Search Results

Search found 22986 results on 920 pages for 'allocation unit size'.

Page 4/920 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Unit testing multiple conditions in an IF statement

    - by bwalk2895
    I have a chunk of code that looks something like this: function bool PassesBusinessRules() { bool meetsBusinessRules = false; if (PassesBusinessRule1 && PassesBusinessRule2 && PassesBusinessRule3) { meetsBusinessRules= true; } return meetsBusinessRules; } I believe there should be four unit tests for this particular function. Three to test each of the conditions in the if statement and ensure it returns false. And another test that makes sure the function returns true. Question: Should there actually be ten unit tests instead? Nine that checks each of the possible failure paths. IE: False False False False False True False True False And so on for each possible combination. I think that is overkill, but some of the other members on my team do not. The way I look at it is if BusinessRule1 fails then it should always return false, it doesn't matter if it was checked first or last.

    Read the article

  • c# Unit Test: Writing to Settings in unit test does not save values in user.config

    - by HorstWalter
    I am running a c# unit test (VS 2008). Within the test I do write to the settings, which should result in saving the data to the user.config. Settings.Default.X = "History"; // X is string Settings.Default.Save(); But this simply does not create the file (I have crosschecked under "C:\Documents and Settings\HW\Local Settings\Application Data"). If I create the same stuff as a Console application, there is no problem persisting the data (same code). Is there something special I need to consider doing this in a UnitTest?

    Read the article

  • unit testing methods with arrays as argument

    - by Ryan
    I am porting over some C++ assembly to VB that performs demodulation of various waveforms. I decided to go the unit test route instead of building a test app to get a feel for how testing is performed. The original demodulation code accepts an array that is the waveform along with some other arguments. How should one go about performing a test on something that has an array as an argument? Is it acceptable to generate fake data in a file and read it in at the beginning of the test? On a side note - The original C++ code was written because we were performing math that we couldn't do in VB6 so we had to cross boundaries between C++ and VB6 and arrays were used. Is there a "better" way of handling large amounts of data in the .NET world that us VB6 programmers may not yet be privy to? Or if we aren't crossing that managed/un-managed boundary, should we be representing our data as objects instead? Thanks all!

    Read the article

  • Exchange backup size larger then file size

    - by bladefist
    My backupexec is setup to integrate with exchange, to backup the information store, versus just backing up the data file path. My exchange mdbdata folder is 17 gigs. But my backup exec is backing up 40 gigs worth of data. I have gone through it a million times, and it's strictly backing up exchange information store. I deleted all my backups and started over, to clear the incremental backup old data. Where is all this extra data coming from?

