Search Results

Search found 94 results on 4 pages for 'biginteger'.

Page 4/4 | < Previous Page | 1 2 3 4 

  • How can you generate the same MD5 Hashcode in C# and Java?

    - by Sem Dendoncker
    Hi, I have a function that generates a MD5 hash in C# like this: MD5 md5 = new MD5CryptoServiceProvider(); byte[] result = md5.ComputeHash(data); StringBuilder sb = new StringBuilder(); for (int i = 0; i < result.Length; i++) { sb.Append(result[i].ToString("X2")); } return sb.ToString(); In java my function looks like this: MessageDigest m = MessageDigest.getInstance("MD5"); m.update(bytes,0,bytes.length); String hashcode = new BigInteger(1,m.digest()).toString(16); return hashcode; While the C# code generates: "02945C9171FBFEF0296D22B0607D522D" the java codes generates: "5a700e63fa29a8eae77ebe0443d59239". Is there a way to generate the same md5 hash for the same bytearray? Cheers

    Read the article

  • Playing with F#

    - by mroberts
    Project Euler is a awesome site.   When working with a new language it can be tricky to find problems that need solving, that are more complex than "Hello World" and simpler than a full blown application. Project Euler gives use just that, cool and thought provoking problems that usually don't take days to solve.  I've solved a number of questions with C# and some with Java.  BTW, I used Java because it had BigInteger support before .Net. A couple weeks ago, back when winter had a firm grip on Columbus, OH, I began playing (researching) with F#.  I began with Problem #1 from Project Euler.  I started by looking at my solution in C#. Here is my solution in C#. 1: using System; 2: using System.Collections.Generic; 3:   4: namespace Problem001 5: { 6: class Program 7: { 8: static void Main(string[] args) 9: { 10: List<int> values = new List<int>(); 11:   12: for (int i = 1; i < 1000; i++) 13: { 14: if (i % 3 == 0 || i % 5 == 0) 15: values.Add(i); 16: } 17: int total = 0; 18:   19: values.ForEach(v => total += v); 20:   21: Console.WriteLine(total); 22: Console.ReadKey(); 23: } 24: } 25: }   Now, after much tweaking and learning, here is my solution in F#.   1: open System 2:   3: let calc n = 4: [1..n] 5: |> List.map (fun x -> if (x % 3 = 0 || x % 5 = 0) then x else 0) 6: |> List.sum 7:   8: let main() = 9: calc 999 10: |> printfn "result = %d" 11: Console.ReadKey(true) |> ignore 12:   13: main() Just this little example highlights some cool things about F#. Type inference. F# infers the type of a value.  In the C# code above we declare a number of variables, the list, and a couple ints.  F# does not require this, it infers the calc (a function) accepts a int and returns a int. Great built in functionality for Lists.  List.map for example. BTW, I don’t think I’m spilling the beans by giving away the code for Problem 1.  It by far is the easiest question, IMHO, solved by 92,000+ people. Next I’ll look into writing a class library with F#.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • F# in ASP.NET, mathematics and testing

    - by DigiMortal
    Starting from Visual Studio 2010 F# is full member of .NET Framework languages family. It is functional language with syntax specific to functional languages but I think it is time for us also notice and study functional languages. In this posting I will show you some examples about cool things other people have done using F#. F# and ASP.NET As I am ASP/ASP.NET MVP I am – of course – interested in how people use different languages and technologies with ASP.NET. C# MVP Tomáš Petrícek writes about developing ASP.NET MVC applications using F#. He also shows how to use LINQ To SQL in F# (using F# PowerPack) and provides sample solution and Visual Studio 2010 template for F# MVC web applications. You may also find interesting how you can create controllers in F#. Excellent work, Tomáš! Vladimir Matveev has interesting example about how to use F# and ApplicationHost class to process ASP.NET requests ouside of IIS. This is simple and very straight-forward example and I strongly suggest you to take a look at it. Very cool example is project Strom in Codeplex. Storm is web services testing tool that is fully written on F#. Take a look at this site because Codeplex offers also source code besides binaries. Math Functional languages are strong in fields like mathematics and physics. When I wrote my C# example about BigInteger class I found out that recursive version of Fibonacci algorithm in C# is not performing well. In same time I made same experiment on F# and in F# there were no performance problems with recursive version. You can find F# version of Fibonacci algorithm from Bob Palmer’s blog posting Fibonacci numbers in F#. Although golden spiral is useful for solving many problems I looked for some practical code example and found one. Kean Walmsley published in his Through the Interface blog very interesting posting Creating Fibonacci spirals in AutoCAD using F#. There are also other cool examples you may be interested in. Using numerical components by Extreme Optimization  it is possible to make some numerical integration (quadrature method) using F# (also C# example is available). fsharp.it introduces factorials calculation on F#. Robert Pickering has made very good work on programming The Game of Life in Silverlight and F# – I definitely suggest you to try out this example as it is very illustrative too. Who wants something more complex may take a look at Newton basin fractal example in F# by Jonathan Birge. Testing After some searching and surfing I found out that there is almost everything available for F# to write tests and test your F# code. FsCheck - FsCheck is a port of Haskell's QuickCheck. Important parts of the manual for using FsCheck is almost literally "adapted" from the QuickCheck manual and paper. Any errors and omissions are entirely my responsibility. FsTest - This project is designed to Language Oriented Programming constructs around unit testing and behavior testing in F#. The goal of this project is to create a Domain Specific Language for testing F# code in a way that makes sense for functional programming. FsUnit - FsUnit makes unit-testing with F# more enjoyable. It adds a special syntax to your favorite .NET testing framework. xUnit.NET - xUnit.net is a developer testing framework, built to support Test Driven Development, with a design goal of extreme simplicity and alignment with framework features. It is compatible with .NET Framework 2.0 and later, and offers several runners: console, GUI, MSBuild, and Visual Studio integration via TestDriven.net, CodeRush Test Runner and Resharper. It also offers test project integration for ASP.NET MVC. Getting started Well, as a first thing you need Visual Studio 2010. Then take a look at these resources: F# samples @ MSDN Microsoft F# Developer Center @ MSDN F# Language Reference @ MSDN F# blog F# forums Real World Functional Programming: With Examples in F# and C# (Amazon) Happy F#-ing! :)

    Read the article

  • Generated signed X.509 client certificate is invalid (no certificate chain to its CA)

    - by Genady
    I use Bouncy Castle for generation of X.509 client certificates and sing them using a known CA. First I read the CA certificate from the certificate store, generate the client certificate, sign it using the CA. Validation of the certificate is failed doe to the following issue A certificate chain could not be built to a trusted root authority. As I understand this is due to the certificate not being related to the CA. Here is a code sample: public static X509Certificate2 GenerateCertificate(X509Certificate2 caCert, string certSubjectName) { // Generate Certificate var cerKp = kpgen.GenerateKeyPair(); var certName = new X509Name(true,certSubjectName); // subjectName = user var serialNo = BigInteger.ProbablePrime(120, new Random()); X509V3CertificateGenerator gen2 = new X509V3CertificateGenerator(); gen2.SetSerialNumber(serialNo); gen2.SetSubjectDN(certName); gen2.SetIssuerDN(new X509Name(true,caCert.Subject)); gen2.SetNotAfter(DateTime.Now.AddDays(100)); gen2.SetNotBefore(DateTime.Now.Subtract(new TimeSpan(7, 0, 0, 0))); gen2.SetSignatureAlgorithm("SHA1WithRSA"); gen2.SetPublicKey(cerKp.Public); AsymmetricCipherKeyPair akp = DotNetUtilities.GetKeyPair(caCert.PrivateKey); Org.BouncyCastle.X509.X509Certificate newCert = gen2.Generate(caKp.Private); // used for getting a private key X509Certificate2 userCert = ConvertToWindows(newCert,cerKp); if (caCert22.Verify()) // works well for CA { if (userCert.Verify()) // fails for client certificate { return userCert; } } return null; } private static X509Certificate2 ConvertToWindows(Org.BouncyCastle.X509.X509Certificate newCert, AsymmetricCipherKeyPair kp) { string tempStorePwd = "abcd1234"; var tempStoreFile = new FileInfo(Path.GetTempFileName()); try { // store key { var newStore = new Pkcs12Store(); var certEntry = new X509CertificateEntry(newCert); newStore.SetCertificateEntry( newCert.SubjectDN.ToString(), certEntry ); newStore.SetKeyEntry( newCert.SubjectDN.ToString(), new AsymmetricKeyEntry(kp.Private), new[] { certEntry } ); using (var s = tempStoreFile.Create()) { newStore.Save( s, tempStorePwd.ToCharArray(), new SecureRandom(new CryptoApiRandomGenerator()) ); } } // reload key return new X509Certificate2(tempStoreFile.FullName, tempStorePwd); } finally { tempStoreFile.Delete(); } }

    Read the article

  • RSA C# Encrypt Java Decrypt

    - by user353030
    Hi guys, In my program (server side - Java) I've created keystore file, with command: keytool -genkey -alias myalias -keyalg RSA -validity 10000 -keystore my.keystore and exported related X509 certificate with: keytool -export -alias myalias -file cert.cer -keystore my.keystore After I saved cert.cer on client side (C#) and I write this code: X509Certificate2 x509 = new X509Certificate2(); byte[] rawData = ReadFile("mycert.cer"); x509.Import(rawData); RSACryptoServiceProvider rsa = (RSACryptoServiceProvider)x509.PublicKey.Key; byte[] plainbytes = System.Text.Encoding.ASCII.GetBytes("My Secret"); byte[] cipherbytes = rsa.Encrypt(plainbytes, true); String cipherHex = convertToHex(cipherContent); byte[] byteArray = encoding.GetBytes(cipherHex); .... I write this Java code on server side: keyStore = KeyStore.getInstance(KeyStore.getDefaultType()); keyStore.load(new FileInputStream("C:\\my.keystore"), "mypass".toCharArray()); Key key = keyStore.getKey("myalias", "mypass".toCharArray()); if (key instanceof PrivateKey) { Certificate cert = keyStore.getCertificate("myalias"); PublicKey pubKey = cert.getPublicKey(); privKey = (PrivateKey)key; } byte[] toDecodeBytes = new BigInteger(encodeMessageHex, 16).toByteArray(); Cipher decCipher = Cipher.getInstance("RSA"); decCipher.init(Cipher.DECRYPT_MODE, privKey); byte[] decodeMessageBytes = decCipher.doFinal(toDecodeBytes); String decodeMessageString = new String(decodeMessageBytes); I receive this error: javax.crypto.BadPaddingException: Data must start with zero Can you help me, please? Thanks thanks,

    Read the article

  • What's the largest (most complex) PHP algorithm ever implemented in a single monolithic PHP script?

    - by Alex R
    I'm working on a tool which converts PHP code to Scala. As one of the finishing touches, I'm in need of a really good (er, somewhat biased) benchmark. By dumb luck my first benchmark attempt was with some code which uses bcmath extensively, which unfortunately is 1000x slower in Java, making the Scala code 22x slower overall than the original PHP. So I'm looking for some meaningful PHP benchmark with the following characteristics: The source needs to be in a single file. I need it to be simple to setup - no databases, hard-to-find input files, etc. Simple text input and output preferred. It should not use features that are slow in Java (BigInteger, trigonometric functions, etc). It should not use exoteric or dynamic PHP functions (e.g. no "eval" or "variable vars"). It should not over-rely on built-in libraries, e.g. MD5, crypt, etc. It should not be I/O bound. A CPU-bound memory-hungry algorithm is preferred. Basically, intensive OO operations, integer and string manipulation, recursion, etc would be great. Thanks

    Read the article

  • Is there a PHP benchmark that meets these specific criteria? [closed]

    - by Alex R
    I'm working on a tool which converts PHP code to Scala. As one of the finishing touches, I'm in need of a really good (er, somewhat biased) benchmark. By dumb luck my first benchmark attempt was with some code which uses bcmath extensively, which unfortunately is 1000x slower in Java, making the Scala code 22x slower overall than the original PHP. So I'm looking for some meaningful PHP benchmark with the following characteristics: The PHP source needs to be in a single file. It should solve a real-world problem. No silly looping over empty methods etc. I need it to be simple to setup - no databases, hard-to-find input files, etc. Simple text input and output preferred. It should not use features that are slow in Java (BigInteger, trigonometric functions, etc). It should not use exoteric or dynamic PHP functions (e.g. no "eval" or "variable vars"). It should not over-rely on built-in libraries, e.g. MD5, crypt, etc. It should not be I/O bound. A CPU-bound memory-hungry algorithm is preferred. Basically, intensive OO operations, integer and string manipulation, recursion, etc would be great. Thanks

    Read the article

  • How do I make this nested for loop, testing sums of cubes, more efficient?

    - by Brian J. Fink
    I'm trying to iterate through all the combinations of pairs of positive long integers in Java and testing the sum of their cubes to discover if it's a Fibonacci number. I'm currently doing this by using the value of the outer loop variable as the inner loop's upper limit, with the effect being that the outer loop runs a little slower each time. Initially it appeared to run very quickly--I was up to 10 digits within minutes. But now after 2 full days of continuous execution, I'm only somewhere in the middle range of 15 digits. At this rate it may end up taking a whole year just to finish running this program. The code for the program is below: import java.lang.*; import java.math.*; public class FindFib { public static void main(String args[]) { long uLimit=9223372036854775807L; //long maximum value BigDecimal PHI=new BigDecimal(1D+Math.sqrt(5D)/2D); //Golden Ratio for(long a=1;a<=uLimit;a++) //Outer Loop, 1 to maximum for(long b=1;b<=a;b++) //Inner Loop, 1 to current outer { //Cube the numbers and add BigDecimal c=BigDecimal.valueOf(a).pow(3).add(BigDecimal.valueOf(b).pow(3)); System.out.print(c+" "); //Output result //Upper and lower limits of interval for Mobius test: [c*PHI-1/c,c*PHI+1/c] BigDecimal d=c.multiply(PHI).subtract(BigDecimal.ONE.divide(c,BigDecimal.ROUND_HALF_UP)), e=c.multiply(PHI).add(BigDecimal.ONE.divide(c,BigDecimal.ROUND_HALF_UP)); //Mobius test: if integer in interval (floor values unequal) Fibonacci number! if (d.toBigInteger().compareTo(e.toBigInteger())!=0) System.out.println(); //Line feed else System.out.print("\r"); //Carriage return instead } //Display final message System.out.println("\rDone. "); } } Now the use of BigDecimal and BigInteger was delibrate; I need them to get the necessary precision. Is there anything other than my variable types that I could change to gain better efficiency?

    Read the article

  • Why doesn't java.lang.Number implement Comparable?

    - by Julien Chastang
    Does anyone know why java.lang.Number does not implement Comparable? This means that you cannot sort Numbers with Collections.sort which seems to me a little strange. Post discussion update: Thanks for all the helpful responses. I ended up doing some more research about this topic. The simplest explanation for why java.lang.Number does not implement Comparable is rooted in mutability concerns. For a bit of review, java.lang.Number is the abstract super-type of AtomicInteger, AtomicLong, BigDecimal, BigInteger, Byte, Double, Float, Integer, Long and Short. On that list, AtomicInteger and AtomicLong to do not implement Comparable. Digging around, I discovered that it is not a good practice to implement Comparable on mutable types because the objects can change during or after comparison rendering the result of the comparison useless. Both AtomicLong and AtomicInteger are mutable. The API designers had the forethought to not have Number implement Comparable because it would have constrained implementation of future subtypes. Indeed, AtomicLong and AtomicInteger were added in Java 1.5 long after java.lang.Number was initially implemented. Apart from mutability, there are probably other considerations here too. A compareTo implementation in Number would have to promote all numeric values to BigDecimal because it is capable of accommodating all the Number sub-types. The implication of that promotion in terms of mathematics and performance is a bit unclear to me, but my intuition finds that solution kludgy.

    Read the article

  • Factorial function - design and test.

    - by lukas
    I'm trying to nail down some interview questions, so I stared with a simple one. Design the factorial function. This function is a leaf (no dependencies - easly testable), so I made it static inside the helper class. public static class MathHelper { public static int Factorial(int n) { Debug.Assert(n >= 0); if (n < 0) { throw new ArgumentException("n cannot be lower that 0"); } Debug.Assert(n <= 12); if (n > 12) { throw new OverflowException("Overflow occurs above 12 factorial"); } //by definition if (n == 0) { return 1; } int factorialOfN = 1; for (int i = 1; i <= n; ++i) { //checked //{ factorialOfN *= i; //} } return factorialOfN; } } Testing: [TestMethod] [ExpectedException(typeof(OverflowException))] public void Overflow() { int temp = FactorialHelper.MathHelper.Factorial(40); } [TestMethod] public void ZeroTest() { int factorialOfZero = FactorialHelper.MathHelper.Factorial(0); Assert.AreEqual(1, factorialOfZero); } [TestMethod] public void FactorialOf5() { int factOf5 = FactorialHelper.MathHelper.Factorial(5); Assert.AreEqual(120,factOf5); } [TestMethod] [ExpectedException(typeof(ArgumentException))] public void NegativeTest() { int factOfMinus5 = FactorialHelper.MathHelper.Factorial(-5); } I have a few questions: Is it correct? (I hope so ;) ) Does it throw right exceptions? Should I use checked context or this trick ( n 12 ) is ok? Is it better to use uint istead of checking for negative values? Future improving: Overload for long, decimal, BigInteger or maybe generic method? Thank you

