford not to.   Ralph Wheaton Microsoft Certified Technology Specialist Microsoft Certified Professional Developer Microsoft VTS-P BizTalk, .Net

    Read the article

  • Launching Ops Center 12c

    - by user12601629
    Oracle Enterprise Manager Ops Center 12c is most ambitious version of the Ops Center tooling that we've ever released. I think that make it appropriate that we launched it in grand style! When it became clear we were going to be complete with the 12c final release about this time of year, the marketing team proposed that we roll the launch of 12c into Oracle OpenWorld Tokyo.  I thought that sounded like a fine idea!  You see, I have always loved Japan.  I even studied a bit of Japanese language back in school. OpenWorld Tokyo was an outstanding even this year.  It was held in Roppongi, one of the most stylish districts in Tokyo. And, to make things even better, the Sakura (cherry blossoms) were blooming.  If you've never been in Japan for cherry blossom season, it's a must see!  Here are a couple of pics for you. Here is a picture from Roppongi, near the conference.  Here's a picture near the Imperial Palace.  A couple of friends from the local sales team took me here before my flight out. So, now back to the product launch! We choose to launch the product in John Fowler's "Engineered Systems" keynote address.  It made perfect sense because of the close ties of Ops Center to the Systems portfolio of products.  It was a packed house for the keynote.  Here's a picture I took just before we started -- there were also hundreds more people in "overflow" rooms in other parts of the venue. Here's a picture of me on stage during the launch. While there are countless new features in Ops Center 12c that customers will love, I had to limit myself to discussing just three. Mission Critical Clouds Solaris 11 Engineered Systems So, what does Mission Critical Cloud mean?  It means we've expanded EM's cloud capabilities in a couple of key areas. First, we've expanded the "self service provisioning" capabilities we have to include SPARC -- not just x86.  Now you can build clouds of Solaris Zones with ease!  Second, we've much more deeply integrated high-end storage and network management into the cloud layers.  These may our IaaS story is now much more powerful! For Solaris 11, we didn't simply port our monitoring agent to S11.  That would have been easy, but also boring! We support S11 deeply.  Full access to the power of the IPS packaging system, the new virtualized networking stack, new Zones features, the Auto Install framework.  If you're ready to try Solaris 11 then Ops Center is ready for you. Last is on the area of Engineered Systems.  These combinations of hardware and software are fast and powerful. However, we're also on a mission to make them ever easier to manage.  We've made major strides with Ops Center 12c. Manage these systems as racks, not individual components.  The new capabilities for the new engineered systems like Exalogic and SPARC SuperCluster and striking. You can read more here: Oracle Unveils Oracle Enterprise Manager Ops Center 12c So, I'll wrap this up with one final bit of fun. One of my friends from the Oracle marketing department found a super cool place to get dinner.  It's a restaurant called Gonpachi. It turns out this is the place that inspired the scene in the Quentin Taratino movie Kill Bill where Uma Thurman fights 88 Ninjas.  Here is a picture I snapped while we were there. It was surely a good time. Check it out next time you're in Tokyo.

