Search Results

Search found 11617 results on 465 pages for 'big blue'.

Page 4/465 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Big-O complexity of c^n + n*(logn)^2 + (10*n)^c

    - by zebraman
    I need to derive the Big-O complexity of this expression: c^n + n*(log(n))^2 + (10*n)^c where c is a constant and n is a variable. I'm pretty sure I understand how to derive the Big-O complexity of each term individually, I just don't know how the Big-O complexity changes when the terms are combined like this. Ideas? Any help would be great, thanks.

    Read the article

  • TDWI World Conference Features Oracle and Big Data

    - by Mandy Ho
    Oracle is a Gold Sponsor at this year's TDWI World Conference Series, held at the Manchester Grand Hyatt in San Diego, California - July 31 to Aug 1. The theme of this event is Big Data Tipping Point: BI Strategies in the Era of Big Data. The conference features an educational look at how data is now being generated so quickly that organizations across all industries need new technologies to stay ahead - to understand customer behavior, detect fraud, improve processes and accelerate performance. Attendees will hear how the internet, social media and streaming data are fundamentally changing business intelligence and data warehousing. Big data is reaching critical mass - the tipping point. Oracle will be conducting the following Evening Workshop. To reserve your space, call 1.800.820.5592 ext 10775. Title...:    Integrating Big Data into Your Data Center (or A Big Data Reference Architecture) Date.:    Wed., August 1, 2012, at 7:00 p.m Venue:: Manchester Grand Hyatt, San Diego, Room Weblogs, Social Media, smart meters, senors and other devices generate high volumes of low density information that isn't readily accessible in enterprise data warehouses and business intelligence applications today. But, this data can have relevant business value, especially when analyzed alongside traditional information sources. In this session, we will outline a reference architecture for big data that will help you maximize the value of your big data implementation. You will learn: The key technologies in a big architecture, and their specific use case The integration point of the various technologies and how they fit into your existing IT environment How effectively leverage analytical sandboxes for data discovery and agile development of data driven solutions   At the end of this session you will understand the reference architecture and have the tools to implement this architecture at your company. Presenter: Jean-Pierre Dijcks, Senior Principal Product Manager Don't miss our booth and the chance to meet with our Big data experts on the exhibition floor at booth #306. 

    Read the article

  • Big Data: Size isn’t everything

    - by Simon Elliston Ball
    Big Data has a big problem; it’s the word “Big”. These days, a quick Google search will uncover terabytes of negative opinion about the futility of relying on huge volumes of data to produce magical, meaningful insight. There are also many clichéd but correct assertions about the difficulties of correlation versus causation, in massive data sets. In reading some of these pieces, I begin to understand how climatologists must feel when people complain ironically about “global warming” during snowfall. Big Data has a name problem. There is a lot more to it than size. Shape, Speed, and…err…Veracity are also key elements (now I understand why Gartner and the gang went with V’s instead of S’s). The need to handle data of different shapes (Variety) is not new. Data developers have always had to mold strange-shaped data into our reporting systems, integrating with semi-structured sources, and even straying into full-text searching. However, what we lacked was an easy way to add semi-structured and unstructured data to our arsenal. New “Big Data” tools such as MongoDB, and other NoSQL (Not Only SQL) databases, or a graph database like Neo4J, fill this gap. Still, to many, they simply introduce noise to the clean signal that is their sensibly normalized data structures. What about speed (Velocity)? It’s not just high frequency trading that generates data faster than a single system can handle. Many other applications need to make trade-offs that traditional databases won’t, in order to cope with high data insert speeds, or to extract quickly the required information from data streams. Unfortunately, many people equate Big Data with the Hadoop platform, whose batch driven queries and job processing queues have little to do with “velocity”. StreamInsight, Esper and Tibco BusinessEvents are examples of Big Data tools designed to handle high-velocity data streams. Again, the name doesn’t do the discipline of Big Data any favors. Ultimately, though, does analyzing fast moving data produce insights as useful as the ones we get through a more considered approach, enabled by traditional BI? Finally, we have Veracity and Value. In many ways, these additions to the classic Volume, Velocity and Variety trio acknowledge the criticism that without high-quality data and genuinely valuable outputs then data, big or otherwise, is worthless. As a discipline, Big Data has recognized this, and data quality and cleaning tools are starting to appear to support it. Rather than simply decrying the irrelevance of Volume, we need as a profession to focus how to improve Veracity and Value. Perhaps we should just declare the ‘Big’ silent, embrace these new data tools and help develop better practices for their use, just as we did the good old RDBMS? What does Big Data mean to you? Which V gives your business the most pain, or the most value? Do you see these new tools as a useful addition to the BI toolbox, or are they just enabling a dangerous trend to find ghosts in the noise?