    Read the article

  • ffmpeg - How to determine if -movflags faststart is enabled? PHP

    - by IIIOXIII
    While I am able to encode an mp4 file which I can plan on my local windows machine, I am having trouble encoding files to mp4 which are readable when streaming by safari, etc. After a bit of reading, I believe my issue is that I must move the metadata from the end of the file to the beginning in order for the converted mp4 files to be streamable. To that end, I am trying to find out if the build of ffmpeg that I am currently using is able to use the -movflags faststart option through php - as my current outputted mp4 files are not working when streamed online. This is the way I am now echoing the -help, -formats, -codecs, but I am not seeing anything about -movflags faststart in any of the lists: exec($ffmpegPath." -help", $codecArr); for($ii=0;$ii<count($codecArr);$ii++){ echo $codecArr[$ii].'</br>'; } Is there a similar method of determining if -movflags fastart is available to my ffmpeg build? Any other way? Should it be listed with any of the previously suggested commands? -help/-formats? Can someone that knows it is enabled in their version of ffmpeg check to see if it is listed under -help or -formats, etc.? TIA. EDIT: COMPLETE CONSOLE OUTPUT FOR BOTH THE CONVERSION COMMAND AND -MOVFLAGS COMMAND BELOW: COMMAND: ffmpeg_new -i C:\vidtests\Wildlife.wmv -s 640x480 C:\vidtests\Wildlife.mp4 OUTPUT: ffmpeg version N-54207-ge59fb3f Copyright (c) 2000-2013 the FFmpeg developers built on Jun 25 2013 21:55:00 with gcc 4.7.3 (GCC) configuration: --enable-gpl --enable-version3 --disable-w32threads --enable-av isynth --enable-bzlib --enable-fontconfig --enable-frei0r --enable-gnutls --enab le-iconv --enable-libass --enable-libbluray --enable-libcaca --enable-libfreetyp e --enable-libgsm --enable-libilbc --enable-libmodplug --enable-libmp3lame --ena ble-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-l ibopus --enable-librtmp --enable-libschroedinger --enable-libsoxr --enable-libsp eex --enable-libtheora --enable-libtwolame --enable-libvo-aacenc --enable-libvo- amrwbenc --enable-libvorbis --enable-libvpx --enable-libx264 --enable-libxavs -- enable-libxvid --enable-zlib libavutil 52. 37.101 / 52. 37.101 libavcodec 55. 17.100 / 55. 17.100 libavformat 55. 10.100 / 55. 10.100 libavdevice 55. 2.100 / 55. 2.100 libavfilter 3. 77.101 / 3. 77.101 libswscale 2. 3.100 / 2. 3.100 libswresample 0. 17.102 / 0. 17.102 libpostproc 52. 3.100 / 52. 3.100 [asf @ 00000000002ed760] Stream #0: not enough frames to estimate rate; consider increasing probesize Guessed Channel Layout for Input Stream #0.0 : stereo Input #0, asf, from 'C:\vidtests\Wildlife.wmv' : Metadata: SfOriginalFPS : 299700 WMFSDKVersion : 11.0.6001.7000 WMFSDKNeeded : 0.0.0.0000 comment : Footage: Small World Productions, Inc; Tourism New Zealand | Producer: Gary F. Spradling | Music: Steve Ball title : Wildlife in HD copyright : -¬ 2008 Microsoft Corporation IsVBR : 0 DeviceConformanceTemplate: AP@L3 Duration: 00:00:30.09, start: 0.000000, bitrate: 6977 kb/s Stream #0:0(eng): Audio: wmav2 (a[1][0][0] / 0x0161), 44100 Hz, stereo, fltp , 192 kb/s Stream #0:1(eng): Video: vc1 (Advanced) (WVC1 / 0x31435657), yuv420p, 1280x7 20, 5942 kb/s, 29.97 tbr, 1k tbn, 1k tbc [libx264 @ 00000000002e6980] using cpu capabilities: MMX2 SSE2Fast SSSE3 Cache64 [libx264 @ 00000000002e6980] profile High, level 3.0 [libx264 @ 00000000002e6980] 264 - core 133 r2334 a3ac64b - H.264/MPEG-4 AVC cod ec - Copyleft 2003-2013 - http://www.videolan.org/x264.html - options: cabac=1 r ef=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed _ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pski p=1 chroma_qp_offset=-2 threads=3 lookahead_threads=1 sliced_threads=0 nr=0 deci mate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_ adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=2 5 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.6 0 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, mp4, to 'C:\vidtests\Wildlife.mp4': Metadata: SfOriginalFPS : 299700 WMFSDKVersion : 11.0.6001.7000 WMFSDKNeeded : 0.0.0.0000 comment : Footage: Small World Productions, Inc; Tourism New Zealand | Producer: Gary F. Spradling | Music: Steve Ball title : Wildlife in HD copyright : -¬ 2008 Microsoft Corporation IsVBR : 0 DeviceConformanceTemplate: AP@L3 encoder : Lavf55.10.100 Stream #0:0(eng): Video: h264 (libx264) ([33][0][0][0] / 0x0021), yuv420p, 6 40x480, q=-1--1, 30k tbn, 29.97 tbc Stream #0:1(eng): Audio: aac (libvo_aacenc) ([64][0][0][0] / 0x0040), 44100 Hz, stereo, s16, 128 kb/s Stream mapping: Stream #0:1 -> #0:0 (vc1 -> libx264) Stream #0:0 -> #0:1 (wmav2 -> libvo_aacenc) Press [q] to stop, [?] for help frame= 53 fps= 49 q=29.0 size= 0kB time=00:00:00.13 bitrate= 2.9kbits/ frame= 63 fps= 40 q=29.0 size= 0kB time=00:00:00.46 bitrate= 0.8kbits/ frame= 74 fps= 35 q=29.0 size= 0kB time=00:00:00.83 bitrate= 0.5kbits/ frame= 85 fps= 32 q=29.0 size= 0kB time=00:00:01.20 bitrate= 0.3kbits/ frame= 95 fps= 30 q=29.0 size= 0kB time=00:00:01.53 bitrate= 0.3kbits/ frame= 107 fps= 28 q=29.0 size= 0kB time=00:00:01.93 bitrate= 0.2kbits/ Queue input is backward in time [mp4 @ 00000000003ef800] Non-monotonous DTS in output stream 0:1; previous: 7616 , current: 7063; changing to 7617. This may result in incorrect timestamps in th e output file. frame= 118 fps= 28 q=29.0 size= 113kB time=00:00:02.30 bitrate= 402.6kbits/ frame= 129 fps= 26 q=29.0 size= 219kB time=00:00:02.66 bitrate= 670.7kbits/ frame= 141 fps= 26 q=29.0 size= 264kB time=00:00:03.06 bitrate= 704.2kbits/ frame= 152 fps= 25 q=29.0 size= 328kB time=00:00:03.43 bitrate= 782.2kbits/ frame= 163 fps= 25 q=29.0 size= 431kB time=00:00:03.80 bitrate= 928.1kbits/ frame= 174 fps= 24 q=29.0 size= 568kB time=00:00:04.17 bitrate=1116.3kbits/ frame= 190 fps= 25 q=29.0 size= 781kB time=00:00:04.70 bitrate=1359.9kbits/ frame= 204 fps= 25 q=29.0 size= 1006kB time=00:00:05.17 bitrate=1593.1kbits/ frame= 218 fps= 25 q=29.0 size= 1058kB time=00:00:05.63 bitrate=1536.8kbits/ frame= 229 fps= 25 q=29.0 size= 1093kB time=00:00:06.00 bitrate=1490.9kbits/ frame= 239 fps= 24 q=29.0 size= 1118kB time=00:00:06.33 bitrate=1444.4kbits/ frame= 251 fps= 24 q=29.0 size= 1150kB time=00:00:06.74 bitrate=1397.9kbits/ frame= 265 fps= 24 q=29.0 size= 1234kB time=00:00:07.20 bitrate=1402.3kbits/ frame= 278 fps= 25 q=29.0 size= 1332kB time=00:00:07.64 bitrate=1428.3kbits/ frame= 294 fps= 25 q=29.0 size= 1403kB time=00:00:08.17 bitrate=1405.7kbits/ frame= 308 fps= 25 q=29.0 size= 1547kB time=00:00:08.64 bitrate=1466.4kbits/ frame= 323 fps= 25 q=29.0 size= 1595kB time=00:00:09.14 bitrate=1429.5kbits/ frame= 337 fps= 25 q=29.0 size= 1702kB time=00:00:09.60 bitrate=1450.7kbits/ frame= 351 fps= 25 q=29.0 size= 1755kB time=00:00:10.07 bitrate=1427.1kbits/ frame= 365 fps= 25 q=29.0 size= 1820kB time=00:00:10.54 bitrate=1414.1kbits/ frame= 381 fps= 25 q=29.0 size= 1852kB time=00:00:11.07 bitrate=1369.6kbits/ frame= 396 fps= 26 q=29.0 size= 1893kB time=00:00:11.57 bitrate=1339.5kbits/ frame= 409 fps= 26 q=29.0 size= 