Search Results

Search found 65101 results on 2605 pages for 'big data'.

Page 4/2605 | < Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >

  • Unleash AutoVue on Your Unmanaged Data

    - by [email protected]
    Over the years, I've spoken to hundreds of customers who use AutoVue to collaborate on their "managed" data stored in content management systems, product lifecycle management systems, etc. via our many integrations. Through these conversations I've also learned a harsh reality - we will never fully move away from unmanaged data (desktops, file servers, emails, etc). If you use AutoVue today you already know that even if your primary use is viewing content stored in a content management system, you can still open files stored locally on your computer. But did you know that AutoVue actually has - built-in - a great solution for viewing, printing and redlining your data stored on file servers? Using the 'Server protocol' you can point AutoVue directly to a top-level location on any networked file server and provide your users with a link or shortcut to access an interface similar to the sample page shown below. Many customers link to pages just like this one from their internal company intranets. Through this webpage, users can easily search and browse through file server data with a 'click-and-view' interface to find the specific image, document, drawing or model they're looking for. Any markups created on a document will be accessible to everyone else viewing that document and of course real-time collaboration is supported as well. Customers on maintenance can consult the AutoVue Admin guide or My Oracle Support Doc ID 753018.1 for an introduction to the server protocol. Contact your local AutoVue Solutions Consultant for help setting up the sample shown above.

    Read the article

  • SQL SERVER – Step by Step Guide to Beginning Data Quality Services in SQL Server 2012 – Introduction to DQS

    - by pinaldave
    Data Quality Services is a very important concept of SQL Server. I have recently started to explore the same and I am really learning some good concepts. Here are two very important blog posts which one should go over before continuing this blog post. Installing Data Quality Services (DQS) on SQL Server 2012 Connecting Error to Data Quality Services (DQS) on SQL Server 2012 This article is introduction to Data Quality Services for beginners. We will be using an Excel file Click on the image to enlarge the it. In the first article we learned to install DQS. In this article we will see how we can learn about building Knowledge Base and using it to help us identify the quality of the data as well help correct the bad quality of the data. Here are the two very important steps we will be learning in this tutorial. Building a New Knowledge Base  Creating a New Data Quality Project Let us start the building the Knowledge Base. Click on New Knowledge Base. In our project we will be using the Excel as a knowledge base. Here is the Excel which we will be using. There are two columns. One is Colors and another is Shade. They are independent columns and not related to each other. The point which I am trying to show is that in Column A there are unique data and in Column B there are duplicate records. Clicking on New Knowledge Base will bring up the following screen. Enter the name of the new knowledge base. Clicking NEXT will bring up following screen where it will allow to select the EXCE file and it will also let users select the source column. I have selected Colors and Shade both as a source column. Creating a domain is very important. Here you can create a unique domain or domain which is compositely build from Colors and Shade. As this is the first example, I will create unique domain – for Colors I will create domain Colors and for Shade I will create domain Shade. Here is the screen which will demonstrate how the screen will look after creating domains. Clicking NEXT it will bring you to following screen where you can do the data discovery. Clicking on the START will start the processing of the source data provided. Pre-processed data will show various information related to the source data. In our case it shows that Colors column have unique data whereas Shade have non-unique data and unique data rows are only two. In the next screen you can actually add more rows as well see the frequency of the data as the values are listed unique. Clicking next will publish the knowledge base which is just created. Now the knowledge base is created. We will try to take any random data and attempt to do DQS implementation over it. I am using another excel sheet here for simplicity purpose. In reality you can easily use SQL Server table for the same. Click on New Data Quality Project to see start DQS Project. In the next screen it will ask which knowledge base to use. We will be using our Colors knowledge base which we have recently created. In the Colors knowledge base we had two columns – 1) Colors and 2) Shade. In our case we will be using both of the mappings here. User can select one or multiple column mapping over here. Now the most important phase of the complete project. Click on Start and it will make the cleaning process and shows various results. In our case there were two columns to be processed and it completed the task with necessary information. It demonstrated that in Colors columns it has not corrected any value by itself but in Shade value there is a suggestion it has. We can train the DQS to correct values but let us keep that subject for future blog posts. Now click next and keep the domain Colors selected left side. It will demonstrate that there are two incorrect columns which it needs to be corrected. Here is the place where once corrected value will be auto-corrected in future. I manually corrected the value here and clicked on Approve radio buttons. As soon as I click on Approve buttons the rows will be disappeared from this tab and will move to Corrected Tab. If I had rejected tab it would have moved the rows to Invalid tab as well. In this screen you can see how the corrected 2 rows are demonstrated. You can click on Correct tab and see previously validated 6 rows which passed the DQS process. Now let us click on the Shade domain on the left side of the screen. This domain shows very interesting details as there DQS system guessed the correct answer as Dark with the confidence level of 77%. It is quite a high confidence level and manual observation also demonstrate that Dark is the correct answer. I clicked on Approve and the row moved to corrected tab. On the next screen DQS shows the summary of all the activities. It also demonstrates how the correction of the quality of the data was performed. The user can explore their data to a SQL Server Table, CSV file or Excel. The user also has an option to either explore data and all the associated cleansing info or data only. I will select Data only for demonstration purpose. Clicking explore will generate the files. Let us open the generated file. It will look as following and it looks pretty complete and corrected. Well, we have successfully completed DQS Process. The process is indeed very easy. I suggest you try this out yourself and you will find it very easy to learn. In future we will go over advanced concepts. Are you using this feature on your production server? If yes, would you please leave a comment with your environment and business need. It will be indeed interesting to see where it is implemented. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Business Intelligence, Data Warehousing, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: Data Quality Services, DQS

    Read the article

  • New Feature in ODI 11.1.1.6: ODI for Big Data

    - by Julien Testut
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} By Ananth Tirupattur Starting with Oracle Data Integrator 11.1.1.6.0, ODI is offering a solution to process Big Data. This post provides an overview of this feature. With all the buzz around Big Data and before getting into the details of ODI for Big Data, I will provide a brief introduction to Big Data and Oracle Solution for Big Data. So, what is Big Data? Big data includes: structured data (this includes data from relation data stores, xml data stores), semi-structured data (this includes data from weblogs) unstructured data (this includes data from text blob, images) Traditionally, business decisions are based on the information gathered from transactional data. For example, transactional Data from CRM applications is fed to a decision system for analysis and decision making. Products such as ODI play a key role in enabling decision systems. However, with the emergence of massive amounts of semi-structured and unstructured data it is important for decision system to include them in the analysis to achieve better decision making capability. While there is an abundance of opportunities for business for gaining competitive advantages, process of Big Data has challenges. The challenges of processing Big Data include: Volume of data Velocity of data - The high Rate at which data is generated Variety of data In order to address these challenges and convert them into opportunities, we would need an appropriate framework, platform and the right set of tools. Hadoop is an open source framework which is highly scalable, fault tolerant system, for storage and processing large amounts of data. Hadoop provides 2 key services, distributed and reliable storage called Hadoop Distributed File System or HDFS and a framework for parallel data processing called Map-Reduce. Innovations in Hadoop and its related technology continue to rapidly evolve, hence therefore, it is highly recommended to follow information on the web to keep up with latest information. Oracle's vision is to provide a comprehensive solution to address the challenges faced by Big Data. Oracle is providing the necessary Hardware, software and tools for processing Big Data Oracle solution includes: Big Data Appliance Oracle NoSQL Database Cloudera distribution for Hadoop Oracle R Enterprise- R is a statistical package which is very popular among data scientists. ODI solution for Big Data Oracle Loader for Hadoop for loading data from Hadoop to Oracle. Further details can be found here: http://www.oracle.com/us/products/database/big-data-appliance/overview/index.html ODI Solution for Big Data: ODI’s goal is to minimize the need to understand the complexity of Hadoop framework and simplify the adoption of processing Big Data seamlessly in an enterprise. ODI is providing the capabilities for an integrated architecture for processing Big Data. This includes capability to load data in to Hadoop, process data in Hadoop and load data from Hadoop into Oracle. ODI is expanding its support for Big Data by providing the following out of the box Knowledge Modules (KMs). IKM File to Hive (LOAD DATA).Load unstructured data from File (Local file system or HDFS ) into Hive IKM Hive Control AppendTransform and validate structured data on Hive IKM Hive TransformTransform unstructured data on Hive IKM File/Hive to Oracle (OLH)Load processed data in Hive to Oracle RKM HiveReverse engineer Hive tables to generate models Using the Loading KM you can map files (local and HDFS files) to the corresponding Hive tables. For example, you can map weblog files categorized by date into a corresponding partitioned Hive table schema. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Hive control Append KM you can validate and transform data in Hive. In the below example, two source Hive tables are joined and mapped to a target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} The Hive Transform KM facilitates processing of semi-structured data in Hive. In the below example, the data from weblog is processed using a Perl script and mapped to target Hive table. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} Using the Oracle Loader for Hadoop (OLH) KM you can load data from Hive table or HDFS to a corresponding table in Oracle. OLH is available as a standalone product. ODI greatly enhances OLH capability by generating the configuration and mapping files for OLH based on the configuration provided in the interface and KM options. ODI seamlessly invokes OLH when executing the scenario. In the below example, a HDFS file is mapped to a table in Oracle. Development and Deployment:The following diagram illustrates the development and deployment of ODI solution for Big Data. Using the ODI Studio on your development machine create and develop ODI solution for processing Big Data by connecting to a MySQL DB or Oracle database on a BDA machine or Hadoop cluster. Schedule the ODI scenarios to be executed on the ODI agent deployed on the BDA machine or Hadoop cluster. ODI Solution for Big Data provides several exciting new capabilities to facilitate the adoption of Big Data in an enterprise. You can find more information about the Oracle Big Data connectors on OTN. You can find an overview of all the new features introduced in ODI 11.1.1.6 in the following document: ODI 11.1.1.6 New Features Overview

    Read the article

  • Consolidate Data in Private Clouds, But Consider Security and Regulatory Issues

    - by Troy Kitch
    The January 13 webcast Security and Compliance for Private Cloud Consolidation will provide attendees with an overview of private cloud computing based on Oracle's Maximum Availability Architecture and how security and regulatory compliance affects implementations. Many organizations are taking advantage of Oracle's Maximum Availability Architecture to drive down the cost of IT by deploying private cloud computing environments that can support downtime and utilization spikes without idle redundancy. With two-thirds of sensitive and regulated data in organizations' databases private cloud database consolidation means organizations must be more concerned than ever about protecting their information and addressing new regulatory challenges. Join us for this webcast to learn about greater risks and increased threats to private cloud data and how Oracle Database Security Solutions can assist in securely consolidating data and meet compliance requirements. Register Now.

    Read the article

  • Validating Data Using Data Annotation Attributes in ASP.NET MVC

    - by bipinjoshi
    The data entered by the end user in various form fields must be validated before it is saved in the database. Developers often use validation HTML helpers provided by ASP.NET MVC to perform the input validations. Additionally, you can also use data annotation attributes from the System.ComponentModel.DataAnnotations namespace to perform validations at the model level. Data annotation attributes are attached to the properties of the model class and enforce some validation criteria. They are capable of performing validation on the server side as well as on the client side. This article discusses the basics of using these attributes in an ASP.NET MVC application.http://www.bipinjoshi.net/articles/0a53f05f-b58c-47b1-a544-f032f5cfca58.aspx       

    Read the article

  • Live from ODTUG - Big Data and SQL session #2

    - by Jean-Pierre Dijcks
    Sitting in Dominic Delmolino's session at ODTUG (KScope 12). If the session count at conferences is any indication then we will see more and more people start to deploy MapReduce in the database. And yes, that would be with SQL and PL/SQL first and foremost. Both Dominic and our own Bryn Llewellyn are doing MapReduce in the database presentations.  Since I have seen both, I would advice people to first look through Dominic's session to get a good grasp on what mappers do and what reducers do, then dive into Bryn's for a bunch of PL/SQL example. The thing I like about Dominic's is the last slide (a recursive WITH statement) to do this in SQL... Now I am hoping that next year we will see tools vendors show off how they work with Hadoop and MapReduce (at least talking about the concepts!!).

    Read the article

  • More Value From Data Using Data Mining Presentation

    Here is a presentation I gave at the SQLBits conference in September which was recorded by Microsoft.  Usually I speak about SSIS but on this particular event I thought people would like to hear something different from me. Microsoft are making a big play for making Data Mining more accessible to everyone and not just boffins.  In this presentation I give an overview of data mining and then do some demonstrations using the excellent Excel Add-Ins available from Microsoft SQL Server 2008 SQL Server 2005 I hope you enjoy this presentation http://go.microsoft.com/?linkid=9633764

    Read the article

  • Move data from others user accounts in my user account

    - by user118136
    I had problems with compiz setting and I make multiple accounts, now I want to transfer my information from all deleted users in my current account, some data I can not copy because I am not right to read, I type in terminal "sudo nautilus" and I get the permission for read, but the copied data is available only for superusers and I must charge the permissions for each file and each folder. How I can copy the information with out the superuser rights OR how I can charge the permissions for selected folder and all files and folders included in it?

    Read the article

  • What is the Big-O time complexity of this algorithm

    - by grebwerd
    I was wondering what the run time of this small program would be? #include <stdio.h> int main(int argc, char* argv[]) { int i; int j; int inputSize; int sum = 0; if(argc == 1) inputSize = 16; else inputSize = atoi(argv[i]); for(i = 1; i <= inputSize; i++){ for(j = i; j < inputSize; j *=2 ){ printf("The value of sum is %d\n",++sum); } } } n S floor(log n - log (n-i)) = ? i =1 and that each summation would be the floor value between log(n) - log(n-i). Would the run time be n log n?

    Read the article

  • Willy Rotstein on Supply Chain Planning

    - by sarah.taylor(at)oracle.com
    Each time a merchandiser, buyer or planner in Retail makes a business decision around assortment, inventory, pricing and promotions there is an opportunity to improve both Profitability and Customer Service. Improving decision making, however, has always been a tricky business for retailers.  I have worked in this space for more than 15 years. I began my career as an academic, at Imperial College London, and then broadened this interest with Retailers, aiming to optimize their merchandising and supply chain decisions. Planning the business and optimizing profit is a complex process. The complexity arises from the variety of people involved, the large number of decisions to take across all business processes, the uncertainty intrinsic to the retail environment as well as the volume of data available for analysis.  Things are not getting any easier either. The advent of multi-channel, social media and mobile is taking these complexities to a new level and presenting additional opportunities for those willing to exploit them. I guess it is due to the complexities of the decision making process that, over the last couple of years working with Oracle Retail, I have witnessed a clear trend around the deployment of planning systems. Retailers are aiming to simplify their decision making processes. They want to use one joined up planning platform across the business and enhance it with "actionable" data mining and optimization techniques. At Oracle Retail, we have a vibrant community of international retailers who regularly come together to discuss the big issues in retail planning. It is a combination of fashion, grocery and speciality retailers, all sharing their best practice vision for planning and optimizing merchandise decisions. As part of the Retail Exchange program, at the recent National Retail Federation event in New York, I jointly hosted a Planning dinner with Peter Fitzgerald from Google UK, Retail Division. Those retailers from our international planning community who were in New York for the annual NRF event were able to attend. The group comprised some of Europe's great International Retail brands.  All sectors were represented by organisations like Mango, LVMH, Ahold, Morrisons, Shop Direct and River Island. They confirmed the current importance of engaging with Planning and Optimization issues. In particular the impact of the internet was a key topic. We had a great debate about new retail initiatives.  Peter highlighted how mobility is changing retail - in particular with the new "local availability search" initiative. We also had an exciting discussion around the opportunities to improve merchandising using the new data that is becoming available from search, social media and ecommerce sites. It will be our focus to continue to help retailers translate this data into better results while keeping their business operations simple. New developments in "actionable" analytics and computing capacity make this a very exciting area today. Watch this space for my contributions on these topics which will be made available through this blog. Oracle Retail has a strong Planning community. if you are a category manager, a planner, a buyer, a merchandiser, a retail supplier or any retail executive with a keen interest in planning then you would be very welcome to join Oracle Retail's Planning Community. As part of our community you will be able to join our in-person and virtual events, download topical white papers and best practice information specifically tailored to your area of interest.  If anyone would like to register their interest in joining our community of retailers discussing planning then please contact me at [email protected]   Willy Rotstein, Oracle Retail

    Read the article

  • SQL SERVER – Guest Post – Architecting Data Warehouse – Niraj Bhatt

    - by pinaldave
    Niraj Bhatt works as an Enterprise Architect for a Fortune 500 company and has an innate passion for building / studying software systems. He is a top rated speaker at various technical forums including Tech·Ed, MCT Summit, Developer Summit, and Virtual Tech Days, among others. Having run a successful startup for four years Niraj enjoys working on – IT innovations that can impact an enterprise bottom line, streamlining IT budgets through IT consolidation, architecture and integration of systems, performance tuning, and review of enterprise applications. He has received Microsoft MVP award for ASP.NET, Connected Systems and most recently on Windows Azure. When he is away from his laptop, you will find him taking deep dives in automobiles, pottery, rafting, photography, cooking and financial statements though not necessarily in that order. He is also a manager/speaker at BDOTNET, Asia’s largest .NET user group. Here is the guest post by Niraj Bhatt. As data in your applications grows it’s the database that usually becomes a bottleneck. It’s hard to scale a relational DB and the preferred approach for large scale applications is to create separate databases for writes and reads. These databases are referred as transactional database and reporting database. Though there are tools / techniques which can allow you to create snapshot of your transactional database for reporting purpose, sometimes they don’t quite fit the reporting requirements of an enterprise. These requirements typically are data analytics, effective schema (for an Information worker to self-service herself), historical data, better performance (flat data, no joins) etc. This is where a need for data warehouse or an OLAP system arises. A Key point to remember is a data warehouse is mostly a relational database. It’s built on top of same concepts like Tables, Rows, Columns, Primary keys, Foreign Keys, etc. Before we talk about how data warehouses are typically structured let’s understand key components that can create a data flow between OLTP systems and OLAP systems. There are 3 major areas to it: a) OLTP system should be capable of tracking its changes as all these changes should go back to data warehouse for historical recording. For e.g. if an OLTP transaction moves a customer from silver to gold category, OLTP system needs to ensure that this change is tracked and send to data warehouse for reporting purpose. A report in context could be how many customers divided by geographies moved from sliver to gold category. In data warehouse terminology this process is called Change Data Capture. There are quite a few systems that leverage database triggers to move these changes to corresponding tracking tables. There are also out of box features provided by some databases e.g. SQL Server 2008 offers Change Data Capture and Change Tracking for addressing such requirements. b) After we make the OLTP system capable of tracking its changes we need to provision a batch process that can run periodically and takes these changes from OLTP system and dump them into data warehouse. There are many tools out there that can help you fill this gap – SQL Server Integration Services happens to be one of them. c) So we have an OLTP system that knows how to track its changes, we have jobs that run periodically to move these changes to warehouse. The question though remains is how warehouse will record these changes? This structural change in data warehouse arena is often covered under something called Slowly Changing Dimension (SCD). While we will talk about dimensions in a while, SCD can be applied to pure relational tables too. SCD enables a database structure to capture historical data. This would create multiple records for a given entity in relational database and data warehouses prefer having their own primary key, often known as surrogate key. As I mentioned a data warehouse is just a relational database but industry often attributes a specific schema style to data warehouses. These styles are Star Schema or Snowflake Schema. The motivation behind these styles is to create a flat database structure (as opposed to normalized one), which is easy to understand / use, easy to query and easy to slice / dice. Star schema is a database structure made up of dimensions and facts. Facts are generally the numbers (sales, quantity, etc.) that you want to slice and dice. Fact tables have these numbers and have references (foreign keys) to set of tables that provide context around those facts. E.g. if you have recorded 10,000 USD as sales that number would go in a sales fact table and could have foreign keys attached to it that refers to the sales agent responsible for sale and to time table which contains the dates between which that sale was made. These agent and time tables are called dimensions which provide context to the numbers stored in fact tables. This schema structure of fact being at center surrounded by dimensions is called Star schema. A similar structure with difference of dimension tables being normalized is called a Snowflake schema. This relational structure of facts and dimensions serves as an input for another analysis structure called Cube. Though physically Cube is a special structure supported by commercial databases like SQL Server Analysis Services, logically it’s a multidimensional structure where dimensions define the sides of cube and facts define the content. Facts are often called as Measures inside a cube. Dimensions often tend to form a hierarchy. E.g. Product may be broken into categories and categories in turn to individual items. Category and Items are often referred as Levels and their constituents as Members with their overall structure called as Hierarchy. Measures are rolled up as per dimensional hierarchy. These rolled up measures are called Aggregates. Now this may seem like an overwhelming vocabulary to deal with but don’t worry it will sink in as you start working with Cubes and others. Let’s see few other terms that we would run into while talking about data warehouses. ODS or an Operational Data Store is a frequently misused term. There would be few users in your organization that want to report on most current data and can’t afford to miss a single transaction for their report. Then there is another set of users that typically don’t care how current the data is. Mostly senior level executives who are interesting in trending, mining, forecasting, strategizing, etc. don’t care for that one specific transaction. This is where an ODS can come in handy. ODS can use the same star schema and the OLAP cubes we saw earlier. The only difference is that the data inside an ODS would be short lived, i.e. for few months and ODS would sync with OLTP system every few minutes. Data warehouse can periodically sync with ODS either daily or weekly depending on business drivers. Data marts are another frequently talked about topic in data warehousing. They are subject-specific data warehouse. Data warehouses that try to span over an enterprise are normally too big to scope, build, manage, track, etc. Hence they are often scaled down to something called Data mart that supports a specific segment of business like sales, marketing, or support. Data marts too, are often designed using star schema model discussed earlier. Industry is divided when it comes to use of data marts. Some experts prefer having data marts along with a central data warehouse. Data warehouse here acts as information staging and distribution hub with spokes being data marts connected via data feeds serving summarized data. Others eliminate the need for a centralized data warehouse citing that most users want to report on detailed data. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Best Practices, Business Intelligence, Data Warehousing, Database, Pinal Dave, PostADay, Readers Contribution, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • Data Mining Resources

    - by Dejan Sarka
    There are many different types of analyses, each one with its own pros and cons. Relational reports have a predefined structure, and end users cannot change it. They are simple to use for end users. Reports can use real-time data and snapshots of data to show the state of a report at specific points in time. One of the drawbacks is that report authoring is limited to IT pros and advanced users. Any kind of dynamic restructuring is very limited. If real-time data is used for a report, the report has a negative impact on the performance of the source system. Processing of the reports might be slow because the data comes from relational database management systems, which are not optimized for reporting only. If you create a semantic model of your data, your end users can create ad-hoc report structures. However, the development is more complex because a developer is needed to create these semantic models. For OLAP, you typically use specialized database management systems. You get lightning speed of analyses. End users can use rich and thin clients to interactively change the structure of the report. Typically, they do it graphically. However, the development of an OLAP system is many times quite complex. It involves the preparation and maintenance of an enterprise data warehouse and OLAP cubes. In order to exploit the possibility of real-time restructuring of reports, the users must be both active and educated. The data is usually stale, as it is loaded into data warehouses and OLAP cubes with a scheduled process. With data mining, a structure is not selected in advance; it searches for the structure. As a result, data mining can give you the most valuable results because you can discover patterns you did not expect. A data mining model structure is limited only by the attributes that you use to train the model. One of the drawbacks is that a lot of knowledge is needed for a successful data mining project. End users have to understand the results. Subject matter experts and IT professionals need to understand business problem thoroughly. The development might be sometimes even more complex than the development of OLAP cubes. Each type of analysis has its own place in an enterprise system. SQL Server has tools for all kinds of analyses. However, data mining is the most advanced way of analyzing the data; this is the “I” in BI. In order to get the most out of it, you need to learn quite a lot. In this blog post, I am gathering together resources for learning, including forthcoming events. Books Multiple authors: SQL Server MVP Deep Dives – I wrote an introductory data mining chapter there. Erik Veerman, Teo Lachev and Dejan Sarka: MCTS Self-Paced Training Kit (Exam 70-448): Microsoft SQL Server 2008 - Business Intelligence Development and Maintenance – you can find a good overview of a complete BI solution, including data mining, in this book. Jamie MacLennan, ZhaoHui Tang, and Bogdan Crivat: Data Mining with Microsoft SQL Server 2008 – can’t miss this book if you want to mine your data with SQL Server tools. Michael Berry, Gordon Linoff: Mastering Data Mining: The Art and Science of Customer Relationship Management – data mining from both, business and technical perspective. Dorian Pyle: Data Preparation for Data Mining – an in-depth book about data preparation. Thomas and Ronald Wonnacott: Introductory Statistics – if you thought that you could get away without statistics, then you are not serious about data mining. Jiawei Han and Micheline Kamber: Data Mining Concepts and Techniques – in-depth explanation of the most popular data mining algorithms. Michael Berry and Gordon Linoff: Data Mining Techniques – another book that explains data mining algorithms, more fro a business perspective. Paolo Guidici: Applied Data Mining – very mathematical book, only if you enjoy statistics and mathematics in general. Forthcoming presentations I am presenting two data mining related sessions during the PASS Summit in Charlotte, NC: Wednesday, October 16th, 2013 - Fraud Detection: Notes from the Field – I am showing how to use data mining for a specific business problem. The presentation is based on real-life projects. Friday, October 18th: Excel 2013 Advanced Analytics – I am focusing on Excel Data Mining Add-ins, and how to use them together with Power Pivot and other add-ins. This is the most you can get out of Excel. Sinergija 2013, Belgrade, Serbia Tuesday, October 22nd: Excel 2013 Analytics to the Max – another presentation focusing on the most advanced analytics you can get in Excel. SQL Rally Amsterdam, Netherlands Thursday, November 7th: Advanced Analytics in Excel 2013 – and again I am presenting about data mining in Excel. Why three different titles for the same presentation? I don’t know, I guess I forgot the name I proposed every time right after I sent the proposal. Courses Data Mining with SQL Server 2012 – I wrote a 3-day course for SolidQ. If you are interested in this course, which I could also deliver in a shorter seminar way, you can contact your closes SolidQ subsidiary, or, of course, me directly on addresses [email protected] or [email protected]. This course could also complement the existing courseware portfolio of training providers, which are welcome to contact me as well. OK, now you know: no more excuses, start learning data mining, get the most out of your data

    Read the article

  • Master Data Services Employees Sample Model

    - by Davide Mauri
    I’ve been playing with Master Data Services quite a lot in those last days and I’m also monitoring the web for all available resources on it. Today I’ve found this freshly released sample available on MSDN Code Gallery: SQL Server Master Data Services Employee Sample Model http://code.msdn.microsoft.com/SSMDSEmployeeSample This sample shows how Recursive Hierarchies can be modeled in order to represent a typical organizational chart scenario where a self-relationship exists on the Employee entity. Share this post: email it! | bookmark it! | digg it! | reddit! | kick it! | live it!

    Read the article

  • Looking for Cutting-Edge Data Integration: 2010 Innovation Awards

    - by dain.hansen
    This year's Oracle Fusion Middleware Innovation Awards will honor customers and partners who are creatively using to various products across Oracle Fusion Middleware. Brand new to this year's awards is a category for Data Integration. Think you have something unique and innovative with one of our Oracle Data Integration products? We'd love to hear from you! Please submit today The deadline for the nomination is 5 p.m. PT Friday, August 6th 2010, and winning organizations will be notified by late August 2010. What you win! FREE pass to Oracle OpenWorld 2010 in San Francisco for select winners in each category. Honored by Oracle executives at awards ceremony held during Oracle OpenWorld 2010 in San Francisco. Oracle Middleware Innovation Award Winner Plaque 1-3 meetings with Oracle Executives during Oracle OpenWorld 2010 Feature article placement in Oracle Magazine and placement in Oracle Press Release Customer snapshot and video testimonial opportunity, to be hosted on oracle.com Podcast interview opportunity with Senior Oracle Executive

    Read the article

  • Data Integration 12c Raising the Big Data Roof at Oracle OpenWorld

    - by Tanu Sood
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"MS Mincho";} Author: Dain Hansen, Director, Oracle It was an exciting OpenWorld 2013 for us in the Data Integration track. Our theme this year was all about ‘being future ready’ - previewing one of our biggest releases this year: Oracle Data Integration 12c. Just this week we followed up with this preview by announcing the general availability of 12c release for Oracle’s key data integration products: Oracle Data Integrator 12c and Oracle GoldenGate 12c. The new release delivers extreme performance, increase IT productivity, and simplify deployment, while helping IT organizations to keep pace with new data-oriented technology trends including cloud computing, big data analytics, real-time business intelligence. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"MS Mincho";} Mark Hurd's keynote on day one set the tone for the Data Integration sessions. Mark focused on big data analytics and the changing consumer expectations. Especially real-time insight is a key theme for Oracle overall and data integration products. In Mark Hurd's keynote we heard from key customers, such as Airbus and Thomson Reuters, how real-time analysis of operational data including machine data creates value, in some cases even saves lives. Thomas Kurian gave a deeper look into Oracle's big data and fast data solutions. In the initial lead Data Integration track session - Brad Adelberg, VP of Development, presented Oracle’s Data Integration 12c product strategy based on key trends from the initial OpenWorld keynotes. Brad talked about how Oracle's data integration products address the new data integration requirements that evolved with cloud computing, big data, and changing consumer expectations and how they set the key themes in our products’ road map. Brad explained why and how fast-time to value, high-performance and future-ready solutions is the top focus areas for product development. If you were not able to attend OpenWorld or this session I recommend reading the white paper: Five New Data Integration Requirements and How to Meet them with Oracle Data Integration, which provides an in-depth look into how Oracle addresses the new trends in the DI market. Following Brad’s session, Nick Wagner provided in depth review of Oracle GoldenGate’s latest features and roadmap. Nick discussed how Oracle GoldenGate’s tight integration with Oracle Database sets the product apart from the competition. We also heard that heterogeneity of the product is still a major focus for GoldenGate’s development and there will be more news on that front when there is a major release. Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Times New Roman","serif"; mso-fareast-font-family:"MS Mincho";} After GoldenGate’s product strategy session, Denis Gray from the PM team presented Oracle Data Integrator’s product strategy session, talking about the latest and greatest on ODI. Another good session was delivered by long-time GoldenGate users, Comcast.  Jason Hurd and Amit Patel of Comcast talked about the various use cases they deploy Oracle GoldenGate throughout their enterprise, from database upgrades, feeding reporting systems, to active-active database synchronization.  The Comcast team shared many good tips on how to use GoldenGate for both zero downtime upgrades and active-active replication with conflict management requirement. One of our other important goals we had this year for the Data Integration track at OpenWorld was hearing from our customers. We ended day 1 on just that, with a wonderful award ceremony for Oracle Excellence Awards for Oracle Fusion Middleware Innovation. The ceremony was held in the Yerba Buena Center for the Arts. Congratulations to Royal Bank of Scotland and Yalumba Wine Company, the winners in the Data Integration category. You can find more information on the award and the winners in our previous blog post: 2013 Oracle Excellence Awards for Fusion Middleware Innovation… Selected for their innovation use of Oracle’s Data Integration products; the winners for the Data Integration Category are Royal Bank of Scotland and The Yalumba Wine Company. Congratulations!!! Royal Bank of Scotland’s Market and International Banking division provides clients across the globe with seamless trading and competitive pricing, underpinned by a deep knowledge of risk management across the full spectrum of financial products. They handle millions of transactions daily to keep the lifeblood of their clients’ businesses flowing – whether through payment management solutions or through bespoke trade finance solutions. Royal Bank of Scotland is leveraging Oracle GoldenGate and Oracle Data Integrator along with Oracle Business Intelligence Enterprise Edition and the Oracle Database for a variety of solutions. Mainly, Oracle GoldenGate and Oracle Data Integrator are used to feed their data warehouse – providing a real-time data integration solution that feeds transactional data to their analytics system in minutes to enable improved decision making with timely, accurate data for their business users. Oracle Data Integrator’s in-database transformation capabilities and its ability to integrate with Oracle GoldenGate for real-time data capture is the foundation of this implementation. This solution makes it such that changes happening in the analytics systems are available the same day they are deployed on the operational system with 100% data quality guaranteed. Additionally, the solution has helped to reduce their operational database size from 150GB to 10GB. Impressive! Now what if I told you this solution was built in 3 months and had a less than 6 month return on investment? That’s outstanding! The Yalumba Wine Company is situated in the Barossa Valley of Australia. It is the oldest family owned winery in Australia with a unique way of aging their wines in specially crafted 100 liter barrels. Did you know that “Yalumba” is Aboriginal for “all the land around”? The Yalumba Wine Company is growing rapidly, and was in need of introducing a more modern standard to the existing manufacturing processes to meet globalization demands, overall time-to-market, and better operational efficiency objectives of product development. The Yalumba Wine Company worked with a partner, Bristlecone to develop a unique solution whereby Oracle Data Integrator is leveraged to pull data from Salesforce.com and JD Edwards, in addition to their other pre-existing source systems, for consumption into their data warehouse. They have emphasized the overall ease of developing integration workflows with Oracle Data Integrator. The solution has brought better visibility for the business users, shorter data loading and transformation performance to their data warehouse with rapid incorporation of new data sources, and a solid future-proof foundation for their organization. Moving forward, they plan on leveraging more from Oracle’s Data Integration portfolio. Terrific! In addition to these two customers on Tuesday we featured many other important Oracle Data Integrator and Oracle GoldenGate customers. On Tuesday the GoldenGate panel included: Land O’Lakes, Smuckers, and Veolia Water. Besides giving us yummy nutrition and healthy water, these companies have another aspect in common. They all use GoldenGate to boost their ERP application. Please read the recap by Irem Radzik. On Wednesday, the ODI Panel included: Barry Ralston and Ryan Weber of Infinity Insurance, Paul Stracke of Paychex Inc., and Ian Wall of Vertex Pharmaceuticals for a session filled with interesting projects, use cases and approaches to leveraging Oracle Data Integrator. Please read the recap by Sandrine Riley for more. Thanks to everyone who joined with us and we hope to stay connected! To hear more about our Data Integration12c products join us in an upcoming webcast to learn more. Follow us www.twitter.com/ORCLGoldenGate or goto our website at www.oracle.com/goto/dataintegration

    Read the article

  • Fast Data - Big Data's achilles heel

    - by thegreeneman
    At OOW 2013 in Mark Hurd and Thomas Kurian's keynote, they discussed Oracle's Fast Data software solution stack and discussed a number of customers deploying Oracle's Big Data / Fast Data solutions and in particular Oracle's NoSQL Database.  Since that time, there have been a large number of request seeking clarification on how the Fast Data software stack works together to deliver on the promise of real-time Big Data solutions.   Fast Data is a software solution stack that deals with one aspect of Big Data, high velocity.   The software in the Fast Data solution stack involves 3 key pieces and their integration:  Oracle Event Processing, Oracle Coherence, Oracle NoSQL Database.   All three of these technologies address a high throughput, low latency data management requirement.   Oracle Event Processing enables continuous query to filter the Big Data fire hose, enable intelligent chained events to real-time service invocation and augments the data stream to provide Big Data enrichment. Extended SQL syntax allows the definition of sliding windows of time to allow SQL statements to look for triggers on events like breach of weighted moving average on a real-time data stream.    Oracle Coherence is a distributed, grid caching solution which is used to provide very low latency access to cached data when the data is too big to fit into a single process, so it is spread around in a grid architecture to provide memory latency speed access.  It also has some special capabilities to deploy remote behavioral execution for "near data" processing.   The Oracle NoSQL Database is designed to ingest simple key-value data at a controlled throughput rate while providing data redundancy in a cluster to facilitate highly concurrent low latency reads.  For example, when large sensor networks are generating data that need to be captured while analysts are simultaneously extracting the data using range based queries for upstream analytics.  Another example might be storing cookies from user web sessions for ultra low latency user profile management, also leveraging that data using holistic MapReduce operations with your Hadoop cluster to do segmented site analysis.  Understand how NoSQL plays a critical role in Big Data capture and enrichment while simultaneously providing a low latency and scalable data management infrastructure thru clustered, always on, parallel processing in a shared nothing architecture. Learn how easily a NoSQL cluster can be deployed to provide essential services in industry specific Fast Data solutions. See these technologies work together in a demonstration highlighting the salient features of these Fast Data enabling technologies in a location based personalization service. The question then becomes how do these things work together to deliver an end to end Fast Data solution.  The answer is that while different applications will exhibit unique requirements that may drive the need for one or the other of these technologies, often when it comes to Big Data you may need to use them together.   You may have the need for the memory latencies of the Coherence cache, but just have too much data to cache, so you use a combination of Coherence and Oracle NoSQL to handle extreme speed cache overflow and retrieval.   Here is a great reference to how these two technologies are integrated and work together.  Coherence & Oracle NoSQL Database.   On the stream processing side, it is similar as with the Coherence case.  As your sliding windows get larger, holding all the data in the stream can become difficult and out of band data may need to be offloaded into persistent storage.  OEP needs an extreme speed database like Oracle NoSQL Database to help it continue to perform for the real time loop while dealing with persistent spill in the data stream.  Here is a great resource to learn more about how OEP and Oracle NoSQL Database are integrated and work together.  OEP & Oracle NoSQL Database.

    Read the article

  • NRF Week - Disney Store Tour

    - by sarah.taylor(at)oracle.com
    Disney has created a real buzz at this year's NRF event. Yesterday morning we began the Oracle Retail Exchange program with a visit to the flagship Disney store in Times Square. Additionally Oracle made a key announcement with Disney  on Oracle Retail's Point of Sale implementation in 330 stores worldwide. Today   Disney's Steve Finney gave a super session on The Magic of Disney at the NRF Big Show. We also saw Disney making an exclusive news announcement about their plans for Global store openings at the Oracle trade show stand - with a little help from Mickey and Minnie Mouse. Disney Stores have been entirely reinvented since the company in 2008 took ownership after previously franchising the retail arm of the business. They have subsequently been a strong Oracle partner and technology has played a key role in their re imagination of the store environment. The new Imagination stores have a 20% higher footfall and margins are up 25%. The Disney brand is synonymous with magical and memorable experiences for children of all ages. The company is achieving a unique retail experience that delights children and shareholders alike! Technology is a key pillar in helping to deliver on both a strong operating model and a unique customer experience - the best thirty minutes in a child's day is their aim. Steve Finney this morning said their technology has to be as reliable as a theme park ride. Store experiences are much more enjoyable when there are short waiting times and children can interact with their favourite characters through magic mirrors, mobile point of sale, touch screens and custom animations that are digitally transmitted to stores globally. The Oracle Retail Point of Sale with iPad touch screens reduces check out times, stores customer data, ensures that promotions are delivered accurately and reduces losses. This means higher levels of guest conversion, increased availability and convenience for customers who want to check availability at other locations. Disney is a pioneer. At NRF's 100th show, we had the privilege of learning from a retailer using technology as a creative force to drive their business forward.

    Read the article

  • Best approach to accessing multiple data source in a web application

    - by ced
    I've a base web application developed with .net technologies (asp.net) used into our LAN by 30 users simultanousley. From this web application I've developed two verticalization used from online users. In future i expect hundreds users simultanousley. Our company has different locations. Each site use its own database. The web application needs to retrieve information from all existing databases. Currently there are 3 database, but it's not excluded in the future expansion of new offices. My question then is: What is the best strategy for a web application to retrieve information from different databases (which have the same schema) whereas the main objective performance data access and high fault tolerance? There are case studies in the literature that I can take as an example? Do you know some good documents to study? Do you have any tips to implement this task so efficient? Intuitively I would say that two possible strategy are: perform queries from different sources in real time and aggregate data on the fly; create a repository that contains the union of the entities of interest and perform queries directly on repository;

    Read the article

  • Creating a Corporate Data Hub

    - by BuckWoody
    The Windows Azure Marketplace has a rich assortment of data and software offerings for you to use – a type of Software as a Service (SaaS) for IT workers, not necessarily for end-users. Among those offerings is the “Data Hub” – a  codename for a project that ironically actually does what the codename says. In many of our organizations, we have multiple data quality issues. Finding data is one problem, but finding it just once is often a bigger problem. Lots of departments and even individuals have stored the same data more than once, and in some cases, made changes to one of the copies. It’s difficult to know which location or version of the data is authoritative. Then there’s the problem of accessing the data. It’s fairly straightforward to publish a database, share or other location internally to store the data. But then you have to figure out who owns it, how it is controlled, and pass out the various connection strings to those who want to use it. And then you need to figure out how to let folks access the internal data externally – bringing up all kinds of security issues. Finally, in many cases our user community wants us to combine data from the internally sources with external data, bringing up the security, strings, and exploration features up all over again. Enter the Data Hub. This is an online offering, where you assign an administrator and data stewards. You import the data into the service, and it’s available to you - and only you and your organization if you wish. The basic steps for this service are to set up the portal for your company, assign administrators and permissions, and then you assign data areas and import data into them. From there you make them discoverable, and then you have multiple options that you or your users can access that data. You’re then able, if you wish, to combine that data with other data in one location. So how does all that work? What about security? Is it really that easy? And can you really move the data definition off to the Subject Matter Experts (SME’s) that know the particular data stack better than the IT team does? Well, nothing good is easy – but using the Data Hub is actually pretty simple. I’ll give you a link in a moment where you can sign up and try this yourself. Once you sign up, you assign an administrator. From there you’ll create data areas, and then use a simple interface to bring the data in. All of this is done in a portal interface – nothing to install, configure, update or manage. After the data is entered in, and you’ve assigned meta-data to describe it, your users have multiple options to access it. They can simply use the portal – which actually has powerful visualizations you can use on any platform, even mobile phones or tablets.     Your users can also hit the data with Excel – which gives them ultimate flexibility for display, all while using an authoritative, single reference for the data. Since the service is online, they can do this wherever they are – given the proper authentication and permissions. You can also hit the service with simple API calls, like this one from C#: http://msdn.microsoft.com/en-us/library/hh921924  You can make HTTP calls instead of code, and the data can even be exposed as an OData Feed. As you can see, there are a lot of options. You can check out the offering here: http://www.microsoft.com/en-us/sqlazurelabs/labs/data-hub.aspx and you can read the documentation here: http://msdn.microsoft.com/en-us/library/hh921938

    Read the article

  • Creating a Corporate Data Hub

    - by BuckWoody
    The Windows Azure Marketplace has a rich assortment of data and software offerings for you to use – a type of Software as a Service (SaaS) for IT workers, not necessarily for end-users. Among those offerings is the “Data Hub” – a  codename for a project that ironically actually does what the codename says. In many of our organizations, we have multiple data quality issues. Finding data is one problem, but finding it just once is often a bigger problem. Lots of departments and even individuals have stored the same data more than once, and in some cases, made changes to one of the copies. It’s difficult to know which location or version of the data is authoritative. Then there’s the problem of accessing the data. It’s fairly straightforward to publish a database, share or other location internally to store the data. But then you have to figure out who owns it, how it is controlled, and pass out the various connection strings to those who want to use it. And then you need to figure out how to let folks access the internal data externally – bringing up all kinds of security issues. Finally, in many cases our user community wants us to combine data from the internally sources with external data, bringing up the security, strings, and exploration features up all over again. Enter the Data Hub. This is an online offering, where you assign an administrator and data stewards. You import the data into the service, and it’s available to you - and only you and your organization if you wish. The basic steps for this service are to set up the portal for your company, assign administrators and permissions, and then you assign data areas and import data into them. From there you make them discoverable, and then you have multiple options that you or your users can access that data. You’re then able, if you wish, to combine that data with other data in one location. So how does all that work? What about security? Is it really that easy? And can you really move the data definition off to the Subject Matter Experts (SME’s) that know the particular data stack better than the IT team does? Well, nothing good is easy – but using the Data Hub is actually pretty simple. I’ll give you a link in a moment where you can sign up and try this yourself. Once you sign up, you assign an administrator. From there you’ll create data areas, and then use a simple interface to bring the data in. All of this is done in a portal interface – nothing to install, configure, update or manage. After the data is entered in, and you’ve assigned meta-data to describe it, your users have multiple options to access it. They can simply use the portal – which actually has powerful visualizations you can use on any platform, even mobile phones or tablets.     Your users can also hit the data with Excel – which gives them ultimate flexibility for display, all while using an authoritative, single reference for the data. Since the service is online, they can do this wherever they are – given the proper authentication and permissions. You can also hit the service with simple API calls, like this one from C#: http://msdn.microsoft.com/en-us/library/hh921924  You can make HTTP calls instead of code, and the data can even be exposed as an OData Feed. As you can see, there are a lot of options. You can check out the offering here: http://www.microsoft.com/en-us/sqlazurelabs/labs/data-hub.aspx and you can read the documentation here: http://msdn.microsoft.com/en-us/library/hh921938

    Read the article

  • Why CFOs Should Care About Big Data

    - by jmorourke
    The topic of “big data” clearly has reached a tipping point in 2012.  With plenty of coverage over the past few years in the IT press, we are now starting to see the topic of “big data” covered in mainstream business press, including a cover story in the October 2012 issue of the Harvard Business Review.  To help customers understand the challenges of managing “big data” as well as the opportunities that can be created by leveraging “big data”, Oracle has recently run and published the results of a customer survey, as well as white papers and articles on this topic.  Most recently, we commissioned a white paper titled “Mastering Big Data: CFO Strategies to Transform Insight into Opportunity”. The premise here is that “big data” is not just a topic that CIOs should pay attention to, but one that CFOs should understand and take advantage of as well.  Clearly, whoever masters the art and science of big data will be positioned for competitive advantage in their industries or markets.  That’s why smart CFOs are taking control of big data and business analytics projects, not just to uncover new ways to drive growth in a slowing global economy, but also to be a catalyst for change in the enterprise.  With an increasing number of CFOs now responsible for overseeing IT investments and providing strategic insight to the board, CFOs will be increasingly called upon to take a leadership role in assessing the value of “big data” initiatives, building on their traditional skills in reporting and helping managers analyze data to support decision making. Here’s a link to the white paper referenced above, which is posted on the Oracle C-Central/CFO web site, as well as some other resources that can help CFOs master the topic of “big data”: White Paper “Mastering Big Data:  CFO Strategies to Transform Insight into Opportunity CFO Market Watch article:  “Does Big Data Affect the CFO?” Oracle Survey Report:  “From Overload to Impact – An Industry Scorecard on Big Data Industry Challenges” Upcoming Big Data Webcast with Andrew McAfee Here’s a general link to Oracle C-Central/CFO in case you want to start there: www.oracle.com/c-central/cfo Feel free to contact me if you have any questions or need additional information:  [email protected]

    Read the article

  • Ideal data structure/techniques for storing generic scheduler data in C#

    - by GraemeMiller
    I am trying to implement a generic scheduler object in C# 4 which will output a table in HTML. Basic aim is to show some object along with various attributes, and whether it was doing something in a given time period. The scheduler will output a table displaying the headers: Detail Field 1 ....N| Date1.........N I want to initialise the table with a start date and an end date to create the date range (ideally could also do other time periods e.g. hours but that isn't vital). I then want to provide a generic object which will have associated events. Where an object has events within the period I want a table cell to be marked E.g. Name Height Weight 1/1/2011 2/1/2011 3/1/20011...... 31/1/2011 Ben 5.11 75 X X X Bill 5.7 83 X X So I created scheduler with Start Date=1/1/2011 and end date 31/1/2011 I'd like to give it my person object (already sorted) and tell it which fields I want displayed (Name, Height, Weight) Each person has events which have a start date and end date. Some events will start and end outwith but they should still be shown on the relevant date etc. Ideally I'd like to have been able to provide it with say a class booking object as well. So I'm trying to keep it generic. I have seen Javasript implementations etc of similar. What would a good data structure be for this? Any thoughts on techniques I could use to make it generic. I am not great with generics so any tips appreciated.

    Read the article

  • Accessing SQL Data Services via ADO.NET Data Service Client Library

    - by Mehmet Aras
    Is this possible? Basically I would like to use SQL Data Services REST interface and let the ADO.NET Data Service Client library handle communication details and generate the entities that I can use. I looked at the samples in February release of Azure services kit but the samples in there are using HttpWebRequest and HttpWebResponse to consume SQL Data Services RESTfully. I was hoping to use ADO.NET Data Service Client library to abstract low-level details away.

    Read the article

  • Suggested Web Application Framework and Database for Enterprise, “Big-Data” App?

    - by willOEM
    I have a web application that I have been developing for a small group within my company over the past few years, using Pipeline Pilot (plus jQuery and Python scripting) for web development and back-end computation, and Oracle 10g for my RDBMS. Users upload experimental genomic data, which is parsed into a database, and made available for querying, transformation, and reporting. Experimental data sets are large and have many layers of metadata. A given experimental data record might have a foreign key relationship with a table that describes this data point's assay. Assays can cover multiple genes, which can have multiple transcript, which can have multiple mutations, which can affect multiple signaling pathways, etc. Users need to approach this data from any point in those layers in the metadata. Since all data sets for a given data type can run over a billion rows, this results in some large, dynamic queries that are hard to predict. New data sets are added on a weekly basis (~1GB per set). Experimental data is never updated, but the associated metadata can be updated weekly for a few records and yearly for most others. For every data set insert the system sees, there will be between 10 and 100 selects run against it and associated data. It is okay for updates and inserts to run slow, so long as queries run quick and are as up-to-date as possible. The application continues to grow in size and scope and is already starting to run slower than I like. I am worried that we have about outgrown Pipeline Pilot, and perhaps Oracle (as the sole database). Would a NoSQL database or an OLAP system be appropriate here? What web application frameworks work well with systems like this? I'd like the solution to be something scalable, portable and supportable X-years down the road. Here is the current state of the application: Web Server/Data Processing: Pipeline Pilot on Windows Server + IIS Database: Oracle 10g, ~1TB of data, ~180 tables with several billion-plus row tables Network Storage: Isilon, ~50TB of low-priority raw data

    Read the article

  • Bridging Two Worlds: Big Data and Enterprise Data

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The big data world is all the vogue in today’s IT conversations. It’s a world of volume, velocity, variety – tantalizing us with its untapped potential. It’s a world of transformational game-changing technologies that have already begun to alter the information management landscape. One of the reasons that big data is so compelling is that it’s a universal challenge that impacts every one of us. Whether it is healthcare, financial, manufacturing, government, retail - big data presents a pressing problem for many industries: how can so much information be processed so quickly to deliver the ‘bigger’ picture? With big data we’re tapping into new information that didn’t exist before: social data, weblogs, sensor data, complex content, and more. What also makes big data revolutionary is that it turns traditional information architecture on its head, putting into question commonly accepted notions of where and how data should be aggregated processed, analyzed, and stored. This is where Hadoop and NoSQL come in – new technologies which solve new problems for managing unstructured data. And now for some worst practices that I'd recommend that you please not follow: Worst Practice Lesson 1: Throw away everything that you already know about data management, data integration tools, and start completely over. One shouldn’t forget what’s already running in today’s IT. Today’s Business Analytics, Data Warehouses, Business Applications (ERP, CRM, SCM, HCM), and even many social, mobile, cloud applications still rely almost exclusively on structured data – or what we’d like to call enterprise data. This dilemma is what today’s IT leaders are up against: what are the best ways to bridge enterprise data with big data? And what are the best strategies for dealing with the complexities of these two unique worlds? Worst Practice Lesson 2: Throw away all of your existing business applications … because they don’t run on big data yet. Bridging the two worlds of big data and enterprise data means considering solutions that are complete, based on emerging Hadoop technologies (as well as traditional), and are poised for success through integrated design tools, integrated platforms that connect to your existing business applications, as well as and support real-time analytics. Leveraging these types of best practices translates to improved productivity, lowered TCO, IT optimization, and better business insights. Worst Practice Lesson 3: Separate out [and keep separate] your big data sandboxes from all the current enterprise IT systems. Don’t mix sand among playgrounds. We didn't tell you that you wouldn't get dirty doing this. Correlation between the two worlds is key. The real advantage to analyzing big data comes when you can correlate it with the existing data in your data warehouse or your current applications to make sense of the larger patterns. If you have not followed these worst practices 1-3 then you qualify for the first step of our journey: bridging the two worlds of enterprise data and big data. Over the next several weeks we’ll be discussing this topic along with several others around big data as it relates to data integration. We welcome you to join us in the conversation by following us on twitter on #BridgingBigData or download our latest white paper and resource kit: Big Data and Enterprise Data: Bridging Two Worlds.

    Read the article

< Previous Page | 1 2 3 4 5 6 7 8 9 10 11 12  | Next Page >