    Read the article

  • Orchestrating the Virtual Enterprise, Part I

    - by Kathryn Perry
    A guest post by Jon Chorley, Oracle's Chief Sustainability Officer & Vice President, SCM Product Strategy During the American Industrial Revolution, the Ford Motor Company did it all. It turned raw materials into a showroom full of Model Ts. It owned a steel mill, a glass factory, and an automobile assembly line. The company was both self-sufficient and innovative and went on to become one of the largest and most profitable companies in the world. Nowadays, it's unusual for any business to follow this vertical integration model because its much harder to be best in class across such a wide a range of capabilities and services. Instead, businesses focus on their core competencies and outsource other business functions to specialized suppliers. They exchange vertical integration for collaboration. When done well, all parties benefit from this arrangement and the collaboration leads to the creation of an agile, lean and successful "virtual enterprise." Case in point: For Sun hardware, Oracle outsources most of its manufacturing and all of its logistics to third parties. These are vital activities, but ones where Oracle doesn't have a core competency, so we shift them to business partners who do. Within our enterprise, we always retain the core functions of product development, support, and most of the sales function, because that's what constitutes our core value to our customers. This is a perfect example of a virtual enterprise.  What are the implications of this? It means that we must exchange direct internal control for indirect external collaboration. This fundamentally changes the relative importance of different business processes, the boundaries of security and information sharing, and the relationship of the supply chain systems to the ERP. The challenge is that the systems required to support this virtual paradigm are still mired in "island enterprise" thinking. But help is at hand. Developments such as the Web, social networks, collaboration, and rules-based orchestration offer great potential to fundamentally re-architect supply chain systems to better support the virtual enterprise.  Supply Chain Management Systems in a Virtual Enterprise Historically enterprise software was constructed to automate the ERP - and then the supply chain systems extended the ERP. They were joined at the hip. In virtual enterprises, the supply chain system needs to be ERP agnostic, sitting above each of the ERPs that are distributed across the virtual enterprise - most of which are operating in other businesses. This is vital so that the supply chain system can manage the flow of material and the related information through the multiple enterprises. It has to have strong collaboration tools. It needs to be highly flexible. Users need to be able to see information that's coming from multiple sources and be able to react and respond to events across those sources.  Oracle Fusion Distributed Order Orchestration (DOO) is a perfect example of a supply chain system designed to operate in this virtual way. DOO embraces the idea that a company's fulfillment challenge is a distributed, multi-enterprise problem. It enables users to manage the process and the trading partners in a uniform way and deliver a consistent user experience while operating over a heterogeneous, virtual enterprise. This is a fundamental shift at the core of managing supply chains. It forces virtual enterprises to think architecturally about how best to construct their supply chain systems. In my next post, I will share examples of companies that have made that shift and talk more about the distributed orchestration process.

    Read the article

  • The Oracle Enterprise Linux Software and Hardware Ecosystem

    - by sergio.leunissen
    It's been nearly four years since we launched the Unbreakable Linux support program and with it the free Oracle Enterprise Linux software. Since then, we've built up an extensive ecosystem of hardware and software partners. Oracle works directly with these vendors to ensure joint customers can run Oracle Enterprise Linux. As Oracle Enterprise Linux is fully--both source and binary--compatible with Red Hat Enterprise Linux (RHEL), there is minimal work involved for software and hardware vendors to test their products with it. We develop our software on Oracle Enterprise Linux and perform full certification testing on Oracle Enterprise Linux as well. Due to the compatibility between Oracle Enterprise Linux and RHEL, Oracle also certifies its software for use on RHEL, without any additional testing. Oracle Enterprise Linux tracks RHEL by publishing freely downloadable installation media on edelivery.oracle.com/linux and updates, bug fixes and security errata on Unbreakable Linux Network (ULN). At the same time, Oracle's Linux kernel team is shaping the future of enterprise Linux distributions by developing technologies and features that matter to customers who deploy Linux in the data center, including file systems, memory management, high performance computing, data integrity and virtualization. All this work is contributed to the Linux and Xen communities. The list below is a sample of the partners who have certified their products with Oracle Enterprise Linux. If you're interested in certifying your software or hardware with Oracle Enterprise Linux, please contact us via [email protected] Chip Manufacturers Intel, Intel Enabled Server Acceleration Alliance AMD Server vendors Cisco Unified Computing System Dawning Dell Egenera Fujitsu HP Huawei IBM NEC Sun/Oracle Storage Systems, Volume Management and File Systems 3Par Compellent EMC VPLEX FalconStor Fusion-io Hitachi Data Systems HP Storage Array Systems Lustre Network Appliance OCFS2 PillarData Symantec Veritas Storage Foundation Networking: Switches, Host Bus Adapters (HBAs), Converged Network Adapters (CNAs), InfiniBand Brocade Emulex Mellanox QLogic Voltaire SOA and Middleware ActiveState ActivePerl, ActivePython Tibco Zend Backup, Recovery & Replication Arkeia Network Backup Suite BakBone NetVault CommVault Simpana 8 EMC Networker, Replication Manager FalconStor Continuous Data Protector HP Data Protector NetApp Snapmanager Quest LiteSpeed Engine Steeleye Data Replication, Disaster Recovery Symantec NetBackup, Veritas Volume Replicator, Symantec Backup Exec Zmanda Amanda Enterprise Data Center Automation BMC CA Unicenter HP Server Automation (formerly Opsware), System Management Homepage Oracle Enterprise Manager Ops Center Quest Vizioncore vFoglight Pro TeamQuest Manager Clustering & High Availability FUJITSU x10sure NEC Express Cluster X Steeleye Lifekeeper Symantec Cluster Server Univa UniCluster Virtualization Platforms and Cloud Providers Amazon EC2 Citrix XenServer Rackspace Cloud VirtualBox VMWare ESX Security Management ArcSight: Enterprise Security Manager, Logger CA Access Control Centrify Suite Ecora Auditor FoxT Manager Likewise: Unix Account Management Lumension Endpoint Management and Security Suite QualysGuard Suite Quest Privilege Manager McAfee Application Control, Change ControlIntegrity Monitor, Integrity Control, PCI Pro Solidcore S3 Symantec Enterprise Security Manager (ESM) Tripwire Trusted Computer Solutions

    Read the article

  • Windows Azure Use Case: Fast Acquisitions

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many organizations absorb, take over or merge with other organizations. In these cases, one of the most difficult parts of the process is the merging or changing of the IT systems that the employees use to do their work, process payments, and even get paid. Normally this means that the two companies have disparate systems, and several approaches can be used to have the two organizations use technology between them. An organization may choose to retain both systems, and manage them separately. The advantage here is speed, and keeping the profit/loss sheets separate. Another choice is to slowly “sunset” or stop using one organization’s system, and cutting to the other system immediately or at a later date. Although a popular choice, one of the most difficult methods is to extract data and processes from one system and import it into the other. Employees at the transitioning system have to be trained on the new one, the data must be examined and cleansed, and there is inevitable disruption when this happens. Still another option is to integrate the systems. This may prove to be as much work as a transitional strategy, but may have less impact on the users or the balance sheet. Implementation: A distributed computing paradigm can be a good strategic solution to most of these strategies. Retaining both systems is made more simple by allowing the users at the second organization immediate access to the new system, because security accounts can be created quickly inside an application. There is no need to set up a VPN or any other connections than just to the Internet. Having the users stop using one system and start with the other is also simple in Windows Azure for the same reason. Extracting data to Azure holds the same limitations as an on-premise system, and may even be more problematic because of the large data transfers that might be required. In a distributed environment, you pay for the data transfer, so a mixed migration strategy is not recommended. However, if the data is slowly migrated over time with a defined cutover, this can be an effective strategy. If done properly, an integration strategy works very well for a distributed computing environment like Windows Azure. If the Azure code is architected as a series of services, then endpoints can expose the service into and out of not only the Azure platform, but internally as well. This is a form of the Hybrid Application use-case documented here. References: Designing for Cloud Optimized Architecture: http://blogs.msdn.com/b/dachou/archive/2011/01/23/designing-for-cloud-optimized-architecture.aspx 5 Enterprise steps for adopting a Platform as a Service: http://blogs.msdn.com/b/davidmcg/archive/2010/12/02/5-enterprise-steps-for-adopting-a-platform-as-a-service.aspx?wa=wsignin1.0

    Read the article

  • Oracle Customer Hub - Directions, Roadmap and Customer Success

    - by Mala Narasimharajan
     By Gurinder Bahl With less than a week from OOW 2012, I would like to introduce you all to the core Oracle Customer MDM Strategy sessions. Fragmentation of customer data across disparate systems prohibits companies from achieving a complete and accurate view of their customers. Oracle Customer Hub provide a comprehensive set of services, utilities and applications to create and maintain a trusted master customer system of record across the enterprise. Customer Hub centralizes customer data from disparate systems across your enterprise into a master repository. Existing systems are integrated in real-time or via batch with the Hub, allowing you to leverage legacy platform investments while capitalizing on the benefits of a single customer identity. Don’t miss out on two sessions geared towards Oracle Customer Hub:   1) Attend session CON9747 - Turn Customer Data into an Enterprise Asset with Oracle Fusion Customer Hub Applications at Oracle Open World 2012 on Monday, Oct 1st, 10:45 AM - 11:45 AM @ Moscone West – 2008. Manouj Tahiliani, Sr. Director MDM Product Management will provide insight into the vision of Oracle Fusion Customer Hub solutions, and review the roadmap. You will discover how Fusion Customer MDM can help your enterprise improve data quality, create accurate and complete customer information,  manage governance and help create great customer experiences. You will also understand how to leverage data quality capabilities and create a sophisticated customer foundation within Oracle Fusion Applications. You will also hear Danette Patterson, Group Lead, Church Pension Group talk about how Oracle Fusion Customer Hub applications provide a modern, next-generation, multi-domain foundation for managing customer information in a private cloud. 2)  Don't miss session  CON9692 - Customer MDM is key to Strategic Business Success and Customer Experience Management at Oracle Open World 2012 on Wednesday, October 3rd 2012 from 3:30-4:30pm @ Westin San Francisco Metropolitan 1. JP Hurtado, Director, Customer Systems, will provide insight on how RCCL overcame challenges of data quality, guest recognition & centralized customer view to provide consolidated customer view to multiple reservation, CRM, marketing, service, sales, data warehouse and loyalty systems. You will learn how Royal Caribbean Cruise Lines (RCCL), which has over 30 million customer and maintain multiple brands, leveraged Oracle Customer Hub (Siebel UCM) as backbone to customer data management strategy for past 5 years. Gurinder Bahl from MDM Product Management will provide an update on Oracle Customer Hub strategy, what we have achieved since last Open World and our future plans for the Oracle Customer Hub. You will learn about Customer Hub Data Quality capabilities around data analysis, cleansing, matching, address validation as well as reporting and monitoring capabilities. The MDM track at Oracle Open World covers variety of topics related to MDM. In addition to the product management team presenting product updates and roadmap, we have several Customer Panels, and Conference sessions. You can see an overview of MDM sessions here.  Looking forward to see you at Open World, the perfect opportunity to learn about cutting edge Oracle technologies. 

    Read the article

  • Display a JSON-string as a table

    - by Martin Aleksander
    I'm totally new to JSON, and have a json-string I need to display as a user-friendly table. I have this file, http://ish.tek.no/json_top_content.php?project_id=11&period=week, witch is showing ID-numbers for products (title) and the number of views. The Title-ID should be connected to this file; http://api.prisguide.no/export/product.php?id=158200 so I can get a table like this: ID | Product Name | Views 158200 | Samsung Galaxy SIII | 21049 How can I do this?

    Read the article

  • Exadata at Oracle Openworld - A guide to sessions

    - by Javier Puerta
    A large number of sessions focusing on Exadata will be taking place during the week of Oracle Openworld in San Francisco. To help you organize your schedule I am including below a list of sessions and events around Exadata that you will find of interest. PARTNER SPECIFIC SESSIONS Date/Time/Location  Session Sunday, Sep 30, 3:30 PM - 4:30 PM - Moscone South - 301 Building a Winning Services Practice with Oracle’s Engineered Systems.- This session kicks off a week-long session on Oracle’s engineered systems, from Oracle Database Appliance to Oracle Exadata, Oracle Exalogic, Oracle Exalytics, Oracle Big Data Appliance, and Oracle SPARC SuperCluster. Hear about what is to come in the week ahead in terms of engineered systems. As an ideal consolidation platform for database workloads, Oracle Exadata generates significant services opportunities. This session reviews the range of partner-led services that support Oracle Exadata deployments.   Monday, October 1st, 2011 at 15:30 - 18:00 PST Grand Hyatt San Francisco 345 Stockton Street, San Francisco (Conference Theater) (It is a 15 minute walk from OOW Moscone Center. See directions here) Exadata & Manageability EMEA Partner Community Forum.- Listen to other partners share their experiences in selling and implementing Exadata and Manageability projects, and have a direct dialogue with some of the Oracle executives that are driving the strategy of the company in these areas. Agenda Welcome - Hans-Peter Kipfer, VP, Engineered Systems Oracle EMEA Next challenges in building and managing clouds - Javier Cabrerizo, VP, Business Development for Exadata, Oracle Corp. Partner Experiences: IT modernization, simplification and cost reduction: The case of a customer in Transportation & Logistics with custom applications and SAP. - Francisco Bermudez, Country Leader Infrastructure Services, Capgemini, Spain Nvision cloud project - Dmitry Krasilov, Head of Oracle Competence Center, Nvision Group, Russia From Exadata Ready to Exadata Optimized: An ISV Experience - Miguel Alves, Product Business Solutions Manager, WeDo Technologies, Portugal To confirm your participation send an email to [email protected]  Wednesday, Oct 3, 11:45 AM - 12:45 PM - Marriott Marquis - Golden Gate B  Building a Practice with Exadata Database Machine.- As an ideal consolidation platform for database workloads, Oracle’s Exadata Database Machine generates significant services opportunities. In this session, learn about the range of partner-led services that support Exadata Database Machine deployments.  Other Engineered Systems sessions for Partners at the Oracle PartnerNetwork Exchange  Click here.-   OOW CUSTOMER SESSIONS   Download the Focus On Exadata guide for a full list of Exadata OOW sessions.  

    Read the article

< Previous Page | 34 35 36 37 38 39 40 41 42 43 44 45  | Next Page >