    Read the article

  • NET Math Libraries

    - by JoshReuben
    NET Mathematical Libraries   .NET Builder for Matlab The MathWorks Inc. - http://www.mathworks.com/products/netbuilder/ MATLAB Builder NE generates MATLAB based .NET and COM components royalty-free deployment creates the components by encrypting MATLAB functions and generating either a .NET or COM wrapper around them. .NET/Link for Mathematica www.wolfram.com a product that 2-way integrates Mathematica and Microsoft's .NET platform call .NET from Mathematica - use arbitrary .NET types directly from the Mathematica language. use and control the Mathematica kernel from a .NET program. turns Mathematica into a scripting shell to leverage the computational services of Mathematica. write custom front ends for Mathematica or use Mathematica as a computational engine for another program comes with full source code. Leverages MathLink - a Wolfram Research's protocol for sending data and commands back and forth between Mathematica and other programs. .NET/Link abstracts the low-level details of the MathLink C API. Extreme Optimization http://www.extremeoptimization.com/ a collection of general-purpose mathematical and statistical classes built for the.NET framework. It combines a math library, a vector and matrix library, and a statistics library in one package. download the trial of version 4.0 to try it out. Multi-core ready - Full support for Task Parallel Library features including cancellation. Broad base of algorithms covering a wide range of numerical techniques, including: linear algebra (BLAS and LAPACK routines), numerical analysis (integration and differentiation), equation solvers. Mathematics leverages parallelism using .NET 4.0's Task Parallel Library. Basic math: Complex numbers, 'special functions' like Gamma and Bessel functions, numerical differentiation. Solving equations: Solve equations in one variable, or solve systems of linear or nonlinear equations. Curve fitting: Linear and nonlinear curve fitting, cubic splines, polynomials, orthogonal polynomials. Optimization: find the minimum or maximum of a function in one or more variables, linear programming and mixed integer programming. Numerical integration: Compute integrals over finite or infinite intervals, over 2D and higher dimensional regions. Integrate systems of ordinary differential equations (ODE's). Fast Fourier Transforms: 1D and 2D FFT's using managed or fast native code (32 and 64 bit) BigInteger, BigRational, and BigFloat: Perform operations with arbitrary precision. Vector and Matrix Library Real and complex vectors and matrices. Single and double precision for elements. Structured matrix types: including triangular, symmetrical and band matrices. Sparse matrices. Matrix factorizations: LU decomposition, QR decomposition, singular value decomposition, Cholesky decomposition, eigenvalue decomposition. Portability and performance: Calculations can be done in 100% managed code, or in hand-optimized processor-specific native code (32 and 64 bit). Statistics Data manipulation: Sort and filter data, process missing values, remove outliers, etc. Supports .NET data binding. Statistical Models: Simple, multiple, nonlinear, logistic, Poisson regression. Generalized Linear Models. One and two-way ANOVA. Hypothesis Tests: 12 14 hypothesis tests, including the z-test, t-test, F-test, runs test, and more advanced tests, such as the Anderson-Darling test for normality, one and two-sample Kolmogorov-Smirnov test, and Levene's test for homogeneity of variances. Multivariate Statistics: K-means cluster analysis, hierarchical cluster analysis, principal component analysis (PCA), multivariate probability distributions. Statistical Distributions: 25 29 continuous and discrete statistical distributions, including uniform, Poisson, normal, lognormal, Weibull and Gumbel (extreme value) distributions. Random numbers: Random variates from any distribution, 4 high-quality random number generators, low discrepancy sequences, shufflers. New in version 4.0 (November, 2010) Support for .NET Framework Version 4.0 and Visual Studio 2010 TPL Parallellized – multicore ready sparse linear program solver - can solve problems with more than 1 million variables. Mixed integer linear programming using a branch and bound algorithm. special functions: hypergeometric, Riemann zeta, elliptic integrals, Frensel functions, Dawson's integral. Full set of window functions for FFT's. Product  Price Update subscription Single Developer License $999  $399  Team License (3 developers) $1999  $799  Department License (8 developers) $3999  $1599  Site License (Unlimited developers in one physical location) $7999  $3199    NMath http://www.centerspace.net .NET math and statistics libraries matrix and vector classes random number generators Fast Fourier Transforms (FFTs) numerical integration linear programming linear regression curve and surface fitting optimization hypothesis tests analysis of variance (ANOVA) probability distributions principal component analysis cluster analysis built on the Intel Math Kernel Library (MKL), which contains highly-optimized, extensively-threaded versions of BLAS (Basic Linear Algebra Subroutines) and LAPACK (Linear Algebra PACKage). Product  Price Update subscription Single Developer License $1295 $388 Team License (5 developers) $5180 $1554   DotNumerics http://www.dotnumerics.com/NumericalLibraries/Default.aspx free DotNumerics is a website dedicated to numerical computing for .NET that includes a C# Numerical Library for .NET containing algorithms for Linear Algebra, Differential Equations and Optimization problems. The Linear Algebra library includes CSLapack, CSBlas and CSEispack, ports from Fortran to C# of LAPACK, BLAS and EISPACK, respectively. Linear Algebra (CSLapack, CSBlas and CSEispack). Systems of linear equations, eigenvalue problems, least-squares solutions of linear systems and singular value problems. Differential Equations. Initial-value problem for nonstiff and stiff ordinary differential equations ODEs (explicit Runge-Kutta, implicit Runge-Kutta, Gear's BDF and Adams-Moulton). Optimization. Unconstrained and bounded constrained optimization of multivariate functions (L-BFGS-B, Truncated Newton and Simplex methods).   Math.NET Numerics http://numerics.mathdotnet.com/ free an open source numerical library - includes special functions, linear algebra, probability models, random numbers, interpolation, integral transforms. A merger of dnAnalytics with Math.NET Iridium in addition to a purely managed implementation will also support native hardware optimization. constants & special functions complex type support real and complex, dense and sparse linear algebra (with LU, QR, eigenvalues, ... decompositions) non-uniform probability distributions, multivariate distributions, sample generation alternative uniform random number generators descriptive statistics, including order statistics various interpolation methods, including barycentric approaches and splines numerical function integration (quadrature) routines integral transforms, like fourier transform (FFT) with arbitrary lengths support, and hartley spectral-space aware sequence manipulation (signal processing) combinatorics, polynomials, quaternions, basic number theory. parallelized where appropriate, to leverage multi-core and multi-processor systems fully managed or (if available) using native libraries (Intel MKL, ACMS, CUDA, FFTW) provides a native facade for F# developers

    Read the article

  • CLR via C# 3rd Edition is out

    - by Abhijeet Patel
    Time for some book news update. CLR via C#, 3rd Edition seems to have been out for a little while now. The book was released in early Feb this year, and needless to say my copy is on it’s way. I can barely wait to dig in and chew on the goodies that one of the best technical authors and software professionals I respect has in store. The 2nd edition of the book was an absolute treat and this edition promises to be no less. Here is a brief description of what’s new and updated from the 2nd edition. Part I – CLR Basics Chapter 1-The CLR’s Execution Model Added about discussion about C#’s /optimize and /debug switches and how they relate to each other. Chapter 2-Building, Packaging, Deploying, and Administering Applications and Types Improved discussion about Win32 manifest information and version resource information. Chapter 3-Shared Assemblies and Strongly Named Assemblies Added discussion of TypeForwardedToAttribute and TypeForwardedFromAttribute. Part II – Designing Types Chapter 4-Type Fundamentals No new topics. Chapter 5-Primitive, Reference, and Value Types Enhanced discussion of checked and unchecked code and added discussion of new BigInteger type. Also added discussion of C# 4.0’s dynamic primitive type. Chapter 6-Type and Member Basics No new topics. Chapter 7-Constants and Fields No new topics. Chapter 8-Methods Added discussion of extension methods and partial methods. Chapter 9-Parameters Added discussion of optional/named parameters and implicitly-typed local variables. Chapter 10-Properties Added discussion of automatically-implemented properties, properties and the Visual Studio debugger, object and collection initializers, anonymous types, the System.Tuple type and the ExpandoObject type. Chapter 11-Events Added discussion of events and thread-safety as well as showing a cool extension method to simplify the raising of an event. Chapter 12-Generics Added discussion of delegate and interface generic type argument variance. Chapter 13-Interfaces No new topics. Part III – Essential Types Chapter 14-Chars, Strings, and Working with Text No new topics. Chapter 15-Enums Added coverage of new Enum and Type methods to access enumerated type instances. Chapter 16-Arrays Added new section on initializing array elements. Chapter 17-Delegates Added discussion of using generic delegates to avoid defining new delegate types. Also added discussion of lambda expressions. Chapter 18-Attributes No new topics. Chapter 19-Nullable Value Types Added discussion on performance. Part IV – CLR Facilities Chapter 20-Exception Handling and State Management This chapter has been completely rewritten. It is now about exception handling and state management. It includes discussions of code contracts and constrained execution regions (CERs). It also includes a new section on trade-offs between writing productive code and reliable code. Chapter 21-Automatic Memory Management Added discussion of C#’s fixed state and how it works to pin objects in the heap. Rewrote the code for weak delegates so you can use them with any class that exposes an event (the class doesn’t have to support weak delegates itself). Added discussion on the new ConditionalWeakTable class, GC Collection modes, Full GC notifications, garbage collection modes and latency modes. I also include a new sample showing how your application can receive notifications whenever Generation 0 or 2 collections occur. Chapter 22-CLR Hosting and AppDomains Added discussion of side-by-side support allowing multiple CLRs to be loaded in a single process. Added section on the performance of using MarshalByRefObject-derived types. Substantially rewrote the section on cross-AppDomain communication. Added section on AppDomain Monitoring and first chance exception notifications. Updated the section on the AppDomainManager class. Chapter 23-Assembly Loading and Reflection Added section on how to deploy a single file with dependent assemblies embedded inside it. Added section comparing reflection invoke vs bind/invoke vs bind/create delegate/invoke vs C#’s dynamic type. Chapter 24-Runtime Serialization This is a whole new chapter that was not in the 2nd Edition. Part V – Threading Chapter 25-Threading Basics Whole new chapter motivating why Windows supports threads, thread overhead, CPU trends, NUMA Architectures, the relationship between CLR threads and Windows threads, the Thread class, reasons to use threads, thread scheduling and priorities, foreground thread vs background threads. Chapter 26-Performing Compute-Bound Asynchronous Operations Whole new chapter explaining the CLR’s thread pool. This chapter covers all the new .NET 4.0 constructs including cooperative cancelation, Tasks, the aralle class, parallel language integrated query, timers, how the thread pool manages its threads, cache lines and false sharing. Chapter 27-Performing I/O-Bound Asynchronous Operations Whole new chapter explaining how Windows performs synchronous and asynchronous I/O operations. Then, I go into the CLR’s Asynchronous Programming Model, my AsyncEnumerator class, the APM and exceptions, Applications and their threading models, implementing a service asynchronously, the APM and Compute-bound operations, APM considerations, I/O request priorities, converting the APM to a Task, the event-based Asynchronous Pattern, programming model soup. Chapter 28-Primitive Thread Synchronization Constructs Whole new chapter discusses class libraries and thread safety, primitive user-mode, kernel-mode constructs, and data alignment. Chapter 29-Hybrid Thread Synchronization Constructs Whole new chapter discussion various hybrid constructs such as ManualResetEventSlim, SemaphoreSlim, CountdownEvent, Barrier, ReaderWriterLock(Slim), OneManyResourceLock, Monitor, 3 ways to solve the double-check locking technique, .NET 4.0’s Lazy and LazyInitializer classes, the condition variable pattern, .NET 4.0’s concurrent collection classes, the ReaderWriterGate and SyncGate classes.

    Read the article

  • StackOverFlowError while creating Mac object on AS400/Java

    - by Prasanna K Rao
    Hello all, I am a newbie to AS400-Java programming. I am trying to create my first program to test the implementation of Message Authentication Code (MAC). I am trying to use the HMACSHA1 hash function. My (Java 1.4) program runs fine on a dev box (V5R4).But fails terribly on the QA box (V5R3). My program is as below: ===================================================== import java.security.InvalidKeyException; import java.security.NoSuchAlgorithmException; import java.security.Security; import java.security.Provider; import javax.crypto.Mac; import javax.crypto.spec.SecretKeySpec; import javax.crypto.SecretKey; public class Test01 { private static final String HMAC_SHA1_ALGORITHM = "HmacSHA1"; public static void main (String [] arguments) { byte[] key = { 1,2,3,4,5,6,7,8}; SecretKeySpec SHA1key = new SecretKeySpec(key, "HmacSHA1"); Mac hmac; String strFinalRslt = ""; try { hmac = Mac.getInstance("HmacSHA1"); hmac.init(SHA1key); byte[] result = hmac.doFinal(); strFinalRslt = toHexString(result); }catch (NoSuchAlgorithmException e) { // TODO Auto-generated catch block e.printStackTrace(); }catch (InvalidKeyException e) { // TODO Auto-generated catch block e.printStackTrace(); }catch(StackOverflowError e){ e.printStackTrace(); } System.out.println(strFinalRslt); System.out.println("All done!!!"); } public static byte[] fromHexString ( String s ) { int stringLength = s.length(); if ( (stringLength & 0x1) != 0 ) { throw new IllegalArgumentException ( "fromHexString requires an even number of hex characters" ); } byte[] b = new byte[stringLength / 2]; for ( int i=0,j=0; i 4] ); //look up low nibble char sb.append( hexChar [b[i] & 0x0f] ); } return sb.toString(); } static char[] hexChar = { '0' , '1' , '2' , '3' , '4' , '5' , '6' , '7' , '8' , '9' , 'a' , 'b' , 'c' , 'd' , 'e' , 'f'}; } This program compiles fine and gets the correct response on my win-xp client and also my dev box. But, fails with the following error on the QA box: java.lang.StackOverflowError at java.lang.Throwable.(Throwable.java:180) at java.lang.Error.(Error.java:37) at java.lang.StackOverflowError.(StackOverflowError.java:24) at java.io.Os400FileSystem.list(Native method) at java.io.File.list(File.java:922) at javax.crypto.b.e(Unknown source) at javax.crypto.b.a(Unknown source) at javax.crypto.b.c(Unknown source) at javax.crypto.b£0.run(Unknown source) at javax.crypto.b.(Unknown source) at javax.crypto.Mac.getInstance(Unknown source) I have verified the java.security file and entry corresponding to the jce files are all ok. The DMPJVM command gives me the following response: Thu Jun 03 12:25:34 E Java Virtual Machine Information 016822/QPGMR/11111 ........................................................................ . Classpath . ........................................................................ java.version=1.4 sun.boot.class.path=/QIBM/ProdData/OS400/Java400/jdk/lib/jdkptf14.zip:/QIBM /ProdData/OS400/Java400/ext/ibmjssefw.jar:/QIBM/ProdData/CAP/ibmjsseprovide r.jar:/QIBM/ProdData/OS400/Java400/ext/ibmjsseprovider2.jar:/QIBM/ProdData/ OS400/Java400/ext/ibmpkcs11impl.jar:/QIBM/ProdData/CAP/ibmjssefips.jar:/QIB M/ProdData/OS400/Java400/jdk/lib/IBMiSeriesJSSE.jar:/QIBM/ProdData/OS400/Ja va400/jdk/lib/jce.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/jaas.jar:/QIBM/P rodData/OS400/Java400/jdk/lib/ibmcertpathfw.jar:/QIBM/ProdData/OS400/Java40 0/jdk/lib/ibmcertpathprovider.jar:/QIBM/ProdData/OS400/Java400/ext/ibmpkcs. jar:/QIBM/ProdData/OS400/Java400/jdk/lib/ibmjgssfw.jar:/QIBM/ProdData/OS400 /Java400/jdk/lib/ibmjgssprovider.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/s ecurity.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/charsets.jar:/QIBM/ProdDat a/OS400/Java400/jdk/lib/resources.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/ rt.jar:/QIBM/ProdData/OS400/Java400/jdk/lib/sunrsasign.jar:/QIBM/ProdData/O S400/Java400/ext/IBMmisc.jar:/QIBM/ProdData/Java400/ java.class.path=/myhome/lib/commons-codec-1.3.jar:/myhome/lib/commons-httpc lient-3.1.jar:/myhome/lib/commons-logging-1.1.jar:/myhome/lib/log4j-1.2.15.jar:/myhome/lib/log4j-core.jar ; java.ext.dirs=/QIBM/ProdData/OS400/Java400/jdk/lib/ext:/QIBM/UserData/Java4 00/ext:/QIBM/ProdData/Java400/jdk14/lib/ext java.library.path=/QSYS.LIB/ROBOTLIB.LIB:/QSYS.LIB/QTEMP.LIB:/QSYS.LIB/ODIP GM.LIB:/QSYS.LIB/QGPL.LIB ........................................................................ . Garbage Collection . ........................................................................ Garbage collector parameters Initial size: 16384 K Max size: 240000000 K Current values Heap size: 437952 K Garbage collections: 58 Additional values JIT heap size: 53824 K JVM heap size: 55752 K Last GC cycle time: 1333 ms ........................................................................ . Thread information . ........................................................................ Information for 4 thread(s) of 4 thread(s) processed Thread: 00000004 Thread-0 TDE: B00380000BAA0000 Thread priority: 5 Thread status: Running Thread group: main Runnable: java/lang/Thread Stack: java/io/Os400FileSystem.list(Ljava/io/File;)[Ljava/lang/String;+0 (Os400FileSystem.java:0) java/io/File.list()[Ljava/lang/String;+19 (File.java:922) javax/crypto/b.e()[B+127 (:0) javax/crypto/b.a(Ljava/security/cert/X509Certificate;)V+7 (:0) javax/crypto/b.access$500(Ljava/security/cert/X509Certificate;)V+1 (:0) javax/crypto/b$0.run()Ljava/lang/Object;+98 (:0) javax/crypto/b.()V+507 (:0) javax/crypto/Mac.getInstance(Ljava/lang/String;)Ljavax/crypto/Mac;+10 (:0) Locks: None Thread: 00000007 jitcompilethread TDE: B00380000BD58000 Thread priority: 5 Thread status: Java wait Thread group: system Runnable: java/lang/Thread Stack: None Locks: None Thread: 00000005 Reference Handler TDE: B00380000BAAC000 Thread priority: 10 Thread status: Waiting Wait object: java/lang/ref/Reference$Lock Thread group: system Runnable: java/lang/ref/Reference$ReferenceHandler Stack: java/lang/Object.wait()V+1 (Object.java:452) java/lang/ref/Reference$ReferenceHandler.run()V+47 (Reference.java:169) Locks: None Thread: 00000006 Finalizer TDE: B00380000BAB3000 Thread priority: 8 Thread status: Waiting Wait object: java/lang/ref/ReferenceQueue$Lock Thread group: system Runnable: java/lang/ref/Finalizer$FinalizerThread Stack: java/lang/ref/ReferenceQueue.remove(J)Ljava/lang/ref/Reference;+43 (ReferenceQueue.java:111) java/lang/ref/ReferenceQueue.remove()Ljava/lang/ref/Reference;+1 (ReferenceQueue.java:127) java/lang/ref/Finalizer$FinalizerThread.run()V+3 (Finalizer.java:171) Locks: None ........................................................................ . Class loader information . ........................................................................ 0 Default class loader 1 sun/reflect/DelegatingClassLoader 2 sun/misc/Launcher$ExtClassLoader ........................................................................ . GC heap information . ........................................................................ Loader Objects Class name ------ ------- ---------- 0 1493 [C 0 2122181 java/lang/String 0 47 [Ljava/util/Hashtable$Entry; 0 68 [Ljava/lang/Object; 0 1016 java/lang/Class 0 31 java/util/HashMap 0 37 java/util/Hashtable 0 2 java/lang/ThreadGroup 0 2 java/lang/RuntimePermission 0 2 java/lang/ref/ReferenceQueue$Null 0 5 java/lang/ref/ReferenceQueue 0 50 java/util/Vector 0 4 java/util/Stack 0 3 sun/misc/SoftCache 0 1 [Ljava/lang/ThreadGroup; 0 5 [Ljava/io/ObjectStreamField; 0 1 sun/reflect/ReflectionFactory 0 7 java/lang/ref/ReferenceQueue$Lock 0 10 java/lang/Object 0 1 java/lang/String$CaseInsensitiveComparator 0 1 java/util/Hashtable$EmptyEnumerator 0 1 java/util/Hashtable$EmptyIterator 0 33 [Ljava/util/HashMap$Entry; 0 19210 [J 0 1 sun/nio/cs/StandardCharsets 0 5 java/util/TreeMap 0 1075 java/util/TreeMap$Entry 0 469 [Ljava/lang/String; 0 1 java/lang/StringBuffer 0 2 java/io/FileInputStream 0 2 java/io/FileOutputStream 0 2 java/io/BufferedOutputStream 0 1 java/lang/reflect/ReflectPermission 0 1 [[Ljava/lang/ref/SoftReference; 0 2 [Ljava/lang/ref/SoftReference; 0 2 sun/nio/cs/Surrogate$Parser 0 3 sun/misc/Signal 0 1 [Ljava/io/File; 0 6 java/io/File 0 1 java/util/BitSet 0 17 sun/reflect/NativeConstructorAccessorImpl 0 2 java/net/URLClassLoader$ClassFinder 0 12 java/util/ArrayList 0 32 java/io/RandomAccessFile 0 16 java/lang/Thread 0 1 java/lang/ref/Reference$ReferenceHandler 0 1 java/lang/ref/Finalizer$FinalizerThread 0 266 [B 0 2 java/util/Properties 0 71 java/lang/ref/Finalizer 0 2 com/ibm/nio/cs/DirectEncoder 0 38 java/lang/reflect/Constructor 0 33 java/util/jar/JarFile 0 19200 java/lang/StackOverflowError 0 5 java/security/AccessControlContext 0 2 [Ljava/lang/Thread; 0 4 java/lang/OutOfMemoryError 0 1065 java/util/Hashtable$Entry 0 1 java/io/BufferedInputStream 0 2 java/io/PrintStream 0 2 java/io/OutputStreamWriter 0 428 [I 0 3 java/lang/ClassLoader$NativeLibrary 0 25 java/util/Locale 0 3 sun/misc/URLClassPath 0 30 java/util/zip/Inflater 0 612 java/util/HashMap$Entry 0 2 java/io/FilePermission 0 10 java/io/ObjectStreamField 0 1 java/security/BasicPermissionCollection 0 2 java/security/ProtectionDomain 0 1 java/lang/Integer$1 0 1 java/lang/ref/Reference$Lock 0 1 java/lang/Shutdown$Lock 0 1 java/lang/Runtime 0 36 java/io/FileDescriptor 0 1 java/lang/Long$1 0 202 java/lang/Long 0 3 java/lang/ThreadLocal 0 3 java/nio/charset/CodingErrorAction 0 2 java/nio/charset/CoderResult 0 1 java/nio/charset/CoderResult$1 0 1 java/nio/charset/CoderResult$2 0 1 sun/misc/Unsafe 0 2 java/nio/ByteOrder 0 1 java/io/Os400FileSystem 0 3 java/lang/Boolean 0 1 java/lang/Terminator$1 0 23 java/lang/Integer 0 2 sun/misc/NativeSignalHandler 0 1 sun/misc/Launcher$Factory 0 1 sun/misc/Launcher 0 53 [Ljava/lang/Class; 0 1 java/lang/reflect/ReflectAccess 0 18 sun/reflect/DelegatingConstructorAccessorImpl 0 1 sun/net/www/protocol/file/Handler 0 3 java/util/HashSet 0 3 sun/net/www/protocol/jar/Handler 0 1 java/util/jar/JavaUtilJarAccessImpl 0 1 java/net/UnknownContentHandler 0 2 [Ljava/security/Principal; 0 10 [Ljava/security/cert/Certificate; 0 2 sun/misc/AtomicLongCSImpl 0 3 sun/reflect/DelegatingMethodAccessorImpl 0 1 sun/security/util/ByteArrayLexOrder 0 1 sun/security/util/ByteArrayTagOrder 0 7 sun/security/x509/CertificateVersion 0 7 sun/security/x509/CertificateSerialNumber 0 7 sun/security/x509/SerialNumber 0 7 sun/security/x509/CertificateAlgorithmId 0 7 sun/security/x509/CertificateIssuerName 0 60 sun/security/x509/RDN 0 60 [Lsun/security/x509/AVA; 0 67 sun/security/util/DerInputStream 0 3 [Ljava/math/BigInteger; 0 2 com/ibm/nio/cs/Converter 0 2 sun/nio/cs/StreamEncoder$CharsetSE 0 35 java/lang/ref/SoftReference 0 2 java/nio/HeapByteBuffer 0 2 java/io/BufferedWriter 0 33 sun/misc/URLClassPath$JarLoader 0 4 java/lang/ThreadLocal$ThreadLocalMap$Entry 0 76 java/net/URL 0 1 sun/misc/Launcher$ExtClassLoader 0 1 sun/misc/Launcher$AppClassLoader 0 4 java/lang/Throwable 0 7 java/lang/reflect/Method 0 2 sun/misc/URLClassPath$FileLoader 0 2 java/security/CodeSource 0 2 java/security/Permissions 0 2 java/io/FilePermissionCollection 0 1 java/lang/ThreadLocal$ThreadLocalMap 0 1 javax/crypto/spec/SecretKeySpec 0 17 java/util/jar/Attributes$Name 0 1 [Ljava/lang/ThreadLocal$ThreadLocalMap$Entry; 0 1 java/security/SecureRandom 0 2 sun/security/provider/Sun 0 1 java/util/jar/JarFile$JarFileEntry 0 1 java/util/jar/JarVerifier 0 3 sun/reflect/NativeMethodAccessorImpl 0 116 sun/security/util/ObjectIdentifier 0 1 java/lang/Package 0 2 [S 0 104 java/math/BigInteger 0 20 sun/security/x509/AlgorithmId 0 14 sun/security/x509/X500Name 0 14 [Lsun/security/x509/RDN; 0 60 sun/security/x509/AVA 0 67 sun/security/util/DerValue 0 67 sun/security/util/DerInputBuffer 0 21 sun/security/x509/AVAKeyword 0 6 sun/security/x509/X509CertImpl 0 7 sun/security/x509/X509CertInfo 0 1 [Lsun/security/util/ObjectIdentifier; 0 1 [[Ljava/lang/Byte; 0 3 [[B 0 7 sun/security/provider/DSAPublicKey 0 7 sun/security/x509/AuthorityKeyIdentifierExtension 0 12 [Ljava/lang/Byte; 0 14 java/lang/Byte 0 7 sun/security/x509/CertificateSubjectName 0 7 sun/security/x509/CertificateX509Key 0 14 sun/security/x509/KeyIdentifier 0 4 [Z 0 5 sun/text/Normalizer$Mode 0 7 sun/security/x509/CertificateValidity 0 14 java/util/Date 0 7 sun/security/provider/DSAParameters 0 7 sun/security/util/BitArray 0 7 sun/security/x509/CertificateExtensions 0 7 java/security/AlgorithmParameters 0 7 sun/security/x509/SubjectKeyIdentifierExtension 0 5 sun/security/x509/BasicConstraintsExtension 0 2 sun/security/x509/KeyUsageExtension 0 1 sun/text/CompactCharArray 0 1 sun/text/CompactByteArray 0 1 sun/net/www/protocol/jar/JarFileFactory 0 1 java/util/Collections$EmptySet 0 1 java/util/Collections$EmptyList 0 1 java/util/Collections$ReverseComparator 0 1 com/ibm/security/jgss/i18n/PropertyResource 0 1 javax/crypto/b$0 0 1 sun/security/provider/X509Factory 0 1 sun/reflect/BootstrapConstructorAccessorImpl 1 1 sun/reflect/GeneratedConstructorAccessor3202134454 2 1 com/ibm/crypto/provider/IBMJCE 0 6 java/util/ResourceBundle$LoaderReference 0 1 [Lsun/security/x509/NetscapeCertTypeExtension$MapEntry; 0 1 com/sun/rsajca/Provider 0 1 com/ibm/security/cert/IBMCertPath 0 1 com/ibm/as400/ibmonly/net/ssl/Provider 0 1 com/ibm/jsse/IBMJSSEProvider 0 1 com/ibm/security/jgss/IBMJGSSProvider 0 5 org/ietf/jgss/Oid 0 1 java/util/PropertyResourceBundle 0 7 java/util/ResourceBundle$ResourceCacheKey 0 2 sun/net/www/protocol/jar/URLJarFile 0 6 sun/misc/SoftCache$ValueCell 0 1 java/util/Random 0 1 java/util/Collections$EmptyMap 0 112 com/ibm/security/util/ObjectIdentifier 0 5 java/security/Security$ProviderProperty 0 1 java/security/cert/CertificateFactory 0 1 sun/security/provider/SecureRandom 0 2 java/security/MessageDigest$Delegate 0 2 sun/security/provider/SHA 0 1 sun/util/calendar/ZoneInfo 0 4 com/ibm/security/x509/X500Name 0 2 [Ljava/security/cert/X509Certificate; 0 1 sun/reflect/DelegatingClassLoader 0 1 sun/security/x509/NetscapeCertTypeExtension 0 7 sun/security/x509/NetscapeCertTypeExtension$MapEntry 0 3 [[Ljava/lang/String; 0 3 java/util/Arrays$ArrayList 0 7 com/ibm/security/x509/NetscapeCertTypeExtension$MapEntry 0 1 com/ibm/security/validator/EndEntityChecker 0 1 java/util/AbstractList$Itr 0 1 com/ibm/security/util/ByteArrayLexOrder 0 1 com/ibm/security/util/ByteArrayTagOrder 0 18 [Lcom/ibm/security/x509/AVA; 0 18 com/ibm/security/util/DerInputStream 0 5 com/ibm/security/util/text/Normalizer$Mode 0 1 com/ibm/security/validator/SimpleValidator 0 1 [Lcom/ibm/security/x509/NetscapeCertTypeExtension$MapEntry; 0 4 [Lcom/ibm/security/x509/RDN; 0 1 java/util/Hashtable$Enumerator 0 4 java/util/LinkedHashMap$Entry 0 1 sun/text/resources/LocaleElements 0 1 sun/text/resources/LocaleElements_en 0 22 com/ibm/security/x509/AVAKeyword 0 4 javax/security/auth/x500/X500Principal 0 18 com/ibm/security/x509/RDN 0 18 com/ibm/security/x509/AVA 0 18 com/ibm/security/util/DerInputBuffer 0 18 com/ibm/security/util/DerValue 0 1 com/ibm/security/util/text/CompactCharArray 0 1 com/ibm/security/util/text/CompactByteArray 0 2 java/util/LinkedHashMap 0 1 java/net/InetAddress$1 0 2 [Ljava/net/InetAddress; 0 2 java/net/InetAddress$Cache 0 1 java/net/Inet4AddressImpl 0 3 java/net/Inet4Address 0 2 java/net/InetAddress$CacheEntry ........................................................................ . Global registry information . ........................................................................ Loader Objects Class name ------ ------- ---------- 0 23 [C 0 1017 java/lang/Class 0 1 java/lang/ref/Reference$ReferenceHandler 0 1 java/lang/ref/Finalizer$FinalizerThread 0 1 sun/misc/Launcher$AppClassLoader 0 32 java/io/RandomAccessFile 0 32 [B Can someone please advise me? Thanks a lot, Prasanna

    Read the article

  • python RSA implemention with PKCS1

    - by user307016
    I got the following code in javascript for RSA implementionhttp://www-cs-students.stanford.edu/~tjw/jsbn/: // Return the PKCS#1 RSA encryption of "text" as an even-length hex string function RSAEncrypt(text) { var m = pkcs1pad2(text,(this.n.bitLength()+7)>>3); if(m == null) return null; var c = this.doPublic(m); if(c == null) return null; var h = c.toString(16); if((h.length & 1) == 0) return h; else return "0" + h; } // PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint function pkcs1pad2(s,n) { if(n < s.length + 11) { // TODO: fix for utf-8 alert("Message too long for RSA"); return null; } var ba = new Array(); var i = s.length - 1; while(i >= 0 && n > 0) { var c = s.charCodeAt(i--); if(c < 128) { // encode using utf-8 ba[--n] = c; } else if((c > 127) && (c < 2048)) { ba[--n] = (c & 63) | 128; ba[--n] = (c >> 6) | 192; } else { ba[--n] = (c & 63) | 128; ba[--n] = ((c >> 6) & 63) | 128; ba[--n] = (c >> 12) | 224; } } ba[--n] = 0; var rng = new SecureRandom(); var x = new Array(); while(n > 2) { // random non-zero pad x[0] = 0; while(x[0] == 0) rng.nextBytes(x); ba[--n] = x[0]; } ba[--n] = 2; ba[--n] = 0; return new BigInteger(ba); } In the snippets above, it seems that the pkcs1pad2 function is used for padding the message with some random bytes(maybe sth like 0|2|random|0 ) in front of the message. I'm using the python rsa package (http://stuvel.eu/rsa) for imitating the javascript result, i'm a newbie to python world and have no idea to traslate javascript algorithm code to the python code. Any help would be appreciated. Jiee

    Read the article

  • Creating keystore for jarsigner programmatically

    - by skayred
    I'm trying to generate keystore with certificate to use it with JarSigner. Here is my code: System.out.println("Keystore generation..."); Security.addProvider(new BouncyCastleProvider()); String domainName = "example.org"; KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA"); SecureRandom random = SecureRandom.getInstance("SHA1PRNG", "SUN"); keyGen.initialize(1024, random); KeyPair pair = keyGen.generateKeyPair(); X509V3CertificateGenerator v3CertGen = new X509V3CertificateGenerator(); int serial = new SecureRandom().nextInt(); v3CertGen.setSerialNumber(BigInteger.valueOf(serial < 0 ? -1 * serial : serial)); v3CertGen.setIssuerDN(new X509Principal("CN=" + domainName + ", OU=None, O=None L=None, C=None")); v3CertGen.setNotBefore(new Date(System.currentTimeMillis() - 1000L * 60 * 60 * 24 * 30)); v3CertGen.setNotAfter(new Date(System.currentTimeMillis() + (1000L * 60 * 60 * 24 * 365*10))); v3CertGen.setSubjectDN(new X509Principal("CN=" + domainName + ", OU=None, O=None L=None, C=None")); v3CertGen.setPublicKey(pair.getPublic()); v3CertGen.setSignatureAlgorithm("MD5WithRSAEncryption"); X509Certificate PKCertificate = v3CertGen.generateX509Certificate(pair.getPrivate()); FileOutputStream fos = new FileOutputStream("/Users/dmitrysavchenko/testCert.cert"); fos.write(PKCertificate.getEncoded()); fos.close(); KeyStore ks = KeyStore.getInstance(KeyStore.getDefaultType()); char[] password = "123".toCharArray(); ks.load(null, password); ks.setCertificateEntry("hive", PKCertificate); fos = new FileOutputStream("/Users/dmitrysavchenko/hive-keystore.pkcs12"); ks.store(fos, password); fos.close(); It works, but when I'm trying to sign my JAR with this keystore, I get the following error: jarsigner: Certificate chain not found for: hive. hive must reference a valid KeyStore key entry containing a private key and corresponding public key certificate chain. I've discovered that there must be a private key, but I don't know how to add it to certificate. Can you help me?

    Read the article

  • Write PEM encoded certificate in file - java

    - by user1349407
    Good day. I recently create X.509 certificate by using bouncy castle API. I need to save the certificate result rather than display the result. I tried to use FileOutputStream, but it does not work. regards the result is like follows -----BEGIN CERTIFICATE----- MIICeTCCAeKgAwIBAgIGATs8OWsXMA0GCSqGSIb3DQEBCwUAMBsxGTAXBgNVBAMT... -----END CERTIFICATE----- The code is belows import java.io.FileOutputStream; //example of a basic CA public class PKCS10CertCreateExample { public static X509Certificate[] buildChain() throws Exception { //create the certification request KeyPair pair = chapter7.Utils.generateRSAKeyPair(); PKCS10CertificationRequest request = PKCS10ExtensionExample.generateRequest(pair); //create a root certificate KeyPair rootPair=chapter7.Utils.generateRSAKeyPair(); X509Certificate rootCert = X509V1CreateExample.generateV1Certificate (rootPair); //validate the certification request if(!request.verify("BC")) { System.out.println("request failed to verify!"); System.exit(1); } //create the certificate using the information in the request X509V3CertificateGenerator certGen = new X509V3CertificateGenerator(); certGen.setSerialNumber(BigInteger.valueOf(System.currentTimeMillis())); certGen.setIssuerDN(rootCert.getSubjectX500Principal()); certGen.setNotBefore(new Date(System.currentTimeMillis())); certGen.setNotAfter(new Date(System.currentTimeMillis()+50000)); certGen.setSubjectDN(request.getCertificationRequestInfo().getSubject()); certGen.setPublicKey(request.getPublicKey("BC")); certGen.setSignatureAlgorithm("SHA256WithRSAEncryption"); certGen.addExtension(X509Extensions.AuthorityKeyIdentifier, false, new AuthorityKeyIdentifierStructure(rootCert)); certGen.addExtension(X509Extensions.SubjectKeyIdentifier, false, new SubjectKeyIdentifierStructure(request.getPublicKey("BC"))); certGen.addExtension(X509Extensions.BasicConstraints, true, new BasicConstraints(false)); //certGen.addExtension(X509Extensions.KeyUsage, true, new BasicConstraints(false)); certGen.addExtension(X509Extensions.KeyUsage, true, new KeyUsage(KeyUsage.digitalSignature | KeyUsage.keyEncipherment)); certGen.addExtension(X509Extensions.ExtendedKeyUsage, true, new ExtendedKeyUsage(KeyPurposeId.id_kp_serverAuth)); //extract the extension request attribute ASN1Set attributes = request.getCertificationRequestInfo().getAttributes(); for(int i=0;i!=attributes.size();i++) { Attribute attr = Attribute.getInstance(attributes.getObjectAt(i)); //process extension request if(attr.getAttrType().equals(PKCSObjectIdentifiers.pkcs_9_at_extensionRequest)) { X509Extensions extensions = X509Extensions.getInstance(attr.getAttrValues().getObjectAt(0)); Enumeration<?> e = extensions.oids(); while(e.hasMoreElements()) { DERObjectIdentifier oid = (DERObjectIdentifier)e.nextElement(); X509Extension ext = extensions.getExtension(oid); certGen.addExtension(oid, ext.isCritical(), ext.getValue().getOctets()); } } } X509Certificate issuedCert = certGen.generateX509Certificate(rootPair.getPrivate()); return new X509Certificate[]{issuedCert, rootCert}; } public static void main(String[] args) throws Exception { X509Certificate[] chain = buildChain(); PEMWriter pemWrt = new PEMWriter(new OutputStreamWriter(System.out)); pemWrt.writeObject(chain[0]); //pemWrt.writeObject(chain[1]); pemWrt.close(); //write it out //FileOutputStream fOut = new FileOutputStream("pkcs10req.req"); //fOut.write(chain[0].toString()); //fOut.write() //System.out.println(chain[0].toString()); //fOut.close(); } }

    Read the article

  • CodePlex Daily Summary for Friday, May 14, 2010

    CodePlex Daily Summary for Friday, May 14, 2010New ProjectsCampfire#: Campfire# is a campfire client written in .NET 4.0 using WPF, which uses the Campfire API.CHESS: Systematic Concurrency Testing: CHESS is a tool for systematic and disciplined concurrency testing. Given a concurrent test, CHESS systematically enumerates the possible thread sc...cmpp: cmppcycloid: Arcanoid gameDotNetNuke® C#: The DotNetNuke® project is developed and maintained on a Visual Basic codebase, however a C# version has always been a popular request. This is a ...EasyBuildingCMS.NET: EasyBuildingCMS is an easy use content management system.fluidCMS: Provide for flexible management of web content that is not tightly integrated with the layout and rendering of sites that consume the content.Golem: An automation tool oriented to localization engineering environmentHB Batch Encoder Mk 2: HandBrake Batch Encoder Mk II This Program was adapted from an original project downloaded from codeplex by the name of "Handbrake Batch Encoder"...Integrating Social Media Networks: This is part of my pos graduation project.Ketonic: The Ketonic project aims to improve development of websites based on the Kentico CMS. LinkSharp: LinkSharp is a short-URL provider that can be used to generate short static non changing URL's. The web interface allows you to easily add / edit /...PUC NET (C++ Network Library - PUC Minas): This is an Academic Library for an Easy Development of Applications and Games based on Network Communication.Regular Expression Tester: Small utility for testing regular expressionsSharePoint User Management WebPart: SharePoint User Management WebPartSharpBox: SharpBox makes it easier for .NET developers to interact with existing cloud storage service, e.g. DropBox or Amazon S3Snipivit: Snipivit is a snippet manager service and VS2010 plugin that allows small development teams to store all their code snippets on a central database,...Software Factories Applied: Software Factories Applied is a project collecting the companion bits for the eponymous book to be published by Wiley & Sons in 2011. The authors ...The Ping Master: A service that periodically pings network addresses and allows the running of command line type utilities in response to success or failure.Title Safe Region Checker: A simple utility for XNA developers to check screenshots from games intended for release on the LIVE Marketplace for "title safe" region compliance...Trial project: sky is blueUyghur Named Date: Generate Uyghur named date string. ئۇيغۇرچە ئاي ناملىق چىسلا ھاسىل قىلىشWildcard Search Web Part for SharePoint 2010: The Wildcard Search web part for MOSS 2007 was wildly successful. Although, SharePoint 2010 has built-in wildcard searching functionality, the out...在线Office控件 Online Offical Control: 在线Office控件软件作品发布平台: SoftwarePublishPlatform 软件作品发布平台New ReleasesDemina: Demina Binaries version 0.1: Demina binaries are now available. This release (version 0.1) is an alpha version. Please report any bugs for extermination.EasyTFS: EasyTfs 1.0 Beta 2: Added cache refreshing when contents are updated rather than just every 10 minutes. Added window title based on currently-open case. Added attachme...Extending C# editor - Outlining, classification: Initial release: Initial releaseHB Batch Encoder Mk 2: HB Batch Encoder Mk2 v1.01: Binary release files.HB Batch Encoder Mk 2: Source Code: Source CodeHobbyBrew Mobile: Beta 2: Corretti numerosi bug, data un implementazione "approssimativa" del riscaldamento per Infusione. Aggiornamento consigliato!HouseFly controls: HouseFly controls beta 1.0.2.0: HouseFly controls relase 1.0.2.0 betaHtml Reader: Beta 2: I fixed a bug in HtmlElementCollection, Which exposed an integer enumerator, instead of enumerating through HtmlElements. I added a WPF Window tha...Html to OpenXml: HtmlToOpenXml 1.2: Fix some reported bug. See change set for description. The dll library to include in your project. The dll is signed for GAC support. Compiled wi...Infection Protection: Infection Protection 0.1: This is the final version of Infection Protection that was entered into the 2010 OGPC game competition.Jobping Url Shortener: Deploy Code 0.5.1: Deployment code for Version 0.5 This version includes our Jobping style.Jobping Url Shortener: Source Code 0.5.1: Source code for the 0.5 release. This release includes our Jobping style skin.Kooboo HTML form: Kooboo HTML form module 2.1.0.1: HTML form module contributed by member aledelgo. Add SMTP user and password authentication.KooBoo Image Galery: Beta 2: This new version corrects some issues pointed by Guoqi Zheng Some schema and folders were renamed, so it's better to uninstall the module and remo...MFCMAPI: May 2010 Release: If you just want to run the tool, get the executable. If you want to debug it, get the symbol file and the source. Build: 6.0.0.1020 The 64 bit bu...MVC Turbine: Release 2.1 for MVC2: This RTM contains the same features as v2.0 RTM plus these features: Instance Registration to IServiceLocator You can now add an instance of a typ...NazTek.Extension.Clr4: NazTek.Extension.Clr4 Binary: Binary releaseNazTek.Extension.Clr4: NazTek.Extension.Clr4 Source: Cab with source codeNSIS Autorun: NSIS Autorun 0.1.8: This release includes source code, executable binaries and example materials.Ottawa IT Day: 2010 Source Code and Presentations: During the Ottawa IT Day 2010, some of the presenters shared their code (and some presentations). This release is the culmination of all those effo...PHPWord: PHPWord 0.6.1 Beta: Changelog: Fixed Error when adding a JPEG image and opening in office 2007 Issue #1 Fixed Already defined constant PHPWORD_BASE_PATH Issue #2 F...Rapid Dictionary: Rapid Dictionary Alpha 2.0: Release Notes * Try auto updatable version: http://install.rapiddict.com/index.html Rapid Dictionary Alpha 2.0 includes such functionality: ...Shake - C# Make: Shake v0.1.18: Core changes. Process wrapper class, console logger, etc.SharpBox: SharpBox-Trunk: This is the SharpBox build from the trunk source branch!SharpBox: SharpBox-Trunk-Initial-Source: The initial source code, will be updated from time to timeSpackle.NET: 4.0.0.0 Release: This new drop contains the following A CreateBigInteger() method on SecureRandom to create random BigInteger values. An extension method to prop...StreamInsight example queries, input adapters and output adapters: StreamInsight Examples for V1.0 RTM: Zipped source code.The Ping Master: v0.1.0.0: Early release of The Ping Master for test purposes. Configuration tool is unfinished and does not include an installer.Title Safe Region Checker: Title Safe Region Checker v1.0.0.1: Release 1.0 of Title Safe Region Checker. No known bugs or problems. File is a zipped directory containing the necessary installation files.TortoiseHg: TortoiseHg 1.0.3: This is a bug fix release, we recommend all users upgrade to 1.0.3Usa*Usa Libraly: Smart.Windows.Navigation 0.4: Smart.Windows.Navigation simple navigation library ver 0.4.0. Include Windows Forms & Compact Framework samples. Information - Smart.Windows.Mvc ...VCC: Latest build, v2.1.30513.0: Automatic drop of latest buildWabbitStudio Z80 Software Tools: Wabbitcode: Wabbitcode is an Z80 Assembly IDE for Windows, OS X, and Linux. Built to take full advantage of the features of SPASM and Wabbitemu, Wabbitcode has...white: Release 0.20: Source Code: https://white-project.googlecode.com/svn/tags/0.20 Add few more keyboard keys like windows button and F13-F24. Fixed bugs for keyboar...Wildcard Search Web Part for SharePoint 2010: Version 1.0 Release 1: This is the initial release of the Wildcard Search Web Part for SharePoint 2010. All queries will be issued as wildcards unless disabled with the ...Windows Azure Command-line Tools for PHP Developers: Windows Azure Command-line Tools May 2010 Update: May 2010 Update – May 13, 2010 We are pleased to announced the May 2010 update of Windows Azure Command-Line Tools. In addition to bug fixes and i...WinXmlCook: WinXmlCook 2.1: Version 2.1 released!Xrns2XMod: Xrns2XMod 1.1: some source code optimization在线Office控件 Online Offical Control: SPOffice2.0Release: 该版本在MS Office2003/2007,WPS2009,WPS2010下测试通过Most Popular ProjectsRawrWBFS ManagerAJAX Control ToolkitMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitWindows Presentation Foundation (WPF)patterns & practices – Enterprise LibraryMicrosoft SQL Server Community & SamplesPHPExcelASP.NETMost Active Projectspatterns & practices – Enterprise LibraryMirror Testing SystemRawrBlogEngine.NETPHPExcelMicrosoft Biology FoundationwhiteWindows Azure Command-line Tools for PHP DevelopersStyleCopShake - C# Make

    Read the article

  • CodePlex Daily Summary for Wednesday, March 31, 2010

    CodePlex Daily Summary for Wednesday, March 31, 2010New ProjectsBase Class Libraries: The Base Class Libraries site hosts samples, previews, and prototypes from the BCL team. BB Scheduler - BroadBand Scheduler: Broadband Scheduler is highly useful as it helps the user to set the time when the computer will automatically enable the Broadband (Internet) conn...BFBC2 PRoCon: BFBC2 PRoCon makes it easier for Bad Company 2 GSP's and private server owners to administer their BFBC2 servers. It's developed in C# and targete...Business Process Management Virtual Environment (BPMVE): This BPMVE project has been separated into 3 different projects. BPMVE_DataStructure project contains all data structures (classes and attribute...Business Rule Engine BizUnit Test Steps: Business Rule Engine BizUnit Test StepsCint: CintContent Edit Extender for Ajax.Net: The Content Edit Extender is an Ajax.Net control extender that allows in-place editing of a div tag (panel). Double-click to edit, hit enter or tab...COV Game: Cov game is a worms like game made on Silverlight with Python server.Cybera: A continuing development project of the existing but now generally inactive former Cybera project.DotNetCRM Community Edition: DotNetCRM Community Edition is an open source, enterprise class CRM built on the .NET platform. It is designed to be extensible, configurable, data...EAV: A sample EAV pattern for SQL Server with: Tables and indexes Partial referential integrity Partial data typing Updatable views (like normal SQL table)EditRegion.MVC: EditRegion.MVC may be all you want, when you do not want a full CMS. It allows html areas to be edited by nominated users or roles. The API follo...Firestarter Modeller: Firestarter ModellerHabanero.Testability: Habanero.TestabilityProSoft CMS: CMS System - scalable over an undeclared amount of servers - publishing services - version control of sitesPS-Blog.net: This is my first project here on codeplex. I would like to write my own blog software. Any comments or critcs are welcome.ReleaseMe: ReleaseMe is a simple little tool I use to copy websites, and custom Window Services, from my development machine to a specified production machin...SAAS-RD: SAAS-RD: uma ferrameta utilizada para prover integração de SaaS com aplicações externasSample Web Application using Telerik's OpenAccess ORM: Sample Web Site Application Project that uses Telerik's OpenAccess ORM for data access.Sistema Facturacion: En el proyecto de Sistema de Facturacion se desarrollara una aplicacion para el total control de un establecimiento comercial Smooth Habanero: Smooth HabaneroSouthEast Conference 2011: For the Florida Institute of Technology IEEE Chapter regarding the Southeast Hardware Conference held in Nashville, TN 2011.SQL Server Bible Standards: A SQL Server Design and Development standards document. SSAS Profiler Trace Scheduler: AS Profiler Scheduler is a tool that will enable Scheduling of SQL AS Tracing using predefined Profiler Templates. For tracking different issues th...Symbolic Algebra: Another attempt to make an algebric system but to be natively in C# under the .net framework. Theocratic Ministry School System: This is an Open Source Theocratic Ministry School System designed for Jehovah's Witnesses. It will include much of the same features as the TMS ver...Weather Report WebControls: The First Release Version:1.0.10330.2334WPF 3D Labyrinth: A project for "Design and Analysis of Computer Algorithms" subject at Kaunas University of Technology. Building a 3D labyrinth with a figure which ...WPF Zen Garden: This is intended to be a gallery for WPF Style sheets in the form of Css Zen Garden. New ReleasesAPSales CRM - Software as a Service: APSales 0.1.3: This version add some interesting features