    Read the article

  • When is BIG, big enough for a database?

    - by David ???
    I'm developing a Java application that has performance at its core. I have a list of some 40,000 "final" objects, i.e., I have an initialization input data of 40,000 vectors. This data is unchanged throughout the program's run. I am always preforming lookups against a single ID property to retrieve the proper vectors. Currently I am using a HashMap over a sub-sample of a 1,000 vectors, but I'm not sure it will scale to production. When is BIG, actually big enough for a use of DB? One more thing, an SQLite DB is a viable option as no concurrency is involved, so I guess the "threshold" for db use, is perhaps lower.

    Read the article

  • Blue people on flash videos (Youtube, Vimeo, etc...)

    - by Luis Alvarado
    After a recent update I am seeing EVERYONE in any video blue. Only the people are blue. First I was thinking it was an April Fools joke about the song Blue from Eiffel 65 but it has been 4 days already. I tested on another 2 PCs, same problem. It started about a week ago I think. I am using Flash 11.2.202.228 with Firefox 11. The problem is not there if I use Google Chrome. In Chrome the Flash Player is 11.2.31.118

    Read the article

  • flash video appears blue ubuntu 12.04

    - by pst007x
    This is a duplicate, however the solution given does not work. After updating to Ubuntu 12.04 from Ubuntu 11.10, all video is now blue, whether playing in a browser or a player. I have tried to uninstall all Flash and re-installed but makes no difference. Does anyone have any ideas? Fix (work around) Issue: All web browsers flash player video is blue Chromium Google Chrome Firefox Both flash plugins causes flash video to appear have a blue overlay, so remove. Adobe - flashplugin Flashplugin - installer Solution (not as functional as adobe flash plug in but it works) Install Lightspark (plus any browser-plugins) or Install Gnash (plus any browser-plugins) FIX (Possible) Removed: Gnash-browser plugins Video Decode and Presentation API for Unix (libraries) libvdpau1 Installed: Adobe-flashplugin Re-started browser, and it worked for me.

    Read the article

  • Updated Blue and Dark Visual Studio 2010 Themes

    I updated my previous dark theme for Visual Studio 2010 and added a new one with a blue background, similar to the background (but a bit lighter) to that of Visual Studio 2010s blue. I updated a few fonts to fit in with it and for the past week I have been using this and found that its even easier on my eyes than the dark theme. I made some changes to the dark theme, too, and include both of them in the download file here. My Blue Theme (click the images to see them larger)   My Dark...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Why don't Normal maps in tangent space have a single blue color?

    - by seahorse
    Normal maps are predominantly blue in color because the z component maps to Blue and since normals point out of the surface in the z direction we see Blue as the predominant component. If the above is true then why are normal maps just of one color i.e. blue and they should not be having any other shades(not even shades of blue) Since by definition tangent space is perpendicular to normal at any point we should have the normal always pointing in the Z (Blue direction) with no X(Red component) and Y(Green component). Thus the normal map(since it is a "normal map") should have had color of normals which is just the Blue(Z =Blue compoennt = 1, R=0, G=0) and the normal map should have been of only Blue color with no shades in between. But even then normal maps are not so, and they have gradients of shades in them, why is this so?

    Read the article

  • Proving that a function f(n) belongs to a Big-Theta(g(n))

    - by PLS
    Its a exercise that ask to indicate the class Big-Theta(g(n)) the functions belongs to and to prove the assertion. In this case f(n) = (n^2+1)^10 By definition f(n) E Big-Theta(g(n)) <= c1*g(n) < f(n) < c2*g(n), where c1 and c2 are two constants. I know that for this specific f(n) the Big-Theta is g(n^20) but I don't know who to prove it properly. I guess I need to manipulate this inequality but I don't know how

    Read the article

  • Running a simple integration scenario using the Oracle Big Data Connectors on Hadoop/HDFS cluster

    - by hamsun
    Between the elephant ( the tradional image of the Hadoop framework) and the Oracle Iron Man (Big Data..) an english setter could be seen as the link to the right data Data, Data, Data, we are living in a world where data technology based on popular applications , search engines, Webservers, rich sms messages, email clients, weather forecasts and so on, have a predominant role in our life. More and more technologies are used to analyze/track our behavior, try to detect patterns, to propose us "the best/right user experience" from the Google Ad services, to Telco companies or large consumer sites (like Amazon:) ). The more we use all these technologies, the more we generate data, and thus there is a need of huge data marts and specific hardware/software servers (as the Exadata servers) in order to treat/analyze/understand the trends and offer new services to the users. Some of these "data feeds" are raw, unstructured data, and cannot be processed effectively by normal SQL queries. Large scale distributed processing was an emerging infrastructure need and the solution seemed to be the "collocation of compute nodes with the data", which in turn leaded to MapReduce parallel patterns and the development of the Hadoop framework, which is based on MapReduce and a distributed file system (HDFS) that runs on larger clusters of rather inexpensive servers. Several Oracle products are using the distributed / aggregation pattern for data calculation ( Coherence, NoSql, times ten ) so once that you are familiar with one of these technologies, lets says with coherence aggregators, you will find the whole Hadoop, MapReduce concept very similar. Oracle Big Data Appliance is based on the Cloudera Distribution (CDH), and the Oracle Big Data Connectors can be plugged on a Hadoop cluster running the CDH distribution or equivalent Hadoop clusters. In this paper, a "lab like" implementation of this concept is done on a single Linux X64 server, running an Oracle Database 11g Enterprise Edition Release 11.2.0.4.0, and a single node Apache hadoop-1.2.1 HDFS cluster, using the SQL connector for HDFS. The whole setup is fairly simple: Install on a Linux x64 server ( or virtual box appliance) an Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 server Get the Apache Hadoop distribution from: http://mir2.ovh.net/ftp.apache.org/dist/hadoop/common/hadoop-1.2.1. Get the Oracle Big Data Connectors from: http://www.oracle.com/technetwork/bdc/big-data-connectors/downloads/index.html?ssSourceSiteId=ocomen. Check the java version of your Linux server with the command: java -version java version "1.7.0_40" Java(TM) SE Runtime Environment (build 1.7.0_40-b43) Java HotSpot(TM) 64-Bit Server VM (build 24.0-b56, mixed mode) Decompress the hadoop hadoop-1.2.1.tar.gz file to /u01/hadoop-1.2.1 Modify your .bash_profile export HADOOP_HOME=/u01/hadoop-1.2.1 export PATH=$PATH:$HADOOP_HOME/bin export HIVE_HOME=/u01/hive-0.11.0 export PATH=$PATH:$HADOOP_HOME/bin:$HIVE_HOME/bin (also see my sample .bash_profile) Set up ssh trust for Hadoop process, this is a mandatory step, in our case we have to establish a "local trust" as will are using a single node configuration copy the new public keys to the list of authorized keys connect and test the ssh setup to your localhost: We will run a "pseudo-Hadoop cluster", in what is called "local standalone mode", all the Hadoop java components are running in one Java process, this is enough for our demo purposes. We need to "fine tune" some Hadoop configuration files, we have to go at our $HADOOP_HOME/conf, and modify the files: core-site.xml hdfs-site.xml mapred-site.xml check that the hadoop binaries are referenced correctly from the command line by executing: hadoop -version As Hadoop is managing our "clustered HDFS" file system we have to create "the mount point" and format it , the mount point will be declared to core-site.xml as: The layout under the /u01/hadoop-1.2.1/data will be created and used by other hadoop components (MapReduce = /mapred/...) HDFS is using the /dfs/... layout structure format the HDFS hadoop file system: Start the java components for the HDFS system As an additional check, you can use the GUI Hadoop browsers to check the content of your HDFS configurations: Once our HDFS Hadoop setup is done you can use the HDFS file system to store data ( big data : )), and plug them back and forth to Oracle Databases by the means of the Big Data Connectors ( which is the next configuration step). You can create / use a Hive db, but in our case we will make a simple integration of "raw data" , through the creation of an External Table to a local Oracle instance ( on the same Linux box, we run the Hadoop HDFS one node cluster and one Oracle DB). Download some public "big data", I use the site: http://france.meteofrance.com/france/observations, from where I can get *.csv files for my big data simulations :). Here is the data layout of my example file: Download the Big Data Connector from the OTN (oraosch-2.2.0.zip), unzip it to your local file system (see picture below) Modify your environment in order to access the connector libraries , and make the following test: [oracle@dg1 bin]$./hdfs_stream Usage: hdfs_stream locationFile [oracle@dg1 bin]$ Load the data to the Hadoop hdfs file system: hadoop fs -mkdir bgtest_data hadoop fs -put obsFrance.txt bgtest_data/obsFrance.txt hadoop fs -ls /user/oracle/bgtest_data/obsFrance.txt [oracle@dg1 bg-data-raw]$ hadoop fs -ls /user/oracle/bgtest_data/obsFrance.txt Found 1 items -rw-r--r-- 1 oracle supergroup 54103 2013-10-22 06:10 /user/oracle/bgtest_data/obsFrance.txt [oracle@dg1 bg-data-raw]$hadoop fs -ls hdfs:///user/oracle/bgtest_data/obsFrance.txt Found 1 items -rw-r--r-- 1 oracle supergroup 54103 2013-10-22 06:10 /user/oracle/bgtest_data/obsFrance.txt Check the content of the HDFS with the browser UI: Start the Oracle database, and run the following script in order to create the Oracle database user, the Oracle directories for the Oracle Big Data Connector (dg1 it’s my own db id replace accordingly yours): #!/bin/bash export ORAENV_ASK=NO export ORACLE_SID=dg1 . oraenv sqlplus /nolog <<EOF CONNECT / AS sysdba; CREATE OR REPLACE DIRECTORY osch_bin_path AS '/u01/orahdfs-2.2.0/bin'; CREATE USER BGUSER IDENTIFIED BY oracle; GRANT CREATE SESSION, CREATE TABLE TO BGUSER; GRANT EXECUTE ON sys.utl_file TO BGUSER; GRANT READ, EXECUTE ON DIRECTORY osch_bin_path TO BGUSER; CREATE OR REPLACE DIRECTORY BGT_LOG_DIR as '/u01/BG_TEST/logs'; GRANT READ, WRITE ON DIRECTORY BGT_LOG_DIR to BGUSER; CREATE OR REPLACE DIRECTORY BGT_DATA_DIR as '/u01/BG_TEST/data'; GRANT READ, WRITE ON DIRECTORY BGT_DATA_DIR to BGUSER; EOF Put the following in a file named t3.sh and make it executable, hadoop jar $OSCH_HOME/jlib/orahdfs.jar \ oracle.hadoop.exttab.ExternalTable \ -D oracle.hadoop.exttab.tableName=BGTEST_DP_XTAB \ -D oracle.hadoop.exttab.defaultDirectory=BGT_DATA_DIR \ -D oracle.hadoop.exttab.dataPaths="hdfs:///user/oracle/bgtest_data/obsFrance.txt" \ -D oracle.hadoop.exttab.columnCount=7 \ -D oracle.hadoop.connection.url=jdbc:oracle:thin:@//localhost:1521/dg1 \ -D oracle.hadoop.connection.user=BGUSER \ -D oracle.hadoop.exttab.printStackTrace=true \ -createTable --noexecute then test the creation fo the external table with it: [oracle@dg1 samples]$ ./t3.sh ./t3.sh: line 2: /u01/orahdfs-2.2.0: Is a directory Oracle SQL Connector for HDFS Release 2.2.0 - Production Copyright (c) 2011, 2013, Oracle and/or its affiliates. All rights reserved. Enter Database Password:] The create table command was not executed. The following table would be created. CREATE TABLE "BGUSER"."BGTEST_DP_XTAB" ( "C1" VARCHAR2(4000), "C2" VARCHAR2(4000), "C3" VARCHAR2(4000), "C4" VARCHAR2(4000), "C5" VARCHAR2(4000), "C6" VARCHAR2(4000), "C7" VARCHAR2(4000) ) ORGANIZATION EXTERNAL ( TYPE ORACLE_LOADER DEFAULT DIRECTORY "BGT_DATA_DIR" ACCESS PARAMETERS ( RECORDS DELIMITED BY 0X'0A' CHARACTERSET AL32UTF8 STRING SIZES ARE IN CHARACTERS PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream' FIELDS TERMINATED BY 0X'2C' MISSING FIELD VALUES ARE NULL ( "C1" CHAR(4000), "C2" CHAR(4000), "C3" CHAR(4000), "C4" CHAR(4000), "C5" CHAR(4000), "C6" CHAR(4000), "C7" CHAR(4000) ) ) LOCATION ( 'osch-20131022081035-74-1' ) ) PARALLEL REJECT LIMIT UNLIMITED; The following location files would be created. osch-20131022081035-74-1 contains 1 URI, 54103 bytes 54103 hdfs://localhost:19000/user/oracle/bgtest_data/obsFrance.txt Then remove the --noexecute flag and create the external Oracle table for the Hadoop data. Check the results: The create table command succeeded. CREATE TABLE "BGUSER"."BGTEST_DP_XTAB" ( "C1" VARCHAR2(4000), "C2" VARCHAR2(4000), "C3" VARCHAR2(4000), "C4" VARCHAR2(4000), "C5" VARCHAR2(4000), "C6" VARCHAR2(4000), "C7" VARCHAR2(4000) ) ORGANIZATION EXTERNAL ( TYPE ORACLE_LOADER DEFAULT DIRECTORY "BGT_DATA_DIR" ACCESS PARAMETERS ( RECORDS DELIMITED BY 0X'0A' CHARACTERSET AL32UTF8 STRING SIZES ARE IN CHARACTERS PREPROCESSOR "OSCH_BIN_PATH":'hdfs_stream' FIELDS TERMINATED BY 0X'2C' MISSING FIELD VALUES ARE NULL ( "C1" CHAR(4000), "C2" CHAR(4000), "C3" CHAR(4000), "C4" CHAR(4000), "C5" CHAR(4000), "C6" CHAR(4000), "C7" CHAR(4000) ) ) LOCATION ( 'osch-20131022081719-3239-1' ) ) PARALLEL REJECT LIMIT UNLIMITED; The following location files were created. osch-20131022081719-3239-1 contains 1 URI, 54103 bytes 54103 hdfs://localhost:19000/user/oracle/bgtest_data/obsFrance.txt This is the view from the SQL Developer: and finally the number of lines in the oracle table, imported from our Hadoop HDFS cluster SQL select count(*) from "BGUSER"."BGTEST_DP_XTAB"; COUNT(*) ---------- 1151 In a next post we will integrate data from a Hive database, and try some ODI integrations with the ODI Big Data connector. Our simplistic approach is just a step to show you how these unstructured data world can be integrated to Oracle infrastructure. Hadoop, BigData, NoSql are great technologies, they are widely used and Oracle is offering a large integration infrastructure based on these services. Oracle University presents a complete curriculum on all the Oracle related technologies: NoSQL: Introduction to Oracle NoSQL Database Using Oracle NoSQL Database Big Data: Introduction to Big Data Oracle Big Data Essentials Oracle Big Data Overview Oracle Data Integrator: Oracle Data Integrator 12c: New Features Oracle Data Integrator 11g: Integration and Administration Oracle Data Integrator: Administration and Development Oracle Data Integrator 11g: Advanced Integration and Development Oracle Coherence 12c: Oracle Coherence 12c: New Features Oracle Coherence 12c: Share and Manage Data in Clusters Oracle Coherence 12c: Oracle GoldenGate 11g: Fundamentals for Oracle Oracle GoldenGate 11g: Fundamentals for SQL Server Oracle GoldenGate 11g Fundamentals for Oracle Oracle GoldenGate 11g Fundamentals for DB2 Oracle GoldenGate 11g Fundamentals for Teradata Oracle GoldenGate 11g Fundamentals for HP NonStop Oracle GoldenGate 11g Management Pack: Overview Oracle GoldenGate 11g Troubleshooting and Tuning Oracle GoldenGate 11g: Advanced Configuration for Oracle Other Resources: Apache Hadoop : http://hadoop.apache.org/ is the homepage for these technologies. "Hadoop Definitive Guide 3rdEdition" by Tom White is a classical lecture for people who want to know more about Hadoop , and some active "googling " will also give you some more references. About the author: Eugene Simos is based in France and joined Oracle through the BEA-Weblogic Acquisition, where he worked for the Professional Service, Support, end Education for major accounts across the EMEA Region. He worked in the banking sector, ATT, Telco companies giving him extensive experience on production environments. Eugen currently specializes in Oracle Fusion Middleware teaching an array of courses on Weblogic/Webcenter, Content,BPM /SOA/Identity-Security/GoldenGate/Virtualisation/Unified Comm Suite) throughout the EMEA region.