1923kB time=00:00:12.01 bitrate=1311.8kbits/ frame= 421 fps= 25 q=29.0 size= 1967kB time=00:00:12.41 bitrate=1298.3kbits/ frame= 434 fps= 25 q=29.0 size= 1998kB time=00:00:12.84 bitrate=1274.0kbits/ frame= 445 fps= 25 q=29.0 size= 2018kB time=00:00:13.21 bitrate=1251.3kbits/ frame= 458 fps= 25 q=29.0 size= 2048kB time=00:00:13.64 bitrate=1229.5kbits/ frame= 471 fps= 25 q=29.0 size= 2067kB time=00:00:14.08 bitrate=1202.3kbits/ frame= 484 fps= 25 q=29.0 size= 2189kB time=00:00:14.51 bitrate=1235.5kbits/ frame= 497 fps= 25 q=29.0 size= 2260kB time=00:00:14.94 bitrate=1238.3kbits/ frame= 509 fps= 25 q=29.0 size= 2311kB time=00:00:15.34 bitrate=1233.3kbits/ frame= 523 fps= 25 q=29.0 size= 2429kB time=00:00:15.81 bitrate=1258.1kbits/ frame= 535 fps= 25 q=29.0 size= 2541kB time=00:00:16.21 bitrate=1283.5kbits/ frame= 548 fps= 25 q=29.0 size= 2718kB time=00:00:16.64 bitrate=1337.5kbits/ frame= 560 fps= 25 q=29.0 size= 2845kB time=00:00:17.05 bitrate=1367.1kbits/ frame= 571 fps= 25 q=29.0 size= 2965kB time=00:00:17.41 bitrate=1394.6kbits/ frame= 580 fps= 25 q=29.0 size= 3025kB time=00:00:17.71 bitrate=1398.7kbits/ frame= 588 fps= 25 q=29.0 size= 3098kB time=00:00:17.98 bitrate=1411.1kbits/ frame= 597 fps= 25 q=29.0 size= 3183kB time=00:00:18.28 bitrate=1426.1kbits/ frame= 606 fps= 24 q=29.0 size= 3279kB time=00:00:18.58 bitrate=1445.2kbits/ frame= 616 fps= 24 q=29.0 size= 3441kB time=00:00:18.91 bitrate=1489.9kbits/ frame= 626 fps= 24 q=29.0 size= 3650kB time=00:00:19.25 bitrate=1553.0kbits/ frame= 638 fps= 24 q=29.0 size= 3826kB time=00:00:19.65 bitrate=1594.7kbits/ frame= 649 fps= 24 q=29.0 size= 3950kB time=00:00:20.02 bitrate=1616.3kbits/ frame= 660 fps= 24 q=29.0 size= 4067kB time=00:00:20.38 bitrate=1634.1kbits/ frame= 669 fps= 24 q=29.0 size= 4121kB time=00:00:20.68 bitrate=1631.8kbits/ frame= 682 fps= 24 q=29.0 size= 4274kB time=00:00:21.12 bitrate=1657.9kbits/ frame= 696 fps= 24 q=29.0 size= 4446kB time=00:00:21.58 bitrate=1687.1kbits/ frame= 709 fps= 24 q=29.0 size= 4590kB time=00:00:22.02 bitrate=1707.3kbits/ frame= 719 fps= 24 q=29.0 size= 4772kB time=00:00:22.35 bitrate=1748.5kbits/ frame= 732 fps= 24 q=29.0 size= 4852kB time=00:00:22.78 bitrate=1744.3kbits/ frame= 744 fps= 24 q=29.0 size= 4973kB time=00:00:23.18 bitrate=1756.9kbits/ frame= 756 fps= 24 q=29.0 size= 5099kB time=00:00:23.59 bitrate=1770.8kbits/ frame= 768 fps= 24 q=29.0 size= 5149kB time=00:00:23.99 bitrate=1758.4kbits/ frame= 780 fps= 24 q=29.0 size= 5227kB time=00:00:24.39 bitrate=1755.7kbits/ frame= 797 fps= 24 q=29.0 size= 5377kB time=00:00:24.95 bitrate=1765.0kbits/ frame= 813 fps= 24 q=29.0 size= 5507kB time=00:00:25.49 bitrate=1769.5kbits/ frame= 828 fps= 24 q=29.0 size= 5634kB time=00:00:25.99 bitrate=1775.5kbits/ frame= 843 fps= 24 q=29.0 size= 5701kB time=00:00:26.49 bitrate=1762.9kbits/ frame= 859 fps= 24 q=29.0 size= 5830kB time=00:00:27.02 bitrate=1767.0kbits/ frame= 872 fps= 24 q=29.0 size= 5926kB time=00:00:27.46 bitrate=1767.7kbits/ frame= 888 fps= 24 q=29.0 size= 6014kB time=00:00:27.99 bitrate=1759.7kbits/ frame= 900 fps= 24 q=29.0 size= 6332kB time=00:00:28.39 bitrate=1826.9kbits/ frame= 901 fps= 24 q=-1.0 Lsize= 6717kB time=00:00:30.10 bitrate=1828.0kbits /s video:6211kB audio:472kB subtitle:0 global headers:0kB muxing overhead 0.513217% [libx264 @ 00000000002e6980] frame I:8 Avg QP:21.77 size: 39744 [libx264 @ 00000000002e6980] frame P:433 Avg QP:25.69 size: 11490 [libx264 @ 00000000002e6980] frame B:460 Avg QP:29.25 size: 2319 [libx264 @ 00000000002e6980] consecutive B-frames: 5.4% 78.6% 2.7% 13.3% [libx264 @ 00000000002e6980] mb I I16..4: 21.8% 48.8% 29.5% [libx264 @ 00000000002e6980] mb P I16..4: 0.7% 4.0% 1.3% P16..4: 37.1% 22.2 % 15.5% 0.0% 0.0% skip:19.2% [libx264 @ 00000000002e6980] mb B I16..4: 0.1% 0.5% 0.2% B16..8: 43.5% 7.0 % 2.1% direct: 2.2% skip:44.5% L0:36.4% L1:52.7% BI:10.9% [libx264 @ 00000000002e6980] 8x8 transform intra:62.8% inter:56.2% [libx264 @ 00000000002e6980] coded y,uvDC,uvAC intra: 74.2% 78.8% 44.0% inter: 2 3.6% 14.5% 1.0% [libx264 @ 00000000002e6980] i16 v,h,dc,p: 48% 24% 9% 20% [libx264 @ 00000000002e6980] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 16% 17% 15% 7% 8% 11% 8% 10% 8% [libx264 @ 00000000002e6980] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 19% 17% 15% 7% 10% 11% 8% 7% 7% [libx264 @ 00000000002e6980] i8c dc,h,v,p: 53% 21% 18% 7% [libx264 @ 00000000002e6980] Weighted P-Frames: Y:0.7% UV:0.0% [libx264 @ 00000000002e6980] ref P L0: 62.4% 19.0% 12.0% 6.6% 0.0% [libx264 @ 00000000002e6980] ref B L0: 90.5% 8.9% 0.7% [libx264 @ 00000000002e6980] ref B L1: 97.9% 2.1% [libx264 @ 00000000002e6980] kb/s:1692.37 AND THE –MOVFLAGS COMMAND: C:\XSITE\SITE>ffmpeg_new -i C:\vidtests\Wildlife.mp4 -movflags faststart C:\vidtests\Wildlife_fs.mp4 AND THE –MOVFLAGS OUTPUT ffmpeg version N-54207-ge59fb3f Copyright (c) 2000-2013 the FFmpeg developers built on Jun 25 2013 21:55:00 with gcc 4.7.3 (GCC) configuration: --enable-gpl --enable-version3 --disable-w32threads --enable-av isynth --enable-bzlib --enable-fontconfig --enable-frei0r --enable-gnutls --enab le-iconv --enable-libass --enable-libbluray --enable-libcaca --enable-libfreetyp e --enable-libgsm --enable-libilbc --enable-libmodplug --enable-libmp3lame --ena ble-libopencore-amrnb --enable-libopencore-amrwb --enable-libopenjpeg --enable-l ibopus --enable-librtmp --enable-libschroedinger --enable-libsoxr --enable-libsp eex --enable-libtheora --enable-libtwolame --enable-libvo-aacenc --enable-libvo- amrwbenc --enable-libvorbis --enable-libvpx --enable-libx264 --enable-libxavs -- enable-libxvid --enable-zlib libavutil 52. 37.101 / 52. 37.101 libavcodec 55. 17.100 / 55. 17.100 libavformat 55. 10.100 / 55. 10.100 libavdevice 55. 2.100 / 55. 2.100 libavfilter 3. 77.101 / 3. 77.101 libswscale 2. 3.100 / 2. 3.100 libswresample 0. 17.102 / 0. 17.102 libpostproc 52. 3.100 / 52. 3.100 Input #0, mov,mp4,m4a,3gp,3g2,mj2, from 'C:\vidtests\Wildlife.mp4': Metadata: major_brand : isom minor_version : 512 compatible_brands: isomiso2avc1mp41 title : Wildlife in HD encoder : Lavf55.10.100 comment : Footage: Small World Productions, Inc; Tourism New Zealand | Producer: Gary F. Spradling | Music: Steve Ball copyright : -¬ 2008 Microsoft Corporation Duration: 00:00:30.13, start: 0.036281, bitrate: 1826 kb/s Stream #0:0(eng): Video: h264 (High) (avc1 / 0x31637661), yuv420p, 640x480, 1692 kb/s, 29.97 fps, 29.97 tbr, 30k tbn, 59.94 tbc Metadata: handler_name : VideoHandler Stream #0:1(eng): Audio: aac (mp4a / 0x6134706D), 44100 Hz, stereo, fltp, 12 8 kb/s Metadata: handler_name : SoundHandler [libx264 @ 0000000004360620] using cpu capabilities: MMX2 SSE2Fast SSSE3 Cache64 [libx264 @ 0000000004360620] profile High, level 3.0 [libx264 @ 0000000004360620] 264 - core 133 r2334 a3ac64b - H.264/MPEG-4 AVC cod ec - Copyleft 2003-2013 - http://www.videolan.org/x264.html - options: cabac=1 r ef=3 deblock=1:0:0 analyse=0x3:0x113 me=hex subme=7 psy=1 psy_rd=1.00:0.00 mixed _ref=1 me_range=16 chroma_me=1 trellis=1 8x8dct=1 cqm=0 deadzone=21,11 fast_pski p=1 chroma_qp_offset=-2 threads=3 lookahead_threads=1 