Search Results

Search found 21563 results on 863 pages for 'game testing'.

Page 399/863 | < Previous Page | 395 396 397 398 399 400 401 402 403 404 405 406  | Next Page >

  • Flickering when accessing texture by offset

    - by TravisG
    I have this simple compute shader that basically just takes the input from one image and writes it to another. Both images are 128/128/128 in size and glDispatchCompute is called with (128/8,128/8,128/8). The source images are cleared to 0 before this compute shader is executed, so no undefined values should be floating around in there. (I have the appropriate memory barrier on the C++ side set before the 3D texture is accessed). This version works fine: #version 430 layout (location = 0, rgba16f) uniform image3D ping; layout (location = 1, rgba16f) uniform image3D pong; layout (local_size_x = 8, local_size_y = 8, local_size_z = 8) in; void main() { ivec3 sampleCoord = gl_GlobalInvocationID.xyz; imageStore(pong, imageLoad(ping,sampleCoord)); } Reading values from pong shows that it's just a copy, as intended. However, when I load data from ping with an offset: #version 430 layout (location = 0, rgba16f) uniform image3D ping; layout (location = 1, rgba16f) uniform image3D pong; layout (local_size_x = 8, local_size_y = 8, local_size_z = 8) in; void main() { ivec3 sampleCoord = gl_GlobalInvocationID.xyz; imageStore(pong, imageLoad(ping,sampleCoord+ivec3(1,0,0))); } The data that is written to pong seems to depend on the order of execution of the threads within the work groups, which makes no sense to me. When reading from the pong texture, visible flickering occurs in some spots on the texture. What am I doing wrong here?

    Read the article

  • How can I implement an Iris Wipe effect?

    - by Vandell
    For those who doesn't know: An iris wipe is a wipe that takes the shape of a growing or shrinking circle. It has been frequently used in animated short subjects, such as those in the Looney Tunes and Merrie Melodies cartoon series, to signify the end of a story. When used in this manner, the iris wipe may be centered around a certain focal point and may be used as a device for a "parting shot" joke, a fourth wall-breaching wink by a character, or other purposes. Example from flasheff.com Your answer may or may not include a coding sample, a language agnostic explanation is considered enough.

    Read the article

  • How to proceed on the waypoint path?

    - by Alpha Carinae
    I'm using Dijkstra algorithm to find shortest path and I'm drawing this path on the screen. As the character object moves on, path updates itself(shortens as the object approaches the target and gets longer as the object moves away from it.) I tried to visualize my problem. This is the beginning state. 'A' node is the target, path is the blue and the object is the green one. I draw this path, from object to the closest node. In this case my problem occurs. Because 'D' node is more closer to the object than 'C' node, something like this happens: So, how can i decide that the object passed the 'D' node? Path should be look like this: One thing comes to my mind is that I use some distance variables between the two closest nodes in the route path. (In this example these are 'C' and 'D' nodes.) As the object approaches 'C' and moves away from the 'D' node at the same time, this means character passed the 'D'. However, I think there are some standardized and easy ways to solve this. What approach should I take?

    Read the article

  • Radiosity using a hemisphere

    - by P. Avery
    I'm working on a radiosity processor. I'm projecting scene geometry onto a hemisphere at a high order of tessellation during a visibility pass onto a 1024x1024 render target. The problem is that the edges of certain triangles are not being rendered to the item buffer( render target )...so when I test certain edges( or pixels during pixel shader ) for visibility during a reconstruction pass, visible edges are not identified and as a result the pixel for that edge is discarded. One solution was to increase the resolution of the item buffer( up to 4096x4096 )...this helped and more edges were visible, however, this was not fullproof. How do I increase visibility? Here is a screenshot of a scene after radiosity is applied: the seams are edges along a triangle face that were not visible due to the resolution of the item buffer... fixed the problem by sampling the item buffer w/8 points:

