Search Results

Search found 30300 results on 1212 pages for 'temporal database'.

Page 390/1212 | < Previous Page | 386 387 388 389 390 391 392 393 394 395 396 397  | Next Page >

  • Installer package for program that uses JDBC to connect to MySQL....

    - by eli1987
    I have an installer wizard thing called 'install creator'. I want to include my mySQL database into the installer or find another way that the user, upon installation, can just use my database. Prob is-not everyone has MySQL installed on the computer and even then, the user doesn't know the name of the database or my password. Somehow the database must be created automatically upon install, and for my purposes, some of the tables created. How can one do this. Thanks

    Read the article

  • how Do I list all table names in SQL Server using T-SQL?

    - by shrimpy
    SELECT name FROM sys.databases -- this can list all database name in the server user database SELECT * FROM INFORMATION_SCHEMA.TABLES -- these two line can list the table for one particular database But how can I output the results like below? Database Table --------- ------------- db1 t1 db1 t2 db2 t1 ... ...

    Read the article

  • MySQLdb rowcount Returns Nothing

    - by Alec K.
    I am trying to log into my table called acounts using MySQLdb in Python, but it does not work for me. I keep getting my message "Not Logged In". Here is my code: database = MySQLdb.connect("127.0.0.1", "root", "pswd", "Kazzah") cursor = database.cursor() cursor.execute("SELECT * FROM Accounts WHERE Email=%s AND Password=%s", (_Email, _Password)) database.commit() numrows = cursor.rowcount if numrows == 1: msg = "Logged In" else: msg = "Not Logged In" cursor.close() database.close() What am I doing wrong? Thanks.

    Read the article

  • Drop all foreign keys in a table

    - by trnTash
    I had this script which worked in sql server 2005 -- t-sql scriptlet to drop all constraints on a table DECLARE @database nvarchar(50) DECLARE @table nvarchar(50) set @database = 'dotnetnuke' set @table = 'tabs' DECLARE @sql nvarchar(255) WHILE EXISTS(select * from INFORMATION_SCHEMA.TABLE_CONSTRAINTS where constraint_catalog = @database and table_name = @table) BEGIN select @sql = 'ALTER TABLE ' + @table + ' DROP CONSTRAINT ' + CONSTRAINT_NAME from INFORMATION_SCHEMA.TABLE_CONSTRAINTS where constraint_catalog = @database and table_name = @table exec sp_executesql @sql END It does not work in SQL Server 2008. How can I easily drop all foreign key constraints for a certain table? Does anyone have a better script?

    Read the article

  • Can I use WCF to replace my current Web Service and Window Service combination?

    - by gun_shy
    I need a little bit of advise regarding the situation I am faced with. The current arrangement I have been tasked with improving just doesn't sit well with me and I feel like there is a better way to do it. The more I read about WCF, the more I get the feeling that it might be what I am looking for. Right now, I have an asp.net client, a .net web service, a windows service, a ms sql database, and a third party application that is used for processing a group of 'project' files into a finalized file. Since the third party application can only handle processing one 'project' at a time, the combination of the web service, window service, and database have been arranged to create a job queue manager for the third party application. The client sends a zip 'project' file containing multiple sub files to the web service. The web service adds a new 'project' line to the database, generating a unique job id. The zip file is expanded to a folder location on the server using the job id as the folder name. The web service then returns the job id to the client. The client will use this id to poll the web service for the status of the job submitted. When the job is complete, the client will request the processed file. The windows service polls the database every x minutes. If a new job exists, the service will pull the oldest job and send it to the third party app for processing. If the processing succeeds, the window service updates the project line in the database, marking the job complete. The window service will continue to process any non complete jobs in the database until there are no more. When it stops finding any jobs, it will sleep x minutes and then poll the database again. I do not like the fact that the window service has to poll the database. If there is only one job submitted, the client will have to wait for the window service to poll and then wait while the 'project' is being processed. It seems like WCF could be used to combine the web and window services using a combination of the InstanceContextMode.Single and ConcurrencyMode.Multiple. So far, I have been unable to find any articles or examples that would point me in the right direction. Can WCF be utilized to accomplish the job queue logic of the current arrangement in a better way? As always, any help is more than appreciated.

    Read the article

  • [Android] Putting Serializable Classes into SQL?

    - by CaseyB
    Here's the situation. I have a bunch of objects that implement Serializable that I want to store in a SQL database. I have two questions Is there a way to serialize the object directly into the database Is that the best way to do it or should I Write the object out to a formatting String and put it in the database that way and then parse it back out Write each member to the database with a field that is unique to each object

    Read the article

  • How to Refresh combobox in Visual Basic

    - by phenomenon09
    When a button is clicked, it populates a combo box with all the databases you have created. Another button creates a new database. How do I refresh my combobox to add the newly added database? Here's how I populate my combo box at the start: rs.Open "show databases", conn While Not rs.EOF If rs!Database <> "information_schema" Then Combo1.AddItem rs!Database End If rs.MoveNext Wend cmdOK.Enabled = False cmdCancel.Enabled = False frmLogin.Height = 3300 rs.Close

    Read the article

  • Taking MySql backup from my Java application

    - by dhiraj
    I am developing a Java application with MySql as the database. I have to dump the MySql database from my application periodically(let say every day at 10 a.m.) and I have written a batch (.bat) file for dumping the database. The batch file is working fine, but the problem is that it is asking for password each time during its execution. Is there any way to dump MySql database without prompting for password and achieve it from Java application periodically?

    Read the article

  • Problem with user logins after db Restore

    - by JJgates
    I have two SQL 2005 instances that reside on different networks. I need to backup a database from instance A and restore it to a database in instance B on a weekly basis so that both databases hold the same data. After the restore, logins SIDS on database B are changed and therefore users can't log into database B and connection strings for the web application it supports are broken. Is there a work around for this? Thanks.

    Read the article

  • PHP/MySQL Interview - How would you have answered?

    - by martincarlin87
    I was asked this interview question so thought I would post it here to see how other users would answer: Please write some code which connects to a MySQL database (any host/user/pass), retrieves the current date & time from the database, compares it to the current date & time on the local server (i.e. where the application is running), and reports on the difference. The reporting aspect should be a simple HTML page, so that in theory this script can be put on a web server, set to point to a particular database server, and it would tell us whether the two servers’ times are in sync (or close to being in sync). This is what I put: // Connect to database server $dbhost = 'localhost'; $dbuser = 'xxx'; $dbpass = 'xxx'; $dbname = 'xxx'; $conn = mysql_connect($dbhost, $dbuser, $dbpass) or die (mysql_error()); // Select database mysql_select_db($dbname) or die(mysql_error()); // Retrieve the current time from the database server $sql = 'SELECT NOW() AS db_server_time'; // Execute the query $result = mysql_query($sql) or die(mysql_error()); // Since query has now completed, get the time of the web server $php_server_time = date("Y-m-d h:m:s"); // Store query results in an array $row = mysql_fetch_array($result); // Retrieve time result from the array $db_server_time = $row['db_server_time']; echo $db_server_time . '<br />'; echo $php_server_time; if ($php_server_time != $db_server_time) { // Server times are not identical echo '<p>Database server and web server are not in sync!</p>'; // Convert the time stamps into seconds since 01/01/1970 $php_seconds = strtotime($php_server_time); $sql_seconds = strtotime($db_server_time); // Subtract smaller number from biggest number to avoid getting a negative result if ($php_seconds > $sql_seconds) { $time_difference = $php_seconds - $sql_seconds; } else { $time_difference = $sql_seconds - $php_seconds; } // convert the time difference in seconds to a formatted string displaying hours, minutes and seconds $nice_time_difference = gmdate("H:i:s", $time_difference); echo '<p>Time difference between the servers is ' . $nice_time_difference; } else { // Timestamps are exactly the same echo '<p>Database server and web server are in sync with each other!</p>'; } Yes, I know that I have used the deprecated mysql_* functions but that aside, how would you have answered, i.e. what changes would you make and why? Are there any factors I have omitted which I should take into consideration? The interesting thing is that my results always seem to be an exact number of minutes apart when executed on my hosting account: 2012-12-06 11:47:07 2012-12-06 11:12:07

    Read the article

  • .NET DataSource Clarification

    - by Steven
    I'm fairly new to database programming in .NET. If I want to call several existing queries from the same database for different tasks, should I have one DataSource per database, per database connection, or per query?

    Read the article

  • PHP & MySQL on Mac OS X: Access denied for GUI user

    - by Eirik Lillebo
    Hey! This question was first posted to Stack Overflow, but as it is perhaps just as much a server issue I though it might be just as well to post it here also. I have just installed and configured Apache, MySQL, PHP and phpMyAdmin on my Macbook in order to have a local development environment. But after I moved one of my projects over to the local server I get a weird MySQL error from one of my calls to mysql_query(): Access denied for user '_securityagent'@'localhost' (using password: NO) First of all, the query I'm sending to MySQL is all valid, and I've even testet it through phpMyAdmin with perfect result. Secondly, the error message only happens here while I have at least 4 other mysql connections and queries per page. This call to mysql_query() happens at the end of a really long function that handles data for newly created or modified articles. This basically what it does: Collect all the data from article form (title, content, dates, etc..) Validate collected data Connect to database Dynamically build SQL query based on validated article data Send query to database before closing the connection Pretty basic, I know. I did not recognize the username "_securityagent" so after a quick search I came across this from and article at Apple's Developer Connection talking about some random bug: Mac OS X's security infrastructure gets around this problem by running its GUI code as a special user, "_securityagent". Then I tried put a var_dump() on all variables used in the mysql_connect() call, and every time it returns the correct values (where username is not "_securityagent" of course). Thus I'm wondering if anyone has any idea why 'securityagent' is trying to connect to my database - and how I can keep this error from occurring when I call mysql_query(). Update: Here is the exact code I'm using to connect to the database. But a little explanation must follow: The connection error happens at a call to mysql_query() in function X in class_1 class_1 uses class_2 to connect to database class_2 reads a config file with the database connection variables (host, user, pass, db) class_2 connect to the database through the following function: var $SYSTEM_DB_HOST = ""; function connect_db() { // Reads the config file include('system_config.php'); if (!($SYSTEM_DB_HOST == "")) { mysql_connect($SYSTEM_DB_HOST, $SYSTEM_DB_USER, $SYSTEM_DB_PASS); @mysql_select_db($SYSTEM_DB); return true; } else { return false; } }

    Read the article

  • I have to shard a mysql database. I want to start with 12 shards on 2 machines. What is the best w

    - by Tim
    All tables are InnoDb. I would rather not use mysqldump, because the shard sizes will be about 200 GB (about 700 million rows), and that will take too long. I was hoping to just stop mysql for an hour, copy the data files to a new machine, and start back up. But you can't do this with InnoDb, as some data is in the shared tablespace. Even if I have the innodb_file_per_table option set. This is not a website, but a custom application, used by tens of thousands right now, so uptime and performance are important. I suppose I could add logic into my server application to allow for gradual rebalancing / moving of a shard. Does anyone have a better idea?

    Read the article

  • MySQL performance over a (local) network much slower than I would expect

    - by user15241
    MySQL queries in my production environment are taking much longer than I would expect them too. The site in question is a fairly large Drupal site, with many modules installed. The webserver (Nginx) and database server (mysql) are hosted on separated machines, connected by a 100mbps LAN connection (hosted by Rackspace). I have the exact same site running on my laptop for development. Obviously, on my laptop, the webserver and database server are on the same box. Here are the results of my database query times: Production: Executed 291 queries in 320.33 milliseconds. (homepage) Executed 517 queries in 999.81 milliseconds. (content page) Development: Executed 316 queries in 46.28 milliseconds. (homepage) Executed 586 queries in 79.09 milliseconds. (content page) As can clearly be seen from these results, the time involved with querying the MySQL database is much shorter on my laptop, where the MySQL server is running on the same database as the web server. Why is this?! One factor must be the network latency. On average, a round trip from from the webserver to the database server takes 0.16ms (shown by ping). That must be added to every singe MySQL query. So, taking the content page example above, where there are 517 queries executed. Network latency alone will add 82ms to the total query time. However, that doesn't account for the difference I am seeing (79ms on my laptop vs 999ms on the production boxes). What other factors should I be looking at? I had thought about upgrading the NIC to a gigabit connection, but clearly there is something else involved. I have run the MySQL performance tuning script from http://www.day32.com/MySQL/ and it tells me that my database server is configured well (better than my laptop apparently). The only problem reported is "Of 4394 temp tables, 48% were created on disk". This is true in both environments and in the production environment I have even tried increasing max_heap_table_size and Current tmp_table_size to 1GB, with no change (I think this is because I have some BLOB and TEXT columns).

    Read the article

  • Java Cloud Service Integration to REST Service

    - by Jani Rautiainen
    Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance. This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance. In this article a custom application integrating with REST service will be implemented. We will use REST services provided by Taleo as an example; however the same approach will work with any REST service. In this example the data from the REST service is used to populate a dynamic table. Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration.Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source.The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the "Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud" link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guideFor details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Access to a local database The database associated with the JCS instance cannot be connected to with JDBC.  Since creating ADFbc business component requires a JDBC connection we will need access to a local database. 3rd party libraries This example will use some 3rd party libraries for implementing the REST service call and processing the input / output content. Other libraries may also be used, however these are tested to work. Jersey 1.x Jersey library will be used as a client to make the call to the REST service. JCS documentation for supported specifications states: Java API for RESTful Web Services (JAX-RS) 1.1 So Jersey 1.x will be used. Download the single-JAR Jersey bundle; in this example Jersey 1.18 JAR bundle is used. Json-simple Jjson-simple library will be used to process the json objects. Download the  JAR file; in this example json-simple-1.1.1.jar is used. Accessing data in Taleo Before implementing the application it is beneficial to familiarize oneself with the data in Taleo. Easiest way to do this is by using a RESTClient on your browser. Once added to the browser you can access the UI: The client can be used to call the REST services to test the URLs and data before adding them into the application. First derive the base URL for the service this can be done with: Method: GET URL: https://tbe.taleo.net/MANAGER/dispatcher/api/v1/serviceUrl/<company name> The response will contain the base URL to be used for the service calls for the company. Next obtain authentication token with: Method: POST URL: https://ch.tbe.taleo.net/CH07/ats/api/v1/login?orgCode=<company>&userName=<user name>&password=<password> The response includes an authentication token that can be used for few hours to authenticate with the service: {   "response": {     "authToken": "webapi26419680747505890557"   },   "status": {     "detail": {},     "success": true   } } To authenticate the service calls navigate to "Headers -> Custom Header": And add a new request header with: Name: Cookie Value: authToken=webapi26419680747505890557 Once authentication token is defined the tool can be used to invoke REST services; for example: Method: GET URL: https://ch.tbe.taleo.net/CH07/ats/api/v1/object/candidate/search.xml?status=16 This data will be used on the application to be created. For details on the Taleo REST services refer to the Taleo Business Edition REST API Guide. Create Application First Fusion Web Application is created and configured. Start JDeveloper and click "New Application": Application Name: JcsRestDemo Application Package Prefix: oracle.apps.jcs.test Application Template: Fusion Web Application (ADF) Configure Local Cloud Connection Follow the steps documented in the "Java Cloud Service ADF Web Application" article to configure a local database connection needed to create the ADFbc objects. Configure Libraries Add the 3rd party libraries into the class path. Create the following directory and copy the jar files into it: <JDEV_USER_HOME>/JcsRestDemo/lib  Select the "Model" project, navigate "Application -> Project Properties -> Libraries and Classpath -> Add JAR / Directory" and add the 2 3rd party libraries: Accessing Data from Taleo To access data from Taleo using the REST service the 3rd party libraries will be used. 2 Java classes are implemented, one representing the Candidate object and another for accessing the Taleo repository Candidate Candidate object is a POJO object used to represent the candidate data obtained from the Taleo repository. The data obtained will be used to populate the ADFbc object used to display the data on the UI. The candidate object contains simply the variables we obtain using the REST services and the getters / setters for them: Navigate "New -> General -> Java -> Java Class", enter "Candidate" as the name and create it in the package "oracle.apps.jcs.test.model".  Copy / paste the following as the content: import oracle.jbo.domain.Number; public class Candidate { private Number candId; private String firstName; private String lastName; public Candidate() { super(); } public Candidate(Number candId, String firstName, String lastName) { super(); this.candId = candId; this.firstName = firstName; this.lastName = lastName; } public void setCandId(Number candId) { this.candId = candId; } public Number getCandId() { return candId; } public void setFirstName(String firstName) { this.firstName = firstName; } public String getFirstName() { return firstName; } public void setLastName(String lastName) { this.lastName = lastName; } public String getLastName() { return lastName; } } Taleo Repository Taleo repository class will interact with the Taleo REST services. The logic will query data from Taleo and populate Candidate objects with the data. The Candidate object will then be used to populate the ADFbc object used to display data on the UI. Navigate "New -> General -> Java -> Java Class", enter "TaleoRepository" as the name and create it in the package "oracle.apps.jcs.test.model".  Copy / paste the following as the content (for details of the implementation refer to the documentation in the code): import com.sun.jersey.api.client.Client; import com.sun.jersey.api.client.ClientResponse; import com.sun.jersey.api.client.WebResource; import com.sun.jersey.core.util.MultivaluedMapImpl; import java.io.StringReader; import java.util.ArrayList; import java.util.Iterator; import java.util.List; import java.util.Map; import javax.ws.rs.core.MediaType; import javax.ws.rs.core.MultivaluedMap; import oracle.jbo.domain.Number; import org.json.simple.JSONArray; import org.json.simple.JSONObject; import org.json.simple.parser.JSONParser; /** * This class interacts with the Taleo REST services */ public class TaleoRepository { /** * Connection information needed to access the Taleo services */ String _company = null; String _userName = null; String _password = null; /** * Jersey client used to access the REST services */ Client _client = null; /** * Parser for processing the JSON objects used as * input / output for the services */ JSONParser _parser = null; /** * The base url for constructing the REST URLs. This is obtained * from Taleo with a service call */ String _baseUrl = null; /** * Authentication token obtained from Taleo using a service call. * The token can be used to authenticate on subsequent * service calls. The token will expire in 4 hours */ String _authToken = null; /** * Static url that can be used to obtain the url used to construct * service calls for a given company */ private static String _taleoUrl = "https://tbe.taleo.net/MANAGER/dispatcher/api/v1/serviceUrl/"; /** * Default constructor for the repository * Authentication details are passed as parameters and used to generate * authentication token. Note that each service call will * generate its own token. This is done to avoid dealing with the expiry * of the token. Also only 20 tokens are allowed per user simultaneously. * So instead for each call there is login / logout. * * @param company the company for which the service calls are made * @param userName the user name to authenticate with * @param password the password to authenticate with. */ public TaleoRepository(String company, String userName, String password) { super(); _company = company; _userName = userName; _password = password; _client = Client.create(); _parser = new JSONParser(); _baseUrl = getBaseUrl(); } /** * This obtains the base url for a company to be used * to construct the urls for service calls * @return base url for the service calls */ private String getBaseUrl() { String result = null; if (null != _baseUrl) { result = _baseUrl; } else { try { String company = _company; WebResource resource = _client.resource(_taleoUrl + company); ClientResponse response = resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE).get(ClientResponse.class); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); JSONObject jsonResponse = (JSONObject)jsonObject.get("response"); result = (String)jsonResponse.get("URL"); } catch (Exception ex) { ex.printStackTrace(); } } return result; } /** * Generates authentication token, that can be used to authenticate on * subsequent service calls. Note that each service call will * generate its own token. This is done to avoid dealing with the expiry * of the token. Also only 20 tokens are allowed per user simultaneously. * So instead for each call there is login / logout. * @return authentication token that can be used to authenticate on * subsequent service calls */ private String login() { String result = null; try { MultivaluedMap<String, String> formData = new MultivaluedMapImpl(); formData.add("orgCode", _company); formData.add("userName", _userName); formData.add("password", _password); WebResource resource = _client.resource(_baseUrl + "login"); ClientResponse response = resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE).post(ClientResponse.class, formData); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); JSONObject jsonResponse = (JSONObject)jsonObject.get("response"); result = (String)jsonResponse.get("authToken"); } catch (Exception ex) { throw new RuntimeException("Unable to login ", ex); } if (null == result) throw new RuntimeException("Unable to login "); return result; } /** * Releases a authentication token. Each call to login must be followed * by call to logout after the processing is done. This is required as * the tokens are limited to 20 per user and if not released the tokens * will only expire after 4 hours. * @param authToken */ private void logout(String authToken) { WebResource resource = _client.resource(_baseUrl + "logout"); resource.header("cookie", "authToken=" + authToken).post(ClientResponse.class); } /** * This method is used to obtain a list of candidates using a REST * service call. At this example the query is hard coded to query * based on status. The url constructed to access the service is: * <_baseUrl>/object/candidate/search.xml?status=16 * @return List of candidates obtained with the service call */ public List<Candidate> getCandidates() { List<Candidate> result = new ArrayList<Candidate>(); try { // First login, note that in finally block we must have logout _authToken = "authToken=" + login(); /** * Construct the URL, the resulting url will be: * <_baseUrl>/object/candidate/search.xml?status=16 */ MultivaluedMap<String, String> formData = new MultivaluedMapImpl(); formData.add("status", "16"); JSONArray searchResults = (JSONArray)getTaleoResource("object/candidate/search", "searchResults", formData); /** * Process the results, the resulting JSON object is something like * this (simplified for readability): * * { * "response": * { * "searchResults": * [ * { * "candidate": * { * "candId": 211, * "firstName": "Mary", * "lastName": "Stochi", * logic here will find the candidate object(s), obtain the desired * data from them, construct a Candidate object based on the data * and add it to the results. */ for (Object object : searchResults) { JSONObject temp = (JSONObject)object; JSONObject candidate = (JSONObject)findObject(temp, "candidate"); Long candIdTemp = (Long)candidate.get("candId"); Number candId = (null == candIdTemp ? null : new Number(candIdTemp)); String firstName = (String)candidate.get("firstName"); String lastName = (String)candidate.get("lastName"); result.add(new Candidate(candId, firstName, lastName)); } } catch (Exception ex) { ex.printStackTrace(); } finally { if (null != _authToken) logout(_authToken); } return result; } /** * Convenience method to construct url for the service call, invoke the * service and obtain a resource from the response * @param path the path for the service to be invoked. This is combined * with the base url to construct a url for the service * @param resource the key for the object in the response that will be * obtained * @param parameters any parameters used for the service call. The call * is slightly different depending whether parameters exist or not. * @return the resource from the response for the service call */ private Object getTaleoResource(String path, String resource, MultivaluedMap<String, String> parameters) { Object result = null; try { WebResource webResource = _client.resource(_baseUrl + path); ClientResponse response = null; if (null == parameters) response = webResource.header("cookie", _authToken).get(ClientResponse.class); else response = webResource.queryParams(parameters).header("cookie", _authToken).get(ClientResponse.class); String entity = response.getEntity(String.class); JSONObject jsonObject = (JSONObject)_parser.parse(new StringReader(entity)); result = findObject(jsonObject, resource); } catch (Exception ex) { ex.printStackTrace(); } return result; } /** * Convenience method to recursively find a object with an key * traversing down from a given root object. This will traverse a * JSONObject / JSONArray recursively to find a matching key, if found * the object with the key is returned. * @param root root object which contains the key searched for * @param key the key for the object to search for * @return the object matching the key */ private Object findObject(Object root, String key) { Object result = null; if (root instanceof JSONObject) { JSONObject rootJSON = (JSONObject)root; if (rootJSON.containsKey(key)) { result = rootJSON.get(key); } else { Iterator children = rootJSON.entrySet().iterator(); while (children.hasNext()) { Map.Entry entry = (Map.Entry)children.next(); Object child = entry.getValue(); if (child instanceof JSONObject || child instanceof JSONArray) { result = findObject(child, key); if (null != result) break; } } } } else if (root instanceof JSONArray) { JSONArray rootJSON = (JSONArray)root; for (Object child : rootJSON) { if (child instanceof JSONObject || child instanceof JSONArray) { result = findObject(child, key); if (null != result) break; } } } return result; } }   Creating Business Objects While JCS application can be created without a local database, the local database is required when using ADFbc objects even if database objects are not referred. For this example we will create a "Transient" view object that will be programmatically populated based the data obtained from Taleo REST services. Creating ADFbc objects Choose the "Model" project and navigate "New -> Business Tier : ADF Business Components : View Object". On the "Initialize Business Components Project" choose the local database connection created in previous step. On Step 1 enter "JcsRestDemoVO" on the "Name" and choose "Rows populated programmatically, not based on query": On step 2 create the following attributes: CandId Type: Number Updatable: Always Key Attribute: checked Name Type: String Updatable: Always On steps 3 and 4 accept defaults and click "Next".  On step 5 check the "Application Module" checkbox and enter "JcsRestDemoAM" as the name: Click "Finish" to generate the objects. Populating the VO To display the data on the UI the "transient VO" is populated programmatically based on the data obtained from the Taleo REST services. Open the "JcsRestDemoVOImpl.java". Copy / paste the following as the content (for details of the implementation refer to the documentation in the code): import java.sql.ResultSet; import java.util.List; import java.util.ListIterator; import oracle.jbo.server.ViewObjectImpl; import oracle.jbo.server.ViewRowImpl; import oracle.jbo.server.ViewRowSetImpl; // --------------------------------------------------------------------- // --- File generated by Oracle ADF Business Components Design Time. // --- Tue Feb 18 09:40:25 PST 2014 // --- Custom code may be added to this class. // --- Warning: Do not modify method signatures of generated methods. // --------------------------------------------------------------------- public class JcsRestDemoVOImpl extends ViewObjectImpl { /** * This is the default constructor (do not remove). */ public JcsRestDemoVOImpl() { } @Override public void executeQuery() { /** * For some reason we need to reset everything, otherwise * 2nd entry to the UI screen may fail with * "java.util.NoSuchElementException" in createRowFromResultSet * call to "candidates.next()". I am not sure why this is happening * as the Iterator is new and "hasNext" is true at the point * of the execution. My theory is that since the iterator object is * exactly the same the VO cache somehow reuses the iterator including * the pointer that has already exhausted the iterable elements on the * previous run. Working around the issue * here by cleaning out everything on the VO every time before query * is executed on the VO. */ getViewDef().setQuery(null); getViewDef().setSelectClause(null); setQuery(null); this.reset(); this.clearCache(); super.executeQuery(); } /** * executeQueryForCollection - overridden for custom java data source support. */ protected void executeQueryForCollection(Object qc, Object[] params, int noUserParams) { /** * Integrate with the Taleo REST services using TaleoRepository class. * A list of candidates matching a hard coded query is obtained. */ TaleoRepository repository = new TaleoRepository(<company>, <username>, <password>); List<Candidate> candidates = repository.getCandidates(); /** * Store iterator for the candidates as user data on the collection. * This will be used in createRowFromResultSet to create rows based on * the custom iterator. */ ListIterator<Candidate> candidatescIterator = candidates.listIterator(); setUserDataForCollection(qc, candidatescIterator); super.executeQueryForCollection(qc, params, noUserParams); } /** * hasNextForCollection - overridden for custom java data source support. */ protected boolean hasNextForCollection(Object qc) { boolean result = false; /** * Determines whether there are candidates for which to create a row */ ListIterator<Candidate> candidates = (ListIterator<Candidate>)getUserDataForCollection(qc); result = candidates.hasNext(); /** * If all candidates to be created indicate that processing is done */ if (!result) { setFetchCompleteForCollection(qc, true); } return result; } /** * createRowFromResultSet - overridden for custom java data source support. */ protected ViewRowImpl createRowFromResultSet(Object qc, ResultSet resultSet) { /** * Obtain the next candidate from the collection and create a row * for it. */ ListIterator<Candidate> candidates = (ListIterator<Candidate>)getUserDataForCollection(qc); ViewRowImpl row = createNewRowForCollection(qc); try { Candidate candidate = candidates.next(); row.setAttribute("CandId", candidate.getCandId()); row.setAttribute("Name", candidate.getFirstName() + " " + candidate.getLastName()); } catch (Exception e) { e.printStackTrace(); } return row; } /** * getQueryHitCount - overridden for custom java data source support. */ public long getQueryHitCount(ViewRowSetImpl viewRowSet) { /** * For this example this is not implemented rather we always return 0. */ return 0; } } Creating UI Choose the "ViewController" project and navigate "New -> Web Tier : JSF : JSF Page". On the "Create JSF Page" enter "JcsRestDemo" as name and ensure that the "Create as XML document (*.jspx)" is checked.  Open "JcsRestDemo.jspx" and navigate to "Data Controls -> JcsRestDemoAMDataControl -> JcsRestDemoVO1" and drag & drop the VO to the "<af:form> " as a "ADF Read-only Table": Accept the defaults in "Edit Table Columns". To execute the query navigate to to "Data Controls -> JcsRestDemoAMDataControl -> JcsRestDemoVO1 -> Operations -> Execute" and drag & drop the operation to the "<af:form> " as a "Button": Deploying to JCS Follow the same steps as documented in previous article"Java Cloud Service ADF Web Application". Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsRestDemo-ViewController-context-root/faces/JcsRestDemo.jspx The UI displays a list of candidates obtained from the Taleo REST Services: Summary In this article we learned how to integrate with REST services using Jersey library in JCS. In future articles various other integration techniques will be covered.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Hopping/Tumbling Windows Could Introduce Latency.

    This is a pre-article to one I am going to be writing on adjusting an event’s time and duration to satisfy business process requirements but it is one that I think is really useful when understanding the way that Hopping/Tumbling windows work within StreamInsight.  A Tumbling window is just a special shortcut version of  a Hopping window where the width of the window is equal to the size of the hop Here is the simplest and often used definition for a Hopping Window.  You can find them all here public static CepWindowStream<CepWindow<TPayload>> HoppingWindow<TPayload>(     this CepStream<TPayload> source,     TimeSpan windowSize,     TimeSpan hopSize,     WindowInputPolicy inputPolicy,     HoppingWindowOutputPolicy outputPolicy )   And here is the definition for a Tumbling Window public static CepWindowStream<CepWindow<TPayload>> TumblingWindow<TPayload>(     this CepStream<TPayload> source,     TimeSpan windowSize,     WindowInputPolicy inputPolicy,     HoppingWindowOutputPolicy outputPolicy )   These methods allow you to group events into windows of a temporal size.  It is a really useful and simple feature in StreamInsight.  One of the downsides though is that the windows cannot be flushed until an event in a following window occurs.  This means that you will potentially never see some events or see them with a delay.  Let me explain. Remember that a stream is a potentially unbounded sequence of events. Events in StreamInsight are given a StartTime.  It is this StartTime that is used to calculate into which temporal window an event falls.  It is best practice to assign a timestamp from the source system and not one from the system clock on the processing server.  StreamInsight cannot know when a window is over.  It cannot tell whether you have received all events in the window or whether some events have been delayed which means that StreamInsight cannot flush the stream for you.   Imagine you have events with the following Timestamps 12:10:10 PM 12:10:20 PM 12:10:35 PM 12:10:45 PM 11:59:59 PM And imagine that you have defined a 1 minute Tumbling Window over this stream using the following syntax var HoppingStream = from shift in inputStream.TumblingWindow(TimeSpan.FromMinutes(1),HoppingWindowOutputPolicy.ClipToWindowEnd) select new WindowCountPayload { CountInWindow = (Int32)shift.Count() };   The events between 12:10:10 PM and 12:10:45 PM will not be seen until the event at 11:59:59 PM arrives.  This could be a real problem if you need to react to windows promptly This can always be worked around by using a different design pattern but a lot of the examples I see assume there is a constant, very frequent stream of events resulting in windows always being flushed. Further examples of using windowing in StreamInsight can be found here

    Read the article

  • postfix with mailman

    - by Thufir
    What should happen is that [email protected] should be delivered to that users inbox on localhost, user@localhost. Thunderbird works fine at reading user@localhost. I'm just using a small portion of postfix-dovecot with Ubuntu mailman. How can I get postfix to recognize the FQDN and deliver them to a localhost inbox? root@dur:~# root@dur:~# tail /var/log/mail.err;tail /var/log/mailman/subscribe;postconf -n Aug 27 18:59:16 dur dovecot: lda(root): Error: chdir(/root) failed: Permission denied Aug 27 18:59:16 dur dovecot: lda(root): Error: user root: Initialization failed: Initializing mail storage from mail_location setting failed: stat(/root/Maildir) failed: Permission denied (euid=65534(nobody) egid=65534(nogroup) missing +x perm: /root, dir owned by 0:0 mode=0700) Aug 27 18:59:16 dur dovecot: lda(root): Fatal: Invalid user settings. Refer to server log for more information. Aug 27 20:09:16 dur postfix/trivial-rewrite[15896]: error: open database /etc/postfix/transport.db: No such file or directory Aug 27 21:19:17 dur postfix/trivial-rewrite[16569]: error: open database /etc/postfix/transport.db: No such file or directory Aug 27 22:27:00 dur postfix[17042]: fatal: usage: postfix [-c config_dir] [-Dv] command Aug 27 22:29:19 dur postfix/trivial-rewrite[17062]: error: open database /etc/postfix/transport.db: No such file or directory Aug 27 22:59:07 dur postfix/postfix-script[17459]: error: unknown command: 'restart' Aug 27 22:59:07 dur postfix/postfix-script[17460]: fatal: usage: postfix start (or stop, reload, abort, flush, check, status, set-permissions, upgrade-configuration) Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: error: open database /etc/postfix/transport.db: No such file or directory Aug 27 21:39:03 2012 (16734) cola: pending "[email protected]" <[email protected]> 127.0.0.1 Aug 27 21:40:37 2012 (16749) cola: pending "[email protected]" <[email protected]> 127.0.0.1 Aug 27 22:45:31 2012 (17288) gmane.mail.mailman.user.1: pending [email protected] 127.0.0.1 Aug 27 22:45:46 2012 (17293) gmane.mail.mailman.user.1: pending [email protected] 127.0.0.1 Aug 27 23:02:01 2012 (17588) test3: pending [email protected] 127.0.0.1 Aug 27 23:05:41 2012 (17652) test4: pending [email protected] 127.0.0.1 Aug 27 23:56:20 2012 (17985) test5: pending [email protected] 127.0.0.1 alias_database = hash:/etc/aliases alias_maps = hash:/etc/aliases, hash:/var/lib/mailman/data/aliases append_dot_mydomain = no biff = no broken_sasl_auth_clients = yes config_directory = /etc/postfix default_transport = smtp home_mailbox = Maildir/ inet_interfaces = loopback-only mailbox_command = /usr/lib/dovecot/deliver -c /etc/dovecot/conf.d/01-mail-stack-delivery.conf -m "${EXTENSION}" mailbox_size_limit = 0 mailman_destination_recipient_limit = 1 mydestination = dur, dur.bounceme.net, localhost.bounceme.net, localhost myhostname = dur.bounceme.net mynetworks = 127.0.0.0/8 [::ffff:127.0.0.0]/104 [::1]/128 readme_directory = no recipient_delimiter = + relay_domains = lists.dur.bounceme.net relay_transport = relay relayhost = smtp_tls_session_cache_database = btree:${data_directory}/smtp_scache smtp_use_tls = yes smtpd_banner = $myhostname ESMTP $mail_name (Ubuntu) smtpd_recipient_restrictions = reject_unknown_sender_domain, reject_unknown_recipient_domain, reject_unauth_pipelining, permit_mynetworks, permit_sasl_authenticated, reject_unauth_destination smtpd_sasl_auth_enable = yes smtpd_sasl_authenticated_header = yes smtpd_sasl_local_domain = $myhostname smtpd_sasl_path = private/dovecot-auth smtpd_sasl_security_options = noanonymous smtpd_sasl_type = dovecot smtpd_tls_auth_only = yes smtpd_tls_cert_file = /etc/ssl/certs/ssl-mail.pem smtpd_tls_key_file = /etc/ssl/private/ssl-mail.key smtpd_tls_mandatory_ciphers = medium smtpd_tls_mandatory_protocols = SSLv3, TLSv1 smtpd_tls_received_header = yes smtpd_tls_session_cache_database = btree:${data_directory}/smtpd_scache smtpd_use_tls = yes tls_random_source = dev:/dev/urandom transport_maps = hash:/etc/postfix/transport root@dur:~# there's definitely a transport problem: root@dur:~# root@dur:~# root@dur:~# grep transport /var/log/mail.log | tail Aug 27 22:29:19 dur postfix/trivial-rewrite[17062]: warning: hash:/etc/postfix/transport lookup error for "[email protected]" Aug 27 22:29:19 dur postfix/trivial-rewrite[17062]: warning: transport_maps lookup failure Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: error: open database /etc/postfix/transport.db: No such file or directory Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: warning: hash:/etc/postfix/transport is unavailable. open database /etc/postfix/transport.db: No such file or directory Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: warning: hash:/etc/postfix/transport lookup error for "*" Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: warning: hash:/etc/postfix/transport is unavailable. open database /etc/postfix/transport.db: No such file or directory Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: warning: hash:/etc/postfix/transport lookup error for "*" Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: warning: hash:/etc/postfix/transport is unavailable. open database /etc/postfix/transport.db: No such file or directory Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: warning: hash:/etc/postfix/transport lookup error for "[email protected]" Aug 27 23:39:17 dur postfix/trivial-rewrite[17794]: warning: transport_maps lookup failure root@dur:~# trying to add the transport file: EDIT root@dur:~# root@dur:~# touch /etc/postfix/transport root@dur:~# ll /etc/postfix/transport -rw-r--r-- 1 root root 0 Aug 28 00:16 /etc/postfix/transport root@dur:~# root@dur:~# cd /etc/postfix/ root@dur:/etc/postfix# root@dur:/etc/postfix# postmap transport root@dur:/etc/postfix# root@dur:/etc/postfix# cat transport

    Read the article

  • SQL Server Issue: Could not allocate space for object ... primary filegroup is full

    - by Luke
    Trying to figure out a problem at an office that has SQL Server 2005 installed on Windows SBS Server 2008. Here's the setup: It's an office, and the person who set this all up is nowhere to be found. I'm the best hope they have... One of the programs they use on a workstation gives them an error of "Could not allocate space for object 'Billing' in database "MyDatabase" because primary filegroup is full" when trying to save an entry in their software. I searched around for hours, looking for possible solutions. One was to check for available disk space, and another was to defrag. I checked the hard drives on the server, and there is plenty of space free. I also defragged, which may have helped the problem somewhat. It's hard to say, because it seems like with the nature of the error, if you try over and over you might get it to actually save. My next step was to try to see if autogrowth was enabled on the database. This would seem to be a likely / possible solution, but I can't access the database! If I run the SQL Management Studio, I can log in as my Windows user and view the list of databases. However, if I try to do anything (actually view the database, view the properties, add or edit users), I get errors that I don't have permission. For what it's worth, I also tried runing Management Studio as Administrator, in case that would help. No difference, though. Now, what I'm guessing is going on -- from my limited knowledge of SQL and from reading online -- is that though I'm logged in as a Windows administrator, that account does NOT have SQL access. I do see a list of SQL users, including SA, but I again don't have permission to add one or to change the password on an existing one. And nobody at the office has any idea what the SQL passwords could be. So... here's my thinking thus far: 1 - The "Could not allocate" error likely points to a database that needs to be allowed to autogrow. Especially since I verified there is plenty of free space and the HD has been defragmented. 2 - Enabling autogrow would be very easy to do if I had the proper access within SQL Management Stuido. That leads me to this link: http://blogs.technet.com/b/sqlman/archive/2011/06/14/tips-amp-tricks-you-have-lost-access-to-sql-server-now-what.aspx It sounds like it's a step-by-step guide for giving me the access I need to SQL. I'm guessing that if I followed this guide, I would be able to then log in to the SQL server via Management Studio with the proper permissions, and would be able to enable autogrow (or simply view the status of the existing database), and hopefully solve the "Could not allocate space" problem! So I guess I have a few questions: 1 - Would you guys agree with my "diagnosis"? Think I'm barking up the right tree? 2 - Is there any risk at all in hurting / disabling / wrecking the current SQL database or setup with me going through the guide to regain SQL access? I understand that per the guide, I would have to temporarily shut down SQL, so obviously it wouldn't be accessible during that time. But it wouldn't be worth the risk if there's a chance I could mess anything up... Like I said, the workstations ARE currently accessing the database somehow, but nobody knows with what login info or anything. Basically, it's set up, it works (usually), but if they had to reload the software, nobody would know how. Any feedback would be appreciated!! The problem is such that it's not an emergency for them, but an annoyance. If I could fix it, it would be wonderful. But if not, I think they'll manage, especially as they are going to eventually stop using this software. Thank you so much for your time! Luke

    Read the article

  • JPA 2 Criteria API: why is isNull being ignored when in conjunction with equal?

    - by Vítor Souza
    I have the following entity class (ID inherited from PersistentObjectSupport class): @Entity public class AmbulanceDeactivation extends PersistentObjectSupport implements Serializable { private static final long serialVersionUID = 1L; @Temporal(TemporalType.DATE) @NotNull private Date beginDate; @Temporal(TemporalType.DATE) private Date endDate; @Size(max = 250) private String reason; @ManyToOne @NotNull private Ambulance ambulance; /* Get/set methods, etc. */ } If I do the following query using the Criteria API: CriteriaBuilder cb = em.getCriteriaBuilder(); CriteriaQuery<AmbulanceDeactivation> cq = cb.createQuery(AmbulanceDeactivation.class); Root<AmbulanceDeactivation> root = cq.from(AmbulanceDeactivation.class); EntityType<AmbulanceDeactivation> model = root.getModel(); cq.where(cb.isNull(root.get(model.getSingularAttribute("endDate", Date.class)))); return em.createQuery(cq).getResultList(); I get the following SQL printed in the log: FINE: SELECT ID, REASON, ENDDATE, UUID, BEGINDATE, VERSION, AMBULANCE_ID FROM AMBULANCEDEACTIVATION WHERE (ENDDATE IS NULL) However, if I change the where() line in the previous code to this one: cq.where(cb.isNull(root.get(model.getSingularAttribute("endDate", Date.class))), cb.equal(root.get(model.getSingularAttribute("ambulance", Ambulance.class)), ambulance)); I get the following SQL: FINE: SELECT ID, REASON, ENDDATE, UUID, BEGINDATE, VERSION, AMBULANCE_ID FROM AMBULANCEDEACTIVATION WHERE (AMBULANCE_ID = ?) That is, the isNull criterion is totally ignored. It is as if it wasn't even there (if I provide only the equal criterion to the where() method I get the same SQL printed). Why is that? Is it a bug or am I missing something?

    Read the article

  • self referencing object in JPA

    - by geoaxis
    Hello, I am trying to save a SystemUser entity in JPA. I also want to save certain things like who created the SystemUser and who last modified the system User as well. @ManyToOne(targetEntity = SystemUser.class) @JoinColumn private SystemUser userWhoCreated; @Temporal(TemporalType.TIMESTAMP) @DateTimeFormat(iso=ISO.DATE_TIME) private Date timeCreated; @ManyToOne(targetEntity = SystemUser.class) @JoinColumn private SystemUser userWhoLastModified; @Temporal(TemporalType.TIMESTAMP) @DateTimeFormat(iso=ISO.DATE_TIME) private Date timeLastModified; I also want to ensure that these values are not null when persisted. So If I use the NotNull JPA annotation, that is easily solved (along with reference to another entity) The problem description is simple, I cannot save rootuser without having rootuser in the system if I am to use a DataLoader class to persist JPA entity. Every other later user can be easily persisted with userWhoModified as the "systemuser" , but systemuser it's self cannot be added in this scheme. Is there a way so persist this first system user (I am thinking with SQL). This is a typical bootstrap (chicken or the egg) problem i suppose.

    Read the article

  • @PrePersist with entity inheritance

    - by gerry
    I'm having some problems with inheritance and the @PrePersist annotation. My source code looks like the following: _the 'base' class with the annotated updateDates() method: @javax.persistence.Entity @Inheritance(strategy = InheritanceType.TABLE_PER_CLASS) public class Base implements Serializable{ ... @Id @GeneratedValue protected Long id; ... @Column(nullable=false) @Temporal(TemporalType.TIMESTAMP) private Date creationDate; @Column(nullable=false) @Temporal(TemporalType.TIMESTAMP) private Date lastModificationDate; ... public Date getCreationDate() { return creationDate; } public void setCreationDate(Date creationDate) { this.creationDate = creationDate; } public Date getLastModificationDate() { return lastModificationDate; } public void setLastModificationDate(Date lastModificationDate) { this.lastModificationDate = lastModificationDate; } ... @PrePersist protected void updateDates() { if (creationDate == null) { creationDate = new Date(); } lastModificationDate = new Date(); } } _ now the 'Child' class that should inherit all methods "and annotations" from the base class: @javax.persistence.Entity @NamedQueries({ @NamedQuery(name=Sensor.QUERY_FIND_ALL, query="SELECT s FROM Sensor s") }) public class Sensor extends Entity { ... // additional attributes @Column(nullable=false) protected String value; ... // additional getters, setters ... } If I store/persist instances of the Base class to the database, everything works fine. The dates are getting updated. But now, if I want to persist a child instance, the database throws the following exception: MySQLIntegrityConstraintViolationException: Column 'CREATIONDATE' cannot be null So, in my opinion, this is caused because in Child the method "@PrePersist protected void updateDates()" is not called/invoked before persisting the instances to the database. What is wrong with my code?

    Read the article

  • On automating a split-mirror ASM backup with EMC TimeFinder ...

    - by [email protected]
    Normal 0 21 false false false MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Hi clerks,   Offloading the backup operation to another host using disk cloning could really improve the performance on highly busy databases ( 24x7, zero downtime and all this stuff ...) There are well know white papers on this subject, ASM included, but today Im showing you a nice way to automate the procedure using shell scripting with EMC TimeFinder technologies:   Assumptions: *********** ASM diskgroups name:   +data_${db_name} : asm data diskgroup +fra_${db_name} :  asm fra  diskgroup   EMC Time Finder sync groups name:   rac_${DB_NAME}_data_tf : data group rac_${DB_NAME}_fra_tf:   fra group     There are two scripts, one located on the production box ( bck_database.sh ) and the other one on the backup server node ( bck_database_mirror.sh ) The second one is remotly executed from the production host There are a bunch of variables along the code with selfexplanatory names I guess, anyway let me know if you want some help     #!/bin/ksh ### ###  Copyright (c) 1988, 2010, Oracle Corporation.  All Rights Reserved. ### ###    NAME ###     bck_database.sh ### ###    DESCRIPTION ###     Database backup on third mirror ### ###    RETURNS ### ###    NOTES ### ###    MODIFIED                                 (DD/MM/YY) ###    Oracle            28/01/10             - Creacion ###   V_DATE=`/bin/date +%Y%m%d_%H%M%S` V_FICH_LOG=`dirname $0`/trace_dir_location/`basename $0`.${V_DATE}.log exec 4>&1 tee ${V_FICH_LOG} >&4 |& exec 1>&p 2>&1     ADMIN_DIR=`dirname $0` . ${ADMIN_DIR}/setenv_instance.sh -- This script should set the instance vars like Oracle Home, Sid, db_name ... if [ $? -ne 0 ] then   echo "Error when setting the environment."   exit 1 fi   echo "${V_DATE} ####################################################" echo "Executing database backup: ${DB_NAME}" echo "####################################################################"   V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Sync asm data diskgroups ..." echo "####################################################################" sudo symmir -g rac_${DB_NAME}_data_tf establish -noprompt if [ $? -ne 0 ] then   echo "Error when sync asm data diskgroups"   exit 2 fi V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Verifying asm data disks ..." echo "####################################################################" sudo symmir -g rac_${DB_NAME}_data_tf -i 30 verify if [ $? -ne 0 ] then   echo "Error when verifying asm data diskgroups"   exit 3 fi     V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Sync asm fra diskgroups ..." echo "####################################################################" sudo symmir -g rac_${DB_NAME}_fra_tf establish -noprompt if [ $? -ne 0 ] then   echo "Error when sync asm fra diskgroups"   exit 4 fi V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Verifying asm fra disks ..." echo "####################################################################" sudo symmir -g rac_${DB_NAME}_fra_tf -i 30 verify if [ $? -ne 0 ] then   echo "Error when verifying asm fra diskgroups"   exit 5 fi   V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "ASM sync sucessfully completed!" echo "####################################################################"     V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Updating status ${DB_NAME} to BEGIN BACKUP ..." echo "####################################################################" sqlplus -s /nolog <<-!   whenever sqlerror exit 1   connect / as sysdba   whenever sqlerror exit   alter system archive log current;   alter database ${DB_NAME} begin backup; ! if [ $? -ne 0 ] then   echo "Error when updating database status to BEGIN backup"   exit 6 fi   V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Splitting asm data disks....." echo "####################################################################" sudo symmir -g rac_${DB_NAME}_data_tf split -noprompt if [ $? -ne 0 ] then   echo "Error when splitting asm data disks"   exit 7 fi   V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Updating status ${DB_NAME} to END BACKUP ..." echo "####################################################################" sqlplus -s /nolog <<-!   whenever sqlerror exit 1   connect / as sysdba   whenever sqlerror exit   alter database ${DB_NAME} end backup;   alter system archive log current; ! if [ $? -ne 0 ] then   echo "Error when updating database status to END backup"   exit 8 fi   V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Generating controlfile copies...." echo "####################################################################" rman<<-! connect target / run { allocate channel ch1 type DISK; copy current controlfile to '+FRA_${DB_NAME}/${DB_NAME}/CONTROLFILE/control_mount.ctl'; copy current controlfile to '+FRA_${DB_NAME}/${DB_NAME}/CONTROLFILE/control_backup.ctl'; } ! if [ $? -ne 0 ] then   echo "Error generating controlfile copies"   exit 9 fi V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Resync RMAN catalog ....." echo "####################################################################" rman<<-! connect target / connect catalog ${V_RMAN_USR}/${V_RMAN_PWD}@${V_DB_CATALOG} resync catalog; ! if [ $? -ne 0 ] then   echo "Error when resyncing RMAN catalog"   exit 10 fi   V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Splitting asm fra disks....." echo "####################################################################" sudo symmir -g rac_${DB_NAME}_fra_tf split -noprompt if [ $? -ne 0 ] then   echo "Error when splitting asm fra disks"   exit 11 fi     echo "WARNING!: Calling bck_database_mirror.sh host ${NODE_BCK_SERVER}..." ssh ${NODO_BCK_SERVER} ${ADMIN_DIR_BCK}/bck_database_mirror.sh if [ $? -ne 0 ] then   echo "Error, when remote executing the backup "   exit 12 fi V_DATE=`/bin/date +%Y%m%d_%H%M%S` echo "${V_DATE} ####################################################" echo "Cleaning the archived redo logs already copied to tape ..." echo "####################################################################" rman<<-! connect target / connect catalog ${V_RMAN_USR}/${V_RMAN_PWD}@${V_DB_CATALOG} run { resync catalog; delete noprompt archivelog all backed up 1 times to device type sbt; } ! if [ $? -ne 0 ] then   echo "Error when cleaning the archived redo logs"   exit 13 fi echo "${V_DATE} ####################################################" echo "Backup sucessfully executed!!" echo "####################################################################" exit 0   ------------------------------------------------------------------------------ ------------------------** BACKUP SERVER NODE ** ----------------------------- ------------------------------------------------------------------------------   #!/bin/ksh ### ###  Copyright (c) 1988, 2010, Oracle Corporation.  All Rights Reserved. ### ###    ###    NAME ###     bck_database_mirror.sh ### ###    DESCRIPTION ###      Backup @ backup server ### ###    RETURNS ### ###    NOTES ### ###    MODIFIED                                 (DD/MM/YY) ###      Oracle                    28/01/10     - Creacion         V_DATE=`/bin/date +%Y%m%d_%H%M%S`   echo "${V_DATE} ####################################################"   echo "Starting ASM instance ..."   echo "####################################################################"   ${V_ADMIN_DIR}/start_asm.sh -- This script is supposed to start the ASM instance in the backup server   if [ $? -ne 0 ]   then     echo "Error when tying to start ASM instance."     exit 1   fi       . ${V_ADMIN_DIR}/setenv_asm.sh -- This script is supposed to set the env. variables of the ASM instance   if [ $? -ne 0 ]   then     echo "Error when setting the ASM environment"     exit 1   fi       V_DATE=`/bin/date +%Y%m%d_%H%M%S`   echo "${V_DATE} ####################################################"   echo "The asm diskgroups/disks dettected are the following ..."   echo "####################################################################"     sqlplus /nolog <<-!     whenever sqlerror exit 1     connect / as sysdba     whenever sqlerror exit     SET LINES 200     COL PATH FORMAT A25     SELECT DISK.MOUNT_STATUS, DISK.PATH, DISK.NAME, DISK_GROUP.NAME, DISK_GROUP.TOTAL_MB FROM V\$ASM_DISK DISK, V\$ASM_DISKGROUP DISK_GROUP WHERE DISK.GROUP_NUMBER=DISK_GROUP.GROUP_NUMBER; !       V_ADMIN_DIR=`dirname $0`   . ${V_ADMIN_DIR}/setenv_instance.sh -- This script is supposed to set the env. variables of the database instance   if [ $? -ne 0 ]   then     echo "Error when setting the database instance environment"     exit 1   fi     V_DATE=`/bin/date +%Y%m%d_%H%M%S`   echo "${V_DATE} ####################################################"   echo "Starting ${DB_NAME} in MOUNT mode..."   echo "####################################################################"   ${V_ADMIN_DIR}/start_instance_mount.sh -- This script is supposed to do a startup mount   if [ $? -ne 0 ]   then     echo "Error starting  ${DB_NAME} in MOUNT mode"     exit 1   fi   V_DATE=`/bin/date +%Y%m%d_%H%M%S`   echo "${V_DATE} ####################################################"   echo "Executing RMAN backup..."   echo "####################################################################"   rman<<-!   connect target /   connect catalog ${V_RMAN_USR}/${V_RMAN_PWD}@${V_DB_CATALOG}   run {   allocate channel ch1 type 'SBT_TAPE' parms'ENV=(TDPO_OPTFILE=/opt/tivoli/tsm/client/oracle/bin64/tdpo.opt)'; -- TDPO Media Library   crosscheck archivelog all;   backup tag BCK_CONTROLFILE_ST_${DB_NAME}   format 'ctl_%d_%s__%p_%t'   controlfilecopy '+FRA_${DB_NAME}/${DB_NAME}/CONTROLFILE/control_backup.ctl';   backup tag BCK_DATAFILE_ST_${DB_NAME} full   format 'db_%d_%s_%p_%t'database;   backup tag BCK_ARCHLOG_ST_${DB_NAME} format 'al_%d_%s_%p_%t' archivelog all;   release channel ch1;   } !   if [ $? -ne 0 ]   then     echo "Error executing the RMAN backup"     exit 1   fi     ${V_ADMIN_DIR}/stop_instance_immediate.sh -- This script is supposed to do a shutdown immediate of the database instance   ${ADMIN_DIR}/stop_asm_immediate.sh -- This script is supposed to do a shutdown immediate of the ASM instance   exit 0     fi   Hope it helps someone! --L

    Read the article

  • ASP.NET and HTML5 Local Storage

    - by Stephen Walther
    My favorite feature of HTML5, hands-down, is HTML5 local storage (aka DOM storage). By taking advantage of HTML5 local storage, you can dramatically improve the performance of your data-driven ASP.NET applications by caching data in the browser persistently. Think of HTML5 local storage like browser cookies, but much better. Like cookies, local storage is persistent. When you add something to browser local storage, it remains there when the user returns to the website (possibly days or months later). Importantly, unlike the cookie storage limitation of 4KB, you can store up to 10 megabytes in HTML5 local storage. Because HTML5 local storage works with the latest versions of all modern browsers (IE, Firefox, Chrome, Safari), you can start taking advantage of this HTML5 feature in your applications right now. Why use HTML5 Local Storage? I use HTML5 Local Storage in the JavaScript Reference application: http://Superexpert.com/JavaScriptReference The JavaScript Reference application is an HTML5 app that provides an interactive reference for all of the syntax elements of JavaScript (You can read more about the application and download the source code for the application here). When you open the application for the first time, all of the entries are transferred from the server to the browser (all 300+ entries). All of the entries are stored in local storage. When you open the application in the future, only changes are transferred from the server to the browser. The benefit of this approach is that the application performs extremely fast. When you click the details link to view details on a particular entry, the entry details appear instantly because all of the entries are stored on the client machine. When you perform key-up searches, by typing in the filter textbox, matching entries are displayed very quickly because the entries are being filtered on the local machine. This approach can have a dramatic effect on the performance of any interactive data-driven web application. Interacting with data on the client is almost always faster than interacting with the same data on the server. Retrieving Data from the Server In the JavaScript Reference application, I use Microsoft WCF Data Services to expose data to the browser. WCF Data Services generates a REST interface for your data automatically. Here are the steps: Create your database tables in Microsoft SQL Server. For example, I created a database named ReferenceDB and a database table named Entities. Use the Entity Framework to generate your data model. For example, I used the Entity Framework to generate a class named ReferenceDBEntities and a class named Entities. Expose your data through WCF Data Services. I added a WCF Data Service to my project and modified the data service class to look like this:   using System.Data.Services; using System.Data.Services.Common; using System.Web; using JavaScriptReference.Models; namespace JavaScriptReference.Services { [System.ServiceModel.ServiceBehavior(IncludeExceptionDetailInFaults = true)] public class EntryService : DataService<ReferenceDBEntities> { // This method is called only once to initialize service-wide policies. public static void InitializeService(DataServiceConfiguration config) { config.UseVerboseErrors = true; config.SetEntitySetAccessRule("*", EntitySetRights.All); config.DataServiceBehavior.MaxProtocolVersion = DataServiceProtocolVersion.V2; } // Define a change interceptor for the Products entity set. [ChangeInterceptor("Entries")] public void OnChangeEntries(Entry entry, UpdateOperations operations) { if (!HttpContext.Current.Request.IsAuthenticated) { throw new DataServiceException("Cannot update reference unless authenticated."); } } } }     The WCF data service is named EntryService. Notice that it derives from DataService<ReferenceEntitites>. Because it derives from DataService<ReferenceEntities>, the data service exposes the contents of the ReferenceEntitiesDB database. In the code above, I defined a ChangeInterceptor to prevent un-authenticated users from making changes to the database. Anyone can retrieve data through the service, but only authenticated users are allowed to make changes. After you expose data through a WCF Data Service, you can use jQuery to retrieve the data by performing an Ajax call. For example, I am using an Ajax call that looks something like this to retrieve the JavaScript entries from the EntryService.svc data service: $.ajax({ dataType: "json", url: “/Services/EntryService.svc/Entries”, success: function (result) { var data = callback(result["d"]); } });     Notice that you must unwrap the data using result[“d”]. After you unwrap the data, you have a JavaScript array of the entries. I’m transferring all 300+ entries from the server to the client when the application is opened for the first time. In other words, I transfer the entire database from the server to the client, once and only once, when the application is opened for the first time. The data is transferred using JSON. Here is a fragment: { "d" : [ { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(1)", "type": "ReferenceDBModel.Entry" }, "Id": 1, "Name": "Global", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "object", "ShortDescription": "Contains global variables and functions", "FullDescription": "<p>\nThe Global object is determined by the host environment. In web browsers, the Global object is the same as the windows object.\n</p>\n<p>\nYou can use the keyword <code>this</code> to refer to the Global object when in the global context (outside of any function).\n</p>\n<p>\nThe Global object holds all global variables and functions. For example, the following code demonstrates that the global <code>movieTitle</code> variable refers to the same thing as <code>window.movieTitle</code> and <code>this.movieTitle</code>.\n</p>\n<pre>\nvar movieTitle = \"Star Wars\";\nconsole.log(movieTitle === this.movieTitle); // true\nconsole.log(movieTitle === window.movieTitle); // true\n</pre>\n", "LastUpdated": "634298578273756641", "IsDeleted": false, "OwnerId": null }, { "__metadata": { "uri": "http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries(2)", "type": "ReferenceDBModel.Entry" }, "Id": 2, "Name": "eval(string)", "Browsers": "ff3_6,ie8,ie9,c8,sf5,es3,es5", "Syntax": "function", "ShortDescription": "Evaluates and executes JavaScript code dynamically", "FullDescription": "<p>\nThe following code evaluates and executes the string \"3+5\" at runtime.\n</p>\n<pre>\nvar result = eval(\"3+5\");\nconsole.log(result); // returns 8\n</pre>\n<p>\nYou can rewrite the code above like this:\n</p>\n<pre>\nvar result;\neval(\"result = 3+5\");\nconsole.log(result);\n</pre>", "LastUpdated": "634298580913817644", "IsDeleted": false, "OwnerId": 1 } … ]} I worried about the amount of time that it would take to transfer the records. According to Google Chome, it takes about 5 seconds to retrieve all 300+ records on a broadband connection over the Internet. 5 seconds is a small price to pay to avoid performing any server fetches of the data in the future. And here are the estimated times using different types of connections using Fiddler: Notice that using a modem, it takes 33 seconds to download the database. 33 seconds is a significant chunk of time. So, I would not use the approach of transferring the entire database up front if you expect a significant portion of your website audience to connect to your website with a modem. Adding Data to HTML5 Local Storage After the JavaScript entries are retrieved from the server, the entries are stored in HTML5 local storage. Here’s the reference documentation for HTML5 storage for Internet Explorer: http://msdn.microsoft.com/en-us/library/cc197062(VS.85).aspx You access local storage by accessing the windows.localStorage object in JavaScript. This object contains key/value pairs. For example, you can use the following JavaScript code to add a new item to local storage: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You can use the Google Chrome Storage tab in the Developer Tools (hit CTRL-SHIFT I in Chrome) to view items added to local storage: After you add an item to local storage, you can read it at any time in the future by using the window.localStorage.getItem() method: <script type="text/javascript"> window.localStorage.setItem("message", "Hello World!"); </script>   You only can add strings to local storage and not JavaScript objects such as arrays. Therefore, before adding a JavaScript object to local storage, you need to convert it into a JSON string. In the JavaScript Reference application, I use a wrapper around local storage that looks something like this: function Storage() { this.get = function (name) { return JSON.parse(window.localStorage.getItem(name)); }; this.set = function (name, value) { window.localStorage.setItem(name, JSON.stringify(value)); }; this.clear = function () { window.localStorage.clear(); }; }   If you use the wrapper above, then you can add arbitrary JavaScript objects to local storage like this: var store = new Storage(); // Add array to storage var products = [ {name:"Fish", price:2.33}, {name:"Bacon", price:1.33} ]; store.set("products", products); // Retrieve items from storage var products = store.get("products");   Modern browsers support the JSON object natively. If you need the script above to work with older browsers then you should download the JSON2.js library from: https://github.com/douglascrockford/JSON-js The JSON2 library will use the native JSON object if a browser already supports JSON. Merging Server Changes with Browser Local Storage When you first open the JavaScript Reference application, the entire database of JavaScript entries is transferred from the server to the browser. Two items are added to local storage: entries and entriesLastUpdated. The first item contains the entire entries database (a big JSON string of entries). The second item, a timestamp, represents the version of the entries. Whenever you open the JavaScript Reference in the future, the entriesLastUpdated timestamp is passed to the server. Only records that have been deleted, updated, or added since entriesLastUpdated are transferred to the browser. The OData query to get the latest updates looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated%20gt%20634301199890494792L) If you remove URL encoding, the query looks like this: http://superexpert.com/javascriptreference/Services/EntryService.svc/Entries?$filter=(LastUpdated gt 634301199890494792L) This query returns only those entries where the value of LastUpdated > 634301199890494792 (the version timestamp). The changes – new JavaScript entries, deleted entries, and updated entries – are merged with the existing entries in local storage. The JavaScript code for performing the merge is contained in the EntriesHelper.js file. The merge() method looks like this:   merge: function (oldEntries, newEntries) { // concat (this performs the add) oldEntries = oldEntries || []; var mergedEntries = oldEntries.concat(newEntries); // sort this.sortByIdThenLastUpdated(mergedEntries); // prune duplicates (this performs the update) mergedEntries = this.pruneDuplicates(mergedEntries); // delete mergedEntries = this.removeIsDeleted(mergedEntries); // Sort this.sortByName(mergedEntries); return mergedEntries; },   The contents of local storage are then updated with the merged entries. I spent several hours writing the merge() method (much longer than I expected). I found two resources to be extremely useful. First, I wrote extensive unit tests for the merge() method. I wrote the unit tests using server-side JavaScript. I describe this approach to writing unit tests in this blog entry. The unit tests are included in the JavaScript Reference source code. Second, I found the following blog entry to be super useful (thanks Nick!): http://nicksnettravels.builttoroam.com/post/2010/08/03/OData-Synchronization-with-WCF-Data-Services.aspx One big challenge that I encountered involved timestamps. I originally tried to store an actual UTC time as the value of the entriesLastUpdated item. I quickly discovered that trying to work with dates in JSON turned out to be a big can of worms that I did not want to open. Next, I tried to use a SQL timestamp column. However, I learned that OData cannot handle the timestamp data type when doing a filter query. Therefore, I ended up using a bigint column in SQL and manually creating the value when a record is updated. I overrode the SaveChanges() method to look something like this: public override int SaveChanges(SaveOptions options) { var changes = this.ObjectStateManager.GetObjectStateEntries( EntityState.Modified | EntityState.Added | EntityState.Deleted); foreach (var change in changes) { var entity = change.Entity as IEntityTracking; if (entity != null) { entity.LastUpdated = DateTime.Now.Ticks; } } return base.SaveChanges(options); }   Notice that I assign Date.Now.Ticks to the entity.LastUpdated property whenever an entry is modified, added, or deleted. Summary After building the JavaScript Reference application, I am convinced that HTML5 local storage can have a dramatic impact on the performance of any data-driven web application. If you are building a web application that involves extensive interaction with data then I recommend that you take advantage of this new feature included in the HTML5 standard.

    Read the article

< Previous Page | 386 387 388 389 390 391 392 393 394 395 396 397  | Next Page >