    Read the article

  • How meaningful is the Big-O time complexity of an algorithm?

    - by james creasy
    Programmers often talk about the time complexity of an algorithm, e.g. O(log n) or O(n^2). Time complexity classifications are made as the input size goes to infinity, but ironically infinite input size in computation is not used. Put another way, the classification of an algorithm is based on a situation that algorithm will never be in: where n = infinity. Also, consider that a polynomial time algorithm where the exponent is huge is just as useless as an exponential time algorithm with tiny base (e.g., 1.00000001^n) is useful. Given this, how much can I rely on the Big-O time complexity to advise choice of an algorithm?

    Read the article

  • Make Your Desktop an Aquarian Paradise with the Blue Water Theme for Windows 7

    - by Asian Angel
    Do you enjoy being near bodies of water regardless of type? Then you will definitely want to grab a copy of the Blue Water Theme for Windows 7. This terrific theme comes with ten images featuring streams, lakes, rivers, and the ocean that quickly turn your desktop into a perfect aquarian paradise. Download the Blue Water Theme [Windows 7 Personalization Gallery] How To Be Your Own Personal Clone Army (With a Little Photoshop) How To Properly Scan a Photograph (And Get An Even Better Image) The HTG Guide to Hiding Your Data in a TrueCrypt Hidden Volume

    Read the article

  • Big-O of PHP functions?

    - by Kendall Hopkins
    After using PHP for a while now, I've noticed that not all PHP built in functions as fast as expected. Consider the below two possible implementations of a function that finds if a number is prime using a cached array of primes. //very slow for large $prime_array $prime_array = array( 2, 3, 5, 7, 11, 13, .... 104729, ... ); $result_array = array(); foreach( $array_of_number => $number ) { $result_array[$number] = in_array( $number, $large_prime_array ); } //still decent performance for large $prime_array $prime_array => array( 2 => NULL, 3 => NULL, 5 => NULL, 7 => NULL, 11 => NULL, 13 => NULL, .... 104729 => NULL, ... ); foreach( $array_of_number => $number ) { $result_array[$number] = array_key_exists( $number, $large_prime_array ); } This is because in_array is implemented with a linear search O(n) which will linearly slow down as $prime_array grows. Where the array_key_exists function is implemented with a hash lookup O(1) which will not slow down unless the hash table gets extremely populated (in which case it's only O(logn)). So far I've had to discover the big-O's via trial and error, and occasionally looking at the source code. Now for the question... I was wondering if there was a list of the theoretical (or practical) big O times for all* the PHP built in functions. *or at least the interesting ones For example find it very hard to predict what the big O of functions listed because the possible implementation depends on unknown core data structures of PHP: array_merge, array_merge_recursive, array_reverse, array_intersect, array_combine, str_replace (with array inputs), etc.

    Read the article

  • List of Big-O for PHP functions?

    - by Kendall Hopkins
    After using PHP for a while now, I've noticed that not all PHP built in functions as fast as expected. Consider the below two possible implementations of a function that finds if a number is prime using a cached array of primes. //very slow for large $prime_array $prime_array = array( 2, 3, 5, 7, 11, 13, .... 104729, ... ); $result_array = array(); foreach( $array_of_number => $number ) { $result_array[$number] = in_array( $number, $large_prime_array ); } //still decent performance for large $prime_array $prime_array => array( 2 => NULL, 3 => NULL, 5 => NULL, 7 => NULL, 11 => NULL, 13 => NULL, .... 104729 => NULL, ... ); foreach( $array_of_number => $number ) { $result_array[$number] = array_key_exists( $number, $large_prime_array ); } This is because in_array is implemented with a linear search O(n) which will linearly slow down as $prime_array grows. Where the array_key_exists function is implemented with a hash lookup O(1) which will not slow down unless the hash table gets extremely populated (in which case it's only O(logn)). So far I've had to discover the big-O's via trial and error, and occasionally looking at the source code. Now for the question... I was wondering if there was a list of the theoretical (or practical) big O times for all* the PHP built in functions. *or at least the interesting ones For example find it very hard to predict what the big O of functions listed because the possible implementation depends on unknown core data structures of PHP: array_merge, array_merge_recursive, array_reverse, array_intersect, array_combine, str_replace (with array inputs), etc.

    Read the article

  • Using Emacs for big big projects

    - by ignatius
    Hello, Maybe is a often repeated question here, but i can't find anything similar with the search. The point is that i like to use Emacs for my personal projects, usually very small applications using C or python, but i was wondering how to use it also for my work, in which we have project with about 10k files of source code, so is veeeery big (actually i am using source insight, that is very nice tool, but only for windows), questions are: Searching: Which is the most convenient way to search a string within the whole project? Navigating throught the function: I mean something like putting the cursor over a function, define, var, and going to the definition Refactoring Also if you have any experience with this and want to share your thoughts i will consider it highly interesting. Br

    Read the article

  • The Business case for Big Data

    - by jasonw
    The Business Case for Big Data Part 1 What's the Big Deal Okay, so a new buzz word is emerging. It's gone beyond just a buzzword now, and I think it is going to change the landscape of retail, financial services, healthcare....everything. Let me spend a moment to talk about what i'm going to talk about. Massive amounts of data are being collected every second, more than ever imaginable, and the size of this data is more than can be practically managed by today’s current strategies and technologies. There is a revolution at hand centering on this groundswell of data and it will change how we execute our businesses through greater efficiencies, new revenue discovery and even enable innovation. It is the revolution of Big Data. This is more than just a new buzzword is being tossed around technology circles.This blog series for Big Data will explain this new wave of technology and provide a roadmap for businesses to take advantage of this growing trend. Cases for Big Data There is a growing list of use cases for big data. We naturally think of Marketing as the low hanging fruit. Many projects look to analyze twitter feeds to find new ways to do marketing. I think of a great example from a TED speech that I recently saw on data visualization from Facebook from my masters studies at University of Virginia. We can see when the most likely time for breaks-ups occurs by looking at status changes and updates on users Walls. This is the intersection of Big Data, Analytics and traditional structured data. Ted Video Marketers can use this to sell more stuff. I really like the following piece on looking at twitter feeds to measure mood. The following company was bought by a hedge fund. They could predict how the S&P was going to do within three days at an 85% accuracy. Link to the article Here we see a convergence of predictive analytics and Big Data. So, we'll look at a lot of these business cases and start talking about what this means for the business. It's more than just finding ways to use Hadoop + NoSql and we'll talk about that too. How do I start in Big Data? That's what is coming next post.

    Read the article

  • Forbes Article on Big Data and Java Embedded Technology

    - by hinkmond
    Whoa, cool! Forbes magazine has an online article about what I've been blogging about all this time: Big Data and Java Embedded Technology, tying it all together with a big bow, connecting small devices to the data center. See: Billions of Java Embedded Devices Here's a quote: By the end of the decade we could see tens of billions of new Internet-connected devices... with billions of Internet- connected devices generating Big Data, are the next big thing. ... That’s why Oracle has put together an ecosystem of solutions for this new, Big Data-oriented device-to-data center world: secure, powerful, and adaptable embedded Java for intelligent devices, integrated middleware... This is the next big thing. Java SE Embedded Technology is something to watch for in the new year. Start developing for it now to get a head-start... Hinkmond

    Read the article

  • Unlock the Value of Big Data

    - by Mike.Hallett(at)Oracle-BI&EPM
    Partners should read this comprehensive new e-book to get advice from Oracle and industry leaders on how you can use big data to generate new business insights and make better decisions for your customers. “Big data represents an opportunity averaging 14% of current revenue.” —From the Oracle big data e-book, Meeting the Challenge of Big Data You’ll gain instant access to: Straightforward approaches for acquiring, organizing, and analyzing data Architectures and tools needed to integrate new data with your existing investments Survey data revealing how leading companies are using big data, so you can benchmark your progress Expert resources such as white papers, analyst videos, 3-D demos, and more If you want to be ready for the data deluge, Meeting the Challenge of Big Data is a must-read. Register today for the e-book and read it on your computer or Apple iPad.  

    Read the article

  • Big Data – Data Mining with Hive – What is Hive? – What is HiveQL (HQL)? – Day 15 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the operational database in Big Data Story. In this article we will understand what is Hive and HQL in Big Data Story. Yahoo started working on PIG (we will understand that in the next blog post) for their application deployment on Hadoop. The goal of Yahoo to manage their unstructured data. Similarly Facebook started deploying their warehouse solutions on Hadoop which has resulted in HIVE. The reason for going with HIVE is because the traditional warehousing solutions are getting very expensive. What is HIVE? Hive is a datawarehouseing infrastructure for Hadoop. The primary responsibility is to provide data summarization, query and analysis. It  supports analysis of large datasets stored in Hadoop’s HDFS as well as on the Amazon S3 filesystem. The best part of HIVE is that it supports SQL-Like access to structured data which is known as HiveQL (or HQL) as well as big data analysis with the help of MapReduce. Hive is not built to get a quick response to queries but it it is built for data mining applications. Data mining applications can take from several minutes to several hours to analysis the data and HIVE is primarily used there. HIVE Organization The data are organized in three different formats in HIVE. Tables: They are very similar to RDBMS tables and contains rows and tables. Hive is just layered over the Hadoop File System (HDFS), hence tables are directly mapped to directories of the filesystems. It also supports tables stored in other native file systems. Partitions: Hive tables can have more than one partition. They are mapped to subdirectories and file systems as well. Buckets: In Hive data may be divided into buckets. Buckets are stored as files in partition in the underlying file system. Hive also has metastore which stores all the metadata. It is a relational database containing various information related to Hive Schema (column types, owners, key-value data, statistics etc.). We can use MySQL database over here. What is HiveSQL (HQL)? Hive query language provides the basic SQL like operations. Here are few of the tasks which HQL can do easily. Create and manage tables and partitions Support various Relational, Arithmetic and Logical Operators Evaluate functions Download the contents of a table to a local directory or result of queries to HDFS directory Here is the example of the HQL Query: SELECT upper(name), salesprice FROM sales; SELECT category, count(1) FROM products GROUP BY category; When you look at the above query, you can see they are very similar to SQL like queries. Tomorrow In tomorrow’s blog post we will discuss about very important components of the Big Data Ecosystem – Pig. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • Breaking the Outlook 2010 e-mail blue quote line for inline responses

    - by Jez
    This has to be the most infuriating regression from Outlook 2003 to 2007. It also exists the same in Outlook 2010, as far as I can tell. When you reply to an HTML e-mail message in Outlook, the quoted text has a blue line down the side, and is usually at the bottom of the message: Now in Outlook 2003, when replying to HTML-formatted messages in Outlook, you used to be able to reply inline quite easily, by getting to the point in the quoted message you wanted to reply to, and pressing the 'decrease indent' button: Since Outlook 2007 (and 2010), they replaced the e-mail editor with Microsoft Word. This means the blue line is implemented in a different way; it uses a blue left border. This makes it tougher to break the line up. After much ado, I found a couple of pages that said that you could remove all formatting by pressing ctrl-Q, which would remove the blue line next to the cursor and allow inline replies: OK, not too bad on the face of it. I can live with that. But here's the kick in the teeth; try sending that mail. I'll send it to myself. What do I receive? This: Outlook 2010 reinstated the blue line, where I had removed it, upon my sending the e-mail! For God's sake! The two pages I linked to above don't seem to address Outlook's reinstating of the blue line upon sending. So, does anyone know how you can actually reply inline in Outlook 2010 (or Outlook 2007) e-mail without the blue line being reinstated? Before anyone says, I do not want to convert the message to plaintext, and I do not want to just indent replies and have to manually build the blue line myself. I want something like the Outlook 2003 behaviour; I reply, Outlook creates the blue line, and I can break it up with inline replies, send it, and my inline formatting stays. My hopes aren't high - Microsoft seem to have gone to some trouble to actively prevent inline replies here, for some reason - but I'd appreciate anyone's insights. Cheers!

    Read the article

  • Blank pale blue screen with Live USB Kubuntu on AMD Sempron 2800+ processor

    - by WGCman
    I am trying to install Kubuntu onto a USB stick to use on my Acer Aspire 1362 laptop with an AMD Sempron 2800+ chip. Using Windows XP, I downloaded and saved to the laptop's hard drive: kubuntu-2.04.1-desktop-i386.iso from the GetKubuntu website and LinuxLive USB Creator 2.8.16.exe from the Linux live website I then installed the latter and ran it, installing the kubuntu onto the Memory stick. Leaving the Bios setup unchanged, the USB stick is ignored and Windows boots. If I change the Bios boot order so that the memory stick takes precedence, I see a dark blue screen announcing Kubukntu 12.04, and on selecting either “live Mode” or “Persistent mode”, messages flash by quickly, some of which appear to be error messages, including “trying to unpack rootfs image as initramfs”, “cannot allocate resource for mainboard”, “no plug and play device found”. Eventually I see a pale blue screen with four moving dots announcing Kubukntu 12.04, similar to the login screen of my Kubuntu desktop, but no invitation to log in or indeed any dialog. After several minutes, this changes to a black screen with more messages including “no caching mode present”, “ADDRCONF(NETDEV_UP): wlan0: link is not ready”, then degrades to a blank pale blue screen which can only be moved by switching the computer off. Finding no way to log the error messages passing by, I managed to photograph most of them, but know no way to attach the photo to this forum. As suggested by User 68186 (to whom thanks!), I have edited my original post to reflect the recent progress, so the following two comments are now superseded.

    Read the article

  • <= vs < when proving big-o notation

    - by user600197
    We just started learning big-o in class. I understand the general concept that f(x) is big-o of g(x) if there exists two constants c,k such that for all xk |f(x)|<=c|g(x)|. I had a question whether or not it is required that we include the <= to sign or whether it is just sufficient to put the < sign? For example: suppose f(x)=17x+11 and we are to prove that this is O(x^2). Then if we take c=28 and xk=1 we know that 17x+11<=28x^2. So since we know that x will always be greater than 1 this implies that 28x^2 will always be greater than 17x+11. So, do we really need to include the equal sign (<=) or is it okay if we just write (<)? Thanks in advance.

    Read the article

  • Simple Big O with lg(n) proof

    - by halohunter
    I'm attempting to guess and prove the Big O for: f(n) = n^3 - 7n^2 + nlg(n) + 10 I guess that big O is n^3 as it is the term with the largest order of growth However, I'm having trouble proving it. My unsuccesful attempt follows: f(n) <= cg(n) f(n) <= n^3 - 7n^2 + nlg(n) + 10 <= cn^3 f(n) <= n^3 + (n^3)*lg(n) + 10n^3 <= cn^3 f(n) <= N^3(11 + lg(n)) <= cn^3 so 11 + lg(n) = c But this can't be right because c must be constant. What am I doing wrong?

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >