Search Results

Search found 958 results on 39 pages for 'limitations'.

Page 39/39 | < Previous Page | 35 36 37 38 39 

  • How do I get .NET to garbage collect aggressively?

    - by mmr
    I have an application that is used in image processing, and I find myself typically allocating arrays in the 4000x4000 ushort size, as well as the occasional float and the like. Currently, the .NET framework tends to crash in this app apparently randomly, almost always with an out of memory error. 32mb is not a huge declaration, but if .NET is fragmenting memory, then it's very possible that such large continuous allocations aren't behaving as expected. Is there a way to tell the garbage collector to be more aggressive, or to defrag memory (if that's the problem)? I realize that there's the GC.Collect and GC.WaitForPendingFinalizers calls, and I've sprinkled them pretty liberally through my code, but I'm still getting the errors. It may be because I'm calling dll routines that use native code a lot, but I'm not sure. I've gone over that C++ code, and make sure that any memory I declare I delete, but still I get these C# crashes, so I'm pretty sure it's not there. I wonder if the C++ calls could be interfering with the GC, making it leave behind memory because it once interacted with a native call-- is that possible? If so, can I turn that functionality off? EDIT: Here is some very specific code that will cause the crash. According to this SO question, I do not need to be disposing of the BitmapSource objects here. Here is the naive version, no GC.Collects in it. It generally crashes on iteration 4 to 10 of the undo procedure. This code replaces the constructor in a blank WPF project, since I'm using WPF. I do the wackiness with the bitmapsource because of the limitations I explained in my answer to @dthorpe below as well as the requirements listed in this SO question. public partial class Window1 : Window { public Window1() { InitializeComponent(); //Attempts to create an OOM crash //to do so, mimic minute croppings of an 'image' (ushort array), and then undoing the crops int theRows = 4000, currRows; int theColumns = 4000, currCols; int theMaxChange = 30; int i; List<ushort[]> theList = new List<ushort[]>();//the list of images in the undo/redo stack byte[] displayBuffer = null;//the buffer used as a bitmap source BitmapSource theSource = null; for (i = 0; i < theMaxChange; i++) { currRows = theRows - i; currCols = theColumns - i; theList.Add(new ushort[(theRows - i) * (theColumns - i)]); displayBuffer = new byte[theList[i].Length]; theSource = BitmapSource.Create(currCols, currRows, 96, 96, PixelFormats.Gray8, null, displayBuffer, (currCols * PixelFormats.Gray8.BitsPerPixel + 7) / 8); System.Console.WriteLine("Got to change " + i.ToString()); System.Threading.Thread.Sleep(100); } //should get here. If not, then theMaxChange is too large. //Now, go back up the undo stack. for (i = theMaxChange - 1; i >= 0; i--) { displayBuffer = new byte[theList[i].Length]; theSource = BitmapSource.Create((theColumns - i), (theRows - i), 96, 96, PixelFormats.Gray8, null, displayBuffer, ((theColumns - i) * PixelFormats.Gray8.BitsPerPixel + 7) / 8); System.Console.WriteLine("Got to undo change " + i.ToString()); System.Threading.Thread.Sleep(100); } } } Now, if I'm explicit in calling the garbage collector, I have to wrap the entire code in an outer loop to cause the OOM crash. For me, this tends to happen around x = 50 or so: public partial class Window1 : Window { public Window1() { InitializeComponent(); //Attempts to create an OOM crash //to do so, mimic minute croppings of an 'image' (ushort array), and then undoing the crops for (int x = 0; x < 1000; x++){ int theRows = 4000, currRows; int theColumns = 4000, currCols; int theMaxChange = 30; int i; List<ushort[]> theList = new List<ushort[]>();//the list of images in the undo/redo stack byte[] displayBuffer = null;//the buffer used as a bitmap source BitmapSource theSource = null; for (i = 0; i < theMaxChange; i++) { currRows = theRows - i; currCols = theColumns - i; theList.Add(new ushort[(theRows - i) * (theColumns - i)]); displayBuffer = new byte[theList[i].Length]; theSource = BitmapSource.Create(currCols, currRows, 96, 96, PixelFormats.Gray8, null, displayBuffer, (currCols * PixelFormats.Gray8.BitsPerPixel + 7) / 8); } //should get here. If not, then theMaxChange is too large. //Now, go back up the undo stack. for (i = theMaxChange - 1; i >= 0; i--) { displayBuffer = new byte[theList[i].Length]; theSource = BitmapSource.Create((theColumns - i), (theRows - i), 96, 96, PixelFormats.Gray8, null, displayBuffer, ((theColumns - i) * PixelFormats.Gray8.BitsPerPixel + 7) / 8); GC.WaitForPendingFinalizers();//force gc to collect, because we're in scenario 2, lots of large random changes GC.Collect(); } System.Console.WriteLine("Got to changelist " + x.ToString()); System.Threading.Thread.Sleep(100); } } } If I'm mishandling memory in either scenario, if there's something I should spot with a profiler, let me know. That's a pretty simple routine there. Unfortunately, it looks like @Kevin's answer is right-- this is a bug in .NET and how .NET handles objects larger than 85k. This situation strikes me as exceedingly strange; could Powerpoint be rewritten in .NET with this kind of limitation, or any of the other Office suite applications? 85k does not seem to me to be a whole lot of space, and I'd also think that any program that uses so-called 'large' allocations frequently would become unstable within a matter of days to weeks when using .NET. EDIT: It looks like Kevin is right, this is a limitation of .NET's GC. For those who don't want to follow the entire thread, .NET has four GC heaps: gen0, gen1, gen2, and LOH (Large Object Heap). Everything that's 85k or smaller goes on one of the first three heaps, depending on creation time (moved from gen0 to gen1 to gen2, etc). Objects larger than 85k get placed on the LOH. The LOH is never compacted, so eventually, allocations of the type I'm doing will eventually cause an OOM error as objects get scattered about that memory space. We've found that moving to .NET 4.0 does help the problem somewhat, delaying the exception, but not preventing it. To be honest, this feels a bit like the 640k barrier-- 85k ought to be enough for any user application (to paraphrase this video of a discussion of the GC in .NET). For the record, Java does not exhibit this behavior with its GC.

    Read the article

  • What is correct HTTP status code when redirecting to a login page?

    - by PHP_Jedi
    When a user is not logged in and tries to access an page that requires login, what is the correct HTTP status code for a redirect to the login page? I don't feel that any of the 3xx fit that description. 10.3.1 300 Multiple Choices The requested resource corresponds to any one of a set of representations, each with its own specific location, and agent- driven negotiation information (section 12) is being provided so that the user (or user agent) can select a preferred representation and redirect its request to that location. Unless it was a HEAD request, the response SHOULD include an entity containing a list of resource characteristics and location(s) from which the user or user agent can choose the one most appropriate. The entity format is specified by the media type given in the Content- Type header field. Depending upon the format and the capabilities of the user agent, selection of the most appropriate choice MAY be performed automatically. However, this specification does not define any standard for such automatic selection. If the server has a preferred choice of representation, it SHOULD include the specific URI for that representation in the Location field; user agents MAY use the Location field value for automatic redirection. This response is cacheable unless indicated otherwise. 10.3.2 301 Moved Permanently The requested resource has been assigned a new permanent URI and any future references to this resource SHOULD use one of the returned URIs. Clients with link editing capabilities ought to automatically re-link references to the Request-URI to one or more of the new references returned by the server, where possible. This response is cacheable unless indicated otherwise. The new permanent URI SHOULD be given by the Location field in the response. Unless the request method was HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(s). If the 301 status code is received in response to a request other than GET or HEAD, the user agent MUST NOT automatically redirect the request unless it can be confirmed by the user, since this might change the conditions under which the request was issued. Note: When automatically redirecting a POST request after receiving a 301 status code, some existing HTTP/1.0 user agents will erroneously change it into a GET request. 10.3.3 302 Found The requested resource resides temporarily under a different URI. Since the redirection might be altered on occasion, the client SHOULD continue to use the Request-URI for future requests. This response is only cacheable if indicated by a Cache-Control or Expires header field. The temporary URI SHOULD be given by the Location field in the response. Unless the request method was HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(s). If the 302 status code is received in response to a request other than GET or HEAD, the user agent MUST NOT automatically redirect the request unless it can be confirmed by the user, since this might change the conditions under which the request was issued. Note: RFC 1945 and RFC 2068 specify that the client is not allowed to change the method on the redirected request. However, most existing user agent implementations treat 302 as if it were a 303 response, performing a GET on the Location field-value regardless of the original request method. The status codes 303 and 307 have been added for servers that wish to make unambiguously clear which kind of reaction is expected of the client. 10.3.4 303 See Other The response to the request can be found under a different URI and SHOULD be retrieved using a GET method on that resource. This method exists primarily to allow the output of a POST-activated script to redirect the user agent to a selected resource. The new URI is not a substitute reference for the originally requested resource. The 303 response MUST NOT be cached, but the response to the second (redirected) request might be cacheable. The different URI SHOULD be given by the Location field in the response. Unless the request method was HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(s). Note: Many pre-HTTP/1.1 user agents do not understand the 303 status. When interoperability with such clients is a concern, the 302 status code may be used instead, since most user agents react to a 302 response as described here for 303. 10.3.5 304 Not Modified If the client has performed a conditional GET request and access is allowed, but the document has not been modified, the server SHOULD respond with this status code. The 304 response MUST NOT contain a message-body, and thus is always terminated by the first empty line after the header fields. The response MUST include the following header fields: - Date, unless its omission is required by section 14.18.1 If a clockless origin server obeys these rules, and proxies and clients add their own Date to any response received without one (as already specified by [RFC 2068], section 14.19), caches will operate correctly. - ETag and/or Content-Location, if the header would have been sent in a 200 response to the same request - Expires, Cache-Control, and/or Vary, if the field-value might differ from that sent in any previous response for the same variant If the conditional GET used a strong cache validator (see section 13.3.3), the response SHOULD NOT include other entity-headers. Otherwise (i.e., the conditional GET used a weak validator), the response MUST NOT include other entity-headers; this prevents inconsistencies between cached entity-bodies and updated headers. If a 304 response indicates an entity not currently cached, then the cache MUST disregard the response and repeat the request without the conditional. If a cache uses a received 304 response to update a cache entry, the cache MUST update the entry to reflect any new field values given in the response. 10.3.6 305 Use Proxy The requested resource MUST be accessed through the proxy given by the Location field. The Location field gives the URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305 responses MUST only be generated by origin servers. Note: RFC 2068 was not clear that 305 was intended to redirect a single request, and to be generated by origin servers only. Not observing these limitations has significant security consequences. 10.3.7 306 (Unused) The 306 status code was used in a previous version of the specification, is no longer used, and the code is reserved. 10.3.8 307 Temporary Redirect The requested resource resides temporarily under a different URI. Since the redirection MAY be altered on occasion, the client SHOULD continue to use the Request-URI for future requests. This response is only cacheable if indicated by a Cache-Control or Expires header field. The temporary URI SHOULD be given by the Location field in the response. Unless the request method was HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(s) , since many pre-HTTP/1.1 user agents do not understand the 307 status. Therefore, the note SHOULD contain the information necessary for a user to repeat the original request on the new URI. If the 307 status code is received in response to a request other than GET or HEAD, the user agent MUST NOT automatically redirect the request unless it can be confirmed by the user, since this might change the conditions under which the request was issued. I'm using 302 for now, until I find THE correct answer.

    Read the article

  • JNI String Corruption

    - by Chris Dennett
    Hi everyone, I'm getting weird string corruption across JNI calls which is causing problems on the the Java side. Every so often, I'll get a corrupted string in the passed array, which sometimes has existing parts of the original non-corrupted string. The C++ code is supposed to set the first index of the array to the address, it's a nasty hack to get around method call limitations. Additionally, the application is multi-threaded. remoteaddress[0]: 10.1.1.2:49153 remoteaddress[0]: 10.1.4.2:49153 remoteaddress[0]: 10.1.6.2:49153 remoteaddress[0]: 10.1.2.2:49153 remoteaddress[0]: 10.1.9.2:49153 remoteaddress[0]: {garbage here} java.lang.NullPointerException at kokuks.KKSAddress.<init>(KKSAddress.java:139) at kokuks.KKSAddress.createAddress(KKSAddress.java:48) at kokuks.KKSSocket._recvFrom(KKSSocket.java:963) at kokuks.scheduler.RecvOperation$1.execute(RecvOperation.java:144) at kokuks.scheduler.RecvOperation$1.execute(RecvOperation.java:1) at kokuks.KKSEvent.run(KKSEvent.java:58) at kokuks.KokuKS.handleJNIEventExpiry(KokuKS.java:872) at kokuks.KokuKS.handleJNIEventExpiry_fjni(KokuKS.java:880) at kokuks.KokuKS.runSimulator_jni(Native Method) at kokuks.KokuKS$1.run(KokuKS.java:773) at java.lang.Thread.run(Thread.java:717) remoteaddress[0]: 10.1.7.2:49153 The null pointer exception comes from trying to use the corrupt string. In C++, the address prints to standard out normally, but doing this reduces the rate of errors, from what I can see. The C++ code (if it helps): /* * Class: kokuks_KKSSocket * Method: recvFrom_jni * Signature: (Ljava/lang/String;[Ljava/lang/String;Ljava/nio/ByteBuffer;IIJ)I */ JNIEXPORT jint JNICALL Java_kokuks_KKSSocket_recvFrom_1jni (JNIEnv *env, jobject obj, jstring sockpath, jobjectArray addrarr, jobject buf, jint position, jint limit, jlong flags) { if (addrarr && env->GetArrayLength(addrarr) > 0) { env->SetObjectArrayElement(addrarr, 0, NULL); } jboolean iscopy; const char* cstr = env->GetStringUTFChars(sockpath, &iscopy); std::string spath = std::string(cstr); env->ReleaseStringUTFChars(sockpath, cstr); // release me! if (KKS_DEBUG) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << std::endl; } ns3::Ptr<ns3::Socket> socket = ns3::Names::Find<ns3::Socket>(spath); if (!socket) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " socket not found for path!!" << std::endl; return -1; // not found } if (!addrarr) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " array to set sender is null" << std::endl; return -1; } jsize arrsize = env->GetArrayLength(addrarr); if (arrsize < 1) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " array too small to set sender!" << std::endl; return -1; } uint8_t* bufaddr = (uint8_t*)env->GetDirectBufferAddress(buf); long bufcap = env->GetDirectBufferCapacity(buf); uint8_t* realbufaddr = bufaddr + position; uint32_t remaining = limit - position; if (KKS_DEBUG) { std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " bufaddr: " << bufaddr << ", cap: " << bufcap << std::endl; } ns3::Address aaddr; uint32_t mflags = flags; int ret = socket->RecvFrom(realbufaddr, remaining, mflags, aaddr); if (ret > 0) { if (KKS_DEBUG) std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " addr: " << aaddr << std::endl; ns3::InetSocketAddress insa = ns3::InetSocketAddress::ConvertFrom(aaddr); std::stringstream ss; insa.GetIpv4().Print(ss); ss << ":" << insa.GetPort() << std::ends; if (KKS_DEBUG) std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " addr: " << ss.str() << std::endl; jsize index = 0; const char *cstr = ss.str().c_str(); jstring jaddr = env->NewStringUTF(cstr); if (jaddr == NULL) std::cout << "[kks-c~" << spath << "] " << __PRETTY_FUNCTION__ << " jaddr is null!!" << std::endl; //jaddr = (jstring)env->NewGlobalRef(jaddr); env->SetObjectArrayElement(addrarr, index, jaddr); //if (env->ExceptionOccurred()) { // env->ExceptionDescribe(); //} } jint jret = ret; return jret; } The Java code (if it helps): /** * Pass an array of size 1 into remote address, and this will be set with * the sender of the packet (hax). This emulates C++ references. * * @param remoteaddress * @param buf * @param flags * @return */ public int _recvFrom(final KKSAddress remoteaddress[], ByteBuffer buf, long flags) { if (!kks.isCurrentlyThreadSafe()) throw new RuntimeException( "Not currently thread safe for ns-3 functions!" ); //lock.lock(); try { if (!buf.isDirect()) return -6; // not direct!! final String[] remoteAddrStr = new String[1]; int ret = 0; ret = recvFrom_jni( path.toPortableString(), remoteAddrStr, buf, buf.position(), buf.limit(), flags ); if (ret > 0) { System.out.println("remoteaddress[0]: " + remoteAddrStr[0]); remoteaddress[0] = KKSAddress.createAddress(remoteAddrStr[0]); buf.position(buf.position() + ret); } return ret; } finally { errNo = _getErrNo(); //lock.unlock(); } } public int recvFrom(KKSAddress[] fromaddress, final ByteBuffer bytes, long flags, long timeoutMS) { if (KokuKS.DEBUG_MODE) printMessage("public synchronized int recvFrom(KKSAddress[] fromaddress, final ByteBuffer bytes, long flags, long timeoutMS)"); if (kks.isCurrentlyThreadSafe()) { return _recvFrom(fromaddress, bytes, flags); // avoid event } fromaddress[0] = null; RecvOperation ro = new RecvOperation( kks, this, flags, true, bytes, timeoutMS ); ro.start(); fromaddress[0] = ro.getFrom(); return ro.getRetCode(); }

    Read the article

  • 26 Days: Countdown to Oracle OpenWorld 2012

    - by Michael Snow
    Welcome to our countdown to Oracle OpenWorld! Oracle OpenWorld 2012 is just around the corner. In less than 26 days, San Francisco will be invaded by an expected 50,000 people from all over the world. Here on the Oracle WebCenter team, we’ve all been working to help make the experience a great one for all our WebCenter customers. For a sneak peak  – we’ll be spending this week giving you a teaser of what to look forward to if you are joining us in San Francisco from September 30th through October 4th. We have Oracle WebCenter sessions covering all topics imaginable. Take a look and use the tools we provide to build out your schedule in advance and reserve your seats in your favorite sessions.  That gives you plenty of time to plan for your week with us in San Francisco. If unfortunately, your boss denied your request to attend - there are still some ways that you can join in the experience virtually On-Demand. This year - we are expanding even more up North of Market Street and will be taking over Union Square as well. Check out this map of San Francisco to get a sense of how much of a footprint Oracle OpenWorld has grown to this year. With so much to see and so many sessions to learn from - its no wonder that people get excited. Add to that a good mix of fun and all of the possible WebCenter sessions you could attend - you won't want to sleep at all to take full advantage of such an opportunity. We'll also have our annual WebCenter Customer Appreciation reception - stay tuned this week for some more info on registration to make sure you'll be able to join us. If you've been following the America's Cup at all and believe in EXTREME PERFORMANCE you'll definitely want to take a look at this video from last year's OpenWorld Keynote. 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Important OpenWorld Links:  Attendee / Presenters Toolkit Oracle Schedule Builder WebCenter Sessions (listed in the catalog under Fusion Middleware as "Portals, Sites, Content, and Collaboration" ) Oracle Music Festival - AMAZING Line up!!  Oracle Customer Appreciation Night -LOOK HERE!! Oracle OpenWorld LIVE On-Demand Here are all the WebCenter sessions broken down by day for your viewing pleasure. Monday, October 1st CON8885 - Simplify CRM Engagement with Contextual Collaboration Are your sales teams disconnected and disengaged? Do you want a tool for easily connecting expertise across your organization and providing visibility into the complete sales process? Do you want a way to enhance and retain organization knowledge? Oracle Social Network is the answer. Attend this session to learn how to make CRM easy, effective, and efficient for use across virtual sales teams. Also learn how Oracle Social Network can drive sales force collaboration with natural conversations throughout the sales cycle, promote sales team productivity through purposeful social networking without the noise, and build cross-team knowledge by integrating conversations with CRM and other business applications. CON8268 - Oracle WebCenter Strategy: Engaging Your Customers. Empowering Your Business Oracle WebCenter is a user engagement platform for social business, connecting people and information. Attend this session to learn about the Oracle WebCenter strategy, and understand where Oracle is taking the platform to help companies engage customers, empower employees, and enable partners. Business success starts with ensuring that everyone is engaged with the right people and the right information and can access what they need through the channel of their choice—Web, mobile, or social. Are you giving customers, employees, and partners the best-possible experience? Come learn how you can! ¶ HOL10208 - Add Social Capabilities to Your Enterprise Applications Oracle Social Network enables you to add real-time collaboration capabilities into your enterprise applications, so that conversations can happen directly within your business systems. In this hands-on lab, you will try out the Oracle Social Network product to collaborate with other attendees, using real-time conversations with document sharing capabilities. Next you will embed social capabilities into a sample Web-based enterprise application, using embedded UI components. Experts will also write simple REST-based integrations, using the Oracle Social Network API to programmatically create social interactions. ¶ CON8893 - Improve Employee Productivity with Intuitive and Social Work Environments Social technologies have already transformed the ways customers, employees, partners, and suppliers communicate and stay informed. Forward-thinking organizations today need technologies and infrastructures to help them advance to the next level and integrate social activities with business applications to deliver a user experience that simplifies business processes and enterprise application engagement. Attend this session to hear from an innovative Oracle Social Network customer and learn how you can improve productivity with intuitive and social work environments and empower your employees with innovative social tools to enable contextual access to content and dynamic personalization of solutions. ¶ CON8270 - Oracle WebCenter Content Strategy and Vision Oracle WebCenter provides a strategic content infrastructure for managing documents, images, e-mails, and rich media files. With a single repository, organizations can address any content use case, such as accounts payable, HR onboarding, document management, compliance, records management, digital asset management, or Website management. In this session, learn about future plans for how Oracle WebCenter will address new use cases as well as new integrations with Oracle Fusion Middleware and Oracle Applications, leveraging your investments by making your users more productive and error-free. ¶ CON8269 - Oracle WebCenter Sites Strategy and Vision Oracle’s Web experience management solution, Oracle WebCenter Sites, enables organizations to use the online channel to drive customer acquisition and brand loyalty. It helps marketers and business users easily create and manage contextually relevant, social, interactive online experiences across multiple channels on a global scale. In this session, learn about future plans for how Oracle WebCenter Sites will provide you with the tools, capabilities, and integrations you need in order to continue to address your customers’ evolving requirements for engaging online experiences and keep moving your business forward. ¶ CON8896 - Living with SharePoint SharePoint is a popular platform, but it’s not always the best fit for Oracle customers. In this session, you’ll discover the technical and nontechnical limitations and pitfalls of SharePoint and learn about Oracle alternatives for collaboration, portals, enterprise and Web content management, social computing, and application integration. The presentation shows you how to integrate with SharePoint when business or IT requirements dictate and covers cloud-based (Office 365) and on-premises versions of SharePoint. Presented by a former Microsoft director of SharePoint product management and backed by independent customer research, this session will prepare you to answer the question “Why don’t we just use SharePoint for that?’ the next time it comes up in your organization. ¶ CON7843 - Content-Enabling Enterprise Processes with Oracle WebCenter Organizations today continually strive to automate business processes, reduce costs, and improve efficiency. Many business processes are content-intensive and unstructured, requiring ad hoc collaboration, and distributed in nature, requiring many approvals and generating huge volumes of paper. In this session, learn how Oracle and SYSTIME have partnered to help a customer content-enable its enterprise with Oracle WebCenter Content and Oracle WebCenter Imaging 11g and integrate them with Oracle Applications. ¶ CON6114 - Tape Robotics’ Newest Superhero: Now Fueled by Oracle Software For small, midsize, and rapidly growing businesses that want the most energy-efficient, scalable storage infrastructure to meet their rapidly growing data demands, Oracle’s most recent addition to its award-winning tape portfolio leverages several pieces of Oracle software. With Oracle Linux, Oracle WebLogic, and Oracle Fusion Middleware tools, the library achieves a higher level of usability than previous products while offering customers a familiar interface for management, plus ease of use. This session examines the competitive advantages of the tape library and how Oracle software raises customer satisfaction. Learn how the combination of Oracle engineered systems, Oracle Secure Backup, and Oracle’s StorageTek tape libraries provide end-to-end coverage of your data. ¶ CON9437 - Mobile Access Management With more than five billion mobile devices on the planet and an increasing number of users using their own devices to access corporate data and applications, securely extending identity management to mobile devices has become a hot topic. This session focuses on how to extend your existing identity management infrastructure and policies to securely and seamlessly enable mobile user access. CON7815 - Customer Experience Online in Cloud: Oracle WebCenter Sites, Oracle ATG Apps, Oracle Exalogic Oracle WebCenter Sites and Oracle’s ATG product line together can provide a compelling marketing and e-commerce experience. When you couple them with the extreme performance of Oracle Exalogic, you’ll see unmatched scalability that provides you with a true cloud-based solution. In this session, you’ll learn how running Oracle WebCenter Sites and ATG applications on Oracle Exalogic delivers both a private and a public cloud experience. Find out what it takes to get these systems working together and delivering engaging Web experiences. Even if you aren’t considering Oracle Exalogic today, the rich Web experience of Oracle WebCenter, paired with the depth of the ATG product line, can provide your business full support, from merchandising through sale completion. ¶ CON8271 - Oracle WebCenter Portal Strategy and Vision To innovate and keep a competitive edge, organizations need to leverage the power of agile and responsive Web applications. Oracle WebCenter Portal enables you to do just that, by delivering intuitive user experiences for enterprise applications to drive innovation with composite applications and mashups. Attend this session to learn firsthand from customers how Oracle WebCenter Portal extends the value of existing enterprise applications, business processes, and content; delivers a superior business user experience; and maximizes limited IT resources. ¶ CON8880 - The Connected Customer Experience Begins with the Online Channel There’s a lot of talk these days about how to connect the customer journey across various touchpoints—from Websites and e-commerce to call centers and in-store—to provide experiences that are more relevant and engaging and ultimately gain competitive edge. Doing it all at once isn’t a realistic objective, so where do you start? Come to this session, and hear about three steps you can take that can help you begin your journey toward delivering the connected customer experience. You’ll hear how Oracle now has an integrated digital marketing platform for your corporate Website, your e-commerce site, your self-service portal, and your marketing and loyalty campaigns, and you’ll learn what you can do today to begin executing on your customer experience initiatives. ¶ GEN11451 - General Session: Building Mobile Applications with Oracle Cloud With the prevalence of smart mobile devices, companies are facing an increased demand to provide access to data and applications from new channels. However, developing applications for mobile devices poses some unique challenges. Come to this session to learn how Oracle addresses these challenges, offering a simpler way to develop and deploy cross-device mobile applications. See how Oracle Cloud enables you to access applications, data, and services from mobile channels in an easier way.  CON8272 - Oracle Social Network Strategy and Vision One key way of increasing employee productivity is by bringing people, processes, and information together—providing new social capabilities to enable business users to quickly correspond and collaborate on business activities. Oracle WebCenter provides a user engagement platform with social and collaborative technologies to empower business users to focus on their key business processes, applications, and content in the context of their role and process. Attend this session to hear how the latest social capabilities in Oracle Social Network are enabling organizations to transform themselves into social businesses.  --- Tuesday, October 2nd HOL10194 - Enterprise Content Management Simplified: Oracle WebCenter Content’s Next-Generation UI Regardless of the nature of your business, unstructured content underpins many of its daily functions. Whether you are working with traditional presentations, spreadsheets, or text documents—or even with digital assets such as images and multimedia files—your content needs to be accessible and manageable in convenient and intuitive ways to make working with the content easier. Additionally, you need the ability to easily share documents with coworkers to facilitate a collaborative working environment. Come to this session to see how Oracle WebCenter Content’s next-generation user interface helps modern knowledge workers easily manage personal and enterprise documents in a collaborative environment.¶ CON8877 - Develop a Mobile Strategy with Oracle WebCenter: Engage Customers, Employees, and Partners Mobile technology has gone from nice-to-have to a cornerstone of user engagement. Mobile access enables users to have information available at their fingertips, enabling them to take action the moment they make a decision, interact in the moment of convenience, and take advantage of new service offerings in their preferred channels. All your employees have your mobile applications in their pocket; now what are you going to do? It is a critical step for companies to think through what their employees, customers, and partners really need on their devices. Attend this session to see how Oracle WebCenter enables you to better engage your customers, employees, and partners by providing a unified experience across multiple channels. ¶ CON9447 - Enabling Access for Hundreds of Millions of Users How do you grow your business by identifying, authenticating, authorizing, and federating users on the Web, leveraging social identity and the open source OAuth protocol? How do you scale your access management solution to support hundreds of millions of users? With social identity support out of the box, Oracle’s access management solution is also benchmarked for 250-million-user deployment according to real-world customer scenarios. In this session, you will learn about the social identity capability and the 250-million-user benchmark testing of Oracle Access Manager and Oracle Adaptive Access Manager running on Oracle Exalogic and Oracle Exadata. ¶ HOL10207 - Build an Intranet Portal with Oracle WebCenter In this hands-on lab, you’ll work with Oracle WebCenter Portal and Oracle WebCenter Content to build out an enterprise portal that maximizes the productivity of teams and individual contributors. Using browser-based tools, you’ll manage site resources such as page styles, templates, and navigation. You’ll edit content stored in Oracle WebCenter Content directly from your portal. You’ll also experience the latest features that promote collaboration, social networking, and personal productivity. ¶ CON2906 - Get Proactive: Best Practices for Maintaining Oracle Fusion Middleware You chose Oracle Fusion Middleware products to help your organization deliver superior business results. Now learn how to take full advantage of your software with all the great tools, resources, and product updates you’re entitled to through Oracle Support. In this session, Oracle product experts provide proven best practices to help you work more efficiently, plan and prepare for upgrades and patching more effectively, and manage risk. Topics include configuration management tools, remote diagnostics, My Oracle Support Community, and My Oracle Support Lifecycle Advisors. New users and Oracle Fusion Middleware experts alike are guaranteed to leave with fresh ideas and practical, easy-to-implement next steps. ¶ CON8878 - Oracle WebCenter’s Cloud Strategy: From Social and Platform Services to Mashups Cloud computing represents a paradigm shift in how we build applications, automate processes, collaborate, and share and in how we secure our enterprise. Additionally, as you adopt cloud-based services in your organization, it’s likely that you will still have many critical on-premises applications running. With these mixed environments, multiple user interfaces, different security, and multiple datasources and content sources, how do you start evolving your strategy to account for these challenges? Oracle WebCenter offers a complete array of technologies enabling you to solve these challenges and prepare you for the cloud. Attend this session to learn how you can use Oracle WebCenter in the cloud as well as create on-premises and cloud application mash-ups. ¶ CON8901 - Optimize Enterprise Business Processes with Oracle WebCenter and Oracle BPM Do you have business processes that span multiple applications? Are you grappling with how to have visibility across these business processes; how to manage content that is associated with these processes; and, most importantly, how to model and optimize these business processes? Attend this session to hear how Oracle WebCenter and Oracle Business Process Management provide a unique set of integrated solutions to provide a composite application dashboard across these business processes and offer a solution for content-centric business processes. ¶ CON8883 - Deliver Engaging Interfaces to Oracle Applications with Oracle WebCenter Critical business processes live within enterprise applications, and application users need to manage and execute these processes as effectively as possible. Oracle provides a comprehensive user engagement platform to increase user productivity and optimize overall processes within Oracle Applications—Oracle E-Business Suite and Oracle’s Siebel, PeopleSoft, and JD Edwards product families—and third-party applications. Attend this session to learn how you can integrate these applications with Oracle WebCenter to deliver composite application dashboards to your end users—whether they are your customers, partners, or employees—for enhanced usability and Web 2.0–enabled enterprise portals.¶ Wednesday, October 3rd CON8895 - Future-Ready Intranets: How Aramark Re-engineered the Application Landscape There are essential techniques and technologies you can use to deliver employee portals that garner higher productivity, improve business efficiency, and increase user engagement. Attend this session to learn how you can leverage Oracle WebCenter Portal as a user engagement platform for bringing together business process management, enterprise content management, and business intelligence into a highly relevant and integrated experience. Hear how Aramark has leveraged Oracle WebCenter Portal and Oracle WebCenter Content to deliver a unified workspace providing simpler navigation and processing, consolidation of tools, easy access to information, integrated search, and single sign-on. ¶ CON8886 - Content Consolidation: Save Money, Increase Efficiency, and Eliminate Silos Organizations are looking for ways to save money and be more efficient. With content in many different places, it’s difficult to know where to look for a document and whether the document is the most current version. With Oracle WebCenter, content can be consolidated into one best-of-breed repository that is secure, scalable, and integrated with your business processes and applications. Users can find the content they need, where they need it, and ensure that it is the right content. This session covers content challenges that affect your business; content consolidation that can lead to savings in storage and administration costs and can lower risks; and how companies are realizing savings. ¶ CON8911 - Improve Online Experiences for Customers and Partners with Self-Service Portals Are you able to provide your customers and partners an easy-to-use online self-service experience? Are you processing high-volume transactions and struggling with call center bottlenecks or back-end systems that won’t integrate, causing order delays and customer frustration? Are you looking to target content such as product and service offerings to your end users? This session shares approaches to providing targeted delivery as well as strategies and best practices for transforming your business by providing an intuitive user experience for your customers and partners. ¶ CON6156 - Top 10 Ways to Integrate Oracle WebCenter Content This session covers 10 common ways to integrate Oracle WebCenter Content with other enterprise applications and middleware. It discusses out-of-the-box modules that provide expanded features in Oracle WebCenter Content—such as enterprise search, SOA, and BPEL—as well as developer tools you can use to create custom integrations. The presentation also gives guidance on which integration option may work best in your environment. ¶ HOL10207 - Build an Intranet Portal with Oracle WebCenter In this hands-on lab, you’ll work with Oracle WebCenter Portal and Oracle WebCenter Content to build out an enterprise portal that maximizes the productivity of teams and individual contributors. Using browser-based tools, you’ll manage site resources such as page styles, templates, and navigation. You’ll edit content stored in Oracle WebCenter Content directly from your portal. You’ll also experience the latest features that promote collaboration, social networking, and personal productivity. ¶ CON7817 - Migration to Oracle WebCenter Imaging 11g Customers today continually strive to automate business processes, reduce costs, and improve efficiency. The accounts payable process—which is often distributed in nature, requires many approvals, and generates huge volumes of paper invoices—is automated by many customers. In this session, learn how Oracle and SYSTIME have partnered to help a customer migrate its existing Oracle Imaging and Process Management Release 7.6 to the latest Oracle WebCenter Imaging 11g and integrate it with Oracle’s JD Edwards family of products. ¶ CON8910 - How to Engage Customers Across Web, Mobile, and Social Channels Whether on desktops at the office, on tablets at home, or on mobile phones when on the go, today’s customers are always connected. To engage today’s customers, you need to make the online customer experience connected and consistent across a host of devices and multiple channels, including Web, mobile, and social networks. Managing this multichannel environment can result in lots of headaches without the right tools. Attend this session to learn how Oracle WebCenter Sites solves the challenge of multichannel customer engagement. ¶ HOL10206 - Oracle WebCenter Sites 11g: Transforming the Content Contributor Experience Oracle WebCenter Sites 11g makes it easy for marketers and business users to contribute to and manage Websites with the new visual, contextual, and intuitive Web authoring interface. In this hands-on lab, you will create and manage content for a sports-themed Website, using many of the new and enhanced features of the 11g release. ¶ CON8900 - Building Next-Generation Portals: An Interactive Customer Panel Discussion Social and collaborative technologies have changed how people interact, learn, and collaborate, and providing a modern, social Web presence is imperative to remain competitive in today’s market. Can your business benefit from a more collaborative and interactive portal environment for employees, customers, and partners? Attend this session to hear from Oracle WebCenter Portal customers as they share their strategies and best practices for providing users with a modern experience that adapts to their needs and includes personalized access to content in context. The panel also addresses how customers have benefited from creating next-generation portals by migrating from older portal technologies to Oracle WebCenter Portal. ¶ CON9625 - Taking Control of Oracle WebCenter Security Organizations are increasingly looking to extend their Oracle WebCenter portal for social business, to serve external users and provide seamless access to the right information. In particular, many organizations are extending Oracle WebCenter in a business-to-business scenario requiring secure identification and authorization of business partners and their users. This session focuses on how customers are leveraging, securing, and providing access control to Oracle WebCenter portal and mobile solutions. You will learn best practices and hear real-world examples of how to provide flexible and granular access control for Oracle WebCenter deployments, using Oracle Platform Security Services and Oracle Access Management Suite product offerings. ¶ CON8891 - Extending Social into Enterprise Applications and Business Processes Oracle Social Network is an extensible social platform that enables contextual collaboration within enterprise applications and business processes, providing relevant data from across various enterprise systems in one place. Attend this session to see how an Oracle Social Network customer is integrating multiple applications—such as CRM, HCM, and business processes—into Oracle Social Network and Oracle WebCenter to enable individuals and teams to solve complex cross-organizational business problems more effectively by utilizing the social enterprise. ¶ Thursday, October 4th CON8899 - Becoming a Social Business: Stories from the Front Lines of Change What does it really mean to be a social business? How can you change our organization to embrace social approaches? What pitfalls do you need to avoid? In this lively panel discussion, customer and industry thought leaders in social business explore these topics and more as they share their stories of the good, the bad, and the ugly that can happen when embracing social methods and technologies to improve business success. Using moderated questions and open Q&A from the audience, the panel discusses vital topics such as the critical factors for success, the major issues to avoid, how to gain senior executive support for social efforts, how to handle undesired behavior, and how to measure business impact. It takes a thought-provoking look at becoming a social business from the inside. ¶ CON6851 - Oracle WebCenter and Oracle Business Intelligence Enterprise Edition to Create Vendor Portals Large manufacturers of grocery items routinely find themselves depending on the inventory management expertise of their wholesalers and distributors. Inventory costs can be managed more efficiently by the manufacturers if they have better insight into the inventory levels of items carried by their distributors. This creates a unique opportunity for distributors and wholesalers to leverage this knowledge into a revenue-generating subscription service. Oracle Business Intelligence Enterprise Edition and Oracle WebCenter Portal play a key part in enabling creation of business-managed business intelligence portals for vendors. This session discusses one customer that implemented this by leveraging Oracle WebCenter and Oracle Business Intelligence Enterprise Edition. ¶ CON8879 - Provide a Personalized and Consistent Customer Experience in Your Websites and Portals Your customers engage with your company online in different ways throughout their journey—from prospecting by acquiring information on your corporate Website to transacting through self-service applications on your customer portal—and then the cycle begins again when they look for new products and services. Ensuring that the customer experience is consistent and personalized across online properties—from branding and content to interactions and transactions—can be a daunting task. Oracle WebCenter enables you to speak and interact with your customers with one voice across your Websites and portals by providing an integrated platform for delivery of self-service and engagement that unifies and personalizes the online experience. Learn more in this session. ¶ CON8898 - Land Mines, Potholes, and Dirt Roads: Navigating the Way to ECM Nirvana Ten years ago, people were predicting that by this time in history, we’d be some kind of utopian paperless society. As we all know, we’re not there yet, but are we getting closer? What is keeping companies from driving down the road to enterprise content management bliss? Most people understand that using ECM as a central platform enables organizations to expedite document-centric processes, but most business processes in organizations are still heavily paper-based. Many of these processes could be automated and improved with an ECM platform infrastructure. In this panel discussion, you’ll hear from Oracle WebCenter customers that have already solved some of these challenges as they share their strategies for success and roads to avoid along your journey. ¶ CON8908 - Oracle WebCenter Portal: Creating and Using Content Presenter Templates Oracle WebCenter Portal applications use task flows to display and integrate content stored in the Oracle WebCenter Content server. Among the most flexible task flows is Content Presenter, which renders various types of content on an Oracle WebCenter Portal page. Although Oracle WebCenter Portal comes with a set of predefined Content Presenter templates, developers can create their own templates for specific rendering needs. This session shows the lifecycle of developing Content Presenter task flows, including how to create, package, import, modify at runtime, and use such templates. In addition to simple examples with Oracle Application Development Framework (Oracle ADF) UI elements to render the content, it shows how to use other UI technologies, CSS files, and JavaScript libraries. ¶ CON8897 - Using Web Experience Management to Drive Online Marketing Success Every year, the online channel becomes more imperative for driving organizational top-line revenue, but for many companies, mastering how to best market their products and services in a fast-evolving online world with high customer expectations for personalized experiences can be a complex proposition. Come to this panel discussion, and hear directly from online marketers how they are succeeding today by using Web experience management to drive marketing success, using capabilities such as targeting and optimization, user-generated content, mobile site publishing, and site visitor personalization to deliver engaging online experiences. ¶ CON8892 - Oracle’s Journey to Social Business Social business is a revolution, one that is causing rapidly accelerating change in how companies and customers engage with one another and how employees work together. Oracle’s goal in becoming a social business is to create a socially connected organization in which working collaboratively across geographical locations, lines of business, and management chains is second nature, enabling innovative solutions to business challenges. We can achieve this by connecting the right people, finding the right content, communicating with the right people, collaborating at the right time, and building the right communities in the right context—all ready in the CLOUD. Attend this session to see how Oracle is transforming itself into a social business. ¶  ------------ If you've read all the way to the end here - we are REALLY looking forward to seeing you in San Francisco.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • These are few objective type questions which i was not able to find the solution [closed]

    - by Tarun
    1. Which of the following advantages does System.Collections.IDictionaryEnumerator provide over System.Collections.IEnumerator? a. It adds properties for direct access to both the Key and the Value b. It is optimized to handle the structure of a Dictionary. c. It provides properties to determine if the Dictionary is enumerated in Key or Value order d. It provides reverse lookup methods to distinguish a Key from a specific Value 2. When Implementing System.EnterpriseServices.ServicedComponent derived classes, which of the following statements are true? a. Enabling object pooling requires an attribute on the class and the enabling of pooling in the COM+ catalog. b. Methods can be configured to automatically mark a transaction as complete by the use of attributes. c. You can configure authentication using the AuthenticationOption when the ActivationMode is set to Library. d. You can control the lifecycle policy of an individual instance using the SetLifetimeService method. 3. Which of the following are true regarding event declaration in the code below? class Sample { event MyEventHandlerType MyEvent; } a. MyEventHandlerType must be derived from System.EventHandler or System.EventHandler<TEventArgs> b. MyEventHandlerType must take two parameters, the first of the type Object, and the second of a class derived from System.EventArgs c. MyEventHandlerType may have a non-void return type d. If MyEventHandlerType is a generic type, event declaration must use a specialization of that type. e. MyEventHandlerType cannot be declared static 4. Which of the following statements apply to developing .NET code, using .NET utilities that are available with the SDK or Visual Studio? a. Developers can create assemblies directly from the MSIL Source Code. b. Developers can examine PE header information in an assembly. c. Developers can generate XML Schemas from class definitions contained within an assembly. d. Developers can strip all meta-data from managed assemblies. e. Developers can split an assembly into multiple assemblies. 5. Which of the following characteristics do classes in the System.Drawing namespace such as Brush,Font,Pen, and Icon share? a. They encapsulate native resource and must be properly Disposed to prevent potential exhausting of resources. b. They are all MarshalByRef derived classes, but functionality across AppDomains has specific limitations. c. You can inherit from these classes to provide enhanced or customized functionality 6. Which of the following are required to be true by objects which are going to be used as keys in a System.Collections.HashTable? a. They must handle case-sensitivity identically in both the GetHashCode() and Equals() methods. b. Key objects must be immutable for the duration they are used within a HashTable. c. Get HashCode() must be overridden to provide the same result, given the same parameters, regardless of reference equalityl unless the HashTable constructor is provided with an IEqualityComparer parameter. d. Each Element in a HashTable is stored as a Key/Value pair of the type System.Collections.DictionaryElement e. All of the above 7. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. A Nullable type is a structure. c. An implicit conversion exists from any non-nullable value type to a nullable form of that type. d. An implicit conversion exists from any nullable value type to a non-nullable form of that type. e. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 8. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 9. Which of the following does using Initializer Syntax with a collection as shown below require? CollectionClass numbers = new CollectionClass { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }; a. The Collection Class must implement System.Collections.Generic.ICollection<T> b. The Collection Class must implement System.Collections.Generic.IList<T> c. Each of the Items in the Initializer List will be passed to the Add<T>(T item) method d. The items in the initializer will be treated as an IEnumerable<T> and passed to the collection constructor+K110 10. What impact will using implicitly typed local variables as in the following example have? var sample = "Hello World"; a. The actual type is determined at compilation time, and has no impact on the runtime b. The actual type is determined at runtime, and late binding takes effect c. The actual type is based on the native VARIANT concept, and no binding to a specific type takes place. d. "var" itself is a specific type defined by the framework, and no special binding takes place 11. Which of the following is not supported by remoting object types? a. well-known singleton b. well-known single call c. client activated d. context-agile 12. In which of the following ways do structs differ from classes? a. Structs can not implement interfaces b. Structs cannot inherit from a base struct c. Structs cannot have events interfaces d. Structs cannot have virtual methods 13. Which of the following is not an unboxing conversion? a. void Sample1(object o) { int i = (int)o; } b. void Sample1(ValueType vt) { int i = (int)vt; } c. enum E { Hello, World} void Sample1(System.Enum et) { E e = (E) et; } d. interface I { int Value { get; set; } } void Sample1(I vt) { int i = vt.Value; } e. class C { public int Value { get; set; } } void Sample1(C vt) { int i = vt.Value; } 14. Which of the following are characteristics of the System.Threading.Timer class? a. The method provided by the TimerCallback delegate will always be invoked on the thread which created the timer. b. The thread which creates the timer must have a message processing loop (i.e. be considered a UI thread) c. The class contains protection to prevent reentrancy to the method provided by the TimerCallback delegate d. You can receive notification of an instance being Disposed by calling an overload of the Dispose method. 15. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 16. Which of the following scenarios are applicable to Window Workflow Foundation? a. Document-centric workflows b. Human workflows c. User-interface page flows d. Builtin support for communications across multiple applications and/or platforms e. All of the above 17. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is a private instance member with a leading underscore that can be programmatically referenced. c. The compiler generates a backing field that is accessible via reflection d. The compiler generates a code that will store the information separately from the instance to ensure its security. 18 While using the capabilities supplied by the System.Messaging classes, which of the following are true? a. Information must be explicitly converted to/from a byte stream before it uses the MessageQueue class b. Invoking the MessageQueue.Send member defaults to using the System.Messaging.XmlMessageFormatter to serialize the object. c. Objects must be XMLSerializable in order to be transferred over a MessageQueue instance. d. The first entry in a MessageQueue must be removed from the queue before the next entry can be accessed e. Entries removed from a MessageQueue within the scope of a transaction, will be pushed back into the front of the queue if the transaction fails. 19. Which of the following are true about declarative attributes? a. They must be inherited from the System.Attribute. b. Attributes are instantiated at the same time as instances of the class to which they are applied. c. Attribute classes may be restricted to be applied only to application element types. d. By default, a given attribute may be applied multiple times to the same application element. 20. When using version 3.5 of the framework in applications which emit a dynamic code, which of the following are true? a. A Partial trust code can not emit and execute a code b. A Partial trust application must have the SecurityCriticalAttribute attribute have called Assert ReflectionEmit permission c. The generated code no more permissions than the assembly which emitted it. d. It can be executed by calling System.Reflection.Emit.DynamicMethod( string name, Type returnType, Type[] parameterTypes ) without any special permissions Within Windows Workflow Foundation, Compensating Actions are used for: a. provide a means to rollback a failed transaction b. provide a means to undo a successfully committed transaction later c. provide a means to terminate an in process transaction d. achieve load balancing by adapting to the current activity 21. What is the proper declaration of a method which will handle the following event? Class MyClass { public event EventHandler MyEvent; } a. public void A_MyEvent(object sender, MyArgs e) { } b. public void A_MyEvent(object sender, EventArgs e) { } c. public void A_MyEvent(MyArgs e) { } d. public void A_MyEvent(MyClass sender,EventArgs e) { } 22. Which of the following controls allows the use of XSL to transform XML content into formatted content? a. System.Web.UI.WebControls.Xml b. System.Web.UI.WebControls.Xslt c. System.Web.UI.WebControls.Substitution d. System.Web.UI.WebControls.Transform 23. To which of the following do automatic properties refer? a. You declare (explicitly or implicitly) the accessibility of the property and get and set accessors, but do not provide any implementation or backing field b. You attribute a member field so that the compiler will generate get and set accessors c. The compiler creates properties for your class based on class level attributes d. They are properties which are automatically invoked as part of the object construction process 24. Which of the following are true about Nullable types? a. A Nullable type is a reference type. b. An implicit conversion exists from any non-nullable value type to a nullable form of that type. c. A predefined conversion from the nullable type S? to the nullable type T? exists if there is a predefined conversion from the non-nullable type S to the non-nullable type T 25. When using an automatic property, which of the following statements is true? a. The compiler generates a backing field that is completely inaccessible from the application code. b. The compiler generates a backing field that is accessible via reflection. c. The compiler generates a code that will store the information separately from the instance to ensure its security. 26. When using an implicitly typed array, which of the following is most appropriate? a. All elements in the initializer list must be of the same type. b. All elements in the initializer list must be implicitly convertible to a known type which is the actual type of at least one member in the initializer list c. All elements in the initializer list must be implicitly convertible to common type which is a base type of the items actually in the list 27. Which of the following is false about anonymous types? a. They can be derived from any reference type. b. Two anonymous types with the same named parameters in the same order declared in different classes have the same type. c. All properties of an anonymous type are read/write. 28. Which of the following are true about Extension methods. a. They can be declared either static or instance members b. They must be declared in the same assembly (but may be in different source files) c. Extension methods can be used to override existing instance methods d. Extension methods with the same signature for the same class may be declared in multiple namespaces without causing compilation errors

    Read the article

  • web.xml not reloading in tomcat even after stop/start

    - by ajay
    This is in relation to:- http://stackoverflow.com/questions/2576514/basic-tomcat-servlet-error I changed my web.xml file, did ant compile , all, /etc/init.d/tomcat stop , start Even then my web.xml file in tomcat deployment is still unchanged. This is build.properties file:- app.name=hello catalina.home=/usr/local/tomcat manager.username=admin manager.password=admin This is my build.xml file. Is there something wrong with this:- <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <!-- General purpose build script for web applications and web services, including enhanced support for deploying directly to a Tomcat 6 based server. This build script assumes that the source code of your web application is organized into the following subdirectories underneath the source code directory from which you execute the build script: docs Static documentation files to be copied to the "docs" subdirectory of your distribution. src Java source code (and associated resource files) to be compiled to the "WEB-INF/classes" subdirectory of your web applicaiton. web Static HTML, JSP, and other content (such as image files), including the WEB-INF subdirectory and its configuration file contents. $Id: build.xml.txt 562814 2007-08-05 03:52:04Z markt $ --> <!-- A "project" describes a set of targets that may be requested when Ant is executed. The "default" attribute defines the target which is executed if no specific target is requested, and the "basedir" attribute defines the current working directory from which Ant executes the requested task. This is normally set to the current working directory. --> <project name="My Project" default="compile" basedir="."> <!-- ===================== Property Definitions =========================== --> <!-- Each of the following properties are used in the build script. Values for these properties are set by the first place they are defined, from the following list: * Definitions on the "ant" command line (ant -Dfoo=bar compile). * Definitions from a "build.properties" file in the top level source directory of this application. * Definitions from a "build.properties" file in the developer's home directory. * Default definitions in this build.xml file. You will note below that property values can be composed based on the contents of previously defined properties. This is a powerful technique that helps you minimize the number of changes required when your development environment is modified. Note that property composition is allowed within "build.properties" files as well as in the "build.xml" script. --> <property file="build.properties"/> <property file="${user.home}/build.properties"/> <!-- ==================== File and Directory Names ======================== --> <!-- These properties generally define file and directory names (or paths) that affect where the build process stores its outputs. app.name Base name of this application, used to construct filenames and directories. Defaults to "myapp". app.path Context path to which this application should be deployed (defaults to "/" plus the value of the "app.name" property). app.version Version number of this iteration of the application. build.home The directory into which the "prepare" and "compile" targets will generate their output. Defaults to "build". catalina.home The directory in which you have installed a binary distribution of Tomcat 6. This will be used by the "deploy" target. dist.home The name of the base directory in which distribution files are created. Defaults to "dist". manager.password The login password of a user that is assigned the "manager" role (so that he or she can execute commands via the "/manager" web application) manager.url The URL of the "/manager" web application on the Tomcat installation to which we will deploy web applications and web services. manager.username The login username of a user that is assigned the "manager" role (so that he or she can execute commands via the "/manager" web application) --> <property name="app.name" value="myapp"/> <property name="app.path" value="/${app.name}"/> <property name="app.version" value="0.1-dev"/> <property name="build.home" value="${basedir}/build"/> <property name="catalina.home" value="../../../.."/> <!-- UPDATE THIS! --> <property name="dist.home" value="${basedir}/dist"/> <property name="docs.home" value="${basedir}/docs"/> <property name="manager.url" value="http://localhost:8080/manager"/> <property name="src.home" value="${basedir}/src"/> <property name="web.home" value="${basedir}/web"/> <!-- ==================== External Dependencies =========================== --> <!-- Use property values to define the locations of external JAR files on which your application will depend. In general, these values will be used for two purposes: * Inclusion on the classpath that is passed to the Javac compiler * Being copied into the "/WEB-INF/lib" directory during execution of the "deploy" target. Because we will automatically include all of the Java classes that Tomcat 6 exposes to web applications, we will not need to explicitly list any of those dependencies. You only need to worry about external dependencies for JAR files that you are going to include inside your "/WEB-INF/lib" directory. --> <!-- Dummy external dependency --> <!-- <property name="foo.jar" value="/path/to/foo.jar"/> --> <!-- ==================== Compilation Classpath =========================== --> <!-- Rather than relying on the CLASSPATH environment variable, Ant includes features that makes it easy to dynamically construct the classpath you need for each compilation. The example below constructs the compile classpath to include the servlet.jar file, as well as the other components that Tomcat makes available to web applications automatically, plus anything that you explicitly added. --> <path id="compile.classpath"> <!-- Include all JAR files that will be included in /WEB-INF/lib --> <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** --> <!-- <pathelement location="${foo.jar}"/> --> <!-- Include all elements that Tomcat exposes to applications --> <fileset dir="${catalina.home}/bin"> <include name="*.jar"/> </fileset> <pathelement location="${catalina.home}/lib"/> <fileset dir="${catalina.home}/lib"> <include name="*.jar"/> </fileset> </path> <!-- ================== Custom Ant Task Definitions ======================= --> <!-- These properties define custom tasks for the Ant build tool that interact with the "/manager" web application installed with Tomcat 6. Before they can be successfully utilized, you must perform the following steps: - Copy the file "lib/catalina-ant.jar" from your Tomcat 6 installation into the "lib" directory of your Ant installation. - Create a "build.properties" file in your application's top-level source directory (or your user login home directory) that defines appropriate values for the "manager.password", "manager.url", and "manager.username" properties described above. For more information about the Manager web application, and the functionality of these tasks, see <http://localhost:8080/tomcat-docs/manager-howto.html>. --> <taskdef resource="org/apache/catalina/ant/catalina.tasks" classpathref="compile.classpath"/> <!-- ==================== Compilation Control Options ==================== --> <!-- These properties control option settings on the Javac compiler when it is invoked using the <javac> task. compile.debug Should compilation include the debug option? compile.deprecation Should compilation include the deprecation option? compile.optimize Should compilation include the optimize option? --> <property name="compile.debug" value="true"/> <property name="compile.deprecation" value="false"/> <property name="compile.optimize" value="true"/> <!-- ==================== All Target ====================================== --> <!-- The "all" target is a shortcut for running the "clean" target followed by the "compile" target, to force a complete recompile. --> <target name="all" depends="clean,compile" description="Clean build and dist directories, then compile"/> <!-- ==================== Clean Target ==================================== --> <!-- The "clean" target deletes any previous "build" and "dist" directory, so that you can be ensured the application can be built from scratch. --> <target name="clean" description="Delete old build and dist directories"> <delete dir="${build.home}"/> <delete dir="${dist.home}"/> </target> <!-- ==================== Compile Target ================================== --> <!-- The "compile" target transforms source files (from your "src" directory) into object files in the appropriate location in the build directory. This example assumes that you will be including your classes in an unpacked directory hierarchy under "/WEB-INF/classes". --> <target name="compile" depends="prepare" description="Compile Java sources"> <!-- Compile Java classes as necessary --> <mkdir dir="${build.home}/WEB-INF/classes"/> <javac srcdir="${src.home}" destdir="${build.home}/WEB-INF/classes" debug="${compile.debug}" deprecation="${compile.deprecation}" optimize="${compile.optimize}"> <classpath refid="compile.classpath"/> </javac> <!-- Copy application resources --> <copy todir="${build.home}/WEB-INF/classes"> <fileset dir="${src.home}" excludes="**/*.java"/> </copy> </target> <!-- ==================== Dist Target ===================================== --> <!-- The "dist" target creates a binary distribution of your application in a directory structure ready to be archived in a tar.gz or zip file. Note that this target depends on two others: * "compile" so that the entire web application (including external dependencies) will have been assembled * "javadoc" so that the application Javadocs will have been created --> <target name="dist" depends="compile,javadoc" description="Create binary distribution"> <!-- Copy documentation subdirectories --> <mkdir dir="${dist.home}/docs"/> <copy todir="${dist.home}/docs"> <fileset dir="${docs.home}"/> </copy> <!-- Create application JAR file --> <jar jarfile="${dist.home}/${app.name}-${app.version}.war" basedir="${build.home}"/> <!-- Copy additional files to ${dist.home} as necessary --> </target> <!-- ==================== Install Target ================================== --> <!-- The "install" target tells the specified Tomcat 6 installation to dynamically install this web application and make it available for execution. It does *not* cause the existence of this web application to be remembered across Tomcat restarts; if you restart the server, you will need to re-install all this web application. If you have already installed this application, and simply want Tomcat to recognize that you have updated Java classes (or the web.xml file), use the "reload" target instead. NOTE: This target will only succeed if it is run from the same server that Tomcat is running on. NOTE: This is the logical opposite of the "remove" target. --> <target name="install" depends="compile" description="Install application to servlet container"> <deploy url="${manager.url}" username="${manager.username}" password="${manager.password}" path="${app.path}" localWar="file://${build.home}"/> </target> <!-- ==================== Javadoc Target ================================== --> <!-- The "javadoc" target creates Javadoc API documentation for the Java classes included in your application. Normally, this is only required when preparing a distribution release, but is available as a separate target in case the developer wants to create Javadocs independently. --> <target name="javadoc" depends="compile" description="Create Javadoc API documentation"> <mkdir dir="${dist.home}/docs/api"/> <javadoc sourcepath="${src.home}" destdir="${dist.home}/docs/api" packagenames="*"> <classpath refid="compile.classpath"/> </javadoc> </target> <!-- ====================== List Target =================================== --> <!-- The "list" target asks the specified Tomcat 6 installation to list the currently running web applications, either loaded at startup time or installed dynamically. It is useful to determine whether or not the application you are currently developing has been installed. --> <target name="list" description="List installed applications on servlet container"> <list url="${manager.url}" username="${manager.username}" password="${manager.password}"/> </target> <!-- ==================== Prepare Target ================================== --> <!-- The "prepare" target is used to create the "build" destination directory, and copy the static contents of your web application to it. If you need to copy static files from external dependencies, you can customize the contents of this task. Normally, this task is executed indirectly when needed. --> <target name="prepare"> <!-- Create build directories as needed --> <mkdir dir="${build.home}"/> <mkdir dir="${build.home}/WEB-INF"/> <mkdir dir="${build.home}/WEB-INF/classes"/> <!-- Copy static content of this web application --> <copy todir="${build.home}"> <fileset dir="${web.home}"/> </copy> <!-- Copy external dependencies as required --> <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** --> <mkdir dir="${build.home}/WEB-INF/lib"/> <!-- <copy todir="${build.home}/WEB-INF/lib" file="${foo.jar}"/> --> <!-- Copy static files from external dependencies as needed --> <!-- *** CUSTOMIZE HERE AS REQUIRED BY YOUR APPLICATION *** --> </target> <!-- ==================== Reload Target =================================== --> <!-- The "reload" signals the specified application Tomcat 6 to shut itself down and reload. This can be useful when the web application context is not reloadable and you have updated classes or property files in the /WEB-INF/classes directory or when you have added or updated jar files in the /WEB-INF/lib directory. NOTE: The /WEB-INF/web.xml web application configuration file is not reread on a reload. If you have made changes to your web.xml file you must stop then start the web application. --> <target name="reload" depends="compile" description="Reload application on servlet container"> <reload url="${manager.url}" username="${manager.username}" password="${manager.password}" path="${app.path}"/> </target> <!-- ==================== Remove Target =================================== --> <!-- The "remove" target tells the specified Tomcat 6 installation to dynamically remove this web application from service. NOTE: This is the logical opposite of the "install" target. --> <target name="remove" description="Remove application on servlet container"> <undeploy url="${manager.url}" username="${manager.username}" password="${manager.password}" path="${app.path}"/> </target> </project>

    Read the article

  • Conceal packet loss in PCM stream

    - by ZeroDefect
    I am looking to use 'Packet Loss Concealment' to conceal lost PCM frames in an audio stream. Unfortunately, I cannot find a library that is accessible without all the licensing restrictions and code bloat (...up for some suggestions though). I have located some GPL code written by Steve Underwood for the Asterisk project which implements PLC. There are several limitations; although, as Steve suggests in his code, his algorithm can be applied to different streams with a bit of work. Currently, the code works with 8kHz 16-bit signed mono streams. Variations of the code can be found through a simple search of Google Code Search. My hope is that I can adapt the code to work with other streams. Initially, the goal is to adjust the algorithm for 8+ kHz, 16-bit signed, multichannel audio (all in a C++ environment). Eventually, I'm looking to make the code available under the GPL license in hopes that it could be of benefit to others... Attached is the code below with my efforts. The code includes a main function that will "drop" a number of frames with a given probability. Unfortunately, the code does not quite work as expected. I'm receiving EXC_BAD_ACCESS when running in gdb, but I don't get a trace from gdb when using 'bt' command. Clearly, I'm trampimg on memory some where but not sure exactly where. When I comment out the *amdf_pitch* function, the code runs without crashing... int main (int argc, char *argv[]) { std::ifstream fin("C:\\cc32kHz.pcm"); if(!fin.is_open()) { std::cout << "Failed to open input file" << std::endl; return 1; } std::ofstream fout_repaired("C:\\cc32kHz_repaired.pcm"); if(!fout_repaired.is_open()) { std::cout << "Failed to open output repaired file" << std::endl; return 1; } std::ofstream fout_lossy("C:\\cc32kHz_lossy.pcm"); if(!fout_lossy.is_open()) { std::cout << "Failed to open output repaired file" << std::endl; return 1; } audio::PcmConcealer Concealer; Concealer.Init(1, 16, 32000); //Generate random numbers; srand( time(NULL) ); int value = 0; int probability = 5; while(!fin.eof()) { char arr[2]; fin.read(arr, 2); //Generate's random number; value = rand() % 100 + 1; if(value <= probability) { char blank[2] = {0x00, 0x00}; fout_lossy.write(blank, 2); //Fill in data; Concealer.Fill((int16_t *)blank, 1); fout_repaired.write(blank, 2); } else { //Write data to file; fout_repaired.write(arr, 2); fout_lossy.write(arr, 2); Concealer.Receive((int16_t *)arr, 1); } } fin.close(); fout_repaired.close(); fout_lossy.close(); return 0; } PcmConcealer.hpp /* * Code adapted from Steve Underwood of the Asterisk Project. This code inherits * the same licensing restrictions as the Asterisk Project. */ #ifndef __PCMCONCEALER_HPP__ #define __PCMCONCEALER_HPP__ /** 1. What does it do? The packet loss concealment module provides a suitable synthetic fill-in signal, to minimise the audible effect of lost packets in VoIP applications. It is not tied to any particular codec, and could be used with almost any codec which does not specify its own procedure for packet loss concealment. Where a codec specific concealment procedure exists, the algorithm is usually built around knowledge of the characteristics of the particular codec. It will, therefore, generally give better results for that particular codec than this generic concealer will. 2. How does it work? While good packets are being received, the plc_rx() routine keeps a record of the trailing section of the known speech signal. If a packet is missed, plc_fillin() is called to produce a synthetic replacement for the real speech signal. The average mean difference function (AMDF) is applied to the last known good signal, to determine its effective pitch. Based on this, the last pitch period of signal is saved. Essentially, this cycle of speech will be repeated over and over until the real speech resumes. However, several refinements are needed to obtain smooth pleasant sounding results. - The two ends of the stored cycle of speech will not always fit together smoothly. This can cause roughness, or even clicks, at the joins between cycles. To soften this, the 1/4 pitch period of real speech preceeding the cycle to be repeated is blended with the last 1/4 pitch period of the cycle to be repeated, using an overlap-add (OLA) technique (i.e. in total, the last 5/4 pitch periods of real speech are used). - The start of the synthetic speech will not always fit together smoothly with the tail of real speech passed on before the erasure was identified. Ideally, we would like to modify the last 1/4 pitch period of the real speech, to blend it into the synthetic speech. However, it is too late for that. We could have delayed the real speech a little, but that would require more buffer manipulation, and hurt the efficiency of the no-lost-packets case (which we hope is the dominant case). Instead we use a degenerate form of OLA to modify the start of the synthetic data. The last 1/4 pitch period of real speech is time reversed, and OLA is used to blend it with the first 1/4 pitch period of synthetic speech. The result seems quite acceptable. - As we progress into the erasure, the chances of the synthetic signal being anything like correct steadily fall. Therefore, the volume of the synthesized signal is made to decay linearly, such that after 50ms of missing audio it is reduced to silence. - When real speech resumes, an extra 1/4 pitch period of sythetic speech is blended with the start of the real speech. If the erasure is small, this smoothes the transition. If the erasure is long, and the synthetic signal has faded to zero, the blending softens the start up of the real signal, avoiding a kind of "click" or "pop" effect that might occur with a sudden onset. 3. How do I use it? Before audio is processed, call plc_init() to create an instance of the packet loss concealer. For each received audio packet that is acceptable (i.e. not including those being dropped for being too late) call plc_rx() to record the content of the packet. Note this may modify the packet a little after a period of packet loss, to blend real synthetic data smoothly. When a real packet is not available in time, call plc_fillin() to create a sythetic substitute. That's it! */ /*! Minimum allowed pitch (66 Hz) */ #define PLC_PITCH_MIN(SAMPLE_RATE) ((double)(SAMPLE_RATE) / 66.6) /*! Maximum allowed pitch (200 Hz) */ #define PLC_PITCH_MAX(SAMPLE_RATE) ((SAMPLE_RATE) / 200) /*! Maximum pitch OLA window */ //#define PLC_PITCH_OVERLAP_MAX(SAMPLE_RATE) ((PLC_PITCH_MIN(SAMPLE_RATE)) >> 2) /*! The length over which the AMDF function looks for similarity (20 ms) */ #define CORRELATION_SPAN(SAMPLE_RATE) ((20 * (SAMPLE_RATE)) / 1000) /*! History buffer length. The buffer must also be at leat 1.25 times PLC_PITCH_MIN, but that is much smaller than the buffer needs to be for the pitch assessment. */ //#define PLC_HISTORY_LEN(SAMPLE_RATE) ((CORRELATION_SPAN(SAMPLE_RATE)) + (PLC_PITCH_MIN(SAMPLE_RATE))) namespace audio { typedef struct { /*! Consecutive erased samples */ int missing_samples; /*! Current offset into pitch period */ int pitch_offset; /*! Pitch estimate */ int pitch; /*! Buffer for a cycle of speech */ float *pitchbuf;//[PLC_PITCH_MIN]; /*! History buffer */ short *history;//[PLC_HISTORY_LEN]; /*! Current pointer into the history buffer */ int buf_ptr; } plc_state_t; class PcmConcealer { public: PcmConcealer(); ~PcmConcealer(); void Init(int channels, int bit_depth, int sample_rate); //Process a block of received audio samples. int Receive(short amp[], int frames); //Fill-in a block of missing audio samples. int Fill(short amp[], int frames); void Destroy(); private: int amdf_pitch(int min_pitch, int max_pitch, short amp[], int channel_index, int frames); void save_history(plc_state_t *s, short *buf, int channel_index, int frames); void normalise_history(plc_state_t *s); /** Holds the states of each of the channels **/ std::vector< plc_state_t * > ChannelStates; int plc_pitch_min; int plc_pitch_max; int plc_pitch_overlap_max; int correlation_span; int plc_history_len; int channel_count; int sample_rate; bool Initialized; }; } #endif PcmConcealer.cpp /* * Code adapted from Steve Underwood of the Asterisk Project. This code inherits * the same licensing restrictions as the Asterisk Project. */ #include "audio/PcmConcealer.hpp" /* We do a straight line fade to zero volume in 50ms when we are filling in for missing data. */ #define ATTENUATION_INCREMENT 0.0025 /* Attenuation per sample */ #if !defined(INT16_MAX) #define INT16_MAX (32767) #define INT16_MIN (-32767-1) #endif #ifdef WIN32 inline double rint(double x) { return floor(x + 0.5); } #endif inline short fsaturate(double damp) { if (damp > 32767.0) return INT16_MAX; if (damp < -32768.0) return INT16_MIN; return (short)rint(damp); } namespace audio { PcmConcealer::PcmConcealer() : Initialized(false) { } PcmConcealer::~PcmConcealer() { Destroy(); } void PcmConcealer::Init(int channels, int bit_depth, int sample_rate) { if(Initialized) return; if(channels <= 0 || bit_depth != 16) return; Initialized = true; channel_count = channels; this->sample_rate = sample_rate; ////////////// double min = PLC_PITCH_MIN(sample_rate); int imin = (int)min; double max = PLC_PITCH_MAX(sample_rate); int imax = (int)max; plc_pitch_min = imin; plc_pitch_max = imax; plc_pitch_overlap_max = (plc_pitch_min >> 2); correlation_span = CORRELATION_SPAN(sample_rate); plc_history_len = correlation_span + plc_pitch_min; ////////////// for(int i = 0; i < channel_count; i ++) { plc_state_t *t = new plc_state_t; memset(t, 0, sizeof(plc_state_t)); t->pitchbuf = new float[plc_pitch_min]; t->history = new short[plc_history_len]; ChannelStates.push_back(t); } } void PcmConcealer::Destroy() { if(!Initialized) return; while(ChannelStates.size()) { plc_state_t *s = ChannelStates.at(0); if(s) { if(s->history) delete s->history; if(s->pitchbuf) delete s->pitchbuf; memset(s, 0, sizeof(plc_state_t)); delete s; } ChannelStates.erase(ChannelStates.begin()); } ChannelStates.clear(); Initialized = false; } //Process a block of received audio samples. int PcmConcealer::Receive(short amp[], int frames) { if(!Initialized) return 0; int j = 0; for(int k = 0; k < ChannelStates.size(); k++) { int i; int overlap_len; int pitch_overlap; float old_step; float new_step; float old_weight; float new_weight; float gain; plc_state_t *s = ChannelStates.at(k); if (s->missing_samples) { /* Although we have a real signal, we need to smooth it to fit well with the synthetic signal we used for the previous block */ /* The start of the real data is overlapped with the next 1/4 cycle of the synthetic data. */ pitch_overlap = s->pitch >> 2; if (pitch_overlap > frames) pitch_overlap = frames; gain = 1.0 - s->missing_samples * ATTENUATION_INCREMENT; if (gain < 0.0) gain = 0.0; new_step = 1.0/pitch_overlap; old_step = new_step*gain; new_weight = new_step; old_weight = (1.0 - new_step)*gain; for (i = 0; i < pitch_overlap; i++) { int index = (i * channel_count) + j; amp[index] = fsaturate(old_weight * s->pitchbuf[s->pitch_offset] + new_weight * amp[index]); if (++s->pitch_offset >= s->pitch) s->pitch_offset = 0; new_weight += new_step; old_weight -= old_step; if (old_weight < 0.0) old_weight = 0.0; } s->missing_samples = 0; } save_history(s, amp, j, frames); j++; } return frames; } //Fill-in a block of missing audio samples. int PcmConcealer::Fill(short amp[], int frames) { if(!Initialized) return 0; int j =0; for(int k = 0; k < ChannelStates.size(); k++) { short *tmp = new short[plc_pitch_overlap_max]; int i; int pitch_overlap; float old_step; float new_step; float old_weight; float new_weight; float gain; short *orig_amp; int orig_len; orig_amp = amp; orig_len = frames; plc_state_t *s = ChannelStates.at(k); if (s->missing_samples == 0) { // As the gap in real speech starts we need to assess the last known pitch, //and prepare the synthetic data we will use for fill-in normalise_history(s); s->pitch = amdf_pitch(plc_pitch_min, plc_pitch_max, s->history + plc_history_len - correlation_span - plc_pitch_min, j, correlation_span); // We overlap a 1/4 wavelength pitch_overlap = s->pitch >> 2; // Cook up a single cycle of pitch, using a single of the real signal with 1/4 //cycle OLA'ed to make the ends join up nicely // The first 3/4 of the cycle is a simple copy for (i = 0; i < s->pitch - pitch_overlap; i++) s->pitchbuf[i] = s->history[plc_history_len - s->pitch + i]; // The last 1/4 of the cycle is overlapped with the end of the previous cycle new_step = 1.0/pitch_overlap; new_weight = new_step; for ( ; i < s->pitch; i++) { s->pitchbuf[i] = s->history[plc_history_len - s->pitch + i]*(1.0 - new_weight) + s->history[plc_history_len - 2*s->pitch + i]*new_weight; new_weight += new_step; } // We should now be ready to fill in the gap with repeated, decaying cycles // of what is in pitchbuf // We need to OLA the first 1/4 wavelength of the synthetic data, to smooth // it into the previous real data. To avoid the need to introduce a delay // in the stream, reverse the last 1/4 wavelength, and OLA with that. gain = 1.0; new_step = 1.0/pitch_overlap; old_step = new_step; new_weight = new_step; old_weight = 1.0 - new_step; for (i = 0; i < pitch_overlap; i++) { int index = (i * channel_count) + j; amp[index] = fsaturate(old_weight * s->history[plc_history_len - 1 - i] + new_weight * s->pitchbuf[i]); new_weight += new_step; old_weight -= old_step; if (old_weight < 0.0) old_weight = 0.0; } s->pitch_offset = i; } else { gain = 1.0 - s->missing_samples*ATTENUATION_INCREMENT; i = 0; } for ( ; gain > 0.0 && i < frames; i++) { int index = (i * channel_count) + j; amp[index] = s->pitchbuf[s->pitch_offset]*gain; gain -= ATTENUATION_INCREMENT; if (++s->pitch_offset >= s->pitch) s->pitch_offset = 0; } for ( ; i < frames; i++) { int index = (i * channel_count) + j; amp[i] = 0; } s->missing_samples += orig_len; save_history(s, amp, j, frames); delete [] tmp; j++; } return frames; } void PcmConcealer::save_history(plc_state_t *s, short *buf, int channel_index, int frames) { if (frames >= plc_history_len) { /* Just keep the last part of the new data, starting at the beginning of the buffer */ //memcpy(s->history, buf + len - plc_history_len, sizeof(short)*plc_history_len); int frames_to_copy = plc_history_len; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * (i + frames - plc_history_len)) + channel_index; s->history[i] = buf[index]; } s->buf_ptr = 0; return; } if (s->buf_ptr + frames > plc_history_len) { /* Wraps around - must break into two sections */ //memcpy(s->history + s->buf_ptr, buf, sizeof(short)*(plc_history_len - s->buf_ptr)); short *hist_ptr = s->history + s->buf_ptr; int frames_to_copy = plc_history_len - s->buf_ptr; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * i) + channel_index; hist_ptr[i] = buf[index]; } frames -= (plc_history_len - s->buf_ptr); //memcpy(s->history, buf + (plc_history_len - s->buf_ptr), sizeof(short)*len); frames_to_copy = frames; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * (i + (plc_history_len - s->buf_ptr))) + channel_index; s->history[i] = buf[index]; } s->buf_ptr = frames; return; } /* Can use just one section */ //memcpy(s->history + s->buf_ptr, buf, sizeof(short)*len); short *hist_ptr = s->history + s->buf_ptr; int frames_to_copy = frames; for(int i = 0; i < frames_to_copy; i ++) { int index = (channel_count * i) + channel_index; hist_ptr[i] = buf[index]; } s->buf_ptr += frames; } void PcmConcealer::normalise_history(plc_state_t *s) { short *tmp = new short[plc_history_len]; if (s->buf_ptr == 0) return; memcpy(tmp, s->history, sizeof(short)*s->buf_ptr); memcpy(s->history, s->history + s->buf_ptr, sizeof(short)*(plc_history_len - s->buf_ptr)); memcpy(s->history + plc_history_len - s->buf_ptr, tmp, sizeof(short)*s->buf_ptr); s->buf_ptr = 0; delete [] tmp; } int PcmConcealer::amdf_pitch(int min_pitch, int max_pitch, short amp[], int channel_index, int frames) { int i; int j; int acc; int min_acc; int pitch; pitch = min_pitch; min_acc = INT_MAX; for (i = max_pitch; i <= min_pitch; i++) { acc = 0; for (j = 0; j < frames; j++) { int index1 = (channel_count * (i+j)) + channel_index; int index2 = (channel_count * j) + channel_index; //std::cout << "Index 1: " << index1 << ", Index 2: " << index2 << std::endl; acc += abs(amp[index1] - amp[index2]); } if (acc < min_acc) { min_acc = acc; pitch = i; } } std::cout << "Pitch: " << pitch << std::endl; return pitch; } } P.S. - I must confess that digital audio is not my forte...

    Read the article

< Previous Page | 35 36 37 38 39