sliced_threads=0 nr=0 deci mate=1 interlaced=0 bluray_compat=0 constrained_intra=0 bframes=3 b_pyramid=2 b_ adapt=1 b_bias=0 direct=1 weightb=1 open_gop=0 weightp=2 keyint=250 keyint_min=2 5 scenecut=40 intra_refresh=0 rc_lookahead=40 rc=crf mbtree=1 crf=23.0 qcomp=0.6 0 qpmin=0 qpmax=69 qpstep=4 ip_ratio=1.40 aq=1:1.00 Output #0, mp4, to 'C:\vidtests\Wildlife_fs.mp4': Metadata: major_brand : isom minor_version : 512 compatible_brands: isomiso2avc1mp41 title : Wildlife in HD copyright : -¬ 2008 Microsoft Corporation comment : Footage: Small World Productions, Inc; Tourism New Zealand | Producer: Gary F. Spradling | Music: Steve Ball encoder : Lavf55.10.100 Stream #0:0(eng): Video: h264 (libx264) ([33][0][0][0] / 0x0021), yuv420p, 6 40x480, q=-1--1, 30k tbn, 29.97 tbc Metadata: handler_name : VideoHandler Stream #0:1(eng): Audio: aac (libvo_aacenc) ([64][0][0][0] / 0x0040), 44100 Hz, stereo, s16, 128 kb/s Metadata: handler_name : SoundHandler Stream mapping: Stream #0:0 -> #0:0 (h264 -> libx264) Stream #0:1 -> #0:1 (aac -> libvo_aacenc) Press [q] to stop, [?] for help frame= 52 fps=0.0 q=29.0 size= 29kB time=00:00:01.76 bitrate= 133.9kbits/ frame= 63 fps= 60 q=29.0 size= 104kB time=00:00:02.14 bitrate= 397.2kbits/ frame= 74 fps= 47 q=29.0 size= 176kB time=00:00:02.51 bitrate= 573.2kbits/ frame= 87 fps= 41 q=29.0 size= 265kB time=00:00:02.93 bitrate= 741.2kbits/ frame= 101 fps= 37 q=29.0 size= 358kB time=00:00:03.39 bitrate= 862.8kbits/ frame= 113 fps= 34 q=29.0 size= 437kB time=00:00:03.79 bitrate= 943.7kbits/ frame= 125 fps= 33 q=29.0 size= 520kB time=00:00:04.20 bitrate=1012.2kbits/ frame= 138 fps= 32 q=29.0 size= 606kB time=00:00:04.64 bitrate=1069.8kbits/ frame= 151 fps= 31 q=29.0 size= 696kB time=00:00:05.06 bitrate=1124.3kbits/ frame= 163 fps= 30 q=29.0 size= 780kB time=00:00:05.47 bitrate=1166.4kbits/ frame= 176 fps= 30 q=29.0 size= 919kB time=00:00:05.90 bitrate=1273.9kbits/ frame= 196 fps= 31 q=29.0 size= 994kB time=00:00:06.57 bitrate=1237.4kbits/ frame= 213 fps= 31 q=29.0 size= 1097kB time=00:00:07.13 bitrate=1258.8kbits/ frame= 225 fps= 30 q=29.0 size= 1204kB time=00:00:07.53 bitrate=1309.8kbits/ frame= 236 fps= 30 q=29.0 size= 1323kB time=00:00:07.91 bitrate=1369.4kbits/ frame= 249 fps= 29 q=29.0 size= 1451kB time=00:00:08.34 bitrate=1424.6kbits/ frame= 263 fps= 29 q=29.0 size= 1574kB time=00:00:08.82 bitrate=1461.3kbits/ frame= 278 fps= 29 q=29.0 size= 1610kB time=00:00:09.30 bitrate=1416.9kbits/ frame= 296 fps= 30 q=29.0 size= 1655kB time=00:00:09.91 bitrate=1368.0kbits/ frame= 313 fps= 30 q=29.0 size= 1697kB time=00:00:10.48 bitrate=1326.4kbits/ frame= 330 fps= 30 q=29.0 size= 1737kB time=00:00:11.05 bitrate=1286.5kbits/ frame= 345 fps= 30 q=29.0 size= 1776kB time=00:00:11.54 bitrate=1260.4kbits/ frame= 361 fps= 30 q=29.0 size= 1813kB time=00:00:12.07 bitrate=1230.3kbits/ frame= 377 fps= 30 q=29.0 size= 1847kB time=00:00:12.59 bitrate=1201.4kbits/ frame= 395 fps= 30 q=29.0 size= 1880kB time=00:00:13.22 bitrate=1165.0kbits/ frame= 410 fps= 30 q=29.0 size= 1993kB time=00:00:13.72 bitrate=1190.2kbits/ frame= 424 fps= 30 q=29.0 size= 2080kB time=00:00:14.18 bitrate=1201.4kbits/ frame= 439 fps= 30 q=29.0 size= 2166kB time=00:00:14.67 bitrate=1209.4kbits/ frame= 455 fps= 30 q=29.0 size= 2262kB time=00:00:15.21 bitrate=1217.5kbits/ frame= 469 fps= 30 q=29.0 size= 2341kB time=00:00:15.68 bitrate=1223.0kbits/ frame= 484 fps= 30 q=29.0 size= 2430kB time=00:00:16.19 bitrate=1229.1kbits/ frame= 500 fps= 30 q=29.0 size= 2523kB time=00:00:16.71 bitrate=1236.3kbits/ frame= 515 fps= 30 q=29.0 size= 2607kB time=00:00:17.21 bitrate=1240.4kbits/ frame= 531 fps= 30 q=29.0 size= 2681kB time=00:00:17.73 bitrate=1238.2kbits/ frame= 546 fps= 30 q=29.0 size= 2758kB time=00:00:18.24 bitrate=1238.2kbits/ frame= 561 fps= 30 q=29.0 size= 2824kB time=00:00:18.75 bitrate=1233.4kbits/ frame= 576 fps= 30 q=29.0 size= 2955kB time=00:00:19.25 bitrate=1256.8kbits/ frame= 586 fps= 29 q=29.0 size= 3061kB time=00:00:19.59 bitrate=1279.6kbits/ frame= 598 fps= 29 q=29.0 size= 3217kB time=00:00:19.99 bitrate=1318.4kbits/ frame= 610 fps= 29 q=29.0 size= 3354kB time=00:00:20.39 bitrate=1347.2kbits/ frame= 622 fps= 29 q=29.0 size= 3483kB time=00:00:20.78 bitrate=1372.6kbits/ frame= 634 fps= 29 q=29.0 size= 3593kB time=00:00:21.19 bitrate=1388.6kbits/ frame= 648 fps= 29 q=29.0 size= 3708kB time=00:00:21.66 bitrate=1402.3kbits/ frame= 661 fps= 29 q=29.0 size= 3811kB time=00:00:22.08 bitrate=1413.5kbits/ frame= 674 fps= 29 q=29.0 size= 3978kB time=00:00:22.53 bitrate=1446.3kbits/ frame= 690 fps= 29 q=29.0 size= 4133kB time=00:00:23.05 bitrate=1468.4kbits/ frame= 706 fps= 29 q=29.0 size= 4263kB time=00:00:23.58 bitrate=1480.4kbits/ frame= 721 fps= 29 q=29.0 size= 4391kB time=00:00:24.08 bitrate=1493.8kbits/ frame= 735 fps= 29 q=29.0 size= 4524kB time=00:00:24.55 bitrate=1509.4kbits/ frame= 748 fps= 29 q=29.0 size= 4661kB time=00:00:24.98 bitrate=1528.2kbits/ frame= 763 fps= 29 q=29.0 size= 4835kB time=00:00:25.50 bitrate=1553.1kbits/ frame= 778 fps= 29 q=29.0 size= 4993kB time=00:00:25.99 bitrate=1573.6kbits/ frame= 795 fps= 29 q=29.0 size= 5149kB time=00:00:26.56 bitrate=1588.1kbits/ frame= 814 fps= 29 q=29.0 size= 5258kB time=00:00:27.18 bitrate=1584.4kbits/ frame= 833 fps= 29 q=29.0 size= 5368kB time=00:00:27.82 bitrate=1580.2kbits/ frame= 851 fps= 29 q=29.0 size= 5469kB time=00:00:28.43 bitrate=1575.9kbits/ frame= 870 fps= 29 q=29.0 size= 5567kB time=00:00:29.05 bitrate=1569.5kbits/ frame= 889 fps= 29 q=29.0 size= 5688kB time=00:00:29.70 bitrate=1568.4kbits/ Starting second pass: moving header on top of the file frame= 902 fps= 28 q=-1.0 Lsize= 6109kB time=00:00:30.14 bitrate=1659.8kbits /s dup=1 drop=0 video:5602kB audio:472kB subtitle:0 global headers:0kB muxing overhead 0.566600% [libx264 @ 0000000004360620] frame I:8 Avg QP:20.52 size: 39667 [libx264 @ 0000000004360620] frame P:419 Avg QP:25.06 size: 10524 [libx264 @ 0000000004360620] frame B:475 Avg QP:29.03 size: 2123 [libx264 @ 0000000004360620] consecutive B-frames: 3.2% 79.6% 0.3% 16.9% [libx264 @ 0000000004360620] mb I I16..4: 20.7% 52.3% 26.9% [libx264 @ 0000000004360620] mb P I16..4: 0.7% 4.2% 1.1% P16..4: 39.4% 21.4 % 13.8% 0.0% 0.0% skip:19.3% [libx264 @ 0000000004360620] mb B I16..4: 0.1% 0.9% 0.3% B16..8: 41.8% 6.4 % 1.7% direct: 1.7% skip:47.1% L0:36.4% L1:53.3% BI:10.3% [libx264 @ 0000000004360620] 8x8 transform intra:65.7% inter:58.8% [libx264 @ 0000000004360620] coded y,uvDC,uvAC intra: 71.2% 76.6% 35.7% inter: 2 0.7% 13.0% 0.5% [libx264 @ 0000000004360620] i16 v,h,dc,p: 48% 24% 8% 20% [libx264 @ 0000000004360620] i8 v,h,dc,ddl,ddr,vr,hd,vl,hu: 17% 18% 15% 6% 8% 11% 8% 10% 8% [libx264 @ 0000000004360620] i4 v,h,dc,ddl,ddr,vr,hd,vl,hu: 19% 16% 15% 7% 10% 11% 8% 8% 7% [libx264 @ 0000000004360620] i8c dc,h,v,p: 51% 22% 19% 9% [libx264 @ 0000000004360620] Weighted P-Frames: Y:0.7% UV:0.0% [libx264 @ 0000000004360620] ref P L0: 63.4% 19.7% 11.0% 5.9% 0.0% [libx264 @ 0000000004360620] ref B L0: 90.7% 8.7% 0.7% [libx264 @ 0000000004360620] ref B L1: 98.4% 1.6% [libx264 @ 0000000004360620] kb/s:1524.54

    Read the article

  • Oracle 64-bit assembly throws BadImageFormatException when running unit tests

    - by pjohnson
    We recently upgraded to the 64-bit Oracle client. Since then, Visual Studio 2010 unit tests that hit the database (I know, unit tests shouldn't hit the database--they're not perfect) all fail with this error message:Test method MyProject.Test.SomeTest threw exception: System.Reflection.TargetInvocationException: Exception has been thrown by the target of an invocation. ---> System.BadImageFormatException: Could not load file or assembly 'Oracle.DataAccess, Version=4.112.3.0, Culture=neutral, PublicKeyToken=89b483f429c47342' or one of its dependencies. An attempt was made to load a program with an incorrect format.I resolved this by changing the test settings to run tests in 64-bit. From the Test menu, go to Edit Test Settings, and pick your settings file. Go to Hosts, and change the "Run tests in 32 bit or 64 bit process" dropdown to "Run tests in 64 bit process on 64 bit machine". Now your tests should run.This fix makes me a little nervous. Visual Studio 2010 and earlier seem to change that file for no apparent reason, add more settings files, etc. If you're not paying attention, you could have TestSettings1.testsettings through TestSettings99.testsettings sitting there and never notice the difference. So it's worth making a note of how to change it in case you have to redo it, and being vigilant about files VS tries to add.I'm not entirely clear on why this was even a problem. Isn't that the point of an MSIL assembly, that it's not specific to the hardware it runs on? An IL disassembler can open the Oracle.DataAccess.dll in question, and in its Runtime property, I see the value "v4.0.30319 / x64". So I guess the assembly was specifically build to target 64-bit platforms only, possibly due to a 64-bit-specific difference in the external Oracle client upon which it depends. Most other assemblies, especially in the .NET Framework, list "msil", and a couple list "x86". So I guess this is another entry in the long list of ways Oracle refuses to play nice with Windows and .NET.If this doesn't solve your problem, you can read others' research into this error, and where to change the same test setting in Visual Studio 2012.

    Read the article

  • Best practices of texture size

    - by psal
    I wanted to know how should I determine a good texture size ? Currently, I always create UV texture that are 1024x1024px but if I create for example, a big house with a 1024px texture size, it will looks pretty bad. So, should I create different texture size (512, 1024, ...) for different mesh size like this ? : or is it better to always do high-resolution texture and then reduce it in the software (ie : increase the LODBias settings in UDK reduce the size of the texture) ? Thanks for your answer. ps : sorry for my english !

    Read the article

  • Implementing unit testing at a company that doesn't do it

    - by Pete
    My company's head of software development just "resigned" (i.e. fired) and we are now looking into improving the development practices at our company. We want to implement unit testing in all software created from here on out. Feedback from the developers is this: We know testing is valuable But, you are always changing the specs so it'd be a waste of time And, your deadlines are so tight we don't have enough time to test anyway Feedback from the CEO is this: I would like our company to have automated testing, but I don't know how to make it happen We don't have time to write large specification documents How do developers get the specs now? Word of mouth or PowerPoint slide. Obviously, that's a big problem. My suggestion is this: Let's also give the developers a set of test data and unit tests That's the spec. It's up to management to be clear and quantitative about what it wants. The developers can put it whatever other functionality they feel is needed and it need not be covered by tests Well, if you've ever been in a company that was in this situation, how did you solve the problem? Does this approach seem reasonable?

    Read the article

  • Do unit tests sometimes break encapsulation?

    - by user1288851
    I very often hear the following: "If you want to test private methods, you'd better put that in another class and expose it." While sometimes that's the case and we have a hiding concept inside our class, other times you end up with classes that have the same attributes (or, worst, every attribute of one class become a argument on a method in the other class) and exposes functionality that is, in fact, implementation detail. Specially on TDD, when you refactor a class with public methods out of a previous tested class, that class is now part of your interface, but has no tests to it (since you refactored it, and is a implementation detail). Now, I may be not finding an obvious better answer, but if my answer is the "correct", that means that sometimes writting unit tests can break encapsulation, and divide the same responsibility into different classes. A simple example would be testing a setter method when a getter is not actually needed for anything in the real code. Please when aswering don't provide simple answers to specific cases I may have written. Rather, try to explain more of the generic case and theoretical approach. And this is neither language specific. Thanks in advance. EDIT: The answer given by Matthew Flynn was really insightful, but didn't quite answer the question. Altough he made the fair point that you either don't test private methods or extract them because they really are other concern and responsibility (or at least that was what I could understand from his answer), I think there are situations where unit testing private methods is useful. My primary example is when you have a class that has one responsibility but the output (or input) that it gives (takes) is just to complex. For example, a hashing function. There's no good way to break a hashing function apart and mantain cohesion and encapsulation. However, testing a hashing function can be really tough, since you would need to calculate by hand (you can't use code calculation to test code calculation!) the hashing, and test multiple cases where the hash changes. In that way (and this may be a question worth of its own topic) I think private method testing is the best way to handle it. Now, I'm not sure if I should ask another question, or ask it here, but are there any better way to test such complex output (input)? OBS: Please, if you think I should ask another question on that topic, leave a comment. :)

    Read the article

  • Should adapters or wrappers be unit tested?

    - by m3th0dman
    Suppose that I have a class that implements some logic: public MyLogicImpl implements MyLogic { public void myLogicMethod() { //my logic here } } and somewhere else a test class: public MyLogicImplTest { @Test public void testMyLogicMethod() { /test my logic } } I also have: @WebService public MyWebServices class { @Inject private MyLogic myLogic; @WebMethod public void myLogicWebMethod() { myLogic.myLogicMethod(); } } Should there be a test unit for myLogicWebMethod or should the testing for it be handled in integration testing.

    Read the article

  • Separate Action from Assertion in Unit Tests

    - by DigitalMoss
    Setup Many years ago I took to a style of unit testing that I have come to like a lot. In short, it uses a base class to separate out the Arrangement, Action and Assertion of the test into separate method calls. You do this by defining method calls in [Setup]/[TestInitialize] that will be called before each test run. [Setup] public void Setup() { before_each(); //arrangement because(); //action } This base class usually includes the [TearDown] call as well for when you are using this setup for Integration tests. [TearDown] public void Cleanup() { after_each(); } This often breaks out into a structure where the test classes inherit from a series of Given classes that put together the setup (i.e. GivenFoo : GivenBar : WhenDoingBazz) with the Assertions being one line tests with a descriptive name of what they are covering [Test] public void ThenBuzzSouldBeTrue() { Assert.IsTrue(result.Buzz); } The Problem There are very few tests that wrap around a single action so you end up with lots of classes so recently I have taken to defining the action in a series of methods within the test class itself: [Test] public void ThenBuzzSouldBeTrue() { because_an_action_was_taken(); Assert.IsTrue(result.Buzz); } private void because_an_action_was_taken() { //perform action here } This results in several "action" methods within the test class but allows grouping of similar tests (i.e. class == WhenTestingDifferentWaysToSetBuzz) The Question Does someone else have a better way of separating out the three 'A's of testing? Readability of tests is important to me so I would prefer that, when a test fails, that the very naming structure of the tests communicate what has failed. If someone can read the Inheritance structure of the tests and have a good idea why the test might be failing then I feel it adds a lot of value to the tests (i.e. GivenClient : GivenUser : WhenModifyingUserPermissions : ThenReadAccessShouldBeTrue). I am aware of Acceptance Testing but this is more on a Unit (or series of units) level with boundary layers mocked. EDIT : My question is asking if there is an event or other method for executing a block of code before individual tests (something that could be applied to specific sets of tests without it being applied to all tests within a class like [Setup] currently does. Barring the existence of this event, which I am fairly certain doesn't exist, is there another method for accomplishing the same thing? Using [Setup] for every case presents a problem either way you go. Something like [Action("Category")] (a setup method that applied to specific tests within the class) would be nice but I can't find any way of doing this.

    Read the article

  • iOS - Unit tests for KVO/delegate codes

    - by ZhangChn
    I am going to design a MVC pattern. It could be either designed as a delegate pattern, or a Key-Value-Observing(KVO), to notify the controller about changing models. The project requires certain quality control procedures to conform to those verification documents. My questions: Does delegate pattern fit better for unit testing than KVO? If KVO fits better, would you please suggest some sample codes?

    Read the article

  • Unit Testing DateTime – The Crazy Way

    - by João Angelo
    We all know that the process of unit testing code that depends on DateTime, particularly the current time provided through the static properties (Now, UtcNow and Today), it’s a PITA. If you go ask how to unit test DateTime.Now on stackoverflow I’ll bet that you’ll get two kind of answers: Encapsulate the current time in your own interface and use a standard mocking framework; Pull out the big guns like Typemock Isolator, JustMock or Microsoft Moles/Fakes and mock the static property directly. Now each alternative has is pros and cons and I would have to say that I glean more to the second approach because the first adds a layer of abstraction just for the sake of testability. However, the second approach depends on commercial tools that not every shop wants to buy or in the not so friendly Microsoft Moles. (Sidenote: Moles is now named Fakes and it will ship with VS 2012) This tends to leave people without an acceptable and simple solution so after reading another of these types of questions in SO I came up with yet another alternative, one based on the first alternative that I presented here but tries really hard to not get in your way with yet another layer of abstraction. So, without further dues, I present you, the Tardis. The Tardis is single section of conditionally compiled code that overrides the meaning of the DateTime expression inside a single class. You still get the normal coding experience of using DateTime all over the place, but in a DEBUG compilation your tests will be able to mock every static method or property of the DateTime class. An example follows, while the full Tardis code can be downloaded from GitHub: using System; using NSubstitute; using NUnit.Framework; using Tardis; public class Example { public Example() : this(string.Empty) { } public Example(string title) { #if DEBUG this.DateTime = DateTimeProvider.Default; this.Initialize(title); } internal IDateTimeProvider DateTime { get; set; } internal Example(string title, IDateTimeProvider provider) { this.DateTime = provider; #endif this.Initialize(title); } private void Initialize(string title) { this.Title = title; this.CreatedAt = DateTime.UtcNow; } private string title; public string Title { get { return this.title; } set { this.title = value; this.UpdatedAt = DateTime.UtcNow; } } public DateTime CreatedAt { get; private set; } public DateTime UpdatedAt { get; private set; } } public class TExample { public void T001() { // Arrange var tardis = Substitute.For<IDateTimeProvider>(); tardis.UtcNow.Returns(new DateTime(2000, 1, 1, 6, 6, 6)); // Act var sut = new Example("Title", tardis); // Assert Assert.That(sut.CreatedAt, Is.EqualTo(tardis.UtcNow)); } public void T002() { // Arrange var tardis = Substitute.For<IDateTimeProvider>(); var sut = new Example("Title", tardis); tardis.UtcNow.Returns(new DateTime(2000, 1, 1, 6, 6, 6)); // Act sut.Title = "Updated"; // Assert Assert.That(sut.UpdatedAt, Is.EqualTo(tardis.UtcNow)); } } This approach is also suitable for other similar classes with commonly used static methods or properties like the ConfigurationManager class.

    Read the article

  • Unit testing a database connection and general questions on database-dependent code and unit testing

    - by dotnetdev
    Hi, If I have a method which establishes a database connection, how could this method be tested? Returning a bool in the event of a successful connection is one way, but is that the best way? From a testability method, is it best to have the connection method as one method and the method to get data back a seperate method? Also, how would I test methods which get back data from a database? I may do an assert against expected data but the actual data can change and still be the right resultset. EDIT: For the last point, to check data, if it's supposed to be a list of cars, then I can check they are real car models. Or if they are a bunch of web servers, I can have a list of existant web servers on the system, return that from the code under test, and get the test result. If the results are different, the data is the issue but the query not? THnaks

    Read the article

  • unit testing variable state explicit tests in dynamically typed languages

    - by kris welsh
    I have heard that a desirable quality of unit tests is that they test for each scenario independently. I realised whilst writing tests today that when you compare a variable with another value in a statement like: assertEquals("foo", otherObject.stringFoo); You are really testing three things: The variable you are testing exists and is within scope. The variable you are testing is the expected type. The variable you are testing's value is what you expect it to be. Which to me raises the question of whether you should test for each of these implicitly so that a test fail would occur on the specific line that tests for that problem: assertTrue(stringFoo); assertTrue(stringFoo.typeOf() == "String"); assertEquals("foo", otherObject.stringFoo); For example if the variable was an integer instead of a string the test case failure would be on line 2 which would give you more feedback on what went wrong. Should you test for this kind of thing explicitly or am i overthinking this?

    Read the article

  • Learning a new language using broken unit tests

    - by Brian MacKay
    I was listening to a dot net rocks the other day where they mentioned, almost in passing, a really intriguing tool for learning new languages -- I think they were specifically talking about F#. It's a solution you open up and there are a bunch of broken unit tests. Fixing them walks you through the steps of learning the language. I want to check it out, but I was driving in my car and I have no idea what the name of the project is or which dot net rocks episode it was. Google hasn't helped much. Any idea?

    Read the article

  • Unit-Testing functions which have parameters of classes where source code is not accessible

    - by McMannus
    Relating to this question, I have another question regarding unit testing functions in the utility classes: Assume you have function signatures like this: public function void doSomething(InternalClass obj, InternalElement element) where InternalClass and InternalElement are both Classes which source code are not available, because they are hidden in the API. Additionally, doSomething only operates on obj and element. I thought about mocking those classes away but this option is not possible due to the fact that they do not implement an interface at all which I could use for my Mocking classes. However, I need to fill obj with defined data to test doSomething. How can this problem be solved?

    Read the article

  • design pattern for unit testing?

    - by Maddy.Shik
    I am beginner in developing test cases, and want to follow good patterns for developing test cases rather than following some person or company's specific ideas. Some people don't make test cases and just develop the way their senior have done in their projects. I am facing lot problems like object dependencies (when want to test method which persist A object i have to first persist B object since A is child of B). Please suggest some good books or sites preferably for learning design pattern for unit test cases. Or reference to some good source code or some discussion for Dos and Donts will do wonder. So that i can avoid doing mistakes be learning from experience of others.

    Read the article

  • How do you unit test your javascript.

    - by Erin
    I spend a lot of time working in javascript of late. I have not found a way that seems to work well for testing javascript. This in the past hasn't been a problem for me since most of the websites I worked on had very little javascript in them. I now have a new website that makes extensive use of jQuery I would like to build unit tests for most of the system. My problems are this. Most of the functions make changes to the DOM in some way. Most of the functions request data from the web server as well and require a session on the service to get results back. I would like to run the test from either a command line or a test running harness rather then in a browser. Any help or articles I should be reading would be helpful.

    Read the article

  • Pair programming and unit testing

    - by TheSilverBullet
    My team follows the Scrum development cycle. We have received feedback that our unit testing coverage is not very good. A team member is suggesting the addition of an external testing team to assist the core team, but I feel this will backfire in a bad way. I am thinking of suggesting pair programming approach. I have a feeling that this should help the code be more "test-worthy" and soon the team can move to test driven development! What are the potential problems that might arise out of pair programming??

    Read the article

  • How do you unit test your javascript

    - by Erin
    I spend a lot of time working in javascript of late. I have not found a way that seems to work well for testing javascript. This in the past hasn't been a problem for me since most of the websites I worked on had very little javascript in them. I now have a new website that makes extensive use of jQuery I would like to build unit tests for most of the system. My problems are this. Most of the functions make changes to the DOM in some way. Most of the functions request data from the web server as well and require a session on the service to get results back. I would like to run the test from either a command line or a test running harness rather then in a browser. Any help or articles I should be reading would be helpful.

    Read the article

  • Adding unit tests to a legacy, plain C project

    - by Groo
    The title says it all. My company is reusing a legacy firmware project for a microcontroller device, written completely in plain C. There are parts which are obviously wrong and need changing, and coming from a C#/TDD background I don't like the idea of randomly refactoring stuff with no tests to assure us that functionality remains unchanged. Also, I've seen that hard to find bugs were introduced in many occasions through slightest changes (which is something which I believe would be fixed if regression testing was used). A lot of care needs to be taken to avoid these mistakes: it's hard to track a bunch of globals around the code. To summarize: How do you add unit tests to existing tightly coupled code before refactoring? What tools do you recommend? (less important, but still nice to know) I am not directly involved in writing this code (my responsibility is an app which will interact with the device in various ways), but it would be bad if good programming principles were left behind if there was a chance they could be used.

    Read the article

  • Code excavations, wishful invocations, perimeters and domain specific unit test frameworks

    - by RoyOsherove
    One of the talks I did at QCON London was about a subject that I’ve come across fairly recently , when I was building SilverUnit – a “pure” unit test framework for silverlight objects that depend on the silverlight runtime to run. It is the concept of “cogs in the machine” – when your piece of code needs to run inside a host framework or runtime that you have little or no control over for testability related matters. Examples of such cogs and machines can be: your custom control running inside silverlight runtime in the browser your plug-in running inside an IDE your activity running inside a windows workflow your code running inside a java EE bean your code inheriting from a COM+ (enterprise services) component etc.. Not all of these are necessarily testability problems. The main testability problem usually comes when your code actually inherits form something inside the system. For example. one of the biggest problems with testing objects like silverlight controls is the way they depend on the silverlight runtime – they don’t implement some silverlight interface, they don’t just call external static methods against the framework runtime that surrounds them – they actually inherit parts of the framework: they all inherit (in this case) from the silverlight DependencyObject Wrapping it up? An inheritance dependency is uniquely challenging to bring under test, because “classic” methods such as wrapping the object under test with a framework wrapper will not work, and the only way to do manually is to create parallel testable objects that get delegated with all the possible actions from the dependencies.    In silverlight’s case, that would mean creating your own custom logic class that would be called directly from controls that inherit from silverlight, and would be tested independently of these controls. The pro side is that you get the benefit of understanding the “contract” and the “roles” your system plays against your logic, but unfortunately, more often than not, it can be very tedious to create, and may sometimes feel unnecessary or like code duplication. About perimeters A perimeter is that invisible line that your draw around your pieces of logic during a test, that separate the code under test from any dependencies that it uses. Most of the time, a test perimeter around an object will be the list of seams (dependencies that can be replaced such as interfaces, virtual methods etc.) that are actually replaced for that test or for all the tests. Role based perimeters In the case of creating a wrapper around an object – one really creates a “role based” perimeter around the logic that is being tested – that wrapper takes on roles that are required by the code under test, and also communicates with the host system to implement those roles and provide any inputs to the logic under test. in the image below – we have the code we want to test represented as a star. No perimeter is drawn yet (we haven’t wrapped it up in anything yet). in the image below is what happens when you wrap your logic with a role based wrapper – you get a role based perimeter anywhere your code interacts with the system: There’s another way to bring that code under test – using isolation frameworks like typemock, rhino mocks and MOQ (but if your code inherits from the system, Typemock might be the only way to isolate the code from the system interaction.   Ad-Hoc Isolation perimeters the image below shows what I call ad-hoc perimeter that might be vastly different between different tests: This perimeter’s surface is much smaller, because for that specific test, that is all the “change” that is required to the host system behavior.   The third way of isolating the code from the host system is the main “meat” of this post: Subterranean perimeters Subterranean perimeters are Deep rooted perimeters  - “always on” seams that that can lie very deep in the heart of the host system where they are fully invisible even to the test itself, not just to the code under test. Because they lie deep inside a system you can’t control, the only way I’ve found to control them is with runtime (not compile time) interception of method calls on the system. One way to get such abilities is by using Aspect oriented frameworks – for example, in SilverUnit, I’ve used the CThru AOP framework based on Typemock hooks and CLR profilers to intercept such system level method calls and effectively turn them into seams that lie deep down at the heart of the silverlight runtime. the image below depicts an example of what such a perimeter could look like: As you can see, the actual seams can be very far away form the actual code under test, and as you’ll discover, that’s actually a very good thing. Here is only a partial list of examples of such deep rooted seams : disabling the constructor of a base class five levels below the code under test (this.base.base.base.base) faking static methods of a type that’s being called several levels down the stack: method x() calls y() calls z() calls SomeType.StaticMethod()  Replacing an async mechanism with a synchronous one (replacing all timers with your own timer behavior that always Ticks immediately upon calls to “start()” on the same caller thread for example) Replacing event mechanisms with your own event mechanism (to allow “firing” system events) Changing the way the system saves information with your own saving behavior (in silverunit, I replaced all Dependency Property set and get with calls to an in memory value store instead of using the one built into silverlight which threw exceptions without a browser) several questions could jump in: How do you know what to fake? (how do you discover the perimeter?) How do you fake it? Wouldn’t this be problematic  - to fake something you don’t own? it might change in the future How do you discover the perimeter to fake? To discover a perimeter all you have to do is start with a wishful invocation. a wishful invocation is the act of trying to invoke a method (or even just create an instance ) of an object using “regular” test code. You invoke the thing that you’d like to do in a real unit test, to see what happens: Can I even create an instance of this object without getting an exception? Can I invoke this method on that instance without getting an exception? Can I verify that some call into the system happened? You make the invocation, get an exception (because there is a dependency) and look at the stack trace. choose a location in the stack trace and disable it. Then try the invocation again. if you don’t get an exception the perimeter is good for that invocation, so you can move to trying out other methods on that object. in a future post I will show the process using CThru, and how you end up with something close to a domain specific test framework after you’re done creating the perimeter you need.

    Read the article

  • How do you get the total asset size (or total resource size) in an Android game?

    - by tom_mai78101
    In an Android Java project, there are two folders, asset and res. To me, I usually put some stuffs, like PNG files, sound files, etc. in either one of the two folder. When resources are increasingly becoming more and more in those folders, the time it takes to load them will increase. Therefore, a loading screen is a must in these situation. The total size is to be used in a loading screen, so that I can guess the average time it takes to load each resources, from 0 bytes to its individual resource file size. I only know that by adding all individual sizes in a respective order, I will then obtain the total asset or res folder size, simply by adding them up. So, when it comes to getting the total file size from either folder, how do you obtain their individual resource/object sizes, respectively? Thanks in advance.

    Read the article

  • What is the effect of creating unit tests during development on time to develop as well as time spent in maintenance activities?

    - by jgauffin
    I'm a consultant and I am going to introduce unit tests to all developers at my client site. My goal is to ensure that all new applications should have unit tests for all classes created. The client has a problem with high maintenance costs from fixing bugs in their existing applications. Their applications have a life span from between 5-15 years in which they continuously add new features. I'm quite confident that they will benefit greatly from starting with unit tests. I'm interested in the effect of unit tests on the time and cost of development: How much time will writing unit tests as part of the development process add? How much time will be saved in maintenance activities (testing and debugging) by having good unit tests?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >