Search Results

Search found 10158 results on 407 pages for 'perl5 11'.

Page 393/407 | < Previous Page | 389 390 391 392 393 394 395 396 397 398 399 400  | Next Page >

  • Developed android application cannot connect to phpmyadmin

    - by user1850936
    I am developing an app with eclipse. I tried to store the data that key in by user into database in phpmyadmin. Unfortunately, after the user has clicked on submit button, there is no response and data is not stored in my database. Here is my java file: import java.util.ArrayList; import java.util.List; import org.apache.http.NameValuePair; import org.apache.http.message.BasicNameValuePair; import org.json.JSONObject; import android.app.Activity; import android.app.AlertDialog; import android.content.DialogInterface; import android.content.Intent; import android.os.Bundle; import android.util.Log; import android.view.View; import android.widget.Button; import android.widget.EditText; import android.widget.RadioButton; import android.content.res.Configuration; public class UserRegister extends Activity { JSONParser jsonParser = new JSONParser(); EditText inputName; EditText inputUsername; EditText inputEmail; EditText inputPassword; RadioButton button1; RadioButton button2; Button button3; int success = 0; private static String url_register_user = "http://10.20.92.81/database/add_user.php"; private static final String TAG_SUCCESS = "success"; @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_user_register); inputName = (EditText) findViewById(R.id.nameTextBox); inputUsername = (EditText) findViewById(R.id.usernameTextBox); inputEmail = (EditText) findViewById(R.id.emailTextBox); inputPassword = (EditText) findViewById(R.id.pwTextBox); Button button3 = (Button) findViewById(R.id.regSubmitButton); button3.setOnClickListener(new View.OnClickListener() { public void onClick(View view) { String name = inputName.getText().toString(); String username = inputUsername.getText().toString(); String email = inputEmail.getText().toString(); String password = inputPassword.getText().toString(); if (name.contentEquals("")||username.contentEquals("")||email.contentEquals("")||password.contentEquals("")) { AlertDialog.Builder builder = new AlertDialog.Builder(UserRegister.this); builder.setMessage(R.string.nullAlert) .setTitle(R.string.alertTitle); builder.setPositiveButton(R.string.ok, new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { } }); AlertDialog dialog = builder.show(); } // creating new product in background thread RegisterNewUser(); } }); } public void RegisterNewUser() { try { String name = inputName.getText().toString(); String username = inputUsername.getText().toString(); String email = inputEmail.getText().toString(); String password = inputPassword.getText().toString(); // Building Parameters List<NameValuePair> params = new ArrayList<NameValuePair>(); params.add(new BasicNameValuePair("name", name)); params.add(new BasicNameValuePair("username", username)); params.add(new BasicNameValuePair("email", email)); params.add(new BasicNameValuePair("password", password)); // getting JSON Object // Note that create product url accepts POST method JSONObject json = jsonParser.makeHttpRequest(url_register_user, "GET", params); // check log cat for response Log.d("Send Notification", json.toString()); success = json.getInt(TAG_SUCCESS); if (success == 1) { // successfully created product Intent i = new Intent(getApplicationContext(), StudentLogin.class); startActivity(i); finish(); } else { // failed to register } } catch (Exception e) { e.printStackTrace(); } } @Override public void onConfigurationChanged(Configuration newConfig) { super.onConfigurationChanged(newConfig); } } my php file: <?php $response = array(); require_once __DIR__ . '/db_connect.php'; $db = new DB_CONNECT(); if (isset($_GET['name']) && isset($_GET['username']) && isset($_GET['email']) && isset($_GET['password'])) { $name = $_GET['name']; $username = $_GET['username']; $email = $_GET['email']; $password = $_GET['password']; // mysql inserting a new row $result = mysql_query("INSERT INTO register(name, username, email, password) VALUES('$name', '$username', '$email', '$password')"); // check if row inserted or not if ($result) { // successfully inserted into database $response["success"] = 1; $response["message"] = "You are successfully registered to MEMS."; // echoing JSON response echo json_encode($response); } else { // failed to insert row $response["success"] = 0; $response["message"] = "Oops! An error occurred."; // echoing JSON response echo json_encode($response); } } else { // required field is missing $response["success"] = 0; $response["message"] = "Required field(s) is missing"; // echoing JSON response echo json_encode($response); } ?> the log cat is as follows: 11-25 10:37:46.772: I/Choreographer(638): Skipped 30 frames! The application may be doing too much work on its main thread.

    Read the article

  • How to debug PHP with netbeans and Xdebug

    - by Jon Winstanley
    I have recently tried to get going with Netbeans 6.5 after it rated so highly in the IDE review by Smashing magazine. http://www.smashingmagazine.com/2009/02/11/the-big-php-ides-test-why-use-oneand-which-to-choose/ My main reason for switching from Notepad++ is that I'd like to be able to debug my code and set through it. I have followed the instructions about how to install xdebug from both the vendor http://xdebug.org/ and the netbeans web site. http://www.netbeans.org/kb/docs/php/debugging.html#gettingReady but to no avail. How is it done, has anyone else got debugging working in netbeans? (My setup is: Windows XP, Wamp server 2.0, PHP 5, Netbeans 6.5.1)

    Read the article

  • set "Image File Execution Options" will always open the named exe file as default

    - by Weixiao.Fan
    just as this link says : http://untidy.net/blog/2009/11/03/replacing-notepad-with-pn-via-image-file-execution-options/ I wanna replace Notepad.exe to Notepad2.exe using "Image File Execution Options" function by run this command reg add "HKLM\Software\Microsoft\Windows NT\CurrentVersion\Image File Execution Options\notepad.exe" /v "Debugger" /t REG_SZ /d "\"c:\windows\Notepad2.exe\" /z" /f but, when I run notepad, it open file c:\windows\notepad.exe in notepad2.exe as a text file by default. Is there a way to avoid that? I know using this tech Notepad.exe will as the first param passed to Notepad2.exe. but I don't know how to avoid this :(

    Read the article

  • Entity Framework 4.0 - Code only Reference

    - by joe
    Hello All, I am trying to learn EF 4 and its code only features. I tried the following great articles and was able to make a sample application. http://blogs.taiga.nl/martijn/2009/11/22/entity-framework-4-0-a-fresh-start-with-demo-application/#reply http://blogs.msdn.com/efdesign/archive/2009/10/12/code-only-further-enhancements.aspx But I am looking for a good reference library / website on Code only feature. I tried searching MSDN but couldn't find it. Please help. Thanks a lot.

    Read the article

  • perl Date::Manip array problem

    - by medalto
    im using Date::Manip http://search.cpan.org/~sbeck/Date-Manip-6.11/lib/Date/Manip.pod for a variety of things and want to create an array of days of the month i think I need @date = &ParseRecur("2010:4:0:0:0:0:0"); but it doesnt do it . ive read & reread the man page but cant get the syntax. @date = &ParseRecur("2010:4:0:1:0:0:0"); @date = &ParseRecur("2010:4:0:1*:0:0:0"); dont work either !

    Read the article

  • How to automatically trigger the App Object initialization in Powerpoint ?

    - by asksuperuser
    It is said here: http://msdn.microsoft.com/en-us/library/aa211599%28v=office.11%29.aspx Before the procedure will run, you must connect the declared object in the class module (App in this example) with the Application object. You can do this with the following code from any module. Dim X As New EventClassModule Sub InitializeApp() Set X.App = Application End Sub Run the InitializeApp procedure. Run HOW ? By hand ? I want it to automatically run when opening the powerpoint rather. Is there any way ?

    Read the article

  • Tools and Utilities for the .NET Developer

    - by mbcrump
    Tweet this list! Add a link to my site to your bookmarks to quickly find this page again! Add me to twitter! This is a list of the tools/utilities that I use to do my job/hobby. I wanted this page to load fast and contain information that only you care about. If I have missed a tool that you like, feel free to contact me and I will add it to the list. Also, this list took a lot of time to complete. Please do not steal my work, if you like the page then please link back to my site. I will keep the links/information updated as new tools/utilities are created.  Windows/.NET Development – This is a list of tools that any Windows/.NET developer should have in his bag. I have used at some point in my career everything listed on this page and below is the tools worth keeping. Name Description License AnkhSVN Subversion support for Visual Studio. It also works with VS2010. Free Aurora XAML Designer One of the best XAML creation tools available. Has a ton of built in templates that you can copy/paste into VS2010. COST/Trial BeyondCompare Beyond Compare 3 is the ideal tool for comparing files and folders on your Windows or Linux system. Visualize changes in your code and carefully reconcile them. COST/Trial BuildIT Automated Task Tool Its main purpose is to automate tasks, whether it is the final packaging of a product, an automated daily build, maybe sending out a mailing list, even backing-up files. Free C Sharper for VB Convert VB to C#. COST CLRProfiler Analyze and improve the behavior of your .NET app. Free CodeRush Direct competitor to ReSharper, contains similar feature. This is one of those decide for yourself. COST/Trial Disk2VHD Disk2vhd is a utility that creates VHD (Virtual Hard Disk - Microsoft's Virtual Machine disk format) versions of physical disks for use in Microsoft Virtual PC or Microsoft Hyper-V virtual machines (VMs). Free Eazfuscator.NET Is a free obfuscator for .NET. The main purpose is to protect intellectual property of software. Free EQATEC Profiler Make your .NET app run faster. No source code changes are needed. Just point the profiler to your app, run the modified code, and get a visual report. COST Expression Studio 3/4 Comes with Web, Blend, Sketch Flow and more. You can create websites, produce beautiful XAML and more. COST/Trial Expresso The award-winning Expresso editor is equally suitable as a teaching tool for the beginning user of regular expressions or as a full-featured development environment for the experienced programmer or web designer with an extensive knowledge of regular expressions. Free Fiddler Fiddler is a web debugging proxy which logs all HTTP(s) traffic between your computer and the internet. Free Firebug Powerful Web development tool. If you build websites, you will need this. Free FxCop FxCop is an application that analyzes managed code assemblies (code that targets the .NET Framework common language runtime) and reports information about the assemblies, such as possible design, localization, performance, and security improvements. Free GAC Browser and Remover Easy way to remove multiple assemblies from the GAC. Assemblies registered by programs like Install Shield can also be removed. Free GAC Util The Global Assembly Cache tool allows you to view and manipulate the contents of the global assembly cache and download cache. Free HelpScribble Help Scribble is a full-featured, easy-to-use help authoring tool for creating help files from start to finish. You can create Win Help (.hlp) files, HTML Help (.chm) files, a printed manual and online documentation (on a web site) all from the same Help Scribble project. COST/Trial IETester IETester is a free Web Browser that allows you to have the rendering and JavaScript engines of IE9 preview, IE8, IE7 IE 6 and IE5.5 on Windows 7, Vista and XP, as well as the installed IE in the same process. Free iTextSharp iText# (iTextSharp) is a port of the iText open source java library for PDF generation written entirely in C# for the .NET platform. Use the iText mailing list to get support. Free Kaxaml Kaxaml is a lightweight XAML editor that gives you a "split view" so you can see both your XAML and your rendered content. Free LINQPad LinqPad lets you interactively query databases in a LINQ. Free Linquer Many programmers are familiar with SQL and will need a help in the transition to LINQ. Sometimes there are complicated queries to be written and Linqer can help by converting SQL scripts to LINQ. COST/Trial LiquidXML Liquid XML Studio 2010 is an advanced XML developers toolkit and IDE, containing all the tools needed for designing and developing XML schema and applications. COST/Trial Log4Net log4net is a tool to help the programmer output log statements to a variety of output targets. log4net is a port of the excellent log4j framework to the .NET runtime. We have kept the framework similar in spirit to the original log4j while taking advantage of new features in the .NET runtime. For more information on log4net see the features document. Free Microsoft Web Platform Installer The Microsoft Web Platform Installer 2.0 (Web PI) is a free tool that makes getting the latest components of the Microsoft Web Platform, including Internet Information Services (IIS), SQL Server Express, .NET Framework and Visual Web Developer easy. Free Mono Development Don't have Visual Studio - no problem! This is an open Source C# and .NET development environment for Linux, Windows, and Mac OS X Free Net Mass Downloader While it’s great that Microsoft has released the .NET Reference Source Code, you can only get it one file at a time while you’re debugging. If you’d like to batch download it for reading or to populate the cache, you’d have to write a program that instantiated and called each method in the Framework Class Library. Fortunately, .NET Mass Downloader comes to the rescue! Free nMap Nmap ("Network Mapper") is a free and open source (license) utility for network exploration or security auditing. Many systems and network administrators also find it useful for tasks such as network inventory, managing service upgrade schedules, and monitoring host or service uptime. Free NoScript (Firefox add-in) The NoScript Firefox extension provides extra protection for Firefox, Flock, Seamonkey and other Mozilla-based browsers: this free, open source add-on allows JavaScript, Java and Flash and other plug-ins to be executed only by trusted web sites of your choice (e.g. your online bank), and provides the most powerful Anti-XSS protection available in a browser. Free NotePad 2 Notepad2, a fast and light-weight Notepad-like text editor with syntax highlighting. This program can be run out of the box without installation, and does not touch your system's registry. Free PageSpy PageSpy is a small add-on for Internet Explorer that allows you to select any element within a webpage, select an option in the context menu, and view detailed information about both the coding behind the page and the element you selected. Free Phrase Express PhraseExpress manages your frequently used text snippets in customizable categories for quick access. Free PowerGui PowerGui is a free community for PowerGUI, a graphical user interface and script editor for Microsoft Windows PowerShell! Free Powershell Comes with Win7, but you can automate tasks by using the .NET Framework. Great for network admins. Free Process Explorer Ever wondered which program has a particular file or directory open? Now you can find out. Process Explorer shows you information about which handles and DLLs processes have opened or loaded. Also, included in the SysInterals Suite. Free Process Monitor Process Monitor is an advanced monitoring tool for Windows that shows real-time file system, Registry and process/thread activity. Free Reflector Explore and analyze compiled .NET assemblies, viewing them in C#, Visual Basic, and IL. This is an Essential for any .NET developer. Free Regular Expression Library Stuck on a Regular Expression but you think someone has already figured it out? Chances are they have. Free Regulator Regulator makes Regular Expressions easy. This is a must have for a .NET Developer. Free RenameMaestro RenameMaestro is probably the easiest batch file renamer you'll find to instantly rename multiple files COST ReSharper The one program that I cannot live without. Supports VS2010 and offers simple refactoring, code analysis/assistance/cleanup/templates. One of the few applications that is worth the $$$. COST/Trial ScrewTurn Wiki ScrewTurn Wiki allows you to create, manage and share wikis. A wiki is a collaboratively-edited, information-centered website: the most famous is Wikipedia. Free SharpDevelop What is #develop? SharpDevelop is a free IDE for C# and VB.NET projects on Microsoft's .NET platform. Free Show Me The Template Show Me The Template is a tool for exploring the templates, be their data, control or items panel, that comes with the controls built into WPF for all 6 themes. Free SnippetCompiler Compiles code snippets without opening Visual Studio. It does not support .NET 4. Free SQL Prompt SQL Prompt is a plug-in that increases how fast you can work with SQL. It provides code-completion for SQL server, reformatting, db schema information and snippets. Awesome! COST/Trial SQLinForm SQLinForm is an automatic SQL code formatter for all major databases  including ORACLE, SQL Server, DB2, UDB, Sybase, Informix, PostgreSQL, Teradata, MySQL, MS Access etc. with over 70 formatting options. COST/OnlineFree SSMS Tools SSMS Tools Pack is an add-in for Microsoft SQL Server Management Studio (SSMS) including SSMS Express. Free Storm STORM is a free and open source tool for testing web services. Free Telerik Code Convertor Convert code from VB to C Sharp and Vice Versa. Free TurtoiseSVN TortoiseSVN is a really easy to use Revision control / version control / source control software for Windows.Since it's not an integration for a specific IDE you can use it with whatever development tools you like. Free UltraEdit UltraEdit is the ideal text, HTML and hex editor, and an advanced PHP, Perl, Java and JavaScript editor for programmers. UltraEdit is also an XML editor including a tree-style XML parser. An industry-award winner, UltraEdit supports disk-based 64-bit file handling (standard) on 32-bit Windows platforms (Windows 2000 and later). COST/Trial Virtual Windows XP Comes with some W7 version and allows you to run WinXP along side W7. Free VirtualBox Virtualization by Sun Microsystems. You can virtualize Windows, Linux and more. Free Visual Log Parser SQL queries against a variety of log files and other system data sources. Free WinMerge WinMerge is an Open Source differencing and merging tool for Windows. WinMerge can compare both folders and files, presenting differences in a visual text format that is easy to understand and handle. Free Wireshark Wireshark is one of the best network protocol analyzer's for Unix and windows. This has been used several times to get me out of a bind. Free XML Notepad 07 Old, but still one of my favorite XML viewers. Free Productivity Tools – This is the list of tools that I use to save time or quickly navigate around Windows. Name Description License AutoHotKey Automate almost anything by sending keystrokes and mouse clicks. You can write a mouse or keyboard macro by hand or use the macro recorder. Free CLCL CLCL is clipboard caching utility. Free Ditto Ditto is an extension to the standard windows clipboard. It saves each item placed on the clipboard allowing you access to any of those items at a later time. Ditto allows you to save any type of information that can be put on the clipboard, text, images, html, custom formats, ..... Free Evernote Remember everything from notes to photos. It will synch between computers/devices. Free InfoRapid Inforapid is a search tool that will display all you search results in a html like browser. If you click on a word in that browser, it will start another search to the word you clicked on. Handy if you want to trackback something to it's true origin. The word you looked for will be highlighted in red. Clicking on the red word will open the containing file in a text based viewer. Clicking on any word in the opened document will start another search on that word. Free KatMouse The prime purpose of the KatMouse utility is to enhance the functionality of mice with a scroll wheel, offering 'universal' scrolling: moving the mouse wheel will scroll the window directly beneath the mouse cursor (not the one with the keyboard focus, which is default on Windows OSes). This is a major increase in the usefulness of the mouse wheel. Free ScreenR Instant Screencast with nothing to download. Works with Mac or PC and free. Free Start++ Start++ is an enhancement for the Start Menu in Windows Vista. It also extends the Run box and the command-line with customizable commands.  For example, typing "w Windows Vista" will take you to the Windows Vista page on Wikipedia! Free Synergy Synergy lets you easily share a single mouse and keyboard between multiple computers with different operating systems, each with its own display, without special hardware. It's intended for users with multiple computers on their desk since each system uses its own monitor(s). Free Texter Texter lets you define text substitution hot strings that, when triggered, will replace hotstring with a larger piece of text. By entering your most commonly-typed snippets of text into Texter, you can save countless keystrokes in the course of the day. Free Total Commander File handling, FTP, Archive handling and much more. Even works with Win3.11. COST/Trial Available Wizmouse WizMouse is a mouse enhancement utility that makes your mouse wheel work on the window currently under the mouse pointer, instead of the currently focused window. This means you no longer have to click on a window before being able to scroll it with the mouse wheel. This is a far more comfortable and practical way to make use of the mouse wheel. Free Xmarks Bookmark sync and search between computers. Free General Utilities – This is a list for power user users or anyone that wants more out of Windows. I usually install a majority of these whenever I get a new system. Name Description License µTorrent µTorrent is a lightweight and efficient BitTorrent client for Windows or Mac with many features. I use this for downloading LEGAL media. Free Audacity Audacity® is free, open source software for recording and editing sounds. It is available for Mac OS X, Microsoft Windows, GNU/Linux, and other operating systems. Learn more about Audacity... Also check our Wiki and Forum for more information. Free AVast Free FREE Antivirus. Free CD Burner XP Pro CDBurnerXP is a free application to burn CDs and DVDs, including Blu-Ray and HD-DVDs. It also includes the feature to burn and create ISOs, as well as a multilanguage interface. Free CDEX You can extract digital audio CDs into mp3/wav. Free Combofix Combofix is a freeware (a legitimate spyware remover created by sUBs), Combofix was designed to scan a computer for known malware, spyware (SurfSideKick, QooLogic, and Look2Me as well as any other combination of the mentioned spyware applications) and remove them. Free Cpu-Z Provides information about some of the main devices of your system. Free Cropper Cropper is a screen capture utility written in C#. It makes it fast and easy to grab parts of your screen. Use it to easily crop out sections of vector graphic files such as Fireworks without having to flatten the files or open in a new editor. Use it to easily capture parts of a web site, including text and images. It's also great for writing documentation that needs images of your application or web site. Free DropBox Drag and Drop files to sync between computers. Free DVD-Fab Converts/Copies DVDs/Blu-Ray to different formats. (like mp4, mkv, avi) COST/Trial Available FastStone Capture FastStone Capture is a powerful, lightweight, yet full-featured screen capture tool that allows you to easily capture and annotate anything on the screen including windows, objects, menus, full screen, rectangular/freehand regions and even scrolling windows/web pages. Free ffdshow FFDShow is a DirectShow decoding filter for decompressing DivX, XviD, H.264, FLV1, WMV, MPEG-1 and MPEG-2, MPEG-4 movies. Free Filezilla FileZilla Client is a fast and reliable cross-platform FTP, FTPS and SFTP client with lots of useful features and an intuitive graphical user interface. You can also download a server version. Free FireFox Web Browser, do you really need an explanation? Free FireGestures A customizable mouse gestures extension which enables you to execute various commands and user scripts with five types of gestures. Free FoxIt Reader Light weight PDF viewer. You should install this with the advanced setting or it will install a toolbar and setup some shortcuts. Free gSynchIt Synch Gmail and Outlook. Even supports Outlook 2010 32/64 bit COST/Trial Available Hulu Desktop At home or in a hotel, this has replaced my cable/satellite subscription. Free ImgBurn ImgBurn is a lightweight CD / DVD / HD DVD / Blu-ray burning application that everyone should have in their toolkit! Free Infrarecorder InfraRecorder is a free CD/DVD burning solution for Microsoft Windows. It offers a wide range of powerful features; all through an easy to use application interface and Windows Explorer integration. Free KeePass KeePass is a free open source password manager, which helps you to manage your passwords in a secure way. Free LastPass Another password management, synchronize between browsers, automatic form filling and more. Free Live Essentials One download and lots of programs including Mail, Live Writer, Movie Maker and more! Free Monitores MonitorES is a small windows utility that helps you to turnoff monitor display when you lock down your machine.Also when you lock your machine, it will pause all your running media programs & set your IM status message to "Away" / Custom message(via options) and restore it back to normal when you back. Free mRemote mRemote is a full-featured, multi-tab remote connections manager. Free Open Office OpenOffice.org 3 is the leading open-source office software suite for word processing, spreadsheets, presentations, graphics, databases and more. It is available in many languages and works on all common computers. It stores all your data in an international open standard format and can also read and write files from other common office software packages. It can be downloaded and used completely free of charge for any purpose. Free Paint.NET Simple, intuitive, and innovative user interface for editing photos. Free Picasa Picasa is free photo editing software from Google that makes your pictures look great. Free Pidgin Pidgin is an easy to use and free chat client used by millions. Connect to AIM, MSN, Yahoo, and more chat networks all at once. Free PING PING is a live Linux ISO, based on the excellent Linux From Scratch (LFS) documentation. It can be burnt on a CD and booted, or integrated into a PXE / RIS environment. Free Putty PuTTY is an SSH and telnet client, developed originally by Simon Tatham for the Windows platform. Free Revo Uninstaller Revo Uninstaller Pro helps you to uninstall software and remove unwanted programs installed on your computer easily! Even if you have problems uninstalling and cannot uninstall them from "Windows Add or Remove Programs" control panel applet.Revo Uninstaller is a much faster and more powerful alternative to "Windows Add or Remove Programs" applet! It has very powerful features to uninstall and remove programs. Free Security Essentials Microsoft Security Essentials is a new, free consumer anti-malware solution for your computer. Free SetupVirtualCloneDrive Virtual CloneDrive works and behaves just like a physical CD/DVD drive, however it exists only virtually. Point to the .ISO file and it appears in Windows Explorer as a Drive. Free Shark 007 Codec Pack Play just about any file format with this download. Also includes my W7 Media Playlist Generator. Free Snagit 9 Screen Capture on steroids. Add arrows, captions, etc to any screenshot. COST/Trial Available SysinternalsSuite Go ahead and download the entire sys internals suite. I have mentioned multiple programs in this suite already. Free TeraCopy TeraCopy is a compact program designed to copy and move files at the maximum possible speed, providing the user with a lot of features. Free for Home TrueCrypt Free open-source disk encryption software for Windows 7/Vista/XP, Mac OS X, and Linux Free TweetDeck Fully featured Twitter client. Free UltraVNC UltraVNC is a powerful, easy to use and free software that can display the screen of another computer (via internet or network) on your own screen. The program allows you to use your mouse and keyboard to control the other PC remotely. It means that you can work on a remote computer, as if you were sitting in front of it, right from your current location. Free Unlocker Unlocks locked files. Pretty simple right? Free VLC Media Player VLC media player is a highly portable multimedia player and multimedia framework capable of reading most audio and video formats Free Windows 7 Media Playlist This program is special to my heart because I wrote it. It has been mentioned on podcast and various websites. It allows you to quickly create wvx video playlist for Windows Media Center. Free WinRAR WinRAR is a powerful archive manager. It can backup your data and reduce the size of email attachments, decompress RAR, ZIP and other files downloaded from Internet and create new archives in RAR and ZIP file format. COST/Trial Available Blogging – I use the following for my blog. Name Description License Insert Code for Windows Live Writer Insert Code for Windows Live Writer will format a snippet of text in a number of programming languages such as C#, HTML, MSH, JavaScript, Visual Basic and TSQL. Free LiveWriter Included in Live Essentials, but the ultimate in Windows Blogging Free PasteAsVSCode Plug-in for Windows Live Writer that pastes clipboard content as Visual Studio code. Preserves syntax highlighting, indentation and background color. Converts RTF, outputted by Visual Studio, into HTML. Free Desktop Management – The list below represent the best in Windows Desktop Management. Name Description License 7 Stacks Allows users to have "stacks" of icons in their taskbar. Free Executor Executor is a multi purpose launcher and a more advanced and customizable version of windows run. Free Fences Fences is a program that helps you organize your desktop and can hide your icons when they are not in use. Free RocketDock Rocket Dock is a smoothly animated, alpha blended application launcher. It provides a nice clean interface to drop shortcuts on for easy access and organization. With each item completely customizable there is no end to what you can add and launch from the dock. Free WindowsTab Tabbing is an essential feature of modern web browsers. Window Tabs brings the productivity of tabbed window management to all of your desktop applications. Free

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Toorcon14

    - by danx
    Toorcon 2012 Information Security Conference San Diego, CA, http://www.toorcon.org/ Dan Anderson, October 2012 It's almost Halloween, and we all know what that means—yes, of course, it's time for another Toorcon Conference! Toorcon is an annual conference for people interested in computer security. This includes the whole range of hackers, computer hobbyists, professionals, security consultants, press, law enforcement, prosecutors, FBI, etc. We're at Toorcon 14—see earlier blogs for some of the previous Toorcon's I've attended (back to 2003). This year's "con" was held at the Westin on Broadway in downtown San Diego, California. The following are not necessarily my views—I'm just the messenger—although I could have misquoted or misparaphrased the speakers. Also, I only reviewed some of the talks, below, which I attended and interested me. MalAndroid—the Crux of Android Infections, Aditya K. Sood Programming Weird Machines with ELF Metadata, Rebecca "bx" Shapiro Privacy at the Handset: New FCC Rules?, Valkyrie Hacking Measured Boot and UEFI, Dan Griffin You Can't Buy Security: Building the Open Source InfoSec Program, Boris Sverdlik What Journalists Want: The Investigative Reporters' Perspective on Hacking, Dave Maas & Jason Leopold Accessibility and Security, Anna Shubina Stop Patching, for Stronger PCI Compliance, Adam Brand McAfee Secure & Trustmarks — a Hacker's Best Friend, Jay James & Shane MacDougall MalAndroid—the Crux of Android Infections Aditya K. Sood, IOActive, Michigan State PhD candidate Aditya talked about Android smartphone malware. There's a lot of old Android software out there—over 50% Gingerbread (2.3.x)—and most have unpatched vulnerabilities. Of 9 Android vulnerabilities, 8 have known exploits (such as the old Gingerbread Global Object Table exploit). Android protection includes sandboxing, security scanner, app permissions, and screened Android app market. The Android permission checker has fine-grain resource control, policy enforcement. Android static analysis also includes a static analysis app checker (bouncer), and a vulnerablity checker. What security problems does Android have? User-centric security, which depends on the user to grant permission and make smart decisions. But users don't care or think about malware (the're not aware, not paranoid). All they want is functionality, extensibility, mobility Android had no "proper" encryption before Android 3.0 No built-in protection against social engineering and web tricks Alternative Android app markets are unsafe. Simply visiting some markets can infect Android Aditya classified Android Malware types as: Type A—Apps. These interact with the Android app framework. For example, a fake Netflix app. Or Android Gold Dream (game), which uploads user files stealthy manner to a remote location. Type K—Kernel. Exploits underlying Linux libraries or kernel Type H—Hybrid. These use multiple layers (app framework, libraries, kernel). These are most commonly used by Android botnets, which are popular with Chinese botnet authors What are the threats from Android malware? These incude leak info (contacts), banking fraud, corporate network attacks, malware advertising, malware "Hackivism" (the promotion of social causes. For example, promiting specific leaders of the Tunisian or Iranian revolutions. Android malware is frequently "masquerated". That is, repackaged inside a legit app with malware. To avoid detection, the hidden malware is not unwrapped until runtime. The malware payload can be hidden in, for example, PNG files. Less common are Android bootkits—there's not many around. What they do is hijack the Android init framework—alteering system programs and daemons, then deletes itself. For example, the DKF Bootkit (China). Android App Problems: no code signing! all self-signed native code execution permission sandbox — all or none alternate market places no robust Android malware detection at network level delayed patch process Programming Weird Machines with ELF Metadata Rebecca "bx" Shapiro, Dartmouth College, NH https://github.com/bx/elf-bf-tools @bxsays on twitter Definitions. "ELF" is an executable file format used in linking and loading executables (on UNIX/Linux-class machines). "Weird machine" uses undocumented computation sources (I think of them as unintended virtual machines). Some examples of "weird machines" are those that: return to weird location, does SQL injection, corrupts the heap. Bx then talked about using ELF metadata as (an uintended) "weird machine". Some ELF background: A compiler takes source code and generates a ELF object file (hello.o). A static linker makes an ELF executable from the object file. A runtime linker and loader takes ELF executable and loads and relocates it in memory. The ELF file has symbols to relocate functions and variables. ELF has two relocation tables—one at link time and another one at loading time: .rela.dyn (link time) and .dynsym (dynamic table). GOT: Global Offset Table of addresses for dynamically-linked functions. PLT: Procedure Linkage Tables—works with GOT. The memory layout of a process (not the ELF file) is, in order: program (+ heap), dynamic libraries, libc, ld.so, stack (which includes the dynamic table loaded into memory) For ELF, the "weird machine" is found and exploited in the loader. ELF can be crafted for executing viruses, by tricking runtime into executing interpreted "code" in the ELF symbol table. One can inject parasitic "code" without modifying the actual ELF code portions. Think of the ELF symbol table as an "assembly language" interpreter. It has these elements: instructions: Add, move, jump if not 0 (jnz) Think of symbol table entries as "registers" symbol table value is "contents" immediate values are constants direct values are addresses (e.g., 0xdeadbeef) move instruction: is a relocation table entry add instruction: relocation table "addend" entry jnz instruction: takes multiple relocation table entries The ELF weird machine exploits the loader by relocating relocation table entries. The loader will go on forever until told to stop. It stores state on stack at "end" and uses IFUNC table entries (containing function pointer address). The ELF weird machine, called "Brainfu*k" (BF) has: 8 instructions: pointer inc, dec, inc indirect, dec indirect, jump forward, jump backward, print. Three registers - 3 registers Bx showed example BF source code that implemented a Turing machine printing "hello, world". More interesting was the next demo, where bx modified ping. Ping runs suid as root, but quickly drops privilege. BF modified the loader to disable the library function call dropping privilege, so it remained as root. Then BF modified the ping -t argument to execute the -t filename as root. It's best to show what this modified ping does with an example: $ whoami bx $ ping localhost -t backdoor.sh # executes backdoor $ whoami root $ The modified code increased from 285948 bytes to 290209 bytes. A BF tool compiles "executable" by modifying the symbol table in an existing ELF executable. The tool modifies .dynsym and .rela.dyn table, but not code or data. Privacy at the Handset: New FCC Rules? "Valkyrie" (Christie Dudley, Santa Clara Law JD candidate) Valkyrie talked about mobile handset privacy. Some background: Senator Franken (also a comedian) became alarmed about CarrierIQ, where the carriers track their customers. Franken asked the FCC to find out what obligations carriers think they have to protect privacy. The carriers' response was that they are doing just fine with self-regulation—no worries! Carriers need to collect data, such as missed calls, to maintain network quality. But carriers also sell data for marketing. Verizon sells customer data and enables this with a narrow privacy policy (only 1 month to opt out, with difficulties). The data sold is not individually identifiable and is aggregated. But Verizon recommends, as an aggregation workaround to "recollate" data to other databases to identify customers indirectly. The FCC has regulated telephone privacy since 1934 and mobile network privacy since 2007. Also, the carriers say mobile phone privacy is a FTC responsibility (not FCC). FTC is trying to improve mobile app privacy, but FTC has no authority over carrier / customer relationships. As a side note, Apple iPhones are unique as carriers have extra control over iPhones they don't have with other smartphones. As a result iPhones may be more regulated. Who are the consumer advocates? Everyone knows EFF, but EPIC (Electrnic Privacy Info Center), although more obsecure, is more relevant. What to do? Carriers must be accountable. Opt-in and opt-out at any time. Carriers need incentive to grant users control for those who want it, by holding them liable and responsible for breeches on their clock. Location information should be added current CPNI privacy protection, and require "Pen/trap" judicial order to obtain (and would still be a lower standard than 4th Amendment). Politics are on a pro-privacy swing now, with many senators and the Whitehouse. There will probably be new regulation soon, and enforcement will be a problem, but consumers will still have some benefit. Hacking Measured Boot and UEFI Dan Griffin, JWSecure, Inc., Seattle, @JWSdan Dan talked about hacking measured UEFI boot. First some terms: UEFI is a boot technology that is replacing BIOS (has whitelisting and blacklisting). UEFI protects devices against rootkits. TPM - hardware security device to store hashs and hardware-protected keys "secure boot" can control at firmware level what boot images can boot "measured boot" OS feature that tracks hashes (from BIOS, boot loader, krnel, early drivers). "remote attestation" allows remote validation and control based on policy on a remote attestation server. Microsoft pushing TPM (Windows 8 required), but Google is not. Intel TianoCore is the only open source for UEFI. Dan has Measured Boot Tool at http://mbt.codeplex.com/ with a demo where you can also view TPM data. TPM support already on enterprise-class machines. UEFI Weaknesses. UEFI toolkits are evolving rapidly, but UEFI has weaknesses: assume user is an ally trust TPM implicitly, and attached to computer hibernate file is unprotected (disk encryption protects against this) protection migrating from hardware to firmware delays in patching and whitelist updates will UEFI really be adopted by the mainstream (smartphone hardware support, bank support, apathetic consumer support) You Can't Buy Security: Building the Open Source InfoSec Program Boris Sverdlik, ISDPodcast.com co-host Boris talked about problems typical with current security audits. "IT Security" is an oxymoron—IT exists to enable buiness, uptime, utilization, reporting, but don't care about security—IT has conflict of interest. There's no Magic Bullet ("blinky box"), no one-size-fits-all solution (e.g., Intrusion Detection Systems (IDSs)). Regulations don't make you secure. The cloud is not secure (because of shared data and admin access). Defense and pen testing is not sexy. Auditors are not solution (security not a checklist)—what's needed is experience and adaptability—need soft skills. Step 1: First thing is to Google and learn the company end-to-end before you start. Get to know the management team (not IT team), meet as many people as you can. Don't use arbitrary values such as CISSP scores. Quantitive risk assessment is a myth (e.g. AV*EF-SLE). Learn different Business Units, legal/regulatory obligations, learn the business and where the money is made, verify company is protected from script kiddies (easy), learn sensitive information (IP, internal use only), and start with low-hanging fruit (customer service reps and social engineering). Step 2: Policies. Keep policies short and relevant. Generic SANS "security" boilerplate policies don't make sense and are not followed. Focus on acceptable use, data usage, communications, physical security. Step 3: Implementation: keep it simple stupid. Open source, although useful, is not free (implementation cost). Access controls with authentication & authorization for local and remote access. MS Windows has it, otherwise use OpenLDAP, OpenIAM, etc. Application security Everyone tries to reinvent the wheel—use existing static analysis tools. Review high-risk apps and major revisions. Don't run different risk level apps on same system. Assume host/client compromised and use app-level security control. Network security VLAN != segregated because there's too many workarounds. Use explicit firwall rules, active and passive network monitoring (snort is free), disallow end user access to production environment, have a proxy instead of direct Internet access. Also, SSL certificates are not good two-factor auth and SSL does not mean "safe." Operational Controls Have change, patch, asset, & vulnerability management (OSSI is free). For change management, always review code before pushing to production For logging, have centralized security logging for business-critical systems, separate security logging from administrative/IT logging, and lock down log (as it has everything). Monitor with OSSIM (open source). Use intrusion detection, but not just to fulfill a checkbox: build rules from a whitelist perspective (snort). OSSEC has 95% of what you need. Vulnerability management is a QA function when done right: OpenVas and Seccubus are free. Security awareness The reality is users will always click everything. Build real awareness, not compliance driven checkbox, and have it integrated into the culture. Pen test by crowd sourcing—test with logging COSSP http://www.cossp.org/ - Comprehensive Open Source Security Project What Journalists Want: The Investigative Reporters' Perspective on Hacking Dave Maas, San Diego CityBeat Jason Leopold, Truthout.org The difference between hackers and investigative journalists: For hackers, the motivation varies, but method is same, technological specialties. For investigative journalists, it's about one thing—The Story, and they need broad info-gathering skills. J-School in 60 Seconds: Generic formula: Person or issue of pubic interest, new info, or angle. Generic criteria: proximity, prominence, timeliness, human interest, oddity, or consequence. Media awareness of hackers and trends: journalists becoming extremely aware of hackers with congressional debates (privacy, data breaches), demand for data-mining Journalists, use of coding and web development for Journalists, and Journalists busted for hacking (Murdock). Info gathering by investigative journalists include Public records laws. Federal Freedom of Information Act (FOIA) is good, but slow. California Public Records Act is a lot stronger. FOIA takes forever because of foot-dragging—it helps to be specific. Often need to sue (especially FBI). CPRA is faster, and requests can be vague. Dumps and leaks (a la Wikileaks) Journalists want: leads, protecting ourselves, our sources, and adapting tools for news gathering (Google hacking). Anonomity is important to whistleblowers. They want no digital footprint left behind (e.g., email, web log). They don't trust encryption, want to feel safe and secure. Whistleblower laws are very weak—there's no upside for whistleblowers—they have to be very passionate to do it. Accessibility and Security or: How I Learned to Stop Worrying and Love the Halting Problem Anna Shubina, Dartmouth College Anna talked about how accessibility and security are related. Accessibility of digital content (not real world accessibility). mostly refers to blind users and screenreaders, for our purpose. Accessibility is about parsing documents, as are many security issues. "Rich" executable content causes accessibility to fail, and often causes security to fail. For example MS Word has executable format—it's not a document exchange format—more dangerous than PDF or HTML. Accessibility is often the first and maybe only sanity check with parsing. They have no choice because someone may want to read what you write. Google, for example, is very particular about web browser you use and are bad at supporting other browsers. Uses JavaScript instead of links, often requiring mouseover to display content. PDF is a security nightmare. Executible format, embedded flash, JavaScript, etc. 15 million lines of code. Google Chrome doesn't handle PDF correctly, causing several security bugs. PDF has an accessibility checker and PDF tagging, to help with accessibility. But no PDF checker checks for incorrect tags, untagged content, or validates lists or tables. None check executable content at all. The "Halting Problem" is: can one decide whether a program will ever stop? The answer, in general, is no (Rice's theorem). The same holds true for accessibility checkers. Language-theoretic Security says complicated data formats are hard to parse and cannot be solved due to the Halting Problem. W3C Web Accessibility Guidelines: "Perceivable, Operable, Understandable, Robust" Not much help though, except for "Robust", but here's some gems: * all information should be parsable (paraphrasing) * if not parsable, cannot be converted to alternate formats * maximize compatibility in new document formats Executible webpages are bad for security and accessibility. They say it's for a better web experience. But is it necessary to stuff web pages with JavaScript for a better experience? A good example is The Drudge Report—it has hand-written HTML with no JavaScript, yet drives a lot of web traffic due to good content. A bad example is Google News—hidden scrollbars, guessing user input. Solutions: Accessibility and security problems come from same source Expose "better user experience" myth Keep your corner of Internet parsable Remember "Halting Problem"—recognize false solutions (checking and verifying tools) Stop Patching, for Stronger PCI Compliance Adam Brand, protiviti @adamrbrand, http://www.picfun.com/ Adam talked about PCI compliance for retail sales. Take an example: for PCI compliance, 50% of Brian's time (a IT guy), 960 hours/year was spent patching POSs in 850 restaurants. Often applying some patches make no sense (like fixing a browser vulnerability on a server). "Scanner worship" is overuse of vulnerability scanners—it gives a warm and fuzzy and it's simple (red or green results—fix reds). Scanners give a false sense of security. In reality, breeches from missing patches are uncommon—more common problems are: default passwords, cleartext authentication, misconfiguration (firewall ports open). Patching Myths: Myth 1: install within 30 days of patch release (but PCI §6.1 allows a "risk-based approach" instead). Myth 2: vendor decides what's critical (also PCI §6.1). But §6.2 requires user ranking of vulnerabilities instead. Myth 3: scan and rescan until it passes. But PCI §11.2.1b says this applies only to high-risk vulnerabilities. Adam says good recommendations come from NIST 800-40. Instead use sane patching and focus on what's really important. From NIST 800-40: Proactive: Use a proactive vulnerability management process: use change control, configuration management, monitor file integrity. Monitor: start with NVD and other vulnerability alerts, not scanner results. Evaluate: public-facing system? workstation? internal server? (risk rank) Decide:on action and timeline Test: pre-test patches (stability, functionality, rollback) for change control Install: notify, change control, tickets McAfee Secure & Trustmarks — a Hacker's Best Friend Jay James, Shane MacDougall, Tactical Intelligence Inc., Canada "McAfee Secure Trustmark" is a website seal marketed by McAfee. A website gets this badge if they pass their remote scanning. The problem is a removal of trustmarks act as flags that you're vulnerable. Easy to view status change by viewing McAfee list on website or on Google. "Secure TrustGuard" is similar to McAfee. Jay and Shane wrote Perl scripts to gather sites from McAfee and search engines. If their certification image changes to a 1x1 pixel image, then they are longer certified. Their scripts take deltas of scans to see what changed daily. The bottom line is change in TrustGuard status is a flag for hackers to attack your site. Entire idea of seals is silly—you're raising a flag saying if you're vulnerable.

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Unable to boot Windows 7 after installing Ubuntu

    - by Devendra
    I have Windows 7 on my machine and then installed Ubuntu 12.04 using a live CD. I can see both Windows 7 and Ubuntu in the grub menu, but when I select Windows 7 it shows a black screen for about 2 seconds and the returns to the Grub menu. But if I select Ubuntu it's working fine. This is the contents of the boot-repair log: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v2.00) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos6)/boot/grub. sda1: __________________________________________________________________________ File system: ntfs Boot sector type: Grub2 (v1.99-2.00) Boot sector info: Grub2 (v2.00) is installed in the boot sector of sda1 and looks at sector 388911128 of the same hard drive for core.img. core.img is at this location and looks in partition 1 for (,msdos6)/boot/grub. No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: /bootmgr /Boot/BCD /Windows/System32/winload.exe sda2: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda4: __________________________________________________________________________ File system: Extended Partition Boot sector type: - Boot sector info: sda5: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: According to the info in the boot sector, sda5 starts at sector 2048. Operating System: Boot files: sda6: __________________________________________________________________________ File system: ext4 Boot sector type: - Boot sector info: Operating System: Ubuntu 12.10 Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/i386-pc/core.img sda7: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 * 206,848 146,802,687 146,595,840 7 NTFS / exFAT / HPFS /dev/sda2 147,007,488 293,623,807 146,616,320 7 NTFS / exFAT / HPFS /dev/sda3 293,623,808 332,820,613 39,196,806 7 NTFS / exFAT / HPFS /dev/sda4 332,822,526 1,465,145,343 1,132,322,818 f W95 Extended (LBA) /dev/sda5 461,342,720 1,465,145,343 1,003,802,624 7 NTFS / exFAT / HPFS /dev/sda6 332,822,528 453,171,199 120,348,672 83 Linux /dev/sda7 453,173,248 461,338,623 8,165,376 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/sda1 F6AE2C13AE2BCB47 ntfs /dev/sda2 DC2273012272DFC6 ntfs /dev/sda3 1E76E43376E40D79 ntfs New Volume /dev/sda5 5ED60ACDD60AA57D ntfs /dev/sda6 9e70fd16-b48b-4f88-adcf-e443aef83124 ext4 /dev/sda7 52f3dd94-6be7-4a7b-a3ae-f43eb8810483 swap ================================ Mount points: ================================= Device Mount_Point Type Options /dev/sda6 / ext4 (rw,errors=remount-ro) =========================== sda6/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ x"${feature_menuentry_id}" = xy ]; then menuentry_id_option="--id" else menuentry_id_option="" fi export menuentry_id_option if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { if [ x$feature_all_video_module = xy ]; then insmod all_video else insmod efi_gop insmod efi_uga insmod ieee1275_fb insmod vbe insmod vga insmod video_bochs insmod video_cirrus fi } if [ x$feature_default_font_path = xy ] ; then font=unicode else insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi font="/usr/share/grub/unicode.pf2" fi if loadfont $font ; then set gfxmode=auto load_video insmod gfxterm set locale_dir=$prefix/locale set lang=en_IN insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=10 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray if background_color 44,0,30; then clear fi ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash $vt_handoff initrd /boot/initrd.img-3.5.0-17-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-9e70fd16-b48b-4f88-adcf-e443aef83124' { menuentry 'Ubuntu, with Linux 3.5.0-17-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-advanced-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail gfxmode $linux_gfx_mode insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } menuentry 'Ubuntu, with Linux 3.5.0-17-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-17-generic-recovery-9e70fd16-b48b-4f88-adcf-e443aef83124' { recordfail insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi echo 'Loading Linux 3.5.0-17-generic ...' linux /boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-17-generic } } ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='hd0,msdos6' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos6 --hint-efi=hd0,msdos6 --hint-baremetal=ahci0,msdos6 9e70fd16-b48b-4f88-adcf-e443aef83124 else search --no-floppy --fs-uuid --set=root 9e70fd16-b48b-4f88-adcf-e443aef83124 fi linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry 'Windows 7 (loader) (on /dev/sda1)' --class windows --class os $menuentry_id_option 'osprober-chain-F6AE2C13AE2BCB47' { insmod part_msdos insmod ntfs set root='hd0,msdos1' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos1 --hint-efi=hd0,msdos1 --hint-baremetal=ahci0,msdos1 F6AE2C13AE2BCB47 else search --no-floppy --fs-uuid --set=root F6AE2C13AE2BCB47 fi chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/30_uefi-firmware ### ### END /etc/grub.d/30_uefi-firmware ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f ${config_directory}/custom.cfg ]; then source ${config_directory}/custom.cfg elif [ -z "${config_directory}" -a -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda6/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid' to print the universally unique identifier for a # device; this may be used with UUID= as a more robust way to name devices # that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> # / was on /dev/sda6 during installation UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 / ext4 errors=remount-ro 0 1 # swap was on /dev/sda7 during installation UUID=52f3dd94-6be7-4a7b-a3ae-f43eb8810483 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda6: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 162.831275940 = 174.838751232 boot/grub/grub.cfg 1 163.036647797 = 175.059267584 boot/initrd.img-3.5.0-17-generic 1 206.871749878 = 222.126850048 boot/vmlinuz-3.5.0-17-generic 1 163.036647797 = 175.059267584 initrd.img 1 163.036647797 = 175.059267584 initrd.img.old 1 206.871749878 = 222.126850048 vmlinuz 1 =============================== StdErr Messages: =============================== cat: write error: Broken pipe cat: write error: Broken pipe ADDITIONAL INFORMATION : =================== log of boot-repair 2012-12-11__00h59 =================== boot-repair version : 3.195~ppa28~quantal boot-sav version : 3.195~ppa28~quantal glade2script version : 3.2.2~ppa45~quantal boot-sav-extra version : 3.195~ppa28~quantal boot-repair is executed in installed-session (Ubuntu 12.10, quantal, Ubuntu, x86_64) CPU op-mode(s): 32-bit, 64-bit BOOT_IMAGE=/boot/vmlinuz-3.5.0-17-generic root=UUID=9e70fd16-b48b-4f88-adcf-e443aef83124 ro quiet splash vt.handoff=7 =================== os-prober: /dev/sda6:The OS now in use - Ubuntu 12.10 CurrentSession:linux /dev/sda1:Windows 7 (loader):Windows:chain =================== blkid: /dev/sda1: UUID="F6AE2C13AE2BCB47" TYPE="ntfs" /dev/sda2: UUID="DC2273012272DFC6" TYPE="ntfs" /dev/sda3: LABEL="New Volume" UUID="1E76E43376E40D79" TYPE="ntfs" /dev/sda5: UUID="5ED60ACDD60AA57D" TYPE="ntfs" /dev/sda6: UUID="9e70fd16-b48b-4f88-adcf-e443aef83124" TYPE="ext4" /dev/sda7: UUID="52f3dd94-6be7-4a7b-a3ae-f43eb8810483" TYPE="swap" 1 disks with OS, 2 OS : 1 Linux, 0 MacOS, 1 Windows, 0 unknown type OS. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== /etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 #GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== /etc/grub.d/ : drwxr-xr-x 2 root root 4096 Oct 17 20:29 grub.d total 72 -rwxr-xr-x 1 root root 7541 Oct 14 23:06 00_header -rwxr-xr-x 1 root root 5488 Oct 4 15:00 05_debian_theme -rwxr-xr-x 1 root root 10891 Oct 14 23:06 10_linux -rwxr-xr-x 1 root root 10258 Oct 14 23:06 20_linux_xen -rwxr-xr-x 1 root root 1688 Oct 11 19:40 20_memtest86+ -rwxr-xr-x 1 root root 10976 Oct 14 23:06 30_os-prober -rwxr-xr-x 1 root root 1426 Oct 14 23:06 30_uefi-firmware -rwxr-xr-x 1 root root 214 Oct 14 23:06 40_custom -rwxr-xr-x 1 root root 216 Oct 14 23:06 41_custom -rw-r--r-- 1 root root 483 Oct 14 23:06 README =================== UEFI/Legacy mode: This installed-session is not in EFI-mode. EFI in dmesg. Please report this message to [email protected] [ 0.000000] ACPI: UEFI 00000000bafe7000 0003E (v01 DELL QA09 00000002 PTL 00000002) [ 0.000000] ACPI: UEFI 00000000bafe6000 00042 (v01 PTL COMBUF 00000001 PTL 00000001) [ 0.000000] ACPI: UEFI 00000000bafe3000 00256 (v01 DELL QA09 00000002 PTL 00000002) SecureBoot disabled. =================== PARTITIONS & DISKS: sda6 : sda, not-sepboot, grubenv-ok grub2, grub-pc , update-grub, 64, with-boot, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, . sda1 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, haswinload, no-recov-nor-hid, bootmgr, is-winboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda1. sda2 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda2. sda3 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda3. sda5 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda5. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 2048 sectors * 512 bytes =================== parted -l: Model: ATA WDC WD7500BPKT-7 (scsi) Disk /dev/sda: 750GB Sector size (logical/physical): 512B/4096B Partition Table: msdos Number Start End Size Type File system Flags 1 106MB 75.2GB 75.1GB primary ntfs boot 2 75.3GB 150GB 75.1GB primary ntfs 3 150GB 170GB 20.1GB primary ntfs 4 170GB 750GB 580GB extended lba 6 170GB 232GB 61.6GB logical ext4 7 232GB 236GB 4181MB logical linux-swap(v1) 5 236GB 750GB 514GB logical ntfs =================== parted -lm: BYT; /dev/sda:750GB:scsi:512:4096:msdos:ATA WDC WD7500BPKT-7; 1:106MB:75.2GB:75.1GB:ntfs::boot; 2:75.3GB:150GB:75.1GB:ntfs::; 3:150GB:170GB:20.1GB:ntfs::; 4:170GB:750GB:580GB:::lba; 6:170GB:232GB:61.6GB:ext4::; 7:232GB:236GB:4181MB:linux-swap(v1)::; 5:236GB:750GB:514GB:ntfs::; =================== mount: /dev/sda6 on / type ext4 (rw,errors=remount-ro) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) gvfsd-fuse on /run/user/dev/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=dev) /dev/sda1 on /mnt/boot-sav/sda1 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda2 on /mnt/boot-sav/sda2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda3 on /mnt/boot-sav/sda3 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda5 on /mnt/boot-sav/sda5 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda3 sda4 sda5 sda6 sda7 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): alarm ashmem autofs binder block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fb1 fd full fuse hpet input kmsg kvm log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda3 sda4 sda5 sda6 sda7 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom v4l vga_arbiter vhost-net video0 zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /dev/sda6 ext4 57G 2.7G 51G 6% / udev devtmpfs 1.9G 12K 1.9G 1% /dev tmpfs tmpfs 770M 892K 769M 1% /run none tmpfs 5.0M 0 5.0M 0% /run/lock none tmpfs 1.9G 260K 1.9G 1% /run/shm none tmpfs 100M 44K 100M 1% /run/user /dev/sda1 fuseblk 70G 36G 35G 51% /mnt/boot-sav/sda1 /dev/sda2 fuseblk 70G 66G 4.8G 94% /mnt/boot-sav/sda2 /dev/sda3 fuseblk 19G 87M 19G 1% /mnt/boot-sav/sda3 /dev/sda5 fuseblk 479G 436G 44G 92% /mnt/boot-sav/sda5 =================== fdisk -l: Disk /dev/sda: 750.2 GB, 750156374016 bytes 255 heads, 63 sectors/track, 91201 cylinders, total 1465149168 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 4096 bytes I/O size (minimum/optimal): 4096 bytes / 4096 bytes Disk identifier: 0x1dc69d0b Device Boot Start End Blocks Id System /dev/sda1 * 206848 146802687 73297920 7 HPFS/NTFS/exFAT /dev/sda2 147007488 293623807 73308160 7 HPFS/NTFS/exFAT /dev/sda3 293623808 332820613 19598403 7 HPFS/NTFS/exFAT /dev/sda4 332822526 1465145343 566161409 f W95 Ext'd (LBA) Partition 4 does not start on physical sector boundary. /dev/sda5 461342720 1465145343 501901312 7 HPFS/NTFS/exFAT /dev/sda6 332822528 453171199 60174336 83 Linux /dev/sda7 453173248 461338623 4082688 82 Linux swap / Solaris Partition table entries are not in disk order =================== Recommended repair Recommended-Repair This setting will reinstall the grub2 of sda6 into the MBR of sda. Additional repair will be performed: unhide-bootmenu-10s grub-install (GRUB) 2.00-7ubuntu11,grub-install (GRUB) 2. Reinstall the GRUB of sda6 into the MBR of sda Installation finished. No error reported. grub-install /dev/sda: exit code of grub-install /dev/sda:0 update-grub Generating grub.cfg ... Found linux image: /boot/vmlinuz-3.5.0-17-generic Found initrd image: /boot/initrd.img-3.5.0-17-generic Found memtest86+ image: /boot/memtest86+.bin Found Windows 7 (loader) on /dev/sda1 Unhide GRUB boot menu in sda6/boot/grub/grub.cfg Boot successfully repaired. You can now reboot your computer. The boot files of [The OS now in use - Ubuntu 12.10] are far from the start of the disk. Your BIOS may not detect them. You may want to retry after creating a /boot partition (EXT4, >200MB, start of the disk). This can be performed via tools such as gParted. Then select this partition via the [Separate /boot partition:] option of [Boot Repair]. (https://help.ubuntu.com/community/BootPartition)

    Read the article

  • Are you cashing in on the MVP complimentary subscriptions ?

    - by Tarun Arora
    The two most asked questions in the Microsoft technology communities around the Microsoft MVP program are, 1. How do I become a Microsoft MVP? 2. What benefits do I get as an MVP? The answer to the first question has been well answered here. In this blog post, I’ll try and answer the second question.           Please find a comprehensive list of Not for Resale personal subscriptions of various products that Microsoft MVP’s are eligible for Product Description Details JetBrains Resharper, dotTrace, dotCover & WebStorm  https://www.jetbrains.com/resharper/buy/mvp.html RedGate Sql server development, database administration, .net development, azure development (merged with Cerebrata), mySQL development, Oracle development http://www.red-gate.com/community/mvp-program Pluralsight Pluralsight on demand training http://blog.pluralsight.com/2011/02/28/pluralsight-for-mvp/ Cerebrata Cloud storage studio and Azure Diagnostic Manager (part of redgate now) https://www.cerebrata.com/Offers/mvp.aspx Telerik Telerik Ultimate collection & Telerik TeamPulse http://blogs.telerik.com/blogs/posts/11-03-01/telerik-gift-for-microsoft-mvps.aspx Developer Express DevEx controls http://www.devexpress.com/Home/Community/mvp.xml InnerWorking 600 hours of .net training catalogue http://www.innerworkings.com/mvp Typemock Typemock Isolator, Typemock Isolator for Sharepoint developers, Typemock Isolator for web developers, TestDriven.NET http://www.typemock.com/mvp SpeakFlow A suite of tools for creating, managing, and delivering non-linear presentations http://www.speakflow.com/ TechSmith Camtasia Studio, SnagIt, screen cast http://www.techsmith.com/camtasia.html Altova Altova XML spy http://www.altova.com/xml-editor/ Visual SVN VisualSVN Subversion integration plug-in for Visual Studio http://www.visualsvn.com/visualsvn/purchase/mvp/ PreEmptive Solution Professional PreEmptive Analytics, Dotfuscator http://www.preemptive.com/landing/mvp Armadillo Armadillo Adaptive Bug Prevention http://www.armadilloverdrive.com/ IS Decisions NFR license to Userlock, RemoteExec, FileAudit & WinReporter http://www.isdecisions.com/download/mvp-mct-program.htm Idera SQL tools http://www.idera.com/Content/Home.aspx West Wind Help Builder Help builder solution http://www.west-wind.com/weblog/posts/2005/Mar/09/Are-you-a-Microsoft-MVP-Get-a-FREE-copy-of-West-Wind-Html-Help-Builder Bamboo Sharepoint tools http://community.bamboosolutions.com/blogs/partner-advantage-program/archive/2008/08/01/partner-advantage-program-mvp.aspx Nitriq Nitriq code analysis http://blog.nitriq.com/FreeLicensesForMicrosoftMVPs.aspx ByteScout Components, Libraries and Developer Tools http://bytescout.com/buy/purchase_nfr_for_mvp.html YourKit Java and .net Profiler http://yourkit.com/.net/profiler/index.jsp Aspose .NET components http://www.aspose.com/corporate/community/2012_05_08_nfr-licenses-for-community-leaders.aspx Apart from google bing fu; stackoverflow and breathtech were a great help in compiling the above list. If you know of any other benefits, offers or complimentary subscriptions on offer for MVPs not cover in the list above, please add to the comment thread and I’ll have it updated in the list. Enjoy

    Read the article

  • Print SSRS Report / PDF automatically from SQL Server agent or Windows Service

    - by Jeremy Ramos
    Originally posted on: http://geekswithblogs.net/JeremyRamos/archive/2013/10/22/print-ssrs-report--pdf-from-sql-server-agent-or.aspxI have turned the Web upside-down to find a solution to this considering the least components and least maintenance as possible to achieve automated printing of an SSRS report. This is for the reason that we do not have a full software development team to maintain an app and we have to minimize the support overhead for the support team.Here is my setup:SQL Server 2008 R2 in Windows Server 2008 R2PDF format reports generated by SSRS Reports subscriptions to a Windows File ShareNetwork printerColoured reports with logo and brandingI have found and tested the following solutions to no avail:ProsConsCalling Adobe Acrobat Reader exe: "C:\Program Files (x86)\Adobe\Reader 11.0\Reader\acroRd32.exe" /n /s /o /h /t "C:\temp\print.pdf" \\printserver\printername"Very simple optionAdobe Acrobat reader requires to launch the GUI to send a job to a printer. Hence, this option cannot be used when printing from a service.Calling Adobe Acrobat Reader exe as a process from a .NET console appA bit harder than above, but still a simple solutionSame as cons abovePowershell script(Start-Process -FilePath "C:\temp\print.pdf" -Verb Print)Very simple optionUses default PDF client in quiet mode to Print, but also requires an active session.    Foxit ReaderVery simple optionRequires GUI same as Adobe Acrobat Reader Using the Reporting Services Web service to run and stream the report to an image object and then passed to the printerQuite complexThis is what we're trying to avoid  After pulling my hair out for two days, testing and evaluating the above solutions, I ended up learning more about printers (more than ever in my entire life) and how printer drivers work with PostScripts. I then bumped on to a PostScript interpreter called GhostScript (http://www.ghostscript.com/) and then the solution starts to get clearer and clearer.I managed to achieve a solution (maybe not be the simplest but efficient enough to achieve the least-maintenance-least-components goal) in 3-simple steps:Install GhostScript (http://www.ghostscript.com/download/) - this is an open-source PostScript and PDF interpreter. Printing directly using GhostScript only produces grayscale prints using the laserjet generic driver unless you save as BMP image and then interpret the colours using the imageInstall GSView (http://pages.cs.wisc.edu/~ghost/gsview/)- this is a GhostScript add-on to make it easier to directly print to a Windows printer. GSPrint automates the above  PDF -> BMP -> Printer Driver.Run the GSPrint command from SQL Server agent or Windows Service:"C:\Program Files\Ghostgum\gsview\gsprint.exe" -color -landscape -all -printer "printername" "C:\temp\print.pdf"Command line options are here: http://pages.cs.wisc.edu/~ghost/gsview/gsprint.htmAnother lesson learned is, since you are calling the script from the Service Account, it will not necessarily have the Printer mapped in its Windows profile (if it even has one). The workaround to this is by adding a local printer as you normally would and then map this printer to the network printer. Note that you may need to install the Printer Driver locally in the server.So, that's it! There are many ways to achieve a solution. The key thing is how you provide the smartest solution!

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • Unable to transfer data to or from mounted hard drive

    - by user210335
    So usually i'm good at sorting out issues. But this one has me at a loss! This issues has occured since upgrading my ubuntu so this was workingg prior. I use mounted hard drives to manage my downloads which are then copied over accordingly by a python based app. I found it was having issues with permissions to create anything on these mounted hard drives. I'm able to play and access he content of these drives so they're not faulty. My mount script looks like the following rw,user,exec,auto I really am stuck. Could anyone shed any light on how to fix this and allow me to access it. I've checked the properties and all groups should have read and write access so i'm very confused! thanks, edit here's the output of my mount options /dev/sda2 on / type ext4 (rw,errors=remount-ro) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) none on /sys/fs/cgroup type tmpfs (rw) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) none on /sys/firmware/efi/efivars type efivarfs (rw) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) none on /run/user type tmpfs (rw,noexec,nosuid,nodev,size=104857600,mode=0755) none on /sys/fs/pstore type pstore (rw) /dev/sda1 on /boot/efi type vfat (rw) /dev/sdc1 on /mnt/tv type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sdb1 on /mnt/B88A30E88A30A4B2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) systemd on /sys/fs/cgroup/systemd type cgroup (rw,noexec,nosuid,nodev,none,name=systemd) gvfsd-fuse on /run/user/1000/gvfs type fuse.gvfsd-fuse (rw,nosuid,nodev,user=simon) /dev/sdd1 on /media/simon/New Volume3 type fuseblk (rw,nosuid,nodev,allow_other,default_permissions,blksize=4096) the main mount in question is /dev/sdc1 on /mnt/tv type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) heres my dmesg output. I tried cchanging permissions in a terminal and I got an io error. [52803.343417] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.343420] sd 2:0:0:0: [sdc] CDB: [52803.343422] Read(10): 28 00 00 60 9e 3f 00 00 08 00 [52803.343805] sd 2:0:0:0: [sdc] Unhandled error code [52803.343808] sd 2:0:0:0: [sdc] [52803.343810] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.343812] sd 2:0:0:0: [sdc] CDB: [52803.343813] Read(10): 28 00 00 67 64 67 00 00 08 00 [52803.344389] sd 2:0:0:0: [sdc] Unhandled error code [52803.344392] sd 2:0:0:0: [sdc] [52803.344394] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.344396] sd 2:0:0:0: [sdc] CDB: [52803.344397] Read(10): 28 00 09 bd e7 6f 00 00 08 00 [52803.344584] sd 2:0:0:0: [sdc] Unhandled error code [52803.344587] sd 2:0:0:0: [sdc] [52803.344589] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.344591] sd 2:0:0:0: [sdc] CDB: [52803.344592] Read(10): 28 00 07 3a cf b7 00 00 08 00 [52803.344776] sd 2:0:0:0: [sdc] Unhandled error code [52803.344779] sd 2:0:0:0: [sdc] [52803.344781] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.344783] sd 2:0:0:0: [sdc] CDB: [52803.344784] Read(10): 28 00 09 bd e7 97 00 00 08 00 [52803.344973] sd 2:0:0:0: [sdc] Unhandled error code [52803.344976] sd 2:0:0:0: [sdc] [52803.344978] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.344980] sd 2:0:0:0: [sdc] CDB: [52803.344981] Read(10): 28 00 08 dd 57 ef 00 00 08 00 [52803.346745] sd 2:0:0:0: [sdc] Unhandled error code [52803.346748] sd 2:0:0:0: [sdc] [52803.346750] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.346752] sd 2:0:0:0: [sdc] CDB: [52803.346754] Read(10): 28 00 07 1a c1 0f 00 00 08 00 [52803.349939] sd 2:0:0:0: [sdc] Unhandled error code [52803.349942] sd 2:0:0:0: [sdc] [52803.349944] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.349946] sd 2:0:0:0: [sdc] CDB: [52803.349948] Read(10): 28 00 00 67 64 9f 00 00 08 00 [52803.350147] sd 2:0:0:0: [sdc] Unhandled error code [52803.350150] sd 2:0:0:0: [sdc] [52803.350152] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.350154] sd 2:0:0:0: [sdc] CDB: [52803.350155] Read(10): 28 00 00 67 64 97 00 00 08 00 [52803.351302] sd 2:0:0:0: [sdc] Unhandled error code [52803.351305] sd 2:0:0:0: [sdc] [52803.351307] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.351309] sd 2:0:0:0: [sdc] CDB: [52803.351311] Read(10): 28 00 00 a4 1d cf 00 00 08 00 [52803.351894] sd 2:0:0:0: [sdc] Unhandled error code [52803.351897] sd 2:0:0:0: [sdc] [52803.351899] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.351901] sd 2:0:0:0: [sdc] CDB: [52803.351902] Read(10): 28 00 00 67 67 3f 00 00 08 00 [52803.353163] sd 2:0:0:0: [sdc] Unhandled error code [52803.353166] sd 2:0:0:0: [sdc] [52803.353168] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.353170] sd 2:0:0:0: [sdc] CDB: [52803.353172] Read(10): 28 00 00 67 64 ef 00 00 08 00 [52803.353917] sd 2:0:0:0: [sdc] Unhandled error code [52803.353920] sd 2:0:0:0: [sdc] [52803.353922] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.353924] sd 2:0:0:0: [sdc] CDB: [52803.353925] Read(10): 28 00 00 67 65 17 00 00 08 00 [52803.354484] sd 2:0:0:0: [sdc] Unhandled error code [52803.354487] sd 2:0:0:0: [sdc] [52803.354489] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.354491] sd 2:0:0:0: [sdc] CDB: [52803.354492] Read(10): 28 00 07 1a d8 9f 00 00 08 00 [52803.355005] sd 2:0:0:0: [sdc] Unhandled error code [52803.355010] sd 2:0:0:0: [sdc] [52803.355013] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.355017] sd 2:0:0:0: [sdc] CDB: [52803.355019] Read(10): 28 00 00 67 65 3f 00 00 08 00 [52803.355293] sd 2:0:0:0: [sdc] Unhandled error code [52803.355298] sd 2:0:0:0: [sdc] [52803.355301] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.355305] sd 2:0:0:0: [sdc] CDB: [52803.355308] Read(10): 28 00 00 a4 20 27 00 00 08 00 [52803.355575] sd 2:0:0:0: [sdc] Unhandled error code [52803.355580] sd 2:0:0:0: [sdc] [52803.355583] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.355587] sd 2:0:0:0: [sdc] CDB: [52803.355589] Read(10): 28 00 00 5d dc 67 00 00 08 00 [52803.356647] sd 2:0:0:0: [sdc] Unhandled error code [52803.356650] sd 2:0:0:0: [sdc] [52803.356652] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.356654] sd 2:0:0:0: [sdc] CDB: [52803.356655] Read(10): 28 00 07 1a dd 3f 00 00 08 00 [52803.357108] sd 2:0:0:0: [sdc] Unhandled error code [52803.357111] sd 2:0:0:0: [sdc] [52803.357113] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.357115] sd 2:0:0:0: [sdc] CDB: [52803.357116] Read(10): 28 00 00 67 65 97 00 00 08 00 [52803.357298] sd 2:0:0:0: [sdc] Unhandled error code [52803.357300] sd 2:0:0:0: [sdc] [52803.357302] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.357304] sd 2:0:0:0: [sdc] CDB: [52803.357306] Read(10): 28 00 07 1a 04 d7 00 00 08 00 [52803.360374] sd 2:0:0:0: [sdc] Unhandled error code [52803.360377] sd 2:0:0:0: [sdc] [52803.360379] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.360382] sd 2:0:0:0: [sdc] CDB: [52803.360383] Read(10): 28 00 00 67 65 b7 00 00 08 00 [52803.360581] sd 2:0:0:0: [sdc] Unhandled error code [52803.360584] sd 2:0:0:0: [sdc] [52803.360586] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.360588] sd 2:0:0:0: [sdc] CDB: [52803.360589] Read(10): 28 00 00 67 65 c7 00 00 08 00 [52803.361352] sd 2:0:0:0: [sdc] Unhandled error code [52803.361355] sd 2:0:0:0: [sdc] [52803.361357] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.361359] sd 2:0:0:0: [sdc] CDB: [52803.361360] Read(10): 28 00 09 bd e1 af 00 00 08 00 [52803.362096] sd 2:0:0:0: [sdc] Unhandled error code [52803.362099] sd 2:0:0:0: [sdc] [52803.362101] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.362103] sd 2:0:0:0: [sdc] CDB: [52803.362104] Read(10): 28 00 07 0a 64 e7 00 00 08 00 [52803.362555] sd 2:0:0:0: [sdc] Unhandled error code [52803.362558] sd 2:0:0:0: [sdc] [52803.362560] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.362562] sd 2:0:0:0: [sdc] CDB: [52803.362563] Read(10): 28 00 00 67 65 d7 00 00 08 00 [52803.362747] sd 2:0:0:0: [sdc] Unhandled error code [52803.362750] sd 2:0:0:0: [sdc] [52803.362752] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.362754] sd 2:0:0:0: [sdc] CDB: [52803.362755] Read(10): 28 00 01 4c 12 6f 00 00 08 00 [52803.362977] sd 2:0:0:0: [sdc] Unhandled error code [52803.362980] sd 2:0:0:0: [sdc] [52803.362982] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.362984] sd 2:0:0:0: [sdc] CDB: [52803.362985] Read(10): 28 00 03 85 43 7f 00 00 08 00 [52803.365197] sd 2:0:0:0: [sdc] Unhandled error code [52803.365200] sd 2:0:0:0: [sdc] [52803.365202] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.365204] sd 2:0:0:0: [sdc] CDB: [52803.365206] Read(10): 28 00 07 15 46 4f 00 00 08 00 [52803.365524] sd 2:0:0:0: [sdc] Unhandled error code [52803.365527] sd 2:0:0:0: [sdc] [52803.365528] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.365531] sd 2:0:0:0: [sdc] CDB: [52803.365532] Read(10): 28 00 07 11 78 8f 00 00 08 00 [52803.369355] sd 2:0:0:0: [sdc] Unhandled error code [52803.369360] sd 2:0:0:0: [sdc] [52803.369362] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.369365] sd 2:0:0:0: [sdc] CDB: [52803.369366] Read(10): 28 00 09 bd e2 8f 00 00 08 00 [52803.370806] sd 2:0:0:0: [sdc] Unhandled error code [52803.370809] sd 2:0:0:0: [sdc] [52803.370811] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.370814] sd 2:0:0:0: [sdc] CDB: [52803.370815] Read(10): 28 00 07 1a c6 37 00 00 08 00 [52803.371630] sd 2:0:0:0: [sdc] Unhandled error code [52803.371634] sd 2:0:0:0: [sdc] [52803.371636] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.371639] sd 2:0:0:0: [sdc] CDB: [52803.371640] Read(10): 28 00 00 67 66 57 00 00 08 00 [52803.371863] sd 2:0:0:0: [sdc] Unhandled error code [52803.371867] sd 2:0:0:0: [sdc] [52803.371868] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.371871] sd 2:0:0:0: [sdc] CDB: [52803.371872] Read(10): 28 00 00 64 0b df 00 00 08 00 [52803.373467] sd 2:0:0:0: [sdc] Unhandled error code [52803.373470] sd 2:0:0:0: [sdc] [52803.373472] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.373474] sd 2:0:0:0: [sdc] CDB: [52803.373476] Read(10): 28 00 00 60 83 7f 00 00 08 00 [52803.373655] sd 2:0:0:0: [sdc] Unhandled error code [52803.373658] sd 2:0:0:0: [sdc] [52803.373660] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.373662] sd 2:0:0:0: [sdc] CDB: [52803.373663] Read(10): 28 00 00 60 83 7f 00 00 08 00 [52803.374063] sd 2:0:0:0: [sdc] Unhandled error code [52803.374066] sd 2:0:0:0: [sdc] [52803.374068] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.374070] sd 2:0:0:0: [sdc] CDB: [52803.374071] Read(10): 28 00 08 db d5 5f 00 00 08 00 [52803.374602] sd 2:0:0:0: [sdc] Unhandled error code [52803.374605] sd 2:0:0:0: [sdc] [52803.374607] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.374609] sd 2:0:0:0: [sdc] CDB: [52803.374611] Read(10): 28 00 07 1a bf a7 00 00 08 00 [52803.375259] sd 2:0:0:0: [sdc] Unhandled error code [52803.375264] sd 2:0:0:0: [sdc] [52803.375267] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.375270] sd 2:0:0:0: [sdc] CDB: [52803.375272] Read(10): 28 00 00 67 66 87 00 00 08 00 [52803.375515] sd 2:0:0:0: [sdc] Unhandled error code [52803.375520] sd 2:0:0:0: [sdc] [52803.375522] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.375526] sd 2:0:0:0: [sdc] CDB: [52803.375527] Read(10): 28 00 00 62 54 8f 00 00 08 00 [52803.378506] sd 2:0:0:0: [sdc] Unhandled error code [52803.378513] sd 2:0:0:0: [sdc] [52803.378516] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.378520] sd 2:0:0:0: [sdc] CDB: [52803.378522] Read(10): 28 00 00 67 66 bf 00 00 08 00 [52803.381048] sd 2:0:0:0: [sdc] Unhandled error code [52803.381054] sd 2:0:0:0: [sdc] [52803.381057] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.381061] sd 2:0:0:0: [sdc] CDB: [52803.381063] Read(10): 28 00 00 60 ae 77 00 00 08 00 [52803.381238] sd 2:0:0:0: [sdc] Unhandled error code [52803.381242] sd 2:0:0:0: [sdc] [52803.381245] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.381248] sd 2:0:0:0: [sdc] CDB: [52803.381250] Read(10): 28 00 00 60 ae 77 00 00 08 00 [52803.381382] sd 2:0:0:0: [sdc] Unhandled error code [52803.381386] sd 2:0:0:0: [sdc] [52803.381388] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.381392] sd 2:0:0:0: [sdc] CDB: [52803.381394] Read(10): 28 00 00 60 ae 77 00 00 08 00 [52803.381569] sd 2:0:0:0: [sdc] Unhandled error code [52803.381573] sd 2:0:0:0: [sdc] [52803.381575] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.381579] sd 2:0:0:0: [sdc] CDB: [52803.381581] Read(10): 28 00 00 60 ae 77 00 00 08 00 [52803.382295] sd 2:0:0:0: [sdc] Unhandled error code [52803.382300] sd 2:0:0:0: [sdc] [52803.382302] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.382306] sd 2:0:0:0: [sdc] CDB: [52803.382307] Read(10): 28 00 00 67 6a 87 00 00 08 00 [52803.382552] sd 2:0:0:0: [sdc] Unhandled error code [52803.382556] sd 2:0:0:0: [sdc] [52803.382558] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.382562] sd 2:0:0:0: [sdc] CDB: [52803.382564] Read(10): 28 00 00 67 6a af 00 00 08 00 [52803.382794] sd 2:0:0:0: [sdc] Unhandled error code [52803.382798] sd 2:0:0:0: [sdc] [52803.382801] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.382804] sd 2:0:0:0: [sdc] CDB: [52803.382806] Read(10): 28 00 00 67 6a c7 00 00 08 00 [52803.383269] sd 2:0:0:0: [sdc] Unhandled error code [52803.383274] sd 2:0:0:0: [sdc] [52803.383277] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.383280] sd 2:0:0:0: [sdc] CDB: [52803.383282] Read(10): 28 00 00 67 6a f7 00 00 08 00 [52803.383556] sd 2:0:0:0: [sdc] Unhandled error code [52803.383560] sd 2:0:0:0: [sdc] [52803.383563] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.383566] sd 2:0:0:0: [sdc] CDB: [52803.383568] Read(10): 28 00 00 67 6b 2f 00 00 08 00 [52803.386185] sd 2:0:0:0: [sdc] Unhandled error code [52803.386191] sd 2:0:0:0: [sdc] [52803.386194] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.386198] sd 2:0:0:0: [sdc] CDB: [52803.386200] Read(10): 28 00 01 4c 1b bf 00 00 08 00 [52803.386454] sd 2:0:0:0: [sdc] Unhandled error code [52803.386458] sd 2:0:0:0: [sdc] [52803.386461] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.386465] sd 2:0:0:0: [sdc] CDB: [52803.386467] Read(10): 28 00 07 1a b4 1f 00 00 08 00 [52803.388320] sd 2:0:0:0: [sdc] Unhandled error code [52803.388324] sd 2:0:0:0: [sdc] [52803.388326] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.388328] sd 2:0:0:0: [sdc] CDB: [52803.388329] Read(10): 28 00 09 bd de 17 00 00 08 00 [52803.388836] sd 2:0:0:0: [sdc] Unhandled error code [52803.388838] sd 2:0:0:0: [sdc] [52803.388839] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.388841] sd 2:0:0:0: [sdc] CDB: [52803.388842] Read(10): 28 00 07 57 9f ff 00 00 08 00 [52803.389124] sd 2:0:0:0: [sdc] Unhandled error code [52803.389126] sd 2:0:0:0: [sdc] [52803.389127] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.389129] sd 2:0:0:0: [sdc] CDB: [52803.389130] Read(10): 28 00 00 67 6b 8f 00 00 08 00 [52803.389244] sd 2:0:0:0: [sdc] Unhandled error code [52803.389246] sd 2:0:0:0: [sdc] [52803.389248] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.389249] sd 2:0:0:0: [sdc] CDB: [52803.389250] Read(10): 28 00 07 e9 ee ff 00 00 08 00 [52803.390386] sd 2:0:0:0: [sdc] Unhandled error code [52803.390389] sd 2:0:0:0: [sdc] [52803.390390] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.390392] sd 2:0:0:0: [sdc] CDB: [52803.390393] Read(10): 28 00 07 1a be 0f 00 00 08 00 [52803.390682] sd 2:0:0:0: [sdc] Unhandled error code [52803.390685] sd 2:0:0:0: [sdc] [52803.390686] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.390688] sd 2:0:0:0: [sdc] CDB: [52803.390689] Read(10): 28 00 00 67 6b e7 00 00 08 00 [52803.390804] sd 2:0:0:0: [sdc] Unhandled error code [52803.390806] sd 2:0:0:0: [sdc] [52803.390808] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.390809] sd 2:0:0:0: [sdc] CDB: [52803.390810] Read(10): 28 00 07 ed 17 bf 00 00 08 00 [52803.391449] sd 2:0:0:0: [sdc] Unhandled error code [52803.391451] sd 2:0:0:0: [sdc] [52803.391452] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.391454] sd 2:0:0:0: [sdc] CDB: [52803.391455] Read(10): 28 00 09 bd e5 9f 00 00 08 00 [52803.391956] sd 2:0:0:0: [sdc] Unhandled error code [52803.391958] sd 2:0:0:0: [sdc] [52803.391960] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.391961] sd 2:0:0:0: [sdc] CDB: [52803.391962] Read(10): 28 00 00 b5 86 a7 00 00 08 00 [52803.392293] sd 2:0:0:0: [sdc] Unhandled error code [52803.392295] sd 2:0:0:0: [sdc] [52803.392296] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.392298] sd 2:0:0:0: [sdc] CDB: [52803.392299] Read(10): 28 00 07 18 bf bf 00 00 08 00 [52803.392843] sd 2:0:0:0: [sdc] Unhandled error code [52803.392845] sd 2:0:0:0: [sdc] [52803.392846] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.392848] sd 2:0:0:0: [sdc] CDB: [52803.392849] Read(10): 28 00 00 60 b3 1f 00 00 08 00 [52803.392929] sd 2:0:0:0: [sdc] Unhandled error code [52803.392931] sd 2:0:0:0: [sdc] [52803.392932] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.392934] sd 2:0:0:0: [sdc] CDB: [52803.392935] Read(10): 28 00 00 60 b3 1f 00 00 08 00 [52803.393057] sd 2:0:0:0: [sdc] Unhandled error code [52803.393059] sd 2:0:0:0: [sdc] [52803.393060] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393062] sd 2:0:0:0: [sdc] CDB: [52803.393063] Read(10): 28 00 00 60 83 9f 00 00 08 00 [52803.393286] sd 2:0:0:0: [sdc] Unhandled error code [52803.393288] sd 2:0:0:0: [sdc] [52803.393289] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393291] sd 2:0:0:0: [sdc] CDB: [52803.393292] Read(10): 28 00 00 67 6b bf 00 00 08 00 [52803.393720] sd 2:0:0:0: [sdc] Unhandled error code [52803.393722] sd 2:0:0:0: [sdc] [52803.393723] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393725] sd 2:0:0:0: [sdc] CDB: [52803.393725] Read(10): 28 00 00 60 b2 17 00 00 08 00 [52803.393806] sd 2:0:0:0: [sdc] Unhandled error code [52803.393808] sd 2:0:0:0: [sdc] [52803.393809] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393810] sd 2:0:0:0: [sdc] CDB: [52803.393811] Read(10): 28 00 00 60 b2 17 00 00 08 00 [52803.393892] sd 2:0:0:0: [sdc] Unhandled error code [52803.393894] sd 2:0:0:0: [sdc] [52803.393895] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393896] sd 2:0:0:0: [sdc] CDB: [52803.393897] Read(10): 28 00 00 60 b2 17 00 00 08 00 [52803.393974] sd 2:0:0:0: [sdc] Unhandled error code [52803.393976] sd 2:0:0:0: [sdc] [52803.393977] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.393978] sd 2:0:0:0: [sdc] CDB: [52803.393979] Read(10): 28 00 00 60 b2 17 00 00 08 00 [52803.394298] sd 2:0:0:0: [sdc] Unhandled error code [52803.394300] sd 2:0:0:0: [sdc] [52803.394302] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.394303] sd 2:0:0:0: [sdc] CDB: [52803.394304] Read(10): 28 00 00 5d a6 a7 00 00 08 00 [52803.395577] sd 2:0:0:0: [sdc] Unhandled error code [52803.395580] sd 2:0:0:0: [sdc] [52803.395582] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.395584] sd 2:0:0:0: [sdc] CDB: [52803.395585] Read(10): 28 00 00 00 01 9f 00 00 08 00 [52803.395721] sd 2:0:0:0: [sdc] Unhandled error code [52803.395724] sd 2:0:0:0: [sdc] [52803.395725] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.395726] sd 2:0:0:0: [sdc] CDB: [52803.395727] Read(10): 28 00 00 00 01 67 00 00 08 00 [52803.395843] sd 2:0:0:0: [sdc] Unhandled error code [52803.395845] sd 2:0:0:0: [sdc] [52803.395846] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.395847] sd 2:0:0:0: [sdc] CDB: [52803.395848] Read(10): 28 00 02 a8 33 77 00 00 08 00 [52803.395960] sd 2:0:0:0: [sdc] Unhandled error code [52803.395962] sd 2:0:0:0: [sdc] [52803.395963] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.395965] sd 2:0:0:0: [sdc] CDB: [52803.395965] Read(10): 28 00 00 b5 ae 7f 00 00 08 00 [52803.396077] sd 2:0:0:0: [sdc] Unhandled error code [52803.396079] sd 2:0:0:0: [sdc] [52803.396080] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396082] sd 2:0:0:0: [sdc] CDB: [52803.396083] Read(10): 28 00 00 63 64 bf 00 00 08 00 [52803.396193] sd 2:0:0:0: [sdc] Unhandled error code [52803.396195] sd 2:0:0:0: [sdc] [52803.396196] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396198] sd 2:0:0:0: [sdc] CDB: [52803.396199] Read(10): 28 00 07 1a e2 e7 00 00 08 00 [52803.396313] sd 2:0:0:0: [sdc] Unhandled error code [52803.396315] sd 2:0:0:0: [sdc] [52803.396316] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396318] sd 2:0:0:0: [sdc] CDB: [52803.396319] Read(10): 28 00 07 1a b9 87 00 00 08 00 [52803.396435] sd 2:0:0:0: [sdc] Unhandled error code [52803.396437] sd 2:0:0:0: [sdc] [52803.396438] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396439] sd 2:0:0:0: [sdc] CDB: [52803.396441] Read(10): 28 00 02 ce 8e df 00 00 08 00 [52803.396555] sd 2:0:0:0: [sdc] Unhandled error code [52803.396557] sd 2:0:0:0: [sdc] [52803.396558] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396560] sd 2:0:0:0: [sdc] CDB: [52803.396561] Read(10): 28 00 0e 66 6d f7 00 00 08 00 [52803.396769] sd 2:0:0:0: [sdc] Unhandled error code [52803.396770] sd 2:0:0:0: [sdc] [52803.396772] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396773] sd 2:0:0:0: [sdc] CDB: [52803.396774] Read(10): 28 00 07 1a e4 2f 00 00 08 00 [52803.396886] sd 2:0:0:0: [sdc] Unhandled error code [52803.396888] sd 2:0:0:0: [sdc] [52803.396889] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.396890] sd 2:0:0:0: [sdc] CDB: [52803.396891] Read(10): 28 00 00 63 d4 3f 00 00 08 00 [52803.397002] sd 2:0:0:0: [sdc] Unhandled error code [52803.397004] sd 2:0:0:0: [sdc] [52803.397005] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.397007] sd 2:0:0:0: [sdc] CDB: [52803.397007] Read(10): 28 00 07 1a e4 1f 00 00 08 00 [52803.400074] sd 2:0:0:0: [sdc] Unhandled error code [52803.400078] sd 2:0:0:0: [sdc] [52803.400079] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400081] sd 2:0:0:0: [sdc] CDB: [52803.400082] Read(10): 28 00 07 16 c7 5f 00 00 08 00 [52803.400318] sd 2:0:0:0: [sdc] Unhandled error code [52803.400320] sd 2:0:0:0: [sdc] [52803.400322] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400323] sd 2:0:0:0: [sdc] CDB: [52803.400324] Read(10): 28 00 00 60 01 87 00 00 08 00 [52803.400408] sd 2:0:0:0: [sdc] Unhandled error code [52803.400410] sd 2:0:0:0: [sdc] [52803.400412] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400413] sd 2:0:0:0: [sdc] CDB: [52803.400414] Read(10): 28 00 00 60 01 0f 00 00 08 00 [52803.400564] sd 2:0:0:0: [sdc] Unhandled error code [52803.400566] sd 2:0:0:0: [sdc] [52803.400568] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400569] sd 2:0:0:0: [sdc] CDB: [52803.400570] Read(10): 28 00 00 5d d1 d7 00 00 08 00 [52803.400841] sd 2:0:0:0: [sdc] Unhandled error code [52803.400843] sd 2:0:0:0: [sdc] [52803.400844] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.400846] sd 2:0:0:0: [sdc] CDB: [52803.400847] Read(10): 28 00 07 1a e3 47 00 00 08 00 [52803.401151] sd 2:0:0:0: [sdc] Unhandled error code [52803.401153] sd 2:0:0:0: [sdc] [52803.401155] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.401156] sd 2:0:0:0: [sdc] CDB: [52803.401157] Read(10): 28 00 07 1a b9 1f 00 00 08 00 [52803.401310] sd 2:0:0:0: [sdc] Unhandled error code [52803.401312] sd 2:0:0:0: [sdc] [52803.401313] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.401315] sd 2:0:0:0: [sdc] CDB: [52803.401316] Read(10): 28 00 00 a4 1b 57 00 00 08 00 [52803.401877] sd 2:0:0:0: [sdc] Unhandled error code [52803.401879] sd 2:0:0:0: [sdc] [52803.401880] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.401881] sd 2:0:0:0: [sdc] CDB: [52803.401882] Read(10): 28 00 0e 66 35 47 00 00 08 00 [52803.402032] sd 2:0:0:0: [sdc] Unhandled error code [52803.402033] sd 2:0:0:0: [sdc] [52803.402034] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402036] sd 2:0:0:0: [sdc] CDB: [52803.402037] Read(10): 28 00 06 30 69 ff 00 00 08 00 [52803.402148] sd 2:0:0:0: [sdc] Unhandled error code [52803.402150] sd 2:0:0:0: [sdc] [52803.402151] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402153] sd 2:0:0:0: [sdc] CDB: [52803.402154] Read(10): 28 00 09 bd d8 77 00 00 08 00 [52803.402263] sd 2:0:0:0: [sdc] Unhandled error code [52803.402265] sd 2:0:0:0: [sdc] [52803.402266] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402267] sd 2:0:0:0: [sdc] CDB: [52803.402268] Read(10): 28 00 00 5d ff 77 00 00 08 00 [52803.402376] sd 2:0:0:0: [sdc] Unhandled error code [52803.402378] sd 2:0:0:0: [sdc] [52803.402379] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402381] sd 2:0:0:0: [sdc] CDB: [52803.402382] Read(10): 28 00 00 5d ff 7f 00 00 08 00 [52803.402490] sd 2:0:0:0: [sdc] Unhandled error code [52803.402492] sd 2:0:0:0: [sdc] [52803.402493] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402495] sd 2:0:0:0: [sdc] CDB: [52803.402496] Read(10): 28 00 00 00 01 2f 00 00 08 00 [52803.402602] sd 2:0:0:0: [sdc] Unhandled error code [52803.402604] sd 2:0:0:0: [sdc] [52803.402605] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402607] sd 2:0:0:0: [sdc] CDB: [52803.402608] Read(10): 28 00 00 b5 ac 8f 00 00 08 00 [52803.402715] sd 2:0:0:0: [sdc] Unhandled error code [52803.402717] sd 2:0:0:0: [sdc] [52803.402719] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402720] sd 2:0:0:0: [sdc] CDB: [52803.402721] Read(10): 28 00 00 e1 18 ff 00 00 08 00 [52803.402829] sd 2:0:0:0: [sdc] Unhandled error code [52803.402831] sd 2:0:0:0: [sdc] [52803.402833] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.402834] sd 2:0:0:0: [sdc] CDB: [52803.402835] Read(10): 28 00 09 bd ea cf 00 00 08 00 [52803.403999] sd 2:0:0:0: [sdc] Unhandled error code [52803.404001] sd 2:0:0:0: [sdc] [52803.404003] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52803.404005] sd 2:0:0:0: [sdc] CDB: [52803.404006] Read(10): 28 00 07 1a b8 f7 00 00 08 00 [52832.950225] sd 2:0:0:0: [sdc] Unhandled error code [52832.950230] sd 2:0:0:0: [sdc] [52832.950233] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52832.950235] sd 2:0:0:0: [sdc] CDB: [52832.950237] Write(10): 2a 00 00 60 bf 7f 00 00 08 00 [52832.950247] blk_update_request: 1077 callbacks suppressed [52832.950250] end_request: I/O error, dev sdc, sector 6340479 [52832.950253] quiet_error: 1077 callbacks suppressed [52832.950256] Buffer I/O error on device sdc1, logical block 792552 [52832.950258] lost page write due to I/O error on sdc1 [52832.950269] sd 2:0:0:0: [sdc] Unhandled error code [52832.950272] sd 2:0:0:0: [sdc] [52832.950273] Result: hostbyte=DID_BAD_TARGET driverbyte=DRIVER_OK [52832.950276] sd 2:0:0:0: [sdc] CDB: [52832.950277] Write(10): 2a 00 01 a5 f1 4f 00 00 08 00 [52832.950285] end_request: I/O error, dev sdc, sector 27652431 [52832.950287] Buffer I/O error on device sdc1, logical block 3456546 [52832.950289] lost page write due to I/O error on sdc1

    Read the article

  • help with fixing fwts errors log

    - by jasmines
    Here is an extract of results.log: MTRR validation. Test 1 of 3: Validate the kernel MTRR IOMEM setup. FAILED [MEDIUM] MTRRIncorrectAttr: Test 1, Memory range 0xc0000000 to 0xdfffffff (PCI Bus 0000:00) has incorrect attribute Write-Combining. FAILED [MEDIUM] MTRRIncorrectAttr: Test 1, Memory range 0xfee01000 to 0xffffffff (PCI Bus 0000:00) has incorrect attribute Write-Protect. ==================================================================================================== Test 1 of 1: Kernel log error check. Kernel message: [ 0.208079] [Firmware Bug]: ACPI: BIOS _OSI(Linux) query ignored ADVICE: This is not exactly a failure mode but a warning from the kernel. The _OSI() method has implemented a match to the 'Linux' query in the DSDT and this is redundant because the ACPI driver matches onto the Windows _OSI strings by default. FAILED [HIGH] KlogACPIErrorMethodExecutionParse: Test 1, HIGH Kernel message: [ 3.512783] ACPI Error : Method parse/execution failed [\_SB_.PCI0.GFX0._DOD] (Node f7425858), AE_AML_PACKAGE_LIMIT (20110623/psparse-536) ADVICE: This is a bug picked up by the kernel, but as yet, the firmware test suite has no diagnostic advice for this particular problem. Found 1 unique errors in kernel log. ==================================================================================================== Check if system is using latest microcode. ---------------------------------------------------------------------------------------------------- Cannot read microcode file /usr/share/misc/intel-microcode.dat. Aborted test, initialisation failed. ==================================================================================================== MSR register tests. FAILED [MEDIUM] MSRCPUsInconsistent: Test 1, MSR SYSENTER_ESP (0x175) has 1 inconsistent values across 2 CPUs for (shift: 0 mask: 0xffffffffffffffff). MSR CPU 0 -> 0xf7bb9c40 vs CPU 1 -> 0xf7bc7c40 FAILED [MEDIUM] MSRCPUsInconsistent: Test 1, MSR MISC_ENABLE (0x1a0) has 1 inconsistent values across 2 CPUs for (shift: 0 mask: 0x400c51889). MSR CPU 0 -> 0x850088 vs CPU 1 -> 0x850089 ==================================================================================================== Checks firmware has set PCI Express MaxReadReq to a higher value on non-motherboard devices. ---------------------------------------------------------------------------------------------------- Test 1 of 1: Check firmware settings MaxReadReq for PCI Express devices. MaxReadReq for pci://00:00:1b.0 Audio device: Intel Corporation 82801I (ICH9 Family) HD Audio Controller (rev 03) is low (128) [Audio device]. MaxReadReq for pci://00:02:00.0 Network controller: Intel Corporation PRO/Wireless 5100 AGN [Shiloh] Network Connection is low (128) [Network controller]. FAILED [LOW] LowMaxReadReq: Test 1, 2 devices have low MaxReadReq settings. Firmware may have configured these too low. ADVICE: The MaxReadRequest size is set too low and will affect performance. It will provide excellent bus sharing at the cost of bus data transfer rates. Although not a critical issue, it may be worth considering setting the MaxReadRequest size to 256 or 512 to increase throughput on the PCI Express bus. Some drivers (for example the Brocade Fibre Channel driver) allow one to override the firmware settings. Where possible, this BIOS configuration setting is worth increasing it a little more for better performance at a small reduction of bus sharing. ==================================================================================================== PCIe ASPM check. ---------------------------------------------------------------------------------------------------- Test 1 of 2: PCIe ASPM ACPI test. PCIE ASPM is not controlled by Linux kernel. ADVICE: BIOS reports that Linux kernel should not modify ASPM settings that BIOS configured. It can be intentional because hardware vendors identified some capability bugs between the motherboard and the add-on cards. Test 2 of 2: PCIe ASPM registers test. WARNING: Test 2, RP 00h:1Ch.01h L0s not enabled. WARNING: Test 2, RP 00h:1Ch.01h L1 not enabled. WARNING: Test 2, Device 02h:00h.00h L0s not enabled. WARNING: Test 2, Device 02h:00h.00h L1 not enabled. PASSED: Test 2, PCIE aspm setting matched was matched. WARNING: Test 2, RP 00h:1Ch.05h L0s not enabled. WARNING: Test 2, RP 00h:1Ch.05h L1 not enabled. WARNING: Test 2, Device 85h:00h.00h L0s not enabled. WARNING: Test 2, Device 85h:00h.00h L1 not enabled. PASSED: Test 2, PCIE aspm setting matched was matched. ==================================================================================================== Extract and analyse Windows Management Instrumentation (WMI). Test 1 of 2: Check Windows Management Instrumentation in DSDT Found WMI Method WMAA with GUID: 5FB7F034-2C63-45E9-BE91-3D44E2C707E4, Instance 0x01 Found WMI Event, Notifier ID: 0x80, GUID: 95F24279-4D7B-4334-9387-ACCDC67EF61C, Instance 0x01 PASSED: Test 1, GUID 95F24279-4D7B-4334-9387-ACCDC67EF61C is handled by driver hp-wmi (Vendor: HP). Found WMI Event, Notifier ID: 0xa0, GUID: 2B814318-4BE8-4707-9D84-A190A859B5D0, Instance 0x01 FAILED [MEDIUM] WMIUnknownGUID: Test 1, GUID 2B814318-4BE8-4707-9D84-A190A859B5D0 is unknown to the kernel, a driver may need to be implemented for this GUID. ADVICE: A WMI driver probably needs to be written for this event. It can checked for using: wmi_has_guid("2B814318-4BE8-4707-9D84-A190A859B5D0"). One can install a notify handler using wmi_install_notify_handler("2B814318-4BE8-4707-9D84-A190A859B5D0", handler, NULL). http://lwn.net/Articles/391230 describes how to write an appropriate driver. Found WMI Object, Object ID AB, GUID: 05901221-D566-11D1-B2F0-00A0C9062910, Instance 0x01, Flags: 00 Found WMI Method WMBA with GUID: 1F4C91EB-DC5C-460B-951D-C7CB9B4B8D5E, Instance 0x01 Found WMI Object, Object ID BC, GUID: 2D114B49-2DFB-4130-B8FE-4A3C09E75133, Instance 0x7f, Flags: 00 Found WMI Object, Object ID BD, GUID: 988D08E3-68F4-4C35-AF3E-6A1B8106F83C, Instance 0x19, Flags: 00 Found WMI Object, Object ID BE, GUID: 14EA9746-CE1F-4098-A0E0-7045CB4DA745, Instance 0x01, Flags: 00 Found WMI Object, Object ID BF, GUID: 322F2028-0F84-4901-988E-015176049E2D, Instance 0x01, Flags: 00 Found WMI Object, Object ID BG, GUID: 8232DE3D-663D-4327-A8F4-E293ADB9BF05, Instance 0x01, Flags: 00 Found WMI Object, Object ID BH, GUID: 8F1F6436-9F42-42C8-BADC-0E9424F20C9A, Instance 0x00, Flags: 00 Found WMI Object, Object ID BI, GUID: 8F1F6435-9F42-42C8-BADC-0E9424F20C9A, Instance 0x00, Flags: 00 Found WMI Method WMAC with GUID: 7391A661-223A-47DB-A77A-7BE84C60822D, Instance 0x01 Found WMI Object, Object ID BJ, GUID: DF4E63B6-3BBC-4858-9737-C74F82F821F3, Instance 0x05, Flags: 00 ==================================================================================================== Disassemble DSDT to check for _OSI("Linux"). ---------------------------------------------------------------------------------------------------- Test 1 of 1: Disassemble DSDT to check for _OSI("Linux"). This is not strictly a failure mode, it just alerts one that this has been defined in the DSDT and probably should be avoided since the Linux ACPI driver matches onto the Windows _OSI strings { If (_OSI ("Linux")) { Store (0x03E8, OSYS) } If (_OSI ("Windows 2001")) { Store (0x07D1, OSYS) } If (_OSI ("Windows 2001 SP1")) { Store (0x07D1, OSYS) } If (_OSI ("Windows 2001 SP2")) { Store (0x07D2, OSYS) } If (_OSI ("Windows 2006")) { Store (0x07D6, OSYS) } If (LAnd (MPEN, LEqual (OSYS, 0x07D1))) { TRAP (0x01, 0x48) } TRAP (0x03, 0x35) } WARNING: Test 1, DSDT implements a deprecated _OSI("Linux") test. ==================================================================================================== 0 passed, 0 failed, 1 warnings, 0 aborted, 0 skipped, 0 info only. ==================================================================================================== ACPI DSDT Method Semantic Tests. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP Failed to install global event handler. Test 22 of 93: Check _PSR (Power Source). ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 22, Detected an infinite loop when evaluating method '\_SB_.AC__._PSR'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. PASSED: Test 22, \_SB_.AC__._PSR correctly acquired and released locks 16 times. Test 35 of 93: Check _TMP (Thermal Zone Current Temp). ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 35, Detected an infinite loop when evaluating method '\_TZ_.DTSZ._TMP'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. PASSED: Test 35, \_TZ_.DTSZ._TMP correctly acquired and released locks 14 times. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 35, Detected an infinite loop when evaluating method '\_TZ_.CPUZ._TMP'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. PASSED: Test 35, \_TZ_.CPUZ._TMP correctly acquired and released locks 10 times. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 35, Detected an infinite loop when evaluating method '\_TZ_.SKNZ._TMP'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. PASSED: Test 35, \_TZ_.SKNZ._TMP correctly acquired and released locks 10 times. PASSED: Test 35, _TMP correctly returned sane looking value 0x00000b4c (289.2 degrees K) PASSED: Test 35, \_TZ_.BATZ._TMP correctly acquired and released locks 9 times. PASSED: Test 35, _TMP correctly returned sane looking value 0x00000aac (273.2 degrees K) PASSED: Test 35, \_TZ_.FDTZ._TMP correctly acquired and released locks 7 times. Test 46 of 93: Check _DIS (Disable). FAILED [MEDIUM] MethodShouldReturnNothing: Test 46, \_SB_.PCI0.LPCB.SIO_.COM1._DIS returned values, but was expected to return nothing. Object returned: INTEGER: 0x00000000 ADVICE: This probably won't cause any errors, but it should be fixed as the AML code is not conforming to the expected behaviour as described in the ACPI specification. FAILED [MEDIUM] MethodShouldReturnNothing: Test 46, \_SB_.PCI0.LPCB.SIO_.LPT0._DIS returned values, but was expected to return nothing. Object returned: INTEGER: 0x00000000 ADVICE: This probably won't cause any errors, but it should be fixed as the AML code is not conforming to the expected behaviour as described in the ACPI specification. Test 61 of 93: Check _WAK (System Wake). Test _WAK(1) System Wake, State S1. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test _WAK(2) System Wake, State S2. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test _WAK(3) System Wake, State S3. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test _WAK(4) System Wake, State S4. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test _WAK(5) System Wake, State S5. ACPICA Exception AE_AML_INFINITE_LOOP during execution of method COMP WARNING: Test 61, Detected an infinite loop when evaluating method '\_WAK'. ADVICE: This may occur because we are emulating the execution in this test environment and cannot handshake with the embedded controller or jump to the BIOS via SMIs. However, the fact that AML code spins forever means that lockup conditions are not being checked for in the AML bytecode. Test 87 of 93: Check _BCL (Query List of Brightness Control Levels Supported). Package has 2 elements: 00: INTEGER: 0x00000000 01: INTEGER: 0x00000000 FAILED [MEDIUM] Method_BCLElementCount: Test 87, Method _BCL should return a package of more than 2 integers, got just 2. Test 88 of 93: Check _BCM (Set Brightness Level). ACPICA Exception AE_AML_PACKAGE_LIMIT during execution of method _BCM FAILED [CRITICAL] AEAMLPackgeLimit: Test 88, Detected error 'Package limit' when evaluating '\_SB_.PCI0.GFX0.DD02._BCM'. ==================================================================================================== ACPI table settings sanity checks. ---------------------------------------------------------------------------------------------------- Test 1 of 1: Check ACPI tables. PASSED: Test 1, Table APIC passed. Table ECDT not present to check. FAILED [MEDIUM] FADT32And64BothDefined: Test 1, FADT 32 bit FIRMWARE_CONTROL is non-zero, and X_FIRMWARE_CONTROL is also non-zero. Section 5.2.9 of the ACPI specification states that if the FIRMWARE_CONTROL is non-zero then X_FIRMWARE_CONTROL must be set to zero. ADVICE: The FADT FIRMWARE_CTRL is a 32 bit pointer that points to the physical memory address of the Firmware ACPI Control Structure (FACS). There is also an extended 64 bit version of this, the X_FIRMWARE_CTRL pointer that also can point to the FACS. Section 5.2.9 of the ACPI specification states that if the X_FIRMWARE_CTRL field contains a non zero value then the FIRMWARE_CTRL field *must* be zero. This error is also detected by the Linux kernel. If FIRMWARE_CTRL and X_FIRMWARE_CTRL are defined, then the kernel just uses the 64 bit version of the pointer. PASSED: Test 1, Table HPET passed. PASSED: Test 1, Table MCFG passed. PASSED: Test 1, Table RSDT passed. PASSED: Test 1, Table RSDP passed. Table SBST not present to check. PASSED: Test 1, Table XSDT passed. ==================================================================================================== Re-assemble DSDT and find syntax errors and warnings. ---------------------------------------------------------------------------------------------------- Test 1 of 2: Disassemble and reassemble DSDT FAILED [HIGH] AMLAssemblerError4043: Test 1, Assembler error in line 2261 Line | AML source ---------------------------------------------------------------------------------------------------- 02258| 0x00000000, // Range Minimum 02259| 0xFEDFFFFF, // Range Maximum 02260| 0x00000000, // Translation Offset 02261| 0x00000000, // Length | ^ | error 4043: Invalid combination of Length and Min/Max fixed flags 02262| ,, _Y0E, AddressRangeMemory, TypeStatic) 02263| DWordMemory (ResourceProducer, PosDecode, MinFixed, MaxFixed, Cacheable, ReadWrite, 02264| 0x00000000, // Granularity ==================================================================================================== ADVICE: (for error #4043): This occurs if the length is zero and just one of the resource MIF/MAF flags are set, or the length is non-zero and resource MIF/MAF flags are both set. These are illegal combinations and need to be fixed. See section 6.4.3.5 Address Space Resource Descriptors of version 4.0a of the ACPI specification for more details. FAILED [HIGH] AMLAssemblerError4050: Test 1, Assembler error in line 2268 Line | AML source ---------------------------------------------------------------------------------------------------- 02265| 0xFEE01000, // Range Minimum 02266| 0xFFFFFFFF, // Range Maximum 02267| 0x00000000, // Translation Offset 02268| 0x011FEFFF, // Length | ^ | error 4050: Length is not equal to fixed Min/Max window 02269| ,, , AddressRangeMemory, TypeStatic) 02270| }) 02271| Method (_CRS, 0, Serialized) ==================================================================================================== ADVICE: (for error #4050): The minimum address is greater than the maximum address. This is illegal. FAILED [HIGH] AMLAssemblerError1104: Test 1, Assembler error in line 8885 Line | AML source ---------------------------------------------------------------------------------------------------- 08882| Method (_DIS, 0, NotSerialized) 08883| { 08884| DSOD (0x02) 08885| Return (0x00) | ^ | warning level 0 1104: Reserved method should not return a value (_DIS) 08886| } 08887| 08888| Method (_SRS, 1, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1104: Test 1, Assembler error in line 9195 Line | AML source ---------------------------------------------------------------------------------------------------- 09192| Method (_DIS, 0, NotSerialized) 09193| { 09194| DSOD (0x01) 09195| Return (0x00) | ^ | warning level 0 1104: Reserved method should not return a value (_DIS) 09196| } 09197| 09198| Method (_SRS, 1, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1127: Test 1, Assembler error in line 9242 Line | AML source ---------------------------------------------------------------------------------------------------- 09239| CreateWordField (CRES, \_SB.PCI0.LPCB.SIO.LPT0._CRS._Y21._MAX, MAX2) 09240| CreateByteField (CRES, \_SB.PCI0.LPCB.SIO.LPT0._CRS._Y21._LEN, LEN2) 09241| CreateWordField (CRES, \_SB.PCI0.LPCB.SIO.LPT0._CRS._Y22._INT, IRQ0) 09242| CreateWordField (CRES, \_SB.PCI0.LPCB.SIO.LPT0._CRS._Y23._DMA, DMA0) | ^ | warning level 0 1127: ResourceTag smaller than Field (Tag: 8 bits, Field: 16 bits) 09243| If (RLPD) 09244| { 09245| Store (0x00, Local0) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1128: Test 1, Assembler error in line 18682 Line | AML source ---------------------------------------------------------------------------------------------------- 18679| Store (0x01, Index (DerefOf (Index (Local0, 0x02)), 0x01)) 18680| If (And (WDPE, 0x40)) 18681| { 18682| Wait (\_SB.BEVT, 0x10) | ^ | warning level 0 1128: Result is not used, possible operator timeout will be missed 18683| } 18684| 18685| Store (BRID, Index (DerefOf (Index (Local0, 0x02)), 0x02)) ==================================================================================================== ADVICE: (for warning level 0 #1128): The operation can possibly timeout, and hence the return value indicates an timeout error. However, because the return value is not checked this very probably indicates that the code is buggy. A possible scenario is that a mutex times out and the code attempts to access data in a critical region when it should not. This will lead to undefined behaviour. This should be fixed. Table DSDT (0) reassembly: Found 2 errors, 4 warnings. Test 2 of 2: Disassemble and reassemble SSDT PASSED: Test 2, SSDT (0) reassembly, Found 0 errors, 0 warnings. FAILED [HIGH] AMLAssemblerError1104: Test 2, Assembler error in line 60 Line | AML source ---------------------------------------------------------------------------------------------------- 00057| { 00058| Store (CPDC (Arg0), Local0) 00059| GCAP (Local0) 00060| Return (Local0) | ^ | warning level 0 1104: Reserved method should not return a value (_PDC) 00061| } 00062| 00063| Method (_OSC, 4, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1104: Test 2, Assembler error in line 174 Line | AML source ---------------------------------------------------------------------------------------------------- 00171| { 00172| Store (\_PR.CPU0.CPDC (Arg0), Local0) 00173| GCAP (Local0) 00174| Return (Local0) | ^ | warning level 0 1104: Reserved method should not return a value (_PDC) 00175| } 00176| 00177| Method (_OSC, 4, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1104: Test 2, Assembler error in line 244 Line | AML source ---------------------------------------------------------------------------------------------------- 00241| { 00242| Store (\_PR.CPU0.CPDC (Arg0), Local0) 00243| GCAP (Local0) 00244| Return (Local0) | ^ | warning level 0 1104: Reserved method should not return a value (_PDC) 00245| } 00246| 00247| Method (_OSC, 4, NotSerialized) ==================================================================================================== FAILED [HIGH] AMLAssemblerError1104: Test 2, Assembler error in line 290 Line | AML source ---------------------------------------------------------------------------------------------------- 00287| { 00288| Store (\_PR.CPU0.CPDC (Arg0), Local0) 00289| GCAP (Local0) 00290| Return (Local0) | ^ | warning level 0 1104: Reserved method should not return a value (_PDC) 00291| } 00292| 00293| Method (_OSC, 4, NotSerialized) ==================================================================================================== Table SSDT (1) reassembly: Found 0 errors, 4 warnings. PASSED: Test 2, SSDT (2) reassembly, Found 0 errors, 0 warnings. PASSED: Test 2, SSDT (3) reassembly, Found 0 errors, 0 warnings. ==================================================================================================== 3 passed, 10 failed, 0 warnings, 0 aborted, 0 skipped, 0 info only. ==================================================================================================== Critical failures: 1 method test, at 1 log line: 1449: Detected error 'Package limit' when evaluating '\_SB_.PCI0.GFX0.DD02._BCM'. High failures: 11 klog test, at 1 log line: 121: HIGH Kernel message: [ 3.512783] ACPI Error: Method parse/execution failed [\_SB_.PCI0.GFX0._DOD] (Node f7425858), AE_AML_PACKAGE_LIMIT (20110623/psparse-536) syntaxcheck test, at 1 log line: 1668: Assembler error in line 2261 syntaxcheck test, at 1 log line: 1687: Assembler error in line 2268 syntaxcheck test, at 1 log line: 1703: Assembler error in line 8885 syntaxcheck test, at 1 log line: 1716: Assembler error in line 9195 syntaxcheck test, at 1 log line: 1729: Assembler error in line 9242 syntaxcheck test, at 1 log line: 1742: Assembler error in line 18682 syntaxcheck test, at 1 log line: 1766: Assembler error in line 60 syntaxcheck test, at 1 log line: 1779: Assembler error in line 174 syntaxcheck test, at 1 log line: 1792: Assembler error in line 244 syntaxcheck test, at 1 log line: 1805: Assembler error in line 290 Medium failures: 9 mtrr test, at 1 log line: 76: Memory range 0xc0000000 to 0xdfffffff (PCI Bus 0000:00) has incorrect attribute Write-Combining. mtrr test, at 1 log line: 78: Memory range 0xfee01000 to 0xffffffff (PCI Bus 0000:00) has incorrect attribute Write-Protect. msr test, at 1 log line: 165: MSR SYSENTER_ESP (0x175) has 1 inconsistent values across 2 CPUs for (shift: 0 mask: 0xffffffffffffffff). msr test, at 1 log line: 173: MSR MISC_ENABLE (0x1a0) has 1 inconsistent values across 2 CPUs for (shift: 0 mask: 0x400c51889). wmi test, at 1 log line: 528: GUID 2B814318-4BE8-4707-9D84-A190A859B5D0 is unknown to the kernel, a driver may need to be implemented for this GUID. method test, at 1 log line: 1002: \_SB_.PCI0.LPCB.SIO_.COM1._DIS returned values, but was expected to return nothing. method test, at 1 log line: 1011: \_SB_.PCI0.LPCB.SIO_.LPT0._DIS returned values, but was expected to return nothing. method test, at 1 log line: 1443: Method _BCL should return a package of more than 2 integers, got just 2. acpitables test, at 1 log line: 1643: FADT 32 bit FIRMWARE_CONTROL is non-zero, and X_FIRMWARE_CONTROL is also non-zero. Se

    Read the article

  • Administering Team Foundation Server 2010 Class resource links

    - by John Alexander
    Here are the resource links for the Administering Team Foundation Server 2010 Class from last week in Minneapolis.  Microsoft® Visual Studio® 2010 and Team Foundation Server® 2010 RTM virtual machine for Microsoft® Virtual PC 2007 SP1 http://www.microsoft.com/downloads/en/details.aspx?FamilyID=5e13b15a-fd74-4cd7-b53e-bdf9456855bd Microsoft® Visual Studio® 2010 and Team Foundation Server® 2010 RTM virtual machine for Windows Virtual PC http://www.microsoft.com/downloads/en/details.aspx?FamilyID=509c3ba1-4efc-42b5-b6d8-0232b2cbb26e Microsoft® Visual Studio® 2010 and Team Foundation Server® 2010 RTM virtual machine for Windows Server 2008 Hyper-V http://www.microsoft.com/downloads/en/details.aspx?FamilyID=e0198b64-4acb-4709-b07f-359fb4d523bc Customizable process guidance http://blogs.msdn.com/b/allclark/archive/2010/08/12/customizable-process-guidance.aspx The 5 most read Visual Studio ALM help topics on MSDN http://blogs.msdn.com/b/allclark/archive/2010/11/12/the-5-most-read-visual-studio-alm-help-topics-on-msdn.aspx Inside TFS http://visualstudiomagazine.com/Articles/List/Inside-TFS.aspx Testing Topics http://msdn.microsoft.com/en-us/library/dd286594.aspx Blogs http://community.accentient.com http://geekswithblogs.net Branching Guide http://tfsbranchingguideiii.codeplex.com/ Great VSTS blog http://geekswithblogs.net/hinshelm/Default.aspx My Blog :D http://geekswithblogs.net/jalexander/Default.aspx Visual Studio Forums http://bit.ly/fE16u3 TFS Migration and Integration Solutions http://bit.ly/cLaBnT TFS Migration and Integration Tools (VS ALM Rangers) http://bit.ly/9tHWdG TFS Migration and Integration Platform (CodePlex) http://tfsintegration.codeplex.com Team Foundation Server SDK http://code.msdn.microsoft.com/TfsSdk Migrate and Integration Forum http://bit.ly/f4Lnps Team Foundation Server Widgets http://www.tfswidgets.com TFS Sdk http://code.msdn.microsoft.com/TfsSdk TFS Migration and Integration Solutions http://bit.ly/cLaBnT TFS Integration Tools Forum http://bit.ly/f4Lnps TFS Integration Tools http://bit.ly/9tHWdG TFS Integration Platform http://tfsintegration.codeplex.com VS Upgrade Guide http://vs2010upgradeguide.codeplex.com Updating an Upgraded Team Project to Access New Features http://bit.ly/9cCcMP Team Foundation Power Tools http://bit.ly/dfNVQk Team Foundation Administration Tool http://tfsadmin.codeplex.com Using Team Foundation Server Command-Line Tools http://bit.ly/hCyozJ Changing Groups and Permissions with TFSSecurity http://bit.ly/esIjgw Unofficial Prep guide for TFS 2010 Administration Exam (70-512) http://geekswithblogs.net/enriquelima/archive/2010/07/21/unofficial-prep-guide-for-tfs-2010-administration-exam-70-512.aspx Another Prep Guide http://bit.ly/bpO30R Professional Application Lifecycle Management with VS 2010 Book http://bit.ly/9rCIRj Search CodePlex for TFS related apps http://www.codeplex.com/site/search Visual Studio Gallery http://visualstudiogallery.com TFS Widgets http://tfswidgets.com Migrate from Visual SourceSafe http://bit.ly/8XPSRh Team Foundation Server MSSCCI Provider 2010 http://bit.ly/dst1OQ Attrice TFS Sidekicks www.attrice.info/cm/tfs Hosted TFS http://bit.ly/cMZdvp Manually Processing the Team Foundation Server 2010 Data Warehouse and Analysis Services Database http://bit.ly/aG5oEh TFS 2005, 2008 and 2010 Compatibility http://shrinkster.com/1dhj

    Read the article

  • Dutch for once: op zoek naar een nieuwe uitdaging!

    - by Dennis Vroegop
    Originally posted on: http://geekswithblogs.net/dvroegop/archive/2013/10/11/dutch-for-once-op-zoek-naar-een-nieuwe-uitdaging.aspxI apologize to my non-dutch speaking readers: this post is about me looking for a new job and since I am based in the Netherlands I will do this in Dutch… Next time I will be technical (and thus in English) again! Het leuke van interim zijn is dat een klus een keer afloopt. Ik heb heel bewust gekozen voor het leven als freelancer: ik wil graag heel veel verschillende mensen en organisaties leren kennen. Dit werk is daar bij uitstek geschikt voor! Immers: bij iedere klus breng ik niet alleen nieuwe ideeën en kennis maar ik leer zelf ook iedere keer ontzettend veel. Die kennis kan ik dan weer gebruiken bij een vervolgklus en op die manier verspreid ik die kennis onder de bedrijven in Nederland. En er is niets leukers dan zien dat wat ik meebreng een organisatie naar een ander niveau brengt! Iedere keer een ander bedrijf zoeken houdt in dat ik iedere keer weg moet gaan bij een organisatie. Het lastige daarvan is het juiste moment te vinden. Van buitenaf gezien is dat lastig in te schatten: wanneer kan ik niets vernieuwends meer bijdragen en is het tijd om verder te gaan? Wanneer is het tijd om te zeggen dat de organisatie alles weet wat ik ze kan bijbrengen? In mijn huidige klus is dat moment nu aangebroken. In de afgelopen elf maanden heb ik dit bedrijf zien veranderen van een kleine maar enthousiaste groep ontwikkelaars naar een professionele organisatie met ruim twee keer zo veel ontwikkelaars. Dat veranderingsproces is erg leerzaam geweest en ik ben dan ook erg blij dat ik die verandering heb kunnen en mogen begeleiden. Van drie teams met ieder vijf of zes ontwikkelaars naar zes teams met zeven tot acht ontwikkelaars per team groeien betekent dat je je ontwikkelproces heel anders moet insteken. Ook houdt dat in dat je je teams anders moet indelen, dat de organisatie zelf anders gemodelleerd moet worden en dat mensen anders met elkaar om moeten gaan. Om dat voor elkaar te krijgen is er door iedereen heel hard gewerkt, is er een aantal fouten gemaakt, is heel veel van die fouten geleerd en is uiteindelijk een vrijwel nieuw bedrijf ontstaan. Het is tijd om dit bedrijf te verlaten. Ik ben benieuwd waar ik hierna terecht kom: ik ben aan het rondkijken naar mogelijkheden. Ik weet wèl: het bedrijf waar ik naar op zoek ben, is een bedrijf dat openstaat voor veranderingen. Veranderingen, maar dan wel met het oog voor het individu; mensen staan immers centraal in de software ontwikkeling! Ik heb er in ieder geval weer zin in!

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Link To Work Item &ndash; Visual Studio extension to link changeset(s) to work item directly from VS history window

    - by Utkarsh Shigihalli
    Originally posted on: http://geekswithblogs.net/onlyutkarsh/archive/2014/08/11/link-to-work-item-ndash-visual-studio-extension-to-link.aspxBy linking work items and other objects, you can track related work, dependencies, and changes made over time. As the following illustration shows, specific link types are used to track specific work items and actions. (– via MSDN) While making a check-in, Visual Studio 2013 provides you a quick way to search and assign a work item via pending changes section in Team Explorer. However, if you forget to assign the work item during your check-in, things really get cumbersome as Visual Studio does not provide an easy way of assigning. For example, you usually have to open the work item and then link the changeset which involves approx. 7-8 mouse clicks. Now, you will really feel the difficulty if you have to assign work item to multiple changesets, you have to repeat the same steps again. Hence, I decided to develop a small Visual Studio extension to perform this action of linking work item to changeset bit easier. How to use the extension? First, download and install the extension from VS Gallery (Supports VS 2013 Professional and above). Once you install, you will see a new "Link To Work Item" menu item when you right click on a changeset in history window. Clicking Link To Work Item menu, will open a new dialog with which you can search for a work item. As you can see in below screenshot, this dialog displays the search result and also the type of the work item. You can also open work item from this dialog by right clicking on the work item and clicking 'Open'. Finally, clicking Save button, will actually link the work item to changeset. One feature which I think helpful, is you can select multiple changesets from history window and assign the work item to all those changesets.  To summarize the features Directly assign work items to changesets from history window Assign work item to multiple changesets Know the type of the work item before assigning. Open the work item from search results It also supports all default Visual Studio themes. Below is a small demo showcasing the working of this extension. Finally, if you like the extension, do not forget to rate and review the extension in VS Gallery. Also, do not hesitate to provide your suggestions, improvements and any issues you may encounter via github.

    Read the article

  • Ubuntu 14.04 Failed to load module udlfb

    - by jar276705
    DisplayLink doesn't load and run. The adapter is recognized and /dev/FB1 is created. USB bus info: Bus 001 Device 006: ID 17e9:0198 DisplayLink Xorg.0.log: X.Org X Server 1.15.1 Release Date: 2014-04-13 [ 44708.386] X Protocol Version 11, Revision 0 [ 44708.389] Build Operating System: Linux 3.2.0-37-generic i686 Ubuntu [ 44708.392] Current Operating System: Linux rrl 3.13.0-24-generic #46-Ubuntu SMP Thu Apr 10 19:08:14 UTC 2014 i686 [ 44708.392] Kernel command line: BOOT_IMAGE=/boot/vmlinuz-3.13.0-24-generic root=UUID=6b719a77-29e0-4668-8f16-57d0d3a73a3f ro quiet splash vt.handoff=7 [ 44708.399] Build Date: 16 April 2014 01:40:08PM [ 44708.402] xorg-server 2:1.15.1-0ubuntu2 (For technical support please see http://www.ubuntu.com/support) [ 44708.405] Current version of pixman: 0.30.2 [ 44708.412] Before reporting problems, check http://wiki.x.org to make sure that you have the latest version. [ 44708.412] Markers: (--) probed, (**) from config file, (==) default setting, (++) from command line, (!!) notice, (II) informational, (WW) warning, (EE) error, (NI) not implemented, (??) unknown. [ 44708.427] (==) Log file: "/var/log/Xorg.0.log", Time: Thu May 1 09:38:27 2014 [ 44708.431] (==) Using config file: "/etc/X11/xorg.conf" [ 44708.434] (==) Using system config directory "/usr/share/X11/xorg.conf.d" [ 44708.435] (==) ServerLayout "X.org Configured" [ 44708.435] (**) |-->Screen "DisplayLinkScreen" (0) [ 44708.435] (**) | |-->Monitor "DisplayLinkMonitor" [ 44708.435] (**) | |-->Device "DisplayLinkDevice" [ 44708.435] (**) |-->Screen "Screen0" (1) [ 44708.435] (**) | |-->Monitor "Monitor0" [ 44708.435] (**) | |-->Device "Card0" [ 44708.435] (**) |-->Input Device "Mouse0" [ 44708.435] (**) |-->Input Device "Keyboard0" [ 44708.435] (==) Automatically adding devices [ 44708.435] (==) Automatically enabling devices [ 44708.435] (==) Automatically adding GPU devices [ 44708.435] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/cyrillic" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi/" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (WW) The directory "/usr/share/fonts/X11/75dpi" does not exist. [ 44708.435] Entry deleted from font path. [ 44708.435] (**) FontPath set to: /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, built-ins, /usr/share/fonts/X11/misc, /usr/share/fonts/X11/100dpi/:unscaled, /usr/share/fonts/X11/Type1, /usr/share/fonts/X11/100dpi, built-ins [ 44708.435] (**) ModulePath set to "/usr/lib/xorg/modules" [ 44708.435] (WW) Hotplugging is on, devices using drivers 'kbd', 'mouse' or 'vmmouse' will be disabled. [ 44708.435] (WW) Disabling Mouse0 [ 44708.435] (WW) Disabling Keyboard0 [ 44708.435] (II) Loader magic: 0xb77106c0 [ 44708.435] (II) Module ABI versions: [ 44708.435] X.Org ANSI C Emulation: 0.4 [ 44708.435] X.Org Video Driver: 15.0 [ 44708.435] X.Org XInput driver : 20.0 [ 44708.435] X.Org Server Extension : 8.0 [ 44708.436] (II) xfree86: Adding drm device (/dev/dri/card0) [ 44708.436] (II) xfree86: Adding drm device (/dev/dri/card1) [ 44708.437] (--) PCI:*(0:1:5:0) 1002:9616:105b:0e26 rev 0, Mem @ 0xf0000000/134217728, 0xfeae0000/65536, 0xfe900000/1048576, I/O @ 0x0000b000/256 [ 44708.441] Initializing built-in extension Generic Event Extension [ 44708.444] Initializing built-in extension SHAPE [ 44708.448] Initializing built-in extension MIT-SHM [ 44708.452] Initializing built-in extension XInputExtension [ 44708.456] Initializing built-in extension XTEST [ 44708.460] Initializing built-in extension BIG-REQUESTS [ 44708.464] Initializing built-in extension SYNC [ 44708.468] Initializing built-in extension XKEYBOARD [ 44708.471] Initializing built-in extension XC-MISC [ 44708.475] Initializing built-in extension SECURITY [ 44708.479] Initializing built-in extension XINERAMA [ 44708.483] Initializing built-in extension XFIXES [ 44708.487] Initializing built-in extension RENDER [ 44708.491] Initializing built-in extension RANDR [ 44708.494] Initializing built-in extension COMPOSITE [ 44708.498] Initializing built-in extension DAMAGE [ 44708.502] Initializing built-in extension MIT-SCREEN-SAVER [ 44708.506] Initializing built-in extension DOUBLE-BUFFER [ 44708.510] Initializing built-in extension RECORD [ 44708.513] Initializing built-in extension DPMS [ 44708.517] Initializing built-in extension Present [ 44708.521] Initializing built-in extension DRI3 [ 44708.525] Initializing built-in extension X-Resource [ 44708.528] Initializing built-in extension XVideo [ 44708.532] Initializing built-in extension XVideo-MotionCompensation [ 44708.535] Initializing built-in extension SELinux [ 44708.539] Initializing built-in extension XFree86-VidModeExtension [ 44708.542] Initializing built-in extension XFree86-DGA [ 44708.546] Initializing built-in extension XFree86-DRI [ 44708.549] Initializing built-in extension DRI2 [ 44708.549] (II) "glx" will be loaded. This was enabled by default and also specified in the config file. [ 44708.549] (WW) "xmir" is not to be loaded by default. Skipping. [ 44708.549] (II) LoadModule: "glx" [ 44708.549] (II) Loading /usr/lib/xorg/modules/extensions/libglx.so [ 44708.550] (II) Module glx: vendor="X.Org Foundation" [ 44708.550] compiled for 1.15.1, module version = 1.0.0 [ 44708.550] ABI class: X.Org Server Extension, version 8.0 [ 44708.550] (==) AIGLX enabled [ 44708.553] Loading extension GLX [ 44708.553] (II) LoadModule: "udlfb" [ 44708.554] (WW) Warning, couldn't open module udlfb [ 44708.554] (II) UnloadModule: "udlfb" [ 44708.554] (II) Unloading udlfb [ 44708.554] (EE) Failed to load module "udlfb" (module does not exist, 0) [ 44708.554] (II) LoadModule: "modesetting" [ 44708.554] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 44708.554] (II) Module modesetting: vendor="X.Org Foundation" [ 44708.554] compiled for 1.15.0, module version = 0.8.1 [ 44708.554] Module class: X.Org Video Driver [ 44708.554] ABI class: X.Org Video Driver, version 15.0 [ 44708.554] (==) Matched fglrx as autoconfigured driver 0 [ 44708.554] (==) Matched ati as autoconfigured driver 1 [ 44708.554] (==) Matched fglrx as autoconfigured driver 2 [ 44708.554] (==) Matched ati as autoconfigured driver 3 [ 44708.554] (==) Matched modesetting as autoconfigured driver 4 [ 44708.554] (==) Matched fbdev as autoconfigured driver 5 [ 44708.554] (==) Matched vesa as autoconfigured driver 6 [ 44708.554] (==) Assigned the driver to the xf86ConfigLayout [ 44708.554] (II) LoadModule: "fglrx" [ 44708.554] (WW) Warning, couldn't open module fglrx [ 44708.554] (II) UnloadModule: "fglrx" [ 44708.554] (II) Unloading fglrx [ 44708.554] (EE) Failed to load module "fglrx" (module does not exist, 0) [ 44708.554] (II) LoadModule: "ati" [ 44708.554] (II) Loading /usr/lib/xorg/modules/drivers/ati_drv.so [ 44708.554] (II) Module ati: vendor="X.Org Foundation" [ 44708.554] compiled for 1.15.0, module version = 7.3.0 [ 44708.554] Module class: X.Org Video Driver [ 44708.554] ABI class: X.Org Video Driver, version 15.0 [ 44708.554] (II) LoadModule: "radeon" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/radeon_drv.so [ 44708.555] (II) Module radeon: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 7.3.0 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) LoadModule: "modesetting" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/modesetting_drv.so [ 44708.555] (II) Module modesetting: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 0.8.1 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) UnloadModule: "modesetting" [ 44708.555] (II) Unloading modesetting [ 44708.555] (II) Failed to load module "modesetting" (already loaded, 0) [ 44708.555] (II) LoadModule: "fbdev" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/fbdev_drv.so [ 44708.555] (II) Module fbdev: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 0.4.4 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) LoadModule: "vesa" [ 44708.555] (II) Loading /usr/lib/xorg/modules/drivers/vesa_drv.so [ 44708.555] (II) Module vesa: vendor="X.Org Foundation" [ 44708.555] compiled for 1.15.0, module version = 2.3.3 [ 44708.555] Module class: X.Org Video Driver [ 44708.555] ABI class: X.Org Video Driver, version 15.0 [ 44708.555] (II) modesetting: Driver for Modesetting Kernel Drivers: kms [ 44708.555] (II) RADEON: Driver for ATI Radeon chipsets: [ 44708.560] (II) FBDEV: driver for framebuffer: fbdev [ 44708.560] (II) VESA: driver for VESA chipsets: vesa [ 44708.560] (--) using VT number 7 [ 44708.578] (II) modesetting(0): using drv /dev/dri/card0 [ 44708.578] (II) modesetting(G0): using drv /dev/dri/card1 [ 44708.578] (WW) Falling back to old probe method for fbdev [ 44708.578] (II) Loading sub module "fbdevhw" [ 44708.578] (II) LoadModule: "fbdevhw" [ 44708.578] (II) Loading /usr/lib/xorg/modules/libfbdevhw.so [ 44708.578] (II) Module fbdevhw: vendor="X.Org Foundation" [ 44708.578] compiled for 1.15.1, module version = 0.0.2 [ 44708.578] ABI class: X.Org Video Driver, version 15.0 [ 44708.578] (WW) Falling back to old probe method for vesa [ 44708.578] (**) modesetting(0): Depth 16, (--) framebuffer bpp 16 [ 44708.578] (==) modesetting(0): RGB weight 565 [ 44708.578] (==) modesetting(0): Default visual is TrueColor [ 44708.578] (II) modesetting(0): ShadowFB: preferred YES, enabled YES [ 44708.608] (II) modesetting(0): Output VGA-0 using monitor section DisplayLinkMonitor [ 44708.610] (II) modesetting(0): Output DVI-0 has no monitor section [ 44708.640] (II) modesetting(0): EDID for output VGA-0 [ 44708.640] (II) modesetting(0): Manufacturer: ACR Model: 74 Serial#: 2483090993 [ 44708.640] (II) modesetting(0): Year: 2009 Week: 40 [ 44708.640] (II) modesetting(0): EDID Version: 1.3 [ 44708.640] (II) modesetting(0): Analog Display Input, Input Voltage Level: 0.700/0.700 V [ 44708.640] (II) modesetting(0): Sync: Separate [ 44708.640] (II) modesetting(0): Max Image Size [cm]: horiz.: 53 vert.: 29 [ 44708.640] (II) modesetting(0): Gamma: 2.20 [ 44708.640] (II) modesetting(0): DPMS capabilities: StandBy Suspend Off; RGB/Color Display [ 44708.641] (II) modesetting(0): First detailed timing is preferred mode [ 44708.641] (II) modesetting(0): redX: 0.649 redY: 0.338 greenX: 0.289 greenY: 0.609 [ 44708.641] (II) modesetting(0): blueX: 0.146 blueY: 0.070 whiteX: 0.313 whiteY: 0.329 [ 44708.641] (II) modesetting(0): Supported established timings: [ 44708.641] (II) modesetting(0): 720x400@70Hz [ 44708.641] (II) modesetting(0): 640x480@60Hz [ 44708.641] (II) modesetting(0): 640x480@72Hz [ 44708.641] (II) modesetting(0): 640x480@75Hz [ 44708.641] (II) modesetting(0): 800x600@56Hz [ 44708.641] (II) modesetting(0): 800x600@60Hz [ 44708.641] (II) modesetting(0): 800x600@72Hz [ 44708.641] (II) modesetting(0): 800x600@75Hz [ 44708.641] (II) modesetting(0): 1024x768@60Hz [ 44708.641] (II) modesetting(0): 1024x768@70Hz [ 44708.641] (II) modesetting(0): 1024x768@75Hz [ 44708.641] (II) modesetting(0): 1280x1024@75Hz [ 44708.641] (II) modesetting(0): Manufacturer's mask: 0 [ 44708.641] (II) modesetting(0): Supported standard timings: [ 44708.641] (II) modesetting(0): #0: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 [ 44708.641] (II) modesetting(0): #1: hsize: 1152 vsize 864 refresh: 75 vid: 20337 [ 44708.641] (II) modesetting(0): #2: hsize: 1440 vsize 900 refresh: 60 vid: 149 [ 44708.641] (II) modesetting(0): #3: hsize: 1440 vsize 900 refresh: 75 vid: 3989 [ 44708.641] (II) modesetting(0): #4: hsize: 1600 vsize 1200 refresh: 60 vid: 16553 [ 44708.641] (II) modesetting(0): #5: hsize: 1680 vsize 1050 refresh: 60 vid: 179 [ 44708.641] (II) modesetting(0): Supported detailed timing: [ 44708.641] (II) modesetting(0): clock: 138.5 MHz Image Size: 531 x 298 mm [ 44708.641] (II) modesetting(0): h_active: 1920 h_sync: 1968 h_sync_end 2000 h_blank_end 2080 h_border: 0 [ 44708.641] (II) modesetting(0): v_active: 1080 v_sync: 1083 v_sync_end 1088 v_blanking: 1111 v_border: 0 [ 44708.641] (II) modesetting(0): Monitor name: H243H [ 44708.641] (II) modesetting(0): Ranges: V min: 56 V max: 76 Hz, H min: 31 H max: 83 kHz, PixClock max 185 MHz [ 44708.641] (II) modesetting(0): Serial No: LEW0C0044002 [ 44708.641] (II) modesetting(0): EDID (in hex): [ 44708.641] (II) modesetting(0): 00ffffffffffff000472740031f60094 [ 44708.641] (II) modesetting(0): 2813010368351d78ea6085a6564a9c25 [ 44708.641] (II) modesetting(0): 125054afcf008180714f9500950fa940 [ 44708.641] (II) modesetting(0): b300010101011a3680a070381f403020 [ 44708.641] (II) modesetting(0): 3500132a2100001a000000fc00483234 [ 44708.642] (II) modesetting(0): 33480a20202020202020000000fd0038 [ 44708.642] (II) modesetting(0): 4c1f5312000a202020202020000000ff [ 44708.642] (II) modesetting(0): 004c45573043303034343030320a003c [ 44708.642] (II) modesetting(0): Printing probed modes for output VGA-0 [ 44708.642] (II) modesetting(0): Modeline "1280x1024"x75.0 135.00 1280 1296 1440 1688 1024 1025 1028 1066 +hsync +vsync (80.0 kHz UeP) [ 44708.642] (II) modesetting(0): Modeline "1920x1080"x59.9 138.50 1920 1968 2000 2080 1080 1083 1088 1111 +hsync -vsync (66.6 kHz eP) [ 44708.642] (II) modesetting(0): Modeline "1600x1200"x60.0 162.00 1600 1664 1856 2160 1200 1201 1204 1250 +hsync +vsync (75.0 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1680x1050"x60.0 146.25 1680 1784 1960 2240 1050 1053 1059 1089 -hsync +vsync (65.3 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1280x1024"x60.0 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +hsync +vsync (64.0 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1440x900"x75.0 136.75 1440 1536 1688 1936 900 903 909 942 -hsync +vsync (70.6 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1440x900"x59.9 106.50 1440 1520 1672 1904 900 903 909 934 -hsync +vsync (55.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1152x864"x75.0 108.00 1152 1216 1344 1600 864 865 868 900 +hsync +vsync (67.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x75.1 78.80 1024 1040 1136 1312 768 769 772 800 +hsync +vsync (60.1 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x70.1 75.00 1024 1048 1184 1328 768 771 777 806 -hsync -vsync (56.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x72.2 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync (48.1 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x75.0 49.50 800 816 896 1056 600 601 604 625 +hsync +vsync (46.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x75.0 31.50 640 656 720 840 480 481 484 500 -hsync -vsync (37.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x72.8 31.50 640 664 704 832 480 489 491 520 -hsync -vsync (37.9 kHz e) [ 44708.642] (II) modesetting(0): Modeline "640x480"x60.0 25.20 640 656 752 800 480 490 492 525 -hsync -vsync (31.5 kHz e) [ 44708.642] (II) modesetting(0): Modeline "720x400"x70.1 28.32 720 738 846 900 400 412 414 449 -hsync +vsync (31.5 kHz e) [ 44708.645] (II) modesetting(0): EDID for output DVI-0 [ 44708.645] (II) modesetting(0): Output VGA-0 connected [ 44708.645] (II) modesetting(0): Output DVI-0 disconnected [ 44708.645] (II) modesetting(0): Using user preference for initial modes [ 44708.645] (II) modesetting(0): Output VGA-0 using initial mode 1280x1024 [ 44708.645] (II) modesetting(0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 44708.645] (==) modesetting(0): DPI set to (96, 96) [ 44708.645] (II) Loading sub module "fb" [ 44708.645] (II) LoadModule: "fb" [ 44708.645] (II) Loading /usr/lib/xorg/modules/libfb.so [ 44708.645] (II) Module fb: vendor="X.Org Foundation" [ 44708.645] compiled for 1.15.1, module version = 1.0.0 [ 44708.645] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.645] (II) Loading sub module "shadow" [ 44708.645] (II) LoadModule: "shadow" [ 44708.646] (II) Loading /usr/lib/xorg/modules/libshadow.so [ 44708.646] (II) Module shadow: vendor="X.Org Foundation" [ 44708.646] compiled for 1.15.1, module version = 1.1.0 [ 44708.646] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.646] (**) modesetting(G0): Depth 16, (--) framebuffer bpp 16 [ 44708.646] (==) modesetting(G0): RGB weight 565 [ 44708.646] (==) modesetting(G0): Default visual is TrueColor [ 44708.646] (II) modesetting(G0): ShadowFB: preferred NO, enabled NO [ 44708.727] (II) modesetting(G0): Output DVI-1-0 using monitor section DisplayLinkMonitor [ 44708.808] (II) modesetting(G0): EDID for output DVI-1-0 [ 44708.808] (II) modesetting(G0): Manufacturer: WDE Model: 1702 Serial#: 0 [ 44708.808] (II) modesetting(G0): Year: 2005 Week: 14 [ 44708.808] (II) modesetting(G0): EDID Version: 1.3 [ 44708.808] (II) modesetting(G0): Analog Display Input, Input Voltage Level: 0.700/0.700 V [ 44708.808] (II) modesetting(G0): Sync: Separate [ 44708.808] (II) modesetting(G0): Max Image Size [cm]: horiz.: 34 vert.: 27 [ 44708.808] (II) modesetting(G0): Gamma: 2.20 [ 44708.808] (II) modesetting(G0): DPMS capabilities: StandBy Suspend Off; RGB/Color Display [ 44708.808] (II) modesetting(G0): Default color space is primary color space [ 44708.808] (II) modesetting(G0): First detailed timing is preferred mode [ 44708.808] (II) modesetting(G0): GTF timings supported [ 44708.808] (II) modesetting(G0): redX: 0.643 redY: 0.352 greenX: 0.283 greenY: 0.608 [ 44708.808] (II) modesetting(G0): blueX: 0.147 blueY: 0.102 whiteX: 0.313 whiteY: 0.329 [ 44708.808] (II) modesetting(G0): Supported established timings: [ 44708.808] (II) modesetting(G0): 720x400@70Hz [ 44708.808] (II) modesetting(G0): 640x480@60Hz [ 44708.808] (II) modesetting(G0): 640x480@67Hz [ 44708.808] (II) modesetting(G0): 640x480@72Hz [ 44708.808] (II) modesetting(G0): 640x480@75Hz [ 44708.808] (II) modesetting(G0): 800x600@56Hz [ 44708.808] (II) modesetting(G0): 800x600@60Hz [ 44708.808] (II) modesetting(G0): 800x600@72Hz [ 44708.808] (II) modesetting(G0): 800x600@75Hz [ 44708.808] (II) modesetting(G0): 832x624@75Hz [ 44708.808] (II) modesetting(G0): 1024x768@60Hz [ 44708.808] (II) modesetting(G0): 1024x768@70Hz [ 44708.808] (II) modesetting(G0): 1024x768@75Hz [ 44708.809] (II) modesetting(G0): 1280x1024@75Hz [ 44708.809] (II) modesetting(G0): Manufacturer's mask: 0 [ 44708.809] (II) modesetting(G0): Supported standard timings: [ 44708.809] (II) modesetting(G0): #0: hsize: 1280 vsize 1024 refresh: 60 vid: 32897 [ 44708.809] (II) modesetting(G0): #1: hsize: 1152 vsize 864 refresh: 75 vid: 20337 [ 44708.809] (II) modesetting(G0): Supported detailed timing: [ 44708.809] (II) modesetting(G0): clock: 108.0 MHz Image Size: 338 x 270 mm [ 44708.809] (II) modesetting(G0): h_active: 1280 h_sync: 1328 h_sync_end 1440 h_blank_end 1688 h_border: 0 [ 44708.809] (II) modesetting(G0): v_active: 1024 v_sync: 1025 v_sync_end 1028 v_blanking: 1066 v_border: 0 [ 44708.809] (II) modesetting(G0): Ranges: V min: 50 V max: 75 Hz, H min: 30 H max: 82 kHz, PixClock max 145 MHz [ 44708.809] (II) modesetting(G0): Monitor name: WDE LCM-17v2 [ 44708.809] (II) modesetting(G0): Serial No: 0 [ 44708.809] (II) modesetting(G0): EDID (in hex): [ 44708.809] (II) modesetting(G0): 00ffffffffffff005c85021700000000 [ 44708.809] (II) modesetting(G0): 0e0f010368221b78ef8bc5a45a489b25 [ 44708.809] (II) modesetting(G0): 1a5054bfef008180714f010101010101 [ 44708.809] (II) modesetting(G0): 010101010101302a009851002a403070 [ 44708.809] (II) modesetting(G0): 1300520e1100001e000000fd00324b1e [ 44708.809] (II) modesetting(G0): 520e000a202020202020000000fc0057 [ 44708.809] (II) modesetting(G0): 4445204c434d2d313776320a000000ff [ 44708.809] (II) modesetting(G0): 00300a202020202020202020202000e7 [ 44708.809] (II) modesetting(G0): Printing probed modes for output DVI-1-0 [ 44708.809] (II) modesetting(G0): Modeline "1280x1024"x60.0 108.00 1280 1328 1440 1688 1024 1025 1028 1066 +hsync +vsync (64.0 kHz UeP) [ 44708.809] (II) modesetting(G0): Modeline "1280x1024"x75.0 135.00 1280 1296 1440 1688 1024 1025 1028 1066 +hsync +vsync (80.0 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x960"x60.0 108.00 1280 1376 1488 1800 960 961 964 1000 +hsync +vsync (60.0 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x800"x74.9 106.50 1280 1360 1488 1696 800 803 809 838 -hsync +vsync (62.8 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x800"x59.8 83.50 1280 1352 1480 1680 800 803 809 831 +hsync -vsync (49.7 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1152x864"x75.0 108.00 1152 1216 1344 1600 864 865 868 900 +hsync +vsync (67.5 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x768"x74.9 102.25 1280 1360 1488 1696 768 771 778 805 +hsync -vsync (60.3 kHz e) [ 44708.809] (II) modesetting(G0): Modeline "1280x768"x59.9 79.50 1280 1344 1472 1664 768 771 778 798 -hsync +vsync (47.8 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x75.1 78.80 1024 1040 1136 1312 768 769 772 800 +hsync +vsync (60.1 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x70.1 75.00 1024 1048 1184 1328 768 771 777 806 -hsync -vsync (56.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x768"x60.0 65.00 1024 1048 1184 1344 768 771 777 806 -hsync -vsync (48.4 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "1024x576"x60.0 46.97 1024 1064 1168 1312 576 577 580 597 -hsync +vsync (35.8 kHz) [ 44708.810] (II) modesetting(G0): Modeline "832x624"x74.6 57.28 832 864 928 1152 624 625 628 667 -hsync -vsync (49.7 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x72.2 50.00 800 856 976 1040 600 637 643 666 +hsync +vsync (48.1 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x75.0 49.50 800 816 896 1056 600 601 604 625 +hsync +vsync (46.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x60.3 40.00 800 840 968 1056 600 601 605 628 +hsync +vsync (37.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "800x600"x56.2 36.00 800 824 896 1024 600 601 603 625 +hsync +vsync (35.2 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "848x480"x60.0 33.75 848 864 976 1088 480 486 494 517 +hsync +vsync (31.0 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x75.0 31.50 640 656 720 840 480 481 484 500 -hsync -vsync (37.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x72.8 31.50 640 664 704 832 480 489 491 520 -hsync -vsync (37.9 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x66.7 30.24 640 704 768 864 480 483 486 525 -hsync -vsync (35.0 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "640x480"x60.0 25.20 640 656 752 800 480 490 492 525 -hsync -vsync (31.5 kHz e) [ 44708.810] (II) modesetting(G0): Modeline "720x400"x70.1 28.32 720 738 846 900 400 412 414 449 -hsync +vsync (31.5 kHz e) [ 44708.810] (II) modesetting(G0): Using default gamma of (1.0, 1.0, 1.0) unless otherwise stated. [ 44708.810] (==) modesetting(G0): DPI set to (96, 96) [ 44708.810] (II) Loading sub module "fb" [ 44708.810] (II) LoadModule: "fb" [ 44708.810] (II) Loading /usr/lib/xorg/modules/libfb.so [ 44708.810] (II) Module fb: vendor="X.Org Foundation" [ 44708.810] compiled for 1.15.1, module version = 1.0.0 [ 44708.811] ABI class: X.Org ANSI C Emulation, version 0.4 [ 44708.811] (II) UnloadModule: "radeon" [ 44708.811] (II) Unloading radeon [ 44708.811] (II) UnloadModule: "fbdev" [ 44708.811] (II) Unloading fbdev [ 44708.811] (II) UnloadSubModule: "fbdevhw" [ 44708.811] (II) Unloading fbdevhw [ 44708.811] (II) UnloadModule: "vesa" [ 44708.811] (II) Unloading vesa [ 44708.811] (==) modesetting(G0): Backing store enabled [ 44708.811] (==) modesetting(G0): Silken mouse enabled [ 44708.812] (II) modesetting(G0): RandR 1.2 enabled, ignore the following RandR disabled message. [ 44708.812] (==) modesetting(G0): DPMS enabled [ 44708.812] (WW) modesetting(G0): Option "fbdev" is not used [ 44708.812] (==) modesetting(0): Backing store enabled [ 44708.812] (==) modesetting(0): Silken mouse enabled [ 44708.812] (II) modesetting(0): RandR 1.2 enabled, ignore the following RandR disabled message. [ 44708.812] (==) modesetting(0): DPMS enabled [ 44708.812] (WW) modesetting(0): Option "fbdev" is not used [ 44708.856] (--) RandR disabled [ 44708.867] (II) SELinux: Disabled on system [ 44708.868] (II) AIGLX: Screen 0 is not DRI2 capable [ 44708.868] (EE) AIGLX: reverting to software rendering [ 44708.878] (II) AIGLX: Loaded and initialized swrast [ 44708.878] (II) GLX: Initialized DRISWRAST GL provider for screen 0 [ 44708.879] (II) modesetting(G0): Damage tracking initialized [ 44708.879] (II) modesetting(0): Damage tracking initialized [ 44708.879] (II) modesetting(0): Setting screen physical size to 338 x 270 [ 44708.900] (II) XKB: generating xkmfile /tmp/server-B20D7FC79C7F597315E3E501AEF10E0D866E8E92.xkm [ 44708.918] (II) config/udev: Adding input device Power Button (/dev/input/event1) [ 44708.918] (**) Power Button: Applying InputClass "evdev keyboard catchall" [ 44708.918] (II) LoadModule: "evdev" [ 44708.918] (II) Loading /usr/lib/xorg/modules/input/evdev_drv.so [ 44708.918] (II) Module evdev: vendor="X.Org Foundation" [ 44708.918] compiled for 1.15.0, module version = 2.8.2 [ 44708.918] Module class: X.Org XInput Driver [ 44708.918] ABI class: X.Org XInput driver, version 20.0 [ 44708.918] (II) Using input driver 'evdev' for 'Power Button' [ 44708.918] (**) Power Button: always reports core events [ 44708.918] (**) evdev: Power Button: Device: "/dev/input/event1" [ 44708.918] (--) evdev: Power Button: Vendor 0 Product 0x1 [ 44708.918] (--) evdev: Power Button: Found keys [ 44708.918] (II) evdev: Power Button: Configuring as keyboard [ 44708.918] (**) Option "config_info" "udev:/sys/devices/LNXSYSTM:00/LNXPWRBN:00/input/input1/event1" [ 44708.918] (II) XINPUT: Adding extended input device "Power Button" (type: KEYBOARD, id 6) [ 44708.918] (**) Option "xkb_rules" "evdev" [ 44708.918] (**) Option "xkb_model" "pc105" [ 44708.918] (**) Option "xkb_layout" "us" [ 44708.919] (II) config/udev: Adding input device Power Button (/dev/input/event0) [ 44708.919] (**) Power Button: Applying InputClass "evdev keyboard catchall" [ 44708.919] (II) Using input driver 'evdev' for 'Power Button' [ 44708.919] (**) Power Button: always reports core events [ 44708.919] (**) evdev: Power Button: Device: "/dev/input/event0" [ 44708.919] (--) evdev: Power Button: Vendor 0 Product 0x1 [ 44708.919] (--) evdev: Power Button: Found keys [ 44708.919] (II) evdev: Power Button: Configuring as keyboard [ 44708.919] (**) Option "config_info" "udev:/sys/devices/LNXSYSTM:00/device:00/PNP0C0C:00/input/input0/event0" Is there anything I can do to fix this problem.

    Read the article

  • Unity DontDestroyOnLoad causing scenes to stay open

    - by jkrebsbach
    Originally posted on: http://geekswithblogs.net/jkrebsbach/archive/2014/08/11/unity-dontdestroyonload-causing-scenes-to-stay-open.aspxMy Unity project has a class (ClientSettings) where most of the game state & management properties are stored.  Among these are some utility functions that derive from MonoBehavior.  However, between every scene this object was getting recreated and I was losing all sorts of useful data.  I learned that with DontDestroyOnLoad, I can persist this entity between scenes.  Super.Persisting information between scenesThe problem with adding DontDestroyOnLoad to my "ClientSettings" was suddenly my previous scene would stay alive, and continue to execute its update routines.  An important part of the documentation helps shed light to my issues:"If the object is a component or game object then its entire transform hierarchy will not be destroyed either."My ClientSettings script was attached to the main camera on my first scene.  Because of this, the Main Camera was part of the hierarchy of the component, and therefore was also not able to destroy when switching scenes.  Now the first scene's main camera Update routine continues to execute after the second scene is running - causing me to have some very nasty bugs.Suddenly I wasn't sure how I should be creating a persistent entity - so I created a new sandbox project and tested different approaches until I found one that works:In the main scene: Create an empty Game Object:  "GameManager" - and attach the ClientSettings script to this game object.  Set any properties to the clientsettings script as appropriate.Create a prefab, using the GameManager.Remove the Game Object from the main scene.In the Main Camera, I created a script:  Main Script.  This is my primary script for the main scene.<code> public GameObject[] prefabs; private ClientSettings _clientSettings; // Use this for initialization void Start () { GameObject res = (GameObject)Instantiate(prefabs[0]); }</code>Now go back out to scene view, and add the new GameManager prefab to the prefabs collection of MainScript.When the main scene loads, the GameManager is set up, but is not part of the main scene's hierarchy, so the two are no longer tied up together.Now in our second scene, we have a script - SecondScript - and we can get a reference to the ClientSettings we created in the previous scene like so:<code>private ConnectionSettings _clientSettings; // Use this for initialization void Start () { _clientSettings = FindObjectOfType<ConnectionSettings> (); }</code>And the scenes can start and finish without creating strange long-running scene side effects.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

  • What is hogging my connection?

    - by SF.
    At times it seems like dozens, if not hundreds of root-owned HTTP connections spring up. This is not much of a problem on LAN or WLAN as each of them seems to transfer very little, but if I use GPRS link, my ping times go into minutes (seriously, 80000ms is not infrequent!) and all connections grind to a halt waiting till these end. This usually lasts some 15 minutes and ends about when I start troubleshooting it for real. I've managed to capture a fragment of Nethogs output NetHogs version 0.8.0 PID USER PROGRAM DEV SENT RECEIVED ? root 37.209.147.180:59854-141.101.114.59:80 0.013 0.000 KB/sec ? root 37.209.147.180:59853-141.101.114.59:80 0.000 0.000 KB/sec ? root 37.209.147.180:52804-173.194.70.95:80 0.000 0.000 KB/sec 1954 bw /home/bw/.dropbox-dist/dropbox ppp0 0.000 0.000 KB/sec ? root 37.209.147.180:59851-141.101.114.59:80 0.000 0.000 KB/sec ? root 37.209.147.180:59850-141.101.114.59:80 0.000 0.000 KB/sec ? root 37.209.147.180:52801-173.194.70.95:80 0.000 0.000 KB/sec 13301 bw /usr/lib/firefox/firefox ppp0 0.000 0.000 KB/sec ? root unknown TCP 0.000 0.000 KB/sec Unfortunately, it doesn't display the owning process of these. Does anyone recognize these addresses or is able to suggest how to troubleshoot it further or disable it? Is it some automatic update or something like that? EDIT: per request; netstat -n, for obvious reason that normal netstat won't ever launch as all DNS requests are hogged just the same. netstat -n Active Internet connections (w/o servers) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 1 93.154.166.62:51314 198.252.206.16:80 FIN_WAIT1 tcp 0 1 37.209.147.180:44098 198.252.206.16:80 FIN_WAIT1 tcp 0 1 37.209.147.180:59855 141.101.114.59:80 FIN_WAIT1 tcp 1 0 192.168.43.224:38237 213.189.45.39:443 CLOSE_WAIT tcp 1 0 93.154.146.186:35167 75.101.152.29:80 CLOSE_WAIT tcp 1 0 192.168.43.224:32939 199.15.160.100:80 CLOSE_WAIT tcp 1 0 192.168.43.224:55619 63.245.217.207:443 CLOSE_WAIT tcp 1 0 93.154.146.186:60210 75.101.152.29:443 CLOSE_WAIT tcp 1 0 192.168.43.224:32944 199.15.160.100:80 CLOSE_WAIT tcp 0 1 37.209.147.180:52804 173.194.70.95:80 FIN_WAIT1 tcp 1 0 93.154.146.186:46606 23.21.151.181:80 CLOSE_WAIT tcp 1 0 93.154.146.186:52619 107.22.246.76:80 CLOSE_WAIT tcp 415 0 93.154.146.186:36156 82.112.106.104:80 CLOSE_WAIT tcp 1 0 93.154.146.186:50352 107.22.246.76:443 CLOSE_WAIT tcp 1 0 192.168.43.224:55000 213.189.45.44:443 CLOSE_WAIT tcp 0 1 37.209.147.180:59853 141.101.114.59:80 FIN_WAIT1 tcp 1 0 192.168.43.224:32937 199.15.160.100:80 CLOSE_WAIT tcp 1 0 192.168.43.224:56055 93.184.221.40:80 CLOSE_WAIT tcp 415 0 93.154.146.186:36155 82.112.106.104:80 CLOSE_WAIT tcp 0 1 37.209.147.180:44097 198.252.206.16:80 FIN_WAIT1 tcp 1 0 93.154.146.186:35166 75.101.152.29:80 CLOSE_WAIT tcp 1 0 192.168.43.224:32943 199.15.160.100:80 CLOSE_WAIT tcp 1 0 93.154.146.186:46607 23.21.151.181:80 CLOSE_WAIT tcp 1 0 93.154.146.186:36422 23.21.151.181:443 CLOSE_WAIT tcp 1 0 192.168.43.224:36081 93.184.220.148:80 CLOSE_WAIT tcp 1 0 192.168.43.224:44462 213.189.45.29:443 CLOSE_WAIT tcp 1 0 192.168.43.224:32938 199.15.160.100:80 CLOSE_WAIT tcp 1 0 93.154.146.186:36419 23.21.151.181:443 CLOSE_WAIT tcp 0 497 93.154.166.62:51313 198.252.206.16:80 FIN_WAIT1 tcp 0 1 37.209.147.180:59851 141.101.114.59:80 FIN_WAIT1 tcp 0 1 37.209.147.180:44095 198.252.206.16:80 FIN_WAIT1 tcp 1 0 93.154.146.186:46611 23.21.151.181:80 CLOSE_WAIT tcp 1 0 192.168.43.224:38236 213.189.45.39:443 CLOSE_WAIT tcp 0 171 37.209.147.180:45341 173.194.113.146:443 ESTABLISHED tcp 0 1 37.209.147.180:52801 173.194.70.95:80 FIN_WAIT1 tcp 1 0 192.168.43.224:36080 93.184.220.148:80 CLOSE_WAIT tcp 0 1 37.209.147.180:59856 141.101.114.59:80 FIN_WAIT1 tcp 0 1 37.209.147.180:44096 198.252.206.16:80 FIN_WAIT1 tcp 0 1 93.154.166.62:57471 108.160.162.49:80 FIN_WAIT1 tcp 0 1 37.209.147.180:59854 141.101.114.59:80 FIN_WAIT1 tcp 0 171 37.209.147.180:45340 173.194.113.146:443 ESTABLISHED tcp 0 168 37.209.147.180:45334 173.194.113.146:443 FIN_WAIT1 tcp 1 0 93.154.146.186:46609 23.21.151.181:80 CLOSE_WAIT tcp 0 1248 93.154.166.62:58270 64.251.23.59:443 FIN_WAIT1 tcp 0 1 37.209.147.180:59850 141.101.114.59:80 FIN_WAIT1 tcp 1 0 93.154.146.186:35181 75.101.152.29:80 CLOSE_WAIT tcp 232 0 93.154.172.168:46384 198.252.206.25:80 ESTABLISHED tcp 1 0 93.154.146.186:52618 107.22.246.76:80 CLOSE_WAIT tcp 1 0 93.154.172.168:36298 173.194.69.95:443 CLOSE_WAIT tcp 1 0 93.154.146.186:60209 75.101.152.29:443 CLOSE_WAIT tcp 0 168 37.209.147.180:45335 173.194.113.146:443 FIN_WAIT1 tcp 415 0 93.154.146.186:36157 82.112.106.104:80 CLOSE_WAIT tcp 1 0 192.168.43.224:36082 93.184.220.148:80 CLOSE_WAIT tcp 1 0 192.168.43.224:32942 199.15.160.100:80 CLOSE_WAIT tcp 1 0 93.154.146.186:50350 107.22.246.76:443 CLOSE_WAIT tcp 1 0 192.168.43.224:32941 199.15.160.100:80 CLOSE_WAIT tcp 0 534 37.209.147.180:44089 198.252.206.16:80 FIN_WAIT1 tcp 1 0 93.154.146.186:46608 23.21.151.181:80 CLOSE_WAIT tcp 1 0 93.154.146.186:46612 23.21.151.181:80 CLOSE_WAIT udp 0 0 37.209.147.180:49057 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:51631 193.41.112.18:53 ESTABLISHED udp 0 0 37.209.147.180:34827 193.41.112.18:53 ESTABLISHED udp 0 0 37.209.147.180:35908 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:44106 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:42184 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:54485 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:42216 193.41.112.18:53 ESTABLISHED udp 0 0 37.209.147.180:51961 193.41.112.14:53 ESTABLISHED udp 0 0 37.209.147.180:48412 193.41.112.14:53 ESTABLISHED The interesting lines from ping got lost, but the summary over past few hours is: --- 8.8.8.8 ping statistics --- 107459 packets transmitted, 104376 received, +22 duplicates, 2% packet loss, time 195427362ms rtt min/avg/max/mdev = 24.822/528.132/90538.257/2519.263 ms, pipe 90 EDIT: Per request: Happened again, reboot didn't help but cleaned up all "hanging" processes. Currently netstat shows: bw@pony:/var/log$ netstat -n -t Active Internet connections (w/o servers) Proto Recv-Q Send-Q Local Address Foreign Address State tcp 0 0 93.154.188.68:42767 74.125.239.143:443 TIME_WAIT tcp 0 0 93.154.188.68:50270 173.194.69.189:443 ESTABLISHED tcp 0 0 93.154.188.68:45250 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:53488 173.194.32.198:80 ESTABLISHED tcp 0 0 93.154.188.68:53490 173.194.32.198:80 ESTABLISHED tcp 0 159 93.154.188.68:42741 74.125.239.143:443 LAST_ACK tcp 0 0 93.154.188.68:45808 198.252.206.25:80 ESTABLISHED tcp 0 0 93.154.188.68:52449 173.194.32.199:443 ESTABLISHED tcp 0 0 93.154.188.68:52600 173.194.32.199:443 TIME_WAIT tcp 0 0 93.154.188.68:50300 173.194.69.189:443 TIME_WAIT tcp 0 0 93.154.188.68:45253 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:46252 173.194.32.204:443 ESTABLISHED tcp 0 0 93.154.188.68:45246 190.93.244.58:80 ESTABLISHED tcp 0 0 93.154.188.68:47064 173.194.113.143:443 ESTABLISHED tcp 0 0 93.154.188.68:34484 173.194.69.95:443 ESTABLISHED tcp 0 0 93.154.188.68:45252 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:54290 173.194.32.202:443 ESTABLISHED tcp 0 0 93.154.188.68:47063 173.194.113.143:443 ESTABLISHED tcp 0 0 93.154.188.68:53469 173.194.32.198:80 TIME_WAIT tcp 0 0 93.154.188.68:45242 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:53468 173.194.32.198:80 ESTABLISHED tcp 0 0 93.154.188.68:50299 173.194.69.189:443 TIME_WAIT tcp 0 0 93.154.188.68:42764 74.125.239.143:443 TIME_WAIT tcp 0 0 93.154.188.68:45256 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:58047 108.160.162.105:80 ESTABLISHED tcp 0 0 93.154.188.68:45249 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:50297 173.194.69.189:443 TIME_WAIT tcp 0 0 93.154.188.68:53470 173.194.32.198:80 ESTABLISHED tcp 0 0 93.154.188.68:34100 68.232.35.121:443 ESTABLISHED tcp 0 0 93.154.188.68:42758 74.125.239.143:443 ESTABLISHED tcp 0 0 93.154.188.68:42765 74.125.239.143:443 TIME_WAIT tcp 0 0 93.154.188.68:39000 173.194.69.95:80 TIME_WAIT tcp 0 0 93.154.188.68:50296 173.194.69.189:443 TIME_WAIT tcp 0 0 93.154.188.68:53467 173.194.32.198:80 ESTABLISHED tcp 0 0 93.154.188.68:42766 74.125.239.143:443 TIME_WAIT tcp 0 0 93.154.188.68:45251 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:45248 190.93.244.58:80 TIME_WAIT tcp 0 0 93.154.188.68:45247 190.93.244.58:80 ESTABLISHED tcp 0 159 93.154.188.68:50254 173.194.69.189:443 LAST_ACK tcp 0 0 93.154.188.68:34483 173.194.69.95:443 ESTABLISHED Output of ps: USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.8 0.0 3628 2092 ? Ss 16:52 0:03 /sbin/init root 2 0.0 0.0 0 0 ? S 16:52 0:00 [kthreadd] root 3 0.1 0.0 0 0 ? S 16:52 0:00 [ksoftirqd/0] root 4 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/0:0] root 6 0.0 0.0 0 0 ? S 16:52 0:00 [migration/0] root 7 0.0 0.0 0 0 ? S 16:52 0:00 [watchdog/0] root 8 0.0 0.0 0 0 ? S 16:52 0:00 [migration/1] root 10 0.1 0.0 0 0 ? S 16:52 0:00 [ksoftirqd/1] root 11 0.0 0.0 0 0 ? S 16:52 0:00 [watchdog/1] root 12 0.0 0.0 0 0 ? S 16:52 0:00 [migration/2] root 14 0.1 0.0 0 0 ? S 16:52 0:00 [ksoftirqd/2] root 15 0.0 0.0 0 0 ? S 16:52 0:00 [watchdog/2] root 16 0.0 0.0 0 0 ? S 16:52 0:00 [migration/3] root 17 0.0 0.0 0 0 ? S 16:52 0:00 [kworker/3:0] root 18 0.1 0.0 0 0 ? S 16:52 0:00 [ksoftirqd/3] root 19 0.0 0.0 0 0 ? S 16:52 0:00 [watchdog/3] root 20 0.0 0.0 0 0 ? S< 16:52 0:00 [cpuset] root 21 0.0 0.0 0 0 ? S< 16:52 0:00 [khelper] root 22 0.0 0.0 0 0 ? S 16:52 0:00 [kdevtmpfs] root 23 0.0 0.0 0 0 ? S< 16:52 0:00 [netns] root 24 0.0 0.0 0 0 ? S 16:52 0:00 [sync_supers] root 25 0.0 0.0 0 0 ? S 16:52 0:00 [bdi-default] root 26 0.0 0.0 0 0 ? S< 16:52 0:00 [kintegrityd] root 27 0.0 0.0 0 0 ? S< 16:52 0:00 [kblockd] root 28 0.0 0.0 0 0 ? S< 16:52 0:00 [ata_sff] root 29 0.0 0.0 0 0 ? S 16:52 0:00 [khubd] root 30 0.0 0.0 0 0 ? S< 16:52 0:00 [md] root 42 0.0 0.0 0 0 ? S 16:52 0:00 [khungtaskd] root 43 0.0 0.0 0 0 ? S 16:52 0:00 [kswapd0] root 44 0.0 0.0 0 0 ? SN 16:52 0:00 [ksmd] root 45 0.0 0.0 0 0 ? SN 16:52 0:00 [khugepaged] root 46 0.0 0.0 0 0 ? S 16:52 0:00 [fsnotify_mark] root 47 0.0 0.0 0 0 ? S 16:52 0:00 [ecryptfs-kthrea] root 48 0.0 0.0 0 0 ? S< 16:52 0:00 [crypto] root 59 0.0 0.0 0 0 ? S< 16:52 0:00 [kthrotld] root 70 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/2:1] root 71 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_0] root 72 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_1] root 73 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_2] root 74 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_3] root 75 0.0 0.0 0 0 ? S 16:52 0:00 [kworker/u:2] root 76 0.0 0.0 0 0 ? S 16:52 0:00 [kworker/u:3] root 79 0.0 0.0 0 0 ? S 16:52 0:00 [kworker/1:1] root 99 0.0 0.0 0 0 ? S< 16:52 0:00 [deferwq] root 100 0.0 0.0 0 0 ? S< 16:52 0:00 [charger_manager] root 101 0.0 0.0 0 0 ? S< 16:52 0:00 [devfreq_wq] root 102 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/2:2] root 106 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_4] root 107 0.0 0.0 0 0 ? S 16:52 0:00 [usb-storage] root 108 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_5] root 109 0.0 0.0 0 0 ? S 16:52 0:00 [usb-storage] root 271 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/1:2] root 316 0.0 0.0 0 0 ? S 16:52 0:00 [jbd2/sda1-8] root 317 0.0 0.0 0 0 ? S< 16:52 0:00 [ext4-dio-unwrit] root 440 0.1 0.0 2820 608 ? S 16:52 0:00 upstart-udev-bridge --daemon root 478 0.0 0.0 3460 1648 ? Ss 16:52 0:00 /sbin/udevd --daemon root 632 0.0 0.0 3348 1336 ? S 16:52 0:00 /sbin/udevd --daemon root 633 0.0 0.0 3348 1204 ? S 16:52 0:00 /sbin/udevd --daemon root 782 0.0 0.0 2816 596 ? S 16:52 0:00 upstart-socket-bridge --daemon root 822 0.0 0.0 6684 2400 ? Ss 16:52 0:00 /usr/sbin/sshd -D 102 834 0.2 0.0 4064 1864 ? Ss 16:52 0:01 dbus-daemon --system --fork root 857 0.0 0.1 7420 3380 ? Ss 16:52 0:00 /usr/sbin/modem-manager root 858 0.0 0.0 4784 1636 ? Ss 16:52 0:00 /usr/sbin/bluetoothd syslog 860 0.0 0.0 31068 1496 ? Sl 16:52 0:00 rsyslogd -c5 root 869 0.1 0.1 24280 5564 ? Ssl 16:52 0:00 NetworkManager avahi 883 0.0 0.0 3448 1488 ? S 16:52 0:00 avahi-daemon: running [pony.local] avahi 884 0.0 0.0 3448 436 ? S 16:52 0:00 avahi-daemon: chroot helper root 885 0.0 0.0 0 0 ? S< 16:52 0:00 [kpsmoused] root 892 0.0 0.1 25696 4140 ? Sl 16:52 0:00 /usr/lib/policykit-1/polkitd --no-debug root 923 0.0 0.0 0 0 ? S 16:52 0:00 [scsi_eh_6] root 959 0.0 0.0 0 0 ? S< 16:52 0:00 [krfcommd] root 970 0.0 0.1 7536 3120 ? Ss 16:52 0:00 /usr/sbin/cupsd -F colord 976 0.1 0.3 55080 10396 ? Sl 16:52 0:00 /usr/lib/i386-linux-gnu/colord/colord root 979 0.0 0.0 4632 872 tty4 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty4 root 987 0.0 0.0 4632 884 tty5 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty5 root 994 0.0 0.0 4632 884 tty2 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty2 root 995 0.0 0.0 4632 868 tty3 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty3 root 998 0.0 0.0 4632 876 tty6 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty6 root 1022 0.0 0.0 2176 680 ? Ss 16:52 0:00 acpid -c /etc/acpi/events -s /var/run/acpid.socket root 1029 0.0 0.0 3632 664 ? Ss 16:52 0:00 /usr/sbin/irqbalance daemon 1030 0.0 0.0 2476 120 ? Ss 16:52 0:00 atd root 1031 0.0 0.0 2620 880 ? Ss 16:52 0:00 cron root 1061 0.1 0.0 0 0 ? S 16:52 0:00 [kworker/3:2] root 1064 0.0 1.0 34116 31072 ? SLsl 16:52 0:00 lightdm root 1076 13.4 1.2 118688 37920 tty7 Ssl+ 16:52 0:55 /usr/bin/X :0 -core -auth /var/run/lightdm/root/:0 -nolisten tcp vt7 -novtswit root 1085 0.0 0.0 0 0 ? S 16:52 0:00 [rts_pstor] root 1087 0.0 0.0 0 0 ? S 16:52 0:00 [rtsx-polling] root 1095 0.0 0.0 0 0 ? S< 16:52 0:00 [cfg80211] root 1127 0.0 0.0 0 0 ? S 16:52 0:00 [flush-8:0] root 1130 0.0 0.0 6136 1824 ? Ss 16:52 0:00 /sbin/wpa_supplicant -B -P /run/sendsigs.omit.d/wpasupplicant.pid -u -s -O /va root 1137 0.0 0.1 24604 3164 ? Sl 16:52 0:00 /usr/lib/accountsservice/accounts-daemon root 1140 0.0 0.0 0 0 ? S< 16:52 0:00 [hd-audio0] root 1188 0.0 0.1 34308 3420 ? Sl 16:52 0:00 /usr/sbin/console-kit-daemon --no-daemon root 1425 0.0 0.0 4632 872 tty1 Ss+ 16:52 0:00 /sbin/getty -8 38400 tty1 root 1443 0.1 0.1 29460 4664 ? Sl 16:52 0:00 /usr/lib/upower/upowerd root 1579 0.0 0.1 16540 3272 ? Sl 16:53 0:00 lightdm --session-child 12 19 bw 1623 0.0 0.0 2232 644 ? Ss 16:53 0:00 /bin/sh /usr/bin/startkde bw 1672 0.0 0.0 4092 204 ? Ss 16:53 0:00 /usr/bin/ssh-agent /usr/bin/gpg-agent --daemon --sh --write-env-file=/home/bw/ bw 1673 0.0 0.0 5492 384 ? Ss 16:53 0:00 /usr/bin/gpg-agent --daemon --sh --write-env-file=/home/bw/.gnupg/gpg-agent-in bw 1676 0.0 0.0 3848 792 ? S 16:53 0:00 /usr/bin/dbus-launch --exit-with-session /usr/bin/startkde bw 1677 0.5 0.0 5384 2180 ? Ss 16:53 0:02 //bin/dbus-daemon --fork --print-pid 5 --print-address 7 --session root 1704 0.3 0.1 25348 3600 ? Sl 16:53 0:01 /usr/lib/udisks/udisks-daemon root 1705 0.0 0.0 6620 728 ? S 16:53 0:00 udisks-daemon: not polling any devices bw 1736 0.0 0.0 2008 64 ? S 16:53 0:00 /usr/lib/kde4/libexec/start_kdeinit +kcminit_startup bw 1737 0.0 0.5 115200 15588 ? Ss 16:53 0:00 kdeinit4: kdeinit4 Running... bw 1738 0.1 0.2 116756 8728 ? S 16:53 0:00 kdeinit4: klauncher [kdeinit] --fd=9 bw 1740 0.6 1.0 340524 31264 ? Sl 16:53 0:02 kdeinit4: kded4 [kdeinit] bw 1742 0.0 0.0 8944 2144 ? S 16:53 0:00 /usr/lib/i386-linux-gnu/gconf/gconfd-2 bw 1746 0.2 0.4 92028 14688 ? S 16:53 0:00 /usr/bin/kglobalaccel bw 1748 0.0 0.4 90804 13500 ? S 16:53 0:00 /usr/bin/kwalletd bw 1752 0.1 0.5 103764 15152 ? S 16:53 0:00 /usr/bin/kactivitymanagerd bw 1758 0.0 0.0 2144 280 ? S 16:53 0:00 kwrapper4 ksmserver bw 1759 0.1 0.5 150016 16088 ? Sl 16:53 0:00 kdeinit4: ksmserver [kdeinit] bw 1763 2.2 1.0 178492 32100 ? Sl 16:53 0:08 kwin bw 1772 0.2 0.5 106292 16340 ? Sl 16:53 0:00 /usr/bin/knotify4 bw 1777 0.9 1.1 246120 32912 ? Sl 16:53 0:03 /usr/bin/krunner bw 1778 6.3 2.7 389884 80216 ? Sl 16:53 0:23 /usr/bin/plasma-desktop bw 1785 0.0 0.0 2844 1208 ? S 16:53 0:00 ksysguardd bw 1789 0.1 0.4 82036 14176 ? S 16:53 0:00 /usr/bin/kuiserver bw 1805 0.3 0.1 61560 5612 ? Sl 16:53 0:01 /usr/bin/akonadi_control root 1806 0.0 0.0 0 0 ? S 16:53 0:00 [kworker/0:2] bw 1808 0.1 0.2 211852 8460 ? Sl 16:53 0:00 akonadiserver bw 1810 0.4 0.8 244116 25360 ? Sl 16:53 0:01 /usr/sbin/mysqld --defaults-file=/home/bw/.local/share/akonadi/mysql.conf --da bw 1874 0.0 0.0 35284 2956 ? Sl 16:53 0:00 /usr/bin/xsettings-kde bw 1876 0.0 0.3 68776 9488 ? Sl 16:53 0:00 /usr/bin/nepomukserver bw 1884 0.4 0.9 173876 29240 ? SNl 16:53 0:01 /usr/bin/nepomukservicestub nepomukstorage bw 1902 6.1 2.1 451512 63924 ? Sl 16:53 0:21 /home/bw/.dropbox-dist/dropbox bw 1906 3.8 1.0 142368 32376 ? Rl 16:53 0:13 /usr/bin/yakuake bw 1933 0.0 0.1 54636 4680 ? Sl 16:53 0:00 /usr/bin/zeitgeist-datahub bw 1943 0.5 1.5 164836 46836 ? Sl 16:53 0:01 python /usr/bin/printer-applet bw 1945 0.1 0.1 99636 5048 ? S<l 16:53 0:00 /usr/bin/pulseaudio --start --log-target=syslog rtkit 1947 0.0 0.0 21336 1248 ? SNl 16:53 0:00 /usr/lib/rtkit/rtkit-daemon bw 1958 0.0 0.1 44204 3792 ? Sl 16:53 0:00 /usr/bin/zeitgeist-daemon bw 1972 0.0 0.0 27008 2684 ? Sl 16:53 0:00 /usr/lib/gvfs/gvfsd bw 1974 0.1 0.5 90480 16660 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_akonotes_resource akonadi_akonotes_res bw 1984 0.1 0.5 90472 16636 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_akonotes_resource akonadi_akonotes_res bw 1985 0.3 0.9 148800 28304 ? S 16:53 0:01 /usr/bin/akonadi_archivemail_agent --identifier akonadi_archivemail_agent bw 1992 0.1 0.5 90020 16148 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_contacts_resource akonadi_contacts_res bw 1993 0.1 0.5 90132 16452 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_contacts_resource akonadi_contacts_res bw 1994 0.1 0.5 90564 16332 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_ical_resource akonadi_ical_resource_0 bw 1995 0.1 0.5 90676 16732 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_ical_resource akonadi_ical_resource_1 bw 1996 0.1 0.5 90468 16800 ? Sl 16:53 0:00 /usr/bin/akonadi_agent_launcher akonadi_maildir_resource akonadi_maildir_resou bw 1999 0.2 0.6 99324 19276 ? S 16:53 0:00 /usr/bin/akonadi_maildispatcher_agent --identifier akonadi_maildispatcher_agen bw 2006 0.3 0.9 148808 28332 ? S 16:53 0:01 /usr/bin/akonadi_mailfilter_agent --identifier akonadi_mailfilter_agent bw 2017 0.0 0.1 50256 4716 ? Sl 16:53 0:00 /usr/lib/zeitgeist/zeitgeist-fts bw 2024 0.2 0.6 103632 18376 ? Sl 16:53 0:00 /usr/bin/akonadi_nepomuk_feeder --identifier akonadi_nepomuk_feeder bw 2043 0.0 0.0 4484 280 ? S 16:53 0:00 /bin/cat bw 2101 0.2 0.7 113600 22396 ? Sl 16:53 0:00 /usr/lib/kde4/libexec/polkit-kde-authentication-agent-1 bw 2105 0.2 0.7 114196 22072 ? Sl 16:53 0:00 /usr/bin/nepomukcontroller bw 2156 0.3 1.0 333188 31244 ? Sl 16:54 0:01 /usr/bin/kmix bw 2167 0.0 0.0 6548 2724 pts/2 Ss 16:54 0:00 /bin/bash bw 2177 0.2 0.7 113496 22960 ? Sl 16:54 0:00 /usr/bin/klipper bw 2394 3.5 1.2 52932 35596 ? SNl 16:54 0:11 /usr/bin/virtuoso-t +foreground +configfile /tmp/virtuoso_hX1884.ini +wait root 2460 0.0 0.0 6184 1876 pts/2 S 16:54 0:00 sudo -s root 2500 0.0 0.0 6528 2700 pts/2 S 16:54 0:00 /bin/bash root 2599 0.0 0.0 5444 1280 pts/2 S+ 16:54 0:00 /bin/bash bin/aero root 2606 0.1 0.0 9836 2500 pts/2 S+ 16:54 0:00 wvdial aero2 root 2619 0.0 0.0 3504 1280 pts/2 S 16:54 0:00 /usr/sbin/pppd 57600 modem crtscts defaultroute usehostname -detach user aero bw 2653 0.0 0.0 6600 2880 pts/3 Ss 16:54 0:00 /bin/bash bw 2676 0.4 0.8 130296 24016 ? SNl 16:54 0:01 /usr/bin/nepomukservicestub nepomukfilewatch bw 2679 0.1 0.7 101636 22252 ? SNl 16:54 0:00 /usr/bin/nepomukservicestub nepomukqueryservice bw 2681 0.2 0.8 109836 24280 ? SNl 16:54 0:00 /usr/bin/nepomukservicestub nepomukbackupsync bw 3833 46.0 9.7 829272 288012 ? Rl 16:55 1:46 /usr/lib/firefox/firefox bw 3903 0.0 0.0 35128 2804 ? Sl 16:55 0:00 /usr/lib/at-spi2-core/at-spi-bus-launcher bw 4708 0.1 0.0 6564 2736 pts/4 Ss 16:56 0:00 /bin/bash root 5210 0.0 0.0 0 0 ? S 16:57 0:00 [kworker/u:0] root 6140 0.2 0.0 0 0 ? S 16:58 0:00 [kworker/0:1] root 6371 0.5 0.0 6184 1868 pts/4 S+ 16:59 0:00 sudo nethogs ppp0 root 6411 17.7 0.2 8616 6144 pts/4 S+ 16:59 0:05 nethogs ppp0 bw 6787 0.0 0.0 5464 1220 pts/3 R+ 16:59 0:00 ps auxw

    Read the article

  • CodePlex Daily Summary for Saturday, October 29, 2011

    CodePlex Daily Summary for Saturday, October 29, 2011Popular Releasespatterns & practices: Enterprise Library Contrib: Enterprise Library Contrib - 5.0 (Oct 2011): This release of Enterprise Library Contrib is based on the Microsoft patterns & practices Enterprise Library 5.0 core and contains the following: Common extensionsTypeConfigurationElement<T> - A Polymorphic Configuration Element without having to be part of a PolymorphicConfigurationElementCollection. AnonymousConfigurationElement - A Configuration element that can be uniquely identified without having to define its name explicitly. Data Access Application Block extensionsMySql Provider - ...Network Monitor Open Source Parsers: Network Monitor Parsers 3.4.2748: The Network Monitor Parsers packages contain parsers for more than 400 network protocols, including RFC based public protocols and protocols for Microsoft products defined in the Microsoft Open Specifications for Windows and SQL Server. NetworkMonitor_Parsers.msi is the base parser package which defines parsers for commonly used public protocols and protocols for Microsoft Windows. In this release, NetowrkMonitor_Parsers.msi continues to improve quality and fix bugs. It has included the fo...Duckworth Lewis Professional Edition Calculator: DLcalc 3.0: DLcalc 3.0 can perform Duckworth/Lewis Professional Edition calculations 100% accurately. It also produces over-by-over and ball-by-ball PAR score tables.Folder Bookmarks: Folder Bookmarks 2.2.0.1: In this version: Custom Icons - now you can change the icons of the bookmarks. By default, whenever an image is added, the icon is automatically changed to a thumbnail of the picture. This can be turned off in the settings (Options... > Settings) Ability to remove items from the 'Recent' category Bugfixes - 'Choose' button in 'Edit Bookmark' now works Another bug fix: another problem in the 'Edit Bookmark' windowMedia Companion: MC 3.420b Weekly: Ensure .NET 4.0 Full Framework is installed. (Available from http://www.microsoft.com/download/en/details.aspx?id=17718) Ensure the NFO ID fix is applied when transitioning from versions prior to 3.416b. (Details here) Movies Fixed: Fanart and poster scraping issues TV Shows (Re)Added: Rebuild single show Fixed: Issue when shows are moved from original location Ability to handle " for actor nicknames Crash when episode name contains "<" (does not scrape yet) Clears fanart when switch...patterns & practices - Unity: Unity 3.0 for .NET4.5 Preview: The Unity 3.0.1026.0 Preview enables Unity to work on .NET 4.5 with both the WinRT and desktop profiles. The major changes include: Unity projects updated to target .NET 4.5. Dynamic build plans modified to use compiled lambda expressions instead of Reflection.Emit Converting reflection to use the new TypeInfo for reflection. Projects updated to work with the Microsoft Visual Studio 2011 Preview Notes/Known Issues: The Microsoft.Practices.Unity.UnityServiceLocator class cannot be use...Managed Extensibility Framework: MEF 2 Preview 4: Detailed information on this release is available on the BCL team blog.Image Converter: Image Converter 0.3: New Features: - English and German support Technical Improvements: - Microsoft All Rules using Code Analysis Planned Features for future release: 1. Unit testing 2. Command line interface 3. Automatic UpdatesAcDown????? - Anime&Comic Downloader: AcDown????? v3.6: ?? ● AcDown??????????、??????,??????????????????????,???????Acfun、Bilibili、???、???、???、Tucao.cc、SF???、?????80????,???????????、?????????。 ● AcDown???????????????????????????,???,???????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7 ????????????? ??:????????Windows XP???,?????????.NET Framework 2.0???(x86)?.NET Framework 2.0???(x64),?????"?????????"??? ??????????????,??????????: ??"AcDown?????"????????? ?? v3.6?? ??“????”...DotNetNuke® Events: 05.02.01: This release fixes any know bugs from any previous version. Events 05.02.01 will work for any DNN version 5.5.0 and up. Full details on the changes can be found at http://dnnevents.codeplex.com/workitem/list/basic Please review and rate this release... (stars are welcome)BUG FIXESAdded validation around category cookie RSS feed was missing an explicit close of the file when writing. Fixed. Added extra security into detail view .ICS Files did not include correct line folding. Fixed Cha...Microsoft Ajax Minifier: Microsoft Ajax Minifier 4.33: Add JSParser.ParseExpression method to parse JavaScript expressions rather than source-elements. Add -strict switch (CodeSettings.StrictMode) to force input code to ECMA5 Strict-mode (extra error-checking, "use strict" at top). Fixed bug when MinifyCode setting was set to false but RemoveUnneededCode was left it's default value of true.Path Copy Copy: 8.0: New version that mostly adds lots of requested features: 11340 11339 11338 11337 This version also features a more elaborate Settings UI that has several tabs. I tried to add some notes to better explain the use and purpose of the various options. The Path Copy Copy documentation is also on the way, both to explain how to develop custom plugins and to explain how to pre-configure options if you're a network admin. Stay tuned.MVC Controls Toolkit: Mvc Controls Toolkit 1.5.0: Added: The new Client Blocks feaure of Views A new "move" js method for the TreeViews The NewHtmlCreated js event to the DataGrid Improved the ChoiceList structure that now allows also the selection list of a dropdown to be chosen with a lambda expression Improved the AcceptViewHintAttribute controller filter. Now a client can specify not only the name of a View or Partial View it prefers, but also to receive just the rough data in Json format. Fixed: Issue with partial thrust Cl...Free SharePoint Master Pages: Buried Alive (Halloween) Theme: Release Notes *Created for Halloween, you will find theme file, custom css file and images. *Created by Al Roome @AlstarRoome Features: Custom styling for web part Custom background *Screenshot https://s3.amazonaws.com/kkhipple/post/sharepoint-showcase-halloween.pngDevForce Application Framework: DevForce AF 2.0.3 RTW: PrerequisitesWPF 4.0 Silverlight 4.0 DevForce 2010 6.1.3.1 Download ContentsDebug and Release Assemblies API Documentation Source code License.txt Requirements.txt Release HighlightsNew: EventAggregator event forwarding New: EntityManagerInterceptor<T> to intercept EntityManger events New: IHarnessAware to allow for ViewModel setup when executed inside of the Development Harness New: Improved design time stability New: Support for add-in development New: CoroutineFns.To...NicAudio: NicAudio 2.0.5: Minor change to accept special DTS stereo modes (LtRt, AB,...)NDepend TFS 2010 integration: version 0.5.0 beta 1: Only the activity and the VS plugin are avalaible right now. They basically work. Data types that are logged into tfs reports are subject to change. This is no big deal since data is not yet sent into the warehouse.Windows Azure Toolkit for Windows Phone: Windows Azure Toolkit for Windows Phone v1.3.1: Upgraded Windows Azure projects to Windows Azure Tools for Microsoft Visual Studio 2010 1.5 – September 2011 Upgraded the tools tools to support the Windows Phone Developer Tools RTW Update SQL Azure only scenarios to use ASP.NET Universal Providers (through the System.Web.Providers v1.0.1 NuGet package) Changed Shared Access Signature service interface to support more operations Refactored Blobs API to have a similar interface and usage to that provided by the Windows Azure SDK Stor...DotNetNuke® FAQ: 05.00.00: FAQ (Frequently Asked Questions) 05.00.00 will work for any DNN version 5.6.1 and up. It is the first version which is rewritten in C#. The scope of this update is to fix all known issues and improve user interface. Please review and rate this release... (stars are welcome)BUG FIXESManage Categories button text was not localized Edit/Add FAQ Entry: button text was not localized ENHANCEMENTSAdded an option to select the control for category display: Listbox with checkboxes (flat category ...SiteMap Editor for Microsoft Dynamics CRM 2011: SiteMap Editor (1.0.921.340): Added CodePlex and PayPal links New iconNew ProjectsAsynk: Asynk is a framework/application that allows existing applications to easily be extended with an offloaded asynchronous worker layer. Asynk is developed using C#.Blob Tower Defense: 3D tower defense game for Windows Phone 7. School project for Brno University of Technology, computer graphics class.Booz: Booz is... An extended version of the boo shell (booish2 to be precise). Offers additional commands like cd, md, ls etc. I hope this shell can be used to take the position of/surpass the native windows shell in the near future.CIMS: a sanction infomation system for sencience and technology of hustCrystalDot - Icon Collection / Pack (LGPL): .Net / Mono freundliche Varainte der Crystal-Icons von Everaldo Icon collection / pack for .NET and Mono designed by Everaldo - KDE style http://www.everaldo.com/crystal/dotetes: dotetes adalah teka teki silang tool dikembangkan dengan bahasa c#Emoe': This Project is a Windows Phone 7.1 application.Equation Inversion: Visual Studion 2008 Add-in for equation inversions.Exploring VMR Features on WEC7: This is the sample application helps you to do alpha blending the bitmap on camera streaming in Windows Embedded Compact 7 using Directshow video Renderer (VMR). It is a VS2008 based smart device project developed on C++. I have explained the sample application in the following blog link. http://www.e-consystems.com/blog/windowsce/?p=759 EzValidation: Custom validation extensions for ASP.NET MVC 3. Includes server and client side model based validation attributes for: -- Equal To -- Not Equal To -- Greater Than -- Greater Than or Equal To -- Less Than -- Less Than or Equal To Supports validating against: -- Another Model Field -- A Specific Value -- Current Date/Yesterday/Tomorrow (for Dates and Strings) Download & Install via NuGet "package-install ezvalidation"Flu.net: Flu.net is a tool that helps you creating your own fluent syntax for .NET Framework applications in a declarative fashion. It is aimed for infrastructures and other open-source projects use.For Chess Endgames: King vs. King Opposition Calculator: You must input the locations of 2 kings on a chessboard, and whose turn it is to move. The calculator will display which king has the opposition, and how it can be used or maintained.GameTrakXNA: This project aims to create a simple library to use the unique GameTrak controller within XNA and Flash.Google Speech Recognition Example: Google Speech Recognition contains a working example of application that uses google speech recognition API. App contains all necessary dlls to record, decode and send your voice request to google service and recieve a text representation of what you've said. It's developed in C#Interval Mandelbrot Explorer: Explore the Mandelbrot set using interval arithmetic.ISD training tasks: ISD training examples and tasksiTunesControlBar: The iTunesControlBar helps user control their iTunes Application while it is minimized. iTunesControlBar resides at the top of the screen, invisible when not used, and allows playback and volume control, library searches and media information without the need to bring up iTunes.iTurtle: A bunch of Powerscripts to automate server management in AD environment.M26WC - Mono 2.6 Wizard Control: Wizard which runs under Mono2.6 A fork of: http://aerowizard.codeplex.com/Microsoft Help Viewer 2: Help Viewer 2 is the help runtime for both Visual Studio 11 help and Windows 8 help. The code in this project will help you use and understand the HV2 runtime API.MONTRASEC: Monitoring Trafficking in human beings and Sexual Exploitation of Children: benchmarking for member state and EU reporting, turning the SIAMSECT templates into a user-friendly interface and reporting tool. MTF.NET Runtime: Managed Task Framework .NET Runtime The MTF.NET runtime software and resulting assemblies are required to run applications built using the Managed Task Framework.NET Professional (Visual Studio 2010 extension) software design editor. The MTF.NET team are committed to continuously improving the core MTF.NET runtime and ensuring it is always available free and fully transparent. Pandoras Box: A greenfield inversion of control project utilising the power and flexibility of expressions and preferring convention over configuration.Pass the Puzzle: Pass the Puzzle is a frantic word-guessing party game. The game displays a few letters, and the players must come up with words containing those letters. But beware: if the timer goes off, you lose! It is based on the folk party game Pass the Parcel and is written in C#.PerCiGal: Percigal is a project for the development of applications for managing your personal media library. It consists in - a windows application to use at home to catalog movies, TV series, cast and books, with the support of the Internet for information retrieval; - a web interface for viewing and cataloging everywhere your media; - an application for smartphones. Project Flying Carpet: Este jogo é um projeto para a cadeira Projeto de Jogos: Motores Jogos do curso de Jogos Digitais da Unisinos.proxy browser: sed leo Latin's Butterfly....Python Multiple Dispatch: Multiple dispatch (AKA multimethods) for Python 3 via a metaclass and type annotations.reDune: ?????????? ???? ? ????? «????????? ? ???????? ???????». ???????? ?? Dune2000 ?? Westwood ? Electronic Arts.Rereadable: Keep page from internet for read it latter.ServStop: ServStop is a .NET application that makes it easy to stop several system services at once. Now you don't have to change startup types or stop them one at a time. It has a simple list-based interface with the ability to save and load lists of user services to stop. Written in C#.SharePoint 2010 Audience Membership Workflow Activity (Full Trust): A simple SharePoint 2010 workflow activity / workflow condition to check whether the user initiating the workflow is a member of a specified audience. Farm-level .wsp solution, written in C#. Once installed, the workflow activity can be used in SharePoint Designer 2010 declarative workflows.SQL Server® to Firebird DB converter: Converts Microsoft SQL Server® database into Firebird database including entire structure and datastegitest: test projectSystem.Threading.Joins: The Joins project provides asynchronous concurrency semantics based on join calculus and modeled after the Microsoft Research C? (C Omega) project.TestAndroidGame: try dev a TestAndroidGametetribricks: block game Topographic Explorer: A project to import, convert, explore, manipulate, and save topographical maps. Looking to use C# and WPF.Trading: Under construction!!!Trombone: Trombone makes it easier for Windows Mobile Professional users to automate status reply through SMS. It's developed in Visual C# 2008.Tulsa SharePoint Interest Group: Repository for source code for the Tulsa SharePoint Interest Group's web site. The Tulsa SharePoint Interest Group is using the Community Kit for SharePoint. This project will house any modifications that are specific to our user group.World of Tanks RU tiny stats collection utilty.: Tiny utility to load players stats for World of Tanks RU server. Results saved to comma separated file.WS-Discovery Proxy: Attempt at creating general purpose WS-Discovery Proxy.Yamaha Tu?n Tr?c: This application is used to manage information for Yamaha Tu?n Tr?c

    Read the article

< Previous Page | 389 390 391 392 393 394 395 396 397 398 399 400  | Next Page >