    Read the article

  • Entity Component System for HUD and GUI

    - by Jason L.
    This is a very rough sketch of how I currently have things designed. It should, at least, give an idea of how my ECS is currently designed. If you notice in that diagram, I have basically split the HUD out of the ECS. They have their own set of things (HudLayer, HudComponent, etc) and are handled differently. This is where I'm struggling, though. There are many different instances in which the HUD will need to know about entities. Not just data changing (I have an event dispatcher for that), but the actual entity and all it encompasses. There are also situations where entities will need to be able to query the HUD for data. Let's take a couple examples: First, my equipment screen. On here I can change the equipment on a character (Entity). In order for this to happen, I need to know about the entity. At least I think I do? How can I handle this? The second scenario involves my Systems needing to query a HudComponent for data. A specific example would be my battle system. Each "team" is given a 3x3 grid they can move around in. See here: Skills target these cells, and not the player, so I would need a way for my systems to determine which cells are occupied and which are not. Basically I need a way for two way communication between Systems and my HUD. I know it's recommended (by some people, anyways) to take your HUD out of the ECS. Is that appropriate in my case?

    Read the article

  • Unreal 3 Editor (Unreal Tournament 3) Why does the X Y Z translations now rotate along with my static meshes?

    - by Gareth Jones
    So I was making a map for UT3, using the Unreal 3 Editor provided, and all was going well. However I was doing some work with InterpActors and Vehicle Spawners, when I must have hit a key by mistake (or other wise somehow changed something) by mistake. Now the X Y Z translations that are used to move objects around in the editor will rotate along with the object (Ive put images down below to help show what I mean) - This is very annoying because it also changes the direction the arrow keys move a rotated object, in the example below, the Down arrow key will now move the object to the right. How can I fix this? (Note both images are taken from the same viewpoint) Before Rotation: After Rotation: P.S. If someone could please provide me with the correct / better name for the X Y Z "things" it would be much appreciated, thanks!

    Read the article

  • How do I generate a level randomly?

    - by Charlton Santana
    I am currently hard coding 10 different instances like the code below, but but I'd like to create many more. Instead of having the same layout for the new level, I was wondering if there is anyway to generate a random X value for each block (this will be how far into the level it is). A level 100,000 pixels wide would be good enough but if anyone knows a system to make the level go on and on, I'd like to know that too. This is basically how I define a block now (with irrelevant code removed): block = new Block(R.drawable.block, 400, platformheight); block2 = new Block(R.drawable.block, 600, platformheight); block3 = new Block(R.drawable.block, 750, platformheight); The 400 is the X position, which I'd like to place randomly through the level, the platformheight variable defines the Y position which I don't want to change.

    Read the article

  • Rotate canvas along its center based on user touch - Android

    - by Ganapathy
    I want to rotate the canvas circularly on its center axis based on user touch. i want to rotate based on center but its rotating based on top left corner . so i am able to see only 1/4 for rotation of image. any idea.. Like a old phone dialer . I have tried like as follows onDraw(Canvas canvas){ canvas.save(); // do my rotation canvas.rotate(rotation,0,0); canvas.drawBitmap( ((BitmapDrawable)d).getBitmap(),0,0,p ); canvas.restore(); } @Override public boolean onTouchEvent(MotionEvent e) { float x = e.getX(); float y = e.getY(); updateRotation(x,y); mPreviousX = x; mPreviousY = y; invalidate(); } private void updateRotation(float x, float y) { double r = Math.atan2(x - centerX, centerY - y); rotation = (int) Math.toDegrees(r); }

    Read the article

  • Staggered Isometric Map: Calculate map coordinates for point on screen

    - by Chris
    I know there are already a lot of resources about this, but I haven't found one that matches my coordinate system and I'm having massive trouble adjusting any of those solutions to my needs. What I learned is that the best way to do this is to use a transformation matrix. Implementing that is no problem, but I don't know in which way I have to transform the coordinate space. Here's an image that shows my coordinate system: How do I transform a point on screen to this coordinate system?

    Read the article

  • Unity Occlusion Portals: What and How?

    - by Nick Wiggill
    (Here I eat my words on Meta about posting Unity questions on Unity Answers... since that site is less responsive than this one.) Unity provides cell-based Occlusion Culling (via Umbra, I believe). However, a newer feature that it supports is Occlusion Portals. The question is, if BSP-based occlusion culling is already a feature of Unity, what do portals add, and how? PS. This question is not "What are portals?" -- I'm aware of the original Quake BSP-style portals -- which is partly why I find the explicit portal concept in Unity odd, since it uses BSP anyway.

    Read the article

  • What features does D3D have that OpenGL does not (and vice versa)?

    - by Tom
    Are there any feature comparisons on Direct3D 11 and the newest OpenGL versions? Well, simply put, Direct3D 11 introduced three main features (taken from Wikipedia): Tesselation Multithreaded rendering Compute shaders Increased texture cache Now I'm wondering, how does the newest versions of OpenGL cope with these features? And since I have this feeling that there are features that Direct3D lacks from OpenGL's side, what are those?

    Read the article

  • Level of detail algorithm not functioning correctly

    - by Darestium
    I have been working on this problem for months; I have been creating Planet Generator of sorts, after more than 6 months of work I am no closer to finishing it then I was 4 months ago. My problem; The terrain does not subdivide in the correct locations properly, it almost seems as if there is a ghost camera next to me, and the quads subdivide based on the position of this "ghost camera". Here is a video of the broken program: http://www.youtube.com/watch?v=NF_pHeMOju8 The best example of the problem occurs around 0:36. For detail limiting, I am going for a chunked LOD approach, which subdivides the terrain based on how far you are away from it. I use a "depth table" to determine how many subdivisions should take place. void PQuad::construct_depth_table(float distance) { tree[0] = -1; for (int i = 1; i < MAX_DEPTH; i++) { tree[i] = distance; distance /= 2.0f; } } The chuncked LOD relies on the child/parent structure of quads, the depth is determined by a constant e.g: if the constant is 6, there are six levels of detail. The quads which should be drawn go through a distance test from the player to the centre of the quad. void PQuad::get_recursive(glm::vec3 player_pos, std::vector<PQuad*>& out_children) { for (size_t i = 0; i < children.size(); i++) { children[i].get_recursive(player_pos, out_children); } if (this->should_draw(player_pos) || this->depth == 0) { out_children.emplace_back(this); } } bool PQuad::should_draw(glm::vec3 player_position) { float distance = distance3(player_position, centre); if (distance < tree[depth]) { return true; } return false; } The root quad has four children which could be visualized like the following: [] [] [] [] Where each [] is a child. Each child has the same amount of children up until the detail limit, the quads which have are 6 iterations deep are leaf nodes, these nodes have no children. Each node has a corresponding Mesh, each Mesh structure has 16x16 Quad-shapes, each Mesh's Quad-shapes halves in size each detail level deeper - creating more detail. void PQuad::construct_children() { // Calculate the position of the Quad based on the parent's location calculate_position(); if (depth < (int)MAX_DEPTH) { children.reserve((int)NUM_OF_CHILDREN); for (int i = 0; i < (int)NUM_OF_CHILDREN; i++) { children.emplace_back(PQuad(this->face_direction, this->radius)); PQuad *child = &children.back(); child->set_depth(depth + 1); child->set_child_index(i); child->set_parent(this); child->construct_children(); } } else { leaf = true; } } The following function creates the vertices for each quad, I feel that it may play a role in the problem - I just can't determine what is causing the problem. void PQuad::construct_vertices(std::vector<glm::vec3> *vertices, std::vector<Color3> *colors) { vertices->reserve(quad_width * quad_height); for (int y = 0; y < quad_height; y++) { for (int x = 0; x < quad_width; x++) { switch (face_direction) { case YIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, quad_height - 1.0f, -(position.y + y * element_width))); break; case YDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, 0.0f, -(position.y + y * element_width))); break; case XIncreasing: vertices->emplace_back(glm::vec3(quad_width - 1.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case XDecreasing: vertices->emplace_back(glm::vec3(0.0f, position.y + y * element_width, -(position.x + x * element_width))); break; case ZIncreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, 0.0f)); break; case ZDecreasing: vertices->emplace_back(glm::vec3(position.x + x * element_width, position.y + y * element_width, -(quad_width - 1.0f))); break; } // Position the bottom, right, front vertex of the cube from being (0,0,0) to (-16, -16, 16) (*vertices)[vertices->size() - 1] -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); colors->emplace_back(Color3(255.0f, 255.0f, 255.0f, false)); } } switch (face_direction) { case YIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, quad_height - 1.0f, -(position.y + quad_height / 2.0f)); break; case YDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, 0.0f, -(position.y + quad_height / 2.0f)); break; case XIncreasing: this->centre = glm::vec3(quad_width - 1.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case XDecreasing: this->centre = glm::vec3(0.0f, position.y + quad_height / 2.0f, -(position.x + quad_width / 2.0f)); break; case ZIncreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, 0.0f); break; case ZDecreasing: this->centre = glm::vec3(position.x + quad_width / 2.0f, position.y + quad_height / 2.0f, -(quad_height - 1.0f)); break; } this->centre -= glm::vec3(quad_width / 2.0f, quad_width / 2.0f, -(quad_width / 2.0f)); } Any help in discovering what is causing this "subdivding in the wrong place" would be greatly appreciated.

    Read the article

  • Sprites, Primitives and logic entity as structs

    - by Jeffrey
    I'm wondering would it be considered acceptable: The window class is responsible for drawing data, so it will have a method: Window::draw(const Sprite&); Window::draw(const Rect&); Window::draw(const Triangle&); Window::draw(const Circle&); and all those primitives + sprites would be just public struct. For example Sprite: struct Sprite { float x, y; // center float origin_x, origin_y; float width, height; float rotation; float scaling; GLuint texture; Sprite(float w, float h); Sprite(float w, float h, float a, float b); void useTexture(std::string file); void setOrigin(float a, float b); void move(float a, float b); // relative move void moveTo(float a, float b); // absolute move void rotate(float a); // relative rotation void rotateTo(float a); // absolute rotation void rotationReset(); void scale(float a); // relative scaling void scaleTo(float a); // absolute scaling void scaleReset(); }; So instead of having each primitive to call their draw() function, which is a little bit off topic for their object, I let the Window class handle all the OpenGL stuff and manipulate them as simple objects that will be drawn later on. Is this pattern used? Does it have any cons against it's primitives-draw-themself pattern? Are there any other related patterns?

    Read the article

  • Why don't Normal maps in tangent space have a single blue color?

    - by seahorse
    Normal maps are predominantly blue in color because the z component maps to Blue and since normals point out of the surface in the z direction we see Blue as the predominant component. If the above is true then why are normal maps just of one color i.e. blue and they should not be having any other shades(not even shades of blue) Since by definition tangent space is perpendicular to normal at any point we should have the normal always pointing in the Z (Blue direction) with no X(Red component) and Y(Green component). Thus the normal map(since it is a "normal map") should have had color of normals which is just the Blue(Z =Blue compoennt = 1, R=0, G=0) and the normal map should have been of only Blue color with no shades in between. But even then normal maps are not so, and they have gradients of shades in them, why is this so?

    Read the article

  • Problem with DirectX scene-graph

    - by Alex
    I'm trying to implement a basic scene graph in DirectX using C++. I am using a left child-right sibling binary tree to do this. I'm having trouble updating each node's world transformation relative to its parent (and its parent's parent etc.). I'm struggling to get it to work recursively, though I can get it to work like this: for(int i = 0; i < NUM_OBJECTS; i++) { // Initialize to identity matrix. D3DXMatrixIdentity(&mObject[i].toWorldXForm); int k = i; while( k != -1 ) { mObject[i].toWorldXForm *= mObject[k].toParentXForm; k = mObject[k].parent; } } toWorldXForm is the object's world transform and toParentXForm is the object's transform relative to the parent. I want to do this using a method within my object class (the code above is in my main class). This is what I've tried but it doesn't work (only works with nodes 1 generation away from the root) if (this->sibling != NULL) this->sibling->update(toParentXForm); D3DXMatrixIdentity(&toWorldXForm); this->toWorldXForm *= this->toParentXForm; this->toWorldXForm *= toParentXForm; toParentXForm *= this->toParentXForm; if (this->child != NULL) this->child->update(toParentXForm); Sorry if I've not been clear, please tell me if there's anything else you need to know. I've no doubt it's merely a silly mistake on my part, hopefully an outside view will be able to spot the problem.

    Read the article

  • Where can I find free or buy "next-gen" 3D Assets?

    - by Valmond
    Usually I buy 3D Assets from sites like turbosquid.com or similar. My problem is that I have lately implemented glow, normal maps, specular (and specular power) maps and reflection maps and I can't find any models that use those techniques. So where can I find / buy "next gen" assets (at least models/items with a normal map)? I have checked for similar posts but those I found are about either free only or 2D or 'ordinary' 3D so I hope this is not a duplicate.

    Read the article

  • How to control a spaceship near a planet in Unity3D?

    - by tyjkenn
    Right now I have spaceship orbiting a small planet. I'm trying to make an effective control system for that spaceship, but it always end up spinning out of control. After spinning the ship to change direction, the thrusters thrust the wrong way. Normal airplane controls don't work, since the ship is able to leave the atmosphere and go to other planets, in the journey going "upside-down". Could someone please enlighten me on how to get thrusters to work the way they are supposed to?

    Read the article

  • Rendering different materials in a voxel terrain

    - by MaelmDev
    Each voxel datapoint in my terrain model is made up of two properties: density and material type. Each is stored as an unsigned integer value (but the density is interpreted as a decimal value between 0 and 1). My current idea for rendering these different materials on the terrain mesh is to store eleven extra attributes in each vertex: six material values corresponding to the materials of the voxels that the vertices lie between, three decimal values that correspond to the interpolation each vertex has between each voxel, and two decimal values that are used to determine where the fragment lies on the triangle. The material and interpolation attributes are the exact same for each vertex in the triangle. The fragment shader samples each texture that corresponds to each material and then uses the aforementioned couple of decimal values to interpolate between these samples and obtain the final textured color of the fragment. It should work fine, but it seems like a big memory hog. I won't be able to reuse vertices in the mesh with indexing, and each vertex will have a lot of data associated with it. It also seems pretty slow. What are some ways to improve or replace this technique for drawing materials on a voxel terrain mesh?

    Read the article

  • Space-efficient data structures for broad-phase collision detection

    - by Marian Ivanov
    As far as I know, these are three types of data structures that can be used for collision detection broadphase: Unsorted arrays: Check every object againist every object - O(n^2) time; O(log n) space. It's so slow, it's useless if n isn't really small. for (i=1;i<objects;i++){ for(j=0;j<i;j++) narrowPhase(i,j); }; Sorted arrays: Sort the objects, so that you get O(n^(2-1/k)) for k dimensions O(n^1.5) for 2d and O(n^1.67) for 3d and O(n) space. Assuming the space is 2D and sortedArray is sorted so that if the object begins in sortedArray[i] and another object ends at sortedArray[i-1]; they don't collide Heaps of stacks: Divide the objects between a heap of stacks, so that you only have to check the bucket, its children and its parents - O(n log n) time, but O(n^2) space. This is probably the most frequently used approach. Is there a way of having O(n log n) time with less space? When is it more efficient to use sorted arrays over heaps and vice versa?

    Read the article

  • 3D Paint tool in Maya

    - by Joris
    Hey everyone, could someone help me out on this question? When I am trying to texture objects in maya (for example a barrel) I want to texture it with a brush. When I try to use the 3D painting tool it al gets black even when I have a image file selected. Also the resolution is very very low of the models and textures in maya, though the texture image is very high quality. Can someone please help me? Thanks so much for helping.

    Read the article

  • Overriding component behavior

    - by deft_code
    I was thinking of how to implement overriding of behaviors in a component based entity system. A concrete example, an entity has a heath component that can be damaged, healed, killed etc. The entity also has an armor component that limits the amount of damage a character receives. Has anyone implemented behaviors like this in a component based system before? How did you do it? If no one has ever done this before why do you think that is. Is there anything particularly wrong headed about overriding component behaviors? Below is rough sketch up of how I imagine it would work. Components in an entity are ordered. Those at the front get a chance to service an interface first. I don't detail how that is done, just assume it uses evil dynamic_casts (it doesn't but the end effect is the same without the need for RTTI). class IHealth { public: float get_health( void ) const = 0; void do_damage( float amount ) = 0; }; class Health : public Component, public IHealth { public: void do_damage( float amount ) { m_damage -= amount; } private: float m_health; }; class Armor : public Component, public IHealth { public: float get_health( void ) const { return next<IHealth>().get_health(); } void do_damage( float amount ) { next<IHealth>().do_damage( amount / 2 ); } }; entity.add( new Health( 100 ) ); entity.add( new Armor() ); assert( entity.get<IHealth>().get_health() == 100 ); entity.get<IHealth>().do_damage( 10 ); assert( entity.get<IHealth>().get_health() == 95 ); Is there anything particularly naive about the way I'm proposing to do this?

    Read the article

  • DX9 Deferred Rendering, GBuffer displays as clear color only

    - by Fire31
    I'm trying to implement Catalin Zima's Deferred Renderer in a very lightweight c++ DirectX 9 app (only renders a skydome and a model), at this moment I'm trying to render the gbuffer, but I'm having a problem, the screen shows only the clear color, no matter how much I move the camera around. However, removing all the render target operations lets the app render the scene normally, even if the models are being applied the renderGBuffer effect. Any ideas of what I'm doing wrong?

    Read the article

  • Understanding how OpenGL blending works

    - by yuumei
    I am attempting to understand how OpenGL (ES) blending works. I am finding it difficult to understand the documentation and how the results of glBlendFunc and glBlendEquation effect the final pixel that is written. Do the source and destination out of glBlendFunc get added together with GL_FUNC_ADD by default? This seems wrong because "basic" blending of GL_ONE, GL_ONE would output 2,2,2,2 then (Source giving 1,1,1,1 and dest giving 1,1,1,1). I have written the following pseudo-code, what have I got wrong? struct colour { float r, g, b, a; }; colour blend_factor( GLenum factor, colour source, colour destination, colour blend_colour ) { colour colour_factor; float i = min( source.a, 1 - destination.a ); // From http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendFunc.xml switch( factor ) { case GL_ZERO: colour_factor = { 0, 0, 0, 0 }; break; case GL_ONE: colour_factor = { 1, 1, 1, 1 }; break; case GL_SRC_COLOR: colour_factor = source; break; case GL_ONE_MINUS_SRC_COLOR: colour_factor = { 1 - source.r, 1 - source.g, 1 - source.b, 1 - source.a }; break; // ... } return colour_factor; } colour blend( colour & source, colour destination, GLenum source_factor, // from glBlendFunc GLenum destination_factor, // from glBlendFunc colour blend_colour, // from glBlendColor GLenum blend_equation // from glBlendEquation ) { colour source_colour = blend_factor( source_factor, source, destination, blend_colour ); colour destination_colour = blend_factor( destination_factor, source, destination, blend_colour ); colour output; // From http://www.khronos.org/opengles/sdk/docs/man/xhtml/glBlendEquation.xml switch( blend_equation ) { case GL_FUNC_ADD: output = add( source_colour, destination_colour ); case GL_FUNC_SUBTRACT: output = sub( source_colour, destination_colour ); case GL_FUNC_REVERSE_SUBTRACT: output = sub( destination_colour, source_colour ); } return output; } void do_pixel() { colour final_colour; // Blending if( enable_blending ) { final_colour = blend( current_colour_output, framebuffer[ pixel ], ... ); } else { final_colour = current_colour_output; } } Thanks!

    Read the article

  • DrawIndexedPrimitives overdraws data in previous buffer if called in loop

    - by Daniel Excinsky
    I doubled the question from stackoverflow here, and will delete the opposite of a question that gave me the answer. I have the Draw method in one of my renderers, that loops through the dictionary and gets precollected and preinitialized buffers. When dictionary has only one element, everything is just fine. But with more elements what I get on the screen is only the data from the last buffer (I suppose, not sure) My Draw method: public void Draw(GameTime gameTime) { if (!_areStaticEffectsSet) { // blockEffect.Parameters["TextureAtlas"].SetValue(textureAtlas); blockEffect.Parameters["HorizonColor"].SetValue(World.HORIZONCOLOR); blockEffect.Parameters["NightColor"].SetValue(World.NIGHTCOLOR); blockEffect.Parameters["MorningTint"].SetValue(World.MORNINGTINT); blockEffect.Parameters["EveningTint"].SetValue(World.EVENINGTINT); blockEffect.Parameters["SunColor"].SetValue(World.SUNCOLOR); _areStaticEffectsSet = true; } blockEffect.Parameters["World"].SetValue(Matrix.Identity); blockEffect.Parameters["View"].SetValue(_player.CameraView); blockEffect.Parameters["Projection"].SetValue(_player.CameraProjection); blockEffect.Parameters["CameraPosition"].SetValue(_player.CameraPosition); blockEffect.Parameters["timeOfDay"].SetValue(_world.TimeOfDay); var viewFrustum = new BoundingFrustum(_player.CameraView * _player.CameraProjection); _graphicsDevice.BlendState = BlendState.Opaque; _graphicsDevice.DepthStencilState = DepthStencilState.Default; foreach (KeyValuePair<int, Texture2D> textureAtlas in textureAtlases) { blockEffect.Parameters["TextureAtlas"].SetValue(textureAtlas.Value); foreach (EffectPass pass in blockEffect.CurrentTechnique.Passes) { pass.Apply(); //TODO: ?????????? ??????????????? ?? ?????? ?? ??????? ??????? VertexBuffer ? IndexBuffer foreach (Chunk chunk in _world.Chunks.Values) { if (chunk == null || chunk.IsDisposed) { continue; } if (chunk.BoundingBox.Intersects(viewFrustum) && chunk.GetBlockIndexBuffer(textureAtlas.Key) != null) { lock (chunk) { if (chunk.GetBlockIndexBuffer(textureAtlas.Key).IndexCount > 0) { VertexBuffer vertexBuffer = chunk.GetBlockVertexBuffer(textureAtlas.Key); IndexBuffer indexBuffer = chunk.GetBlockIndexBuffer(textureAtlas.Key); //if (chunk.DrawIndex == new Vector3i(0, 0, 0)) //{ //if (textureAtlas.Key == -1) //{ //var varray = new [] //{ //new VertexPositionTextureLight(new Vector3(0,68,0), new Vector2(0,1),1,new Vector3(0,0,0), new Vector3(1,1,1)), //new VertexPositionTextureLight(new Vector3(0,68,1), new Vector2(0,1),1,new Vector3(0,0,0), new Vector3(1,1,1)), //new VertexPositionTextureLight(new Vector3(1,68,0), new Vector2(0,1),1,new Vector3(0,0,0), new Vector3(1,1,1)) //}; //var iarray = new short[] {0, 1, 2}; //vertexBuffer = new VertexBuffer(_graphicsDevice, typeof(VertexPositionTextureLight), varray.Length, BufferUsage.WriteOnly); //indexBuffer = new IndexBuffer(_graphicsDevice, IndexElementSize.SixteenBits, iarray.Length, BufferUsage.WriteOnly); //vertexBuffer.SetData(varray); //indexBuffer.SetData(iarray); } } _graphicsDevice.SetVertexBuffer(vertexBuffer); _graphicsDevice.Indices = indexBuffer; _graphicsDevice.DrawIndexedPrimitives(PrimitiveType.TriangleList, 0, 0, vertexBuffer.VertexCount, 0, indexBuffer.IndexCount / 3); } } } } } } } Noteworthy things about the code: XNA version is 4.0. I've commented the debugging code in the loop, but left it for it may bring some insight. I try not only to change vertices/indices in the loop, but textureAtlas also. Code in the shader about textureAtlas: Texture TextureAtlas; sampler TextureAtlasSampler = sampler_state { texture = <TextureAtlas>; magfilter = POINT; minfilter = POINT; mipfilter = POINT; AddressU = WRAP; AddressV = WRAP; }; struct VSInput { float4 Position : POSITION0; float2 TexCoords1 : TEXCOORD0; float SunLight : COLOR0; float3 LocalLight : COLOR1; float3 Normal : NORMAL0; }; VertexPositionTextureLight is my own realization of IVertexType. So, do anybody know about this problem, or see the wrongness in my code (that's far more likely)?

    Read the article

  • Spherical harmonics lighting - what does it accomplish?

    - by TravisG
    From my understanding, spherical harmonics are sometimes used to approximate certain aspects of lighting (depending on the application). For example, it seems like you can approximate the diffuse lighting cause by a directional light source on a surface point, or parts of it, by calculating the SH coefficients for all bands you're using (for whatever accuracy you desire) in the direction of the surface normal and scaling it with whatever you need to scale it with (e.g. light colored intensity, dot(n,l),etc.). What I don't understand yet is what this is supposed to accomplish. What are the actual advantages of doing it this way as opposed to evaluating the diffuse BRDF the normal way. Do you save calculations somewhere? Is there some additional information contained in the SH representation that you can't get out of the scalar results of the normal evaluation?

    Read the article

< Previous Page | 395 396 397 398 399 400 401 402 403 404 405 406  | Next Page >