Search Results

Search found 3488 results on 140 pages for 'scala collections'.

Page 39/140 | < Previous Page | 35 36 37 38 39 40 41 42 43 44 45 46  | Next Page >

  • Generics not so generic !!

    - by Aymen
    Hi I tried to implement a generic binary search algorithm in scala. Here it is : type Ord ={ def <(x:Any):Boolean def >(x:Any):Boolean } def binSearch[T <: Ord ](x:T,start:Int,end:Int,t:Array[T]):Boolean = { if (start > end) return false val pos = (start + end ) / 2 if(t(pos)==x) true else if (t(pos) < x) binSearch(x,pos+1,end,t) else binSearch(x,start,pos-1,t) } everything is OK until I tried to actually use it (xD) : binSearch(3,0,4,Array(1,2,5,6)) the compiler is pretending that Int not a member of Ord, well what shall I do to solve this ? Thanks

    Read the article

  • Imperative vs. LINQ Performance on WP7

    - by Bil Simser
    Jesse Liberty had a nice post presenting the concepts around imperative, LINQ and fluent programming to populate a listbox. Check out the post as it’s a great example of some foundational things every .NET programmer should know. I was more interested in what the IL code that would be generated from imperative vs. LINQ was like and what the performance numbers are and how they differ. The code at the instruction level is interesting but not surprising. The imperative example with it’s creating lists and loops weighs in at about 60 instructions. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void ImperativeMethod() cil managed 2: { 3: .maxstack 3 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.List`1<int32> inLoop, 7: [2] int32 n, 8: [3] class [mscorlib]System.Collections.Generic.IEnumerator`1<int32> CS$5$0000, 9: [4] bool CS$4$0001) 10: L_0000: nop 11: L_0001: ldc.i4.1 12: L_0002: ldc.i4.s 50 13: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 14: L_0009: stloc.0 15: L_000a: newobj instance void [mscorlib]System.Collections.Generic.List`1<int32>::.ctor() 16: L_000f: stloc.1 17: L_0010: nop 18: L_0011: ldloc.0 19: L_0012: callvirt instance class [mscorlib]System.Collections.Generic.IEnumerator`1<!0> [mscorlib]System.Collections.Generic.IEnumerable`1<int32>::GetEnumerator() 20: L_0017: stloc.3 21: L_0018: br.s L_003a 22: L_001a: ldloc.3 23: L_001b: callvirt instance !0 [mscorlib]System.Collections.Generic.IEnumerator`1<int32>::get_Current() 24: L_0020: stloc.2 25: L_0021: nop 26: L_0022: ldloc.2 27: L_0023: ldc.i4.5 28: L_0024: cgt 29: L_0026: ldc.i4.0 30: L_0027: ceq 31: L_0029: stloc.s CS$4$0001 32: L_002b: ldloc.s CS$4$0001 33: L_002d: brtrue.s L_0039 34: L_002f: ldloc.1 35: L_0030: ldloc.2 36: L_0031: ldloc.2 37: L_0032: mul 38: L_0033: callvirt instance void [mscorlib]System.Collections.Generic.List`1<int32>::Add(!0) 39: L_0038: nop 40: L_0039: nop 41: L_003a: ldloc.3 42: L_003b: callvirt instance bool [mscorlib]System.Collections.IEnumerator::MoveNext() 43: L_0040: stloc.s CS$4$0001 44: L_0042: ldloc.s CS$4$0001 45: L_0044: brtrue.s L_001a 46: L_0046: leave.s L_005a 47: L_0048: ldloc.3 48: L_0049: ldnull 49: L_004a: ceq 50: L_004c: stloc.s CS$4$0001 51: L_004e: ldloc.s CS$4$0001 52: L_0050: brtrue.s L_0059 53: L_0052: ldloc.3 54: L_0053: callvirt instance void [mscorlib]System.IDisposable::Dispose() 55: L_0058: nop 56: L_0059: endfinally 57: L_005a: nop 58: L_005b: ldarg.0 59: L_005c: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB1 60: L_0061: ldloc.1 61: L_0062: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 62: L_0067: nop 63: L_0068: ret 64: .try L_0018 to L_0048 finally handler L_0048 to L_005a 65: } 66:   67: Compare that to the IL generated for the LINQ version which has about half of the instructions and just gets the job done, no fluff. .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } 1: .method private hidebysig instance void LINQMethod() cil managed 2: { 3: .maxstack 4 4: .locals init ( 5: [0] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> someData, 6: [1] class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> queryResult) 7: L_0000: nop 8: L_0001: ldc.i4.1 9: L_0002: ldc.i4.s 50 10: L_0004: call class [mscorlib]System.Collections.Generic.IEnumerable`1<int32> [System.Core]System.Linq.Enumerable::Range(int32, int32) 11: L_0009: stloc.0 12: L_000a: ldloc.0 13: L_000b: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 14: L_0010: brtrue.s L_0025 15: L_0012: ldnull 16: L_0013: ldftn bool PerfTest.MainPage::<LINQProgramming>b__4(int32) 17: L_0019: newobj instance void [System.Core]System.Func`2<int32, bool>::.ctor(object, native int) 18: L_001e: stsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 19: L_0023: br.s L_0025 20: L_0025: ldsfld class [System.Core]System.Func`2<int32, bool> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate6 21: L_002a: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0> [System.Core]System.Linq.Enumerable::Where<int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, bool>) 22: L_002f: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 23: L_0034: brtrue.s L_0049 24: L_0036: ldnull 25: L_0037: ldftn int32 PerfTest.MainPage::<LINQProgramming>b__5(int32) 26: L_003d: newobj instance void [System.Core]System.Func`2<int32, int32>::.ctor(object, native int) 27: L_0042: stsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 28: L_0047: br.s L_0049 29: L_0049: ldsfld class [System.Core]System.Func`2<int32, int32> PerfTest.MainPage::CS$<>9__CachedAnonymousMethodDelegate7 30: L_004e: call class [mscorlib]System.Collections.Generic.IEnumerable`1<!!1> [System.Core]System.Linq.Enumerable::Select<int32, int32>(class [mscorlib]System.Collections.Generic.IEnumerable`1<!!0>, class [System.Core]System.Func`2<!!0, !!1>) 31: L_0053: stloc.1 32: L_0054: ldarg.0 33: L_0055: ldfld class [System.Windows]System.Windows.Controls.ListBox PerfTest.MainPage::LB2 34: L_005a: ldloc.1 35: L_005b: callvirt instance void [System.Windows]System.Windows.Controls.ItemsControl::set_ItemsSource(class [mscorlib]System.Collections.IEnumerable) 36: L_0060: nop 37: L_0061: ret 38: } Again, not surprising here but a good indicator that you should consider using LINQ where possible. In fact if you have ReSharper installed you’ll see a squiggly (technical term) in the imperative code that says “Hey Dude, I can convert this to LINQ if you want to be c00L!” (or something like that, it’s the 2010 geek version of Clippy). What about the fluent version? As Jon correctly pointed out in the comments, when you compare the IL for the LINQ code and the IL for the fluent code it’s the same. LINQ and the fluent interface are just syntactical sugar so you decide what you’re most comfortable with. At the end of the day they’re both the same. Now onto the numbers. Again I expected the imperative version to be better performing than the LINQ version (before I saw the IL that was generated). Call it womanly instinct. A gut feel. Whatever. Some of the numbers are interesting though. For Jesse’s example of 50 items, the numbers were interesting. The imperative sample clocked in at 7ms while the LINQ version completed in 4. As the number of items went up, the elapsed time didn’t necessarily climb exponentially. At 500 items they were pretty much the same and the results were similar up to about 50,000 items. After that I tried 500,000 items where the gap widened but not by much (2.2 seconds for imperative, 2.3 for LINQ). It wasn’t until I tried 5,000,000 items where things were noticeable. Imperative filled the list in 20 seconds while LINQ took 8 seconds longer (although personally I wouldn’t suggest you put 5 million items in a list unless you want your users showing up at your door with torches and pitchforks). Here’s the table with the full results. Method/Items 50 500 5,000 50,000 500,000 5,000,000 Imperative 7ms 7ms 38ms 223ms 2230ms 20974ms LINQ/Fluent 4ms 6ms 41ms 240ms 2310ms 28731ms Like I said, at the end of the day it’s not a huge difference and you really don’t want your users waiting around for 30 seconds on a mobile device filling lists. In fact if Windows Phone 7 detects you’re taking more than 10 seconds to do any one thing, it considers the app hung and shuts it down. The results here are for Windows Phone 7 but frankly they're the same for desktop and web apps so feel free to apply it generally. From a programming perspective, choose what you like. Some LINQ statements can get pretty hairy so I usually fall back with my simple mind and write it imperatively. If you really want to impress your friends, write it old school then let ReSharper do the hard work for! Happy programming!

    Read the article

  • convert ArrayList.toString() back to ArrayList in one call

    - by dotnetnewbie
    I have a toString() representation of an ArrayList. Copying the toString() value to clipboard, I want to copy it back into my IDE editor, and create the ArrayList instance in one line. In fact, what I'm really doing is this: my ArrayList.toString() has data I need to setup a unit test. I want to copy this ArrayList.toString() into my editor to build a test against this edge case I don't want to parse anything by hand My input looks like this: [15.82, 15.870000000000001, 15.92, 16.32, 16.32, 16.32, 16.32, 17.05, 17.05, 17.05, 17.05, 18.29, 18.29, 19.16] The following do not work: Arrays.asList() google collections Lists.newArrayList() Suggestions?

    Read the article

  • JVM segmentation faults due to "Invalid memory access of location"

    - by Dan
    I have a small project written in Scala 2.9.2 with unit tests written using ScalaTest. I use SBT for compiling and running my tests. Running sbt test on my project makes the JVM segfault regularly, but just compiling and running my project from SBT works fine. Here is the exact error message: Invalid memory access of location 0x8 rip=0x10959f3c9 [1] 11925 segmentation fault sbt I cannot locate a core dump anywhere, but would be happy to provide it if it can be obtained. Running java -version results in this: java version "1.6.0_37" Java(TM) SE Runtime Environment (build 1.6.0_37-b06-434-11M3909) Java HotSpot(TM) 64-Bit Server VM (build 20.12-b01-434, mixed mode) But I've also got Java 7 installed (though I was never able to actually run a Java program with it, afaik). Another issue that may be related: some of my test cases contain titles including parentheses like ( and ). SBT or ScalaTest (not sure) will consequently insert square parens in the middle of the output. For example, a test case with the name (..)..(..) might suddenly look like (..[)..](..). Any help resolving these issues is much appreciated :-) EDIT: I installed the Java 7 JDK, so now java -version shows the right thing: java version "1.7.0_07" Java(TM) SE Runtime Environment (build 1.7.0_07-b10) Java HotSpot(TM) 64-Bit Server VM (build 23.3-b01, mixed mode) This also means that I now get a more detailed segfault error and a core dump: # # A fatal error has been detected by the Java Runtime Environment: # # SIGSEGV (0xb) at pc=0x000000010a71a3e3, pid=16830, tid=19459 # # JRE version: 7.0_07-b10 # Java VM: Java HotSpot(TM) 64-Bit Server VM (23.3-b01 mixed mode bsd-amd64 compressed oops) # Problematic frame: # V [libjvm.dylib+0x3cd3e3] And the dump.

    Read the article

  • 'Set = new HashSet' or 'HashSet = new Hashset'?

    - by Pureferret
    I'm intialising a HashSet like so in my program: Set<String> namesFilter = new HashSet<String>(); Is this functionally any different if I initilise like so? HashSet<String> namesFilter = new HashSet<String>(); I've read this about the collections interface, and I understand interfaces (well, except their use here). I've read this excerpt from Effective Java, and I've read this SO question, but I feel none the wiser. Is there a best practice in Java, and if so, why? My intuition is that it makes casting to a different type of Set easier in my first example. But then again, you'd only be casting to something that was a collection, and you could convert it by re-constructing it.

    Read the article

  • .net dictionary and lookup add / update

    - by freddy smith
    I am sick of doing blocks of code like this for various bits of code I have: if (dict.ContainsKey[key]) { dict[key] = value; } else { dict.Add(key,value); } and for lookups (i.e. key - list of value) if (lookup.ContainsKey[key]) { lookup[key].Add(value); } else { lookup.Add(new List<valuetype>); lookup[key].Add(value); } Is there another collections lib or extension method I should use to do this in one line of code no matter what the key and value types are? e.g. dict.AddOrUpdate(key,value) lookup.AddOrUpdate(key,value)

    Read the article

  • C# - Accesing to items for a collection inherited from List<string>

    - by Salvador
    I am trying to implement a new class inherited from List<string>, to load the contents from a text file to the items. using System.Collections.Generic; using System.IO; using System.Linq; public class ListExt: List<string> { string baseDirectory; public LoadFromFile(string FileName) { this._items = File.ReadAllLines(FileName).ToList();//does not work because _list is private } } but i dont knew how to load the lines into the _items property because is private. any suggestions?

    Read the article

  • Does isEmpty method in Stream evaluate the whole Stream?

    - by abhin4v
    In Scala, does calling isEmtpy method on an instance of Stream class cause the stream to be evaluated completely? My code is like this: import Stream.cons private val odds: Stream[Int] = cons(3, odds.map(_ + 2)) private val primes: Stream[Int] = cons(2, odds filter isPrime) private def isPrime(n: Int): Boolean = n match { case 1 => false case 2 => true case 3 => true case 5 => true case 7 => true case x if n % 3 == 0 => false case x if n % 5 == 0 => false case x if n % 7 == 0 => false case x if (x + 1) % 6 == 0 || (x - 1) % 6 == 0 => true case x => primeDivisors(x) isEmpty } import Math.{sqrt, ceil} private def primeDivisors(n: Int) = primes takeWhile { _ <= ceil(sqrt(n))} filter {n % _ == 0 } So, does the call to isEmpty on the line case x => primeDivisors(x) isEmpty cause all the prime divisors to be evaluated or only the first one?

    Read the article

  • How can I make this method more Scalalicious

    - by Neil Chambers
    I have a function that calculates the left and right node values for some collection of treeNodes given a simple node.id, node.parentId association. It's very simple and works well enough...but, well, I am wondering if there is a more idiomatic approach. Specifically is there a way to track the left/right values without using some externally tracked value but still keep the tasty recursion. /* * A tree node */ case class TreeNode(val id:String, val parentId: String){ var left: Int = 0 var right: Int = 0 } /* * a method to compute the left/right node values */ def walktree(node: TreeNode) = { /* * increment state for the inner function */ var c = 0 /* * A method to set the increment state */ def increment = { c+=1; c } // poo /* * the tasty inner method * treeNodes is a List[TreeNode] */ def walk(node: TreeNode): Unit = { node.left = increment /* * recurse on all direct descendants */ treeNodes filter( _.parentId == node.id) foreach (walk(_)) node.right = increment } walk(node) } walktree(someRootNode) Edit - The list of nodes is taken from a database. Pulling the nodes into a proper tree would take too much time. I am pulling a flat list into memory and all I have is an association via node id's as pertains to parents and children. Adding left/right node values allows me to get a snapshop of all children (and childrens children) with a single SQL query. The calculation needs to run very quickly in order to maintain data integrity should parent-child associations change (which they do very frequently). In addition to using the awesome Scala collections I've also boosted speed by using parallel processing for some pre/post filtering on the tree nodes. I wanted to find a more idiomatic way of tracking the left/right node values. After looking at the answers listed I have settled on this synthesised version: def walktree(node: TreeNode) = { def walk(node: TreeNode, counter: Int): Int = { node.left = counter node.right = treeNodes .filter( _.parentId == node.id) .foldLeft(counter+1) { (counter, curnode) => walk(curnode, counter) + 1 } node.right } walk(node,1) }

    Read the article

  • What is a custom collection?

    - by Win Coder
    A Group of objects. However i am having confusion in the following case. A sample class Class A { public string; } Class A_list { public A[] list; public A_list(A[] _list) { list = new A[_list.length]; for (int i = 0; i < _list.Length; i++) { list[i] = _list[i]; } } } static void Main(String[] args) { A[] names = new A[3] { new A("some"), new A("another"), new A("one"), }; A_list just_an_object = new A_list(names); } Which of the above is a custom collection the array or the object that holds array as a field or are both custom collections.

    Read the article

  • Iterables.find and Iterators.find - instead of throwing exception, get null

    - by mjlee
    I'm using google-collections and trying to find the first element that satisfies Predicate if not, return me 'null'. Unfortunately, Iterables.find and Iterators.find throws NoSuchElementException when no element is found. Now, I am forced to do Object found = null; if ( Iterators.any( newIterator(...) , my_predicate ) { found = Iterators.find( newIterator(...), my_predicate ) } I can surround by 'try/catch' and do the same thing but for my use-cases, I am going to encounter many cases where no-element is found. Is there a simpler way of doing this?

    Read the article

  • howto distinguish composition and self-typing use-cases

    - by ayvango
    Scala has two instruments for expressing object composition: original self-type concept and well known trivial composition. I'm curios what situations I should use which in. There are obvious differences in their applicability. Self-type requires you to use traits. Object composition allows you to change extensions on run-time with var declaration. Leaving technical details behind I can figure two indicators to help with classification of use cases. If some object used as combinator for a complex structure such as tree or just have several similar typed parts (1 car to 4 wheels relation) than it should use composition. There is extreme opposite use case. Lets assume one trait become too big to clearly observe it and it got split. It is quite natural that you should use self-types for this case. That rules are not absolute. You may do extra work to convert code between this techniques. e.g. you may replace 4 wheels composition with self-typing over Product4. You may use Cake[T <: MyType] {part : MyType} instead of Cake { this : MyType => } for cake pattern dependencies. But both cases seem counterintuitive and give you extra work. There are plenty of boundary use cases although. One-to-one relations is very hard to decide with. Is there any simple rule to decide what kind of technique is preferable? self-type makes you classes abstract, composition makes your code verbose. self-type gives your problems with blending namespaces and also gives you extra typing for free (you got not just a cocktail of two elements but gasoline-motor oil cocktail known as a petrol bomb). How can I choose between them? What hints are there? Update: Let us discuss the following example: Adapter pattern. What benefits it has with both selt-typing and composition approaches?

    Read the article

  • Why Stream/lazy val implementation using is faster than ListBuffer one

    - by anrizal
    I coded the following implementation of lazy sieve algorithms using Stream and lazy val below : def primes(): Stream[Int] = { lazy val ps = 2 #:: sieve(3) def sieve(p: Int): Stream[Int] = { p #:: sieve( Stream.from(p + 2, 2). find(i=> ps.takeWhile(j => j * j <= i). forall(i % _ > 0)).get) } ps } and the following implementation using (mutable) ListBuffer: import scala.collection.mutable.ListBuffer def primes(): Stream[Int] = { def sieve(p: Int, ps: ListBuffer[Int]): Stream[Int] = { p #:: { val nextprime = Stream.from(p + 2, 2). find(i=> ps.takeWhile(j => j * j <= i). forall(i % _ > 0)).get sieve(nextprime, ps += nextprime) } } sieve(3, ListBuffer(3))} When I did primes().takeWhile(_ < 1000000).size , the first implementation is 3 times faster than the second one. What's the explanation for this ? I edited the second version: it should have been sieve(3, ListBuffer(3)) instead of sieve(3, ListBuffer()) .

    Read the article

  • C# dictionary and lookup add / update

    - by freddy smith
    I am sick of doing blocks of code like this for various bits of code I have: if (dict.ContainsKey[key]) { dict[key] = value; } else { dict.Add(key,value); } and for lookups (i.e. key - list of value) if (lookup.ContainsKey[key]) { lookup[key].Add(value); } else { lookup.Add(new List); lookup[key].Add(value); } Is there another collections lib or extension method I should use to do this in one line of code no matter what the key and value types are? e.g. dict.AddOrUpdate(key,value) lookup.AddOrUpdate(key,value)

    Read the article

  • Shortcut for adding to List in a HashMap

    - by Damo
    I often have a need to take a list of objects and group them into a Map based on a value contained in the object. Eg. take a list of Users and group by Country. My code for this usually looks like: Map<String, List<User>> usersByCountry = new HashMap<String, List<User>>(); for(User user : listOfUsers) { if(usersByCountry.containsKey(user.getCountry())) { //Add to existing list usersByCountry.get(user.getCountry()).add(user); } else { //Create new list List<User> users = new ArrayList<User>(1); users.add(user); usersByCountry.put(user.getCountry(), users); } } However I can't help thinking that this is awkward and some guru has a better approach. The closest I can see so far is the MultiMap from Google Collections. Are there any standard approaches? Thanks!

    Read the article

  • Design patterns for Agent / Actor based concurrent design.

    - by nso1
    Recently i have been getting into alternative languages that support an actor/agent/shared nothing architecture - ie. scala, clojure etc (clojure also supports shared state). So far most of the documentation that I have read focus around the intro level. What I am looking for is more advanced documentation along the gang of four but instead shared nothing based. Why ? It helps to grok the change in design thinking. Simple examples are easy, but in a real world java application (single threaded) you can have object graphs with 1000's of members with complex relationships. But with agent based concurrency development it introduces a whole new set of ideas to comprehend when designing large systems. ie. Agent granularity - how much state should one agent manage - implications on performance etc or are their good patterns for mapping shared state object graphs to agent based system. tips on mapping domain models to design. Discussions not on the technology but more on how to BEST use the technology in design (real world "complex" examples would be great).

    Read the article

  • How can I create a collection of references in C#

    - by Jonathan Kaufman
    Ok I am having a cross language hiccup. In C# with it's great collections like List and I have: a Map class with properties of: List<byte[]> Images; List<Tile> Tiles; a Tile Class of: byte[] ImageData; int X; int Y; Now I want to add an image to the Map class and have the ImageData property of the Tile Classes to "reference" it. I have discovered I can't just assign it Images[0]. You can't have a reference to an object of a List. My fix was to create a Dictionary. Is this the best way or can I somehow have a "pointer" to a collection of objects?

    Read the article

  • Bash script to insert code from one file at a specific location in another file?

    - by Kurtosis
    I have a fileA with a snippet of code, and I need a script to insert that snippet into fileB on the line after a specific pattern. I'm trying to make the accepted answer in this thread work, but it's not, and is not giving an error so not sure why not: sed -e '/pattern/r text2insert' filewithpattern Any suggestions? pattern (insert snippet on line after): def boot { also tried escaped pattern but no luck: def\ boot\ { def\ boot\ \{ fileA snippet: LiftRules.htmlProperties.default.set((r: Req) => new Html5Properties(r.userAgent)) fileB (Boot.scala): package bootstrap.liftweb import net.liftweb._ import util._ import Helpers._ import common._ import http._ import sitemap._ import Loc._ /** * A class that's instantiated early and run. It allows the application * to modify lift's environment */ class Boot { def boot { // where to search snippet LiftRules.addToPackages("code") // Build SiteMap val entries = List( Menu.i("Home") / "index", // the simple way to declare a menu // more complex because this menu allows anything in the // /static path to be visible Menu(Loc("Static", Link(List("static"), true, "/static/index"), "Static Content"))) // set the sitemap. Note if you don't want access control for // each page, just comment this line out. LiftRules.setSiteMap(SiteMap(entries:_*)) // Use jQuery 1.4 LiftRules.jsArtifacts = net.liftweb.http.js.jquery.JQuery14Artifacts //Show the spinny image when an Ajax call starts LiftRules.ajaxStart = Full(() => LiftRules.jsArtifacts.show("ajax-loader").cmd) // Make the spinny image go away when it ends LiftRules.ajaxEnd = Full(() => LiftRules.jsArtifacts.hide("ajax-loader").cmd) // Force the request to be UTF-8 LiftRules.early.append(_.setCharacterEncoding("UTF-8")) } }

    Read the article

  • Overloading generic implicit conversions

    - by raichoo
    Hi I'm having a little scala (version 2.8.0RC1) problem with implicit conversions. Whenever importing more than one implicit conversion the first one gets shadowed. Here is the code where the problem shows up: // containers class Maybe[T] case class Nothing[T]() extends Maybe[T] case class Just[T](value: T) extends Maybe[T] case class Value[T](value: T) trait Monad[C[_]] { def >>=[A, B](a: C[A], f: A => C[B]): C[B] def pure[A](a: A): C[A] } // implicit converter trait Extender[C[_]] { class Wrapper[A](c: C[A]) { def >>=[B](f: A => C[B])(implicit m: Monad[C]): C[B] = { m >>= (c, f) } def >>[B](b: C[B])(implicit m: Monad[C]): C[B] = { m >>= (c, { (x: A) => b } ) } } implicit def extendToMonad[A](c: C[A]) = new Wrapper[A](c) } // instance maybe object maybemonad extends Extender[Maybe] { implicit object MaybeMonad extends Monad[Maybe] { override def >>=[A, B](a: Maybe[A], f: A => Maybe[B]): Maybe[B] = { a match { case Just(x) => f(x) case Nothing() => Nothing() } } override def pure[A](a: A): Maybe[A] = Just(a) } } // instance value object identitymonad extends Extender[Value] { implicit object IdentityMonad extends Monad[Value] { override def >>=[A, B](a: Value[A], f: A => Value[B]): Value[B] = { a match { case Value(x) => f(x) } } override def pure[A](a: A): Value[A] = Value(a) } } import maybemonad._ //import identitymonad._ object Main { def main(args: Array[String]): Unit = { println(Just(1) >>= { (x: Int) => MaybeMonad.pure(x) }) } } When uncommenting the second import statement everything goes wrong since the first "extendToMonad" is shadowed. However, this one works: object Main { implicit def foo(a: Int) = new { def foobar(): Unit = { println("Foobar") } } implicit def foo(a: String) = new { def foobar(): Unit = { println(a) } } def main(args: Array[String]): Unit = { 1 foobar() "bla" foobar() } } So, where is the catch? What am I missing? Regards, raichoo

    Read the article

  • How do I implement configurations and settings?

    - by Malvolio
    I'm writing a system that is deployed in several places and each site needs its own configurations and settings. A "configuration" is a named value that is necessary to a particular site (e.g., the database URL, S3 bucket name); every configuration is necessary, there is not usually a default, and it's typically string-valued. A setting is a named value but it just tweaks the behavior of the system; it's often numeric or Boolean, and there's usually some default. So far, I've been using property files or thing like them, but it's a terrible solution. Several times, a developer has added a requirement for a configuration but not added the value to file for the live configuration, so the new release passed all the tests, then failed when released to live. Better, of course, for every file to be compiled — so if there's a missing configuration, or one of the wrong type, it won't get past the compiler — and inject the site-specific class into the build for each site. As a bones, a Scala file can easy model more complex values, especially lists, but also maps and tuples. The downside is, the files are sometimes maintained by people who aren't developers, so it has to be pretty self-explanatory, which was the advantage of property files. (Someone explain XML configurations to me: all the complexity of a compilable file but the run-time risk of a property file.) What I'm looking for is an easy pattern for defining a group required names and allowable values. Any suggestions?

    Read the article

  • C# - implementing GetEnumerator() for a collection inherited from List<string>

    - by Vojtech
    Hi, I am trying to implement FilePathCollection. Its items would be simple file names (without a path - such as "image.jpg"). Once the collection is used via foreach cycle, it should return the full path created by concatenating with "baseDirectory". How can I do that? public class FilePathCollection : List<string> { string baseDirectory; public FileCollection(string baseDirectory) { this.baseDirectory = baseDirectory; } new public System.Collections.IEnumerator GetEnumerator() { foreach (string value in this._list) //this does not work because _list is private yield return baseDirectory + value; } } Thanks in advance! :-)

    Read the article

  • Can ScalaCheck/Specs warnings safely be ignored when using SBT with ScalaTest?

    - by pdbartlett
    I have a simple FunSuite-based ScalaTest: package pdbartlett.hello_sbt import org.scalatest.FunSuite class SanityTest extends FunSuite { test("a simple test") { assert(true) } test("a very slightly more complicated test - purposely fails") { assert(42 === (6 * 9)) } } Which I'm running with the following SBT project config: import sbt._ class HelloSbtProject(info: ProjectInfo) extends DefaultProject(info) { // Dummy action, just to show config working OK. lazy val solveQ = task { println("42"); None } // Managed dependencies val scalatest = "org.scalatest" % "scalatest" % "1.0" % "test" } However, when I runsbt test I get the following warnings: ... [info] == test-compile == [info] Source analysis: 0 new/modified, 0 indirectly invalidated, 0 removed. [info] Compiling test sources... [info] Nothing to compile. [warn] Could not load superclass 'org.scalacheck.Properties' : java.lang.ClassNotFoundException: org.scalacheck.Properties [warn] Could not load superclass 'org.specs.Specification' : java.lang.ClassNotFoundException: org.specs.Specification [warn] Could not load superclass 'org.specs.Specification' : java.lang.ClassNotFoundException: org.specs.Specification [info] Post-analysis: 3 classes. [info] == test-compile == For the moment I'm assuming these are just "noise" (caused by the unified test interface?) and that I can safely ignore them. But it is slightly annoying to some inner OCD part of me (though not so annoying that I'm prepared to add dependencies for the other frameworks). Is this a correct assumption, or are there subtle errors in my test/config code? If it is safe to ignore, is there any other way to suppress these errors, or do people routinely include all three frameworks so they can pick and choose the best approach for different tests? TIA, Paul. (ADDED: scala v2.7.7 and sbt v0.7.4)

    Read the article

  • Subtracting two lists in Python

    - by wich
    In Python, How can one subtract two non-unique, unordered lists? Say we have a = [0,1,2,1,0] and b = [0, 1, 1] I'd like to do something like c = a - b and have c be [2, 0] or [0, 2] order doesn't matter to me. This should throw an exception if a does not contain all elements in b. Note this is different from sets! I'm not interested in finding the difference of the sets of elements in a and b, I'm interested in the difference between the actual collections of elements in a and b. I can probably work this out with a for loop, looking up the first element of b in a and then removing the element from b and from a, etc. But this doesn't appeal to me, I'd like to do this with list comprehension in a nice and easy way. Is this possible?

    Read the article

  • Best Functional Approach

    - by dbyrne
    I have some mutable scala code that I am trying to rewrite in a more functional style. It is a fairly intricate piece of code, so I am trying to refactor it in pieces. My first thought was this: def iterate(count:Int,d:MyComplexType) = { //Generate next value n //Process n causing some side effects return iterate(count - 1, n) } This didn't seem functional at all to me, since I still have side effects mixed throughout my code. My second thought was this: def generateStream(d:MyComplexType):Stream[MyComplexType] = { //Generate next value n return Stream.cons(n, generateStream(n)) } for (n <- generateStream(initialValue).take(2000000)) { //process n causing some side effects } This seemed like a better solution to me, because at least I've isolated my functional value-generation code from the mutable value-processing code. However, this is much less memory efficient because I am generating a large list that I don't really need to store. This leaves me with 3 choices: Write a tail-recursive function, bite the bullet and refactor the value-processing code Use a lazy list. This is not a memory sensitive app (although it is performance sensitive) Come up with a new approach. I guess what I really want is a lazily evaluated sequence where I can discard the values after I've processed them. Any suggestions?

    Read the article

  • parse.json of authenticated play request

    - by niklassaers
    I've set up authentication in my application like this, always allow when a username is supplied and the API-key is 123: object Auth { def IsAuthenticated(block: => String => Request[AnyContent] => Result) = { Security.Authenticated(RetrieveUser, HandleUnauthorized) { user => Action { request => block(user)(request) } } } def RetrieveUser(request: RequestHeader) = { val auth = new String(base64Decode(request.headers.get("AUTHORIZATION").get.replaceFirst("Basic", ""))) val split = auth.split(":") val user = split(0) val pass = split(1) Option(user) } def HandleUnauthorized(request: RequestHeader) = { Results.Forbidden } def APIKey(apiKey: String)(f: => String => Request[AnyContent] => Result) = IsAuthenticated { user => request => if(apiKey == "123") f(user)(request) else Results.Forbidden } } I want then to define a method in my controller (testOut in this case) that uses the request as application/json only. Now, before I added authentication, I'd say "def testOut = Action(parse.json) {...}", but now that I'm using authentication, how can I add parse.json in to the mix and make this work? def testOut = Auth.APIKey("123") { username => implicit request => var props:Map[String, JsValue] = Map[String, JsValue]() request.body match { case JsObject(fields) => { props = fields.toMap } case _ => {} // Ok("received something else: " + request.body + '\n') } if(!props.contains("UUID")) props.+("UUID" -> UniqueIdGenerator.uuid) if (!props.contains("entity")) props.+("entity" -> "unset") props.+("username" -> username) Ok(props.toString) } As a bonus question, why is only UUID added to the props map, not entity and username? Sorry about the noob factor, I'm trying to learn Scala and Play at the same time. :-) Cheers Nik

    Read the article

< Previous Page | 35 36 37 38 39 40 41 42 43 44 45 46  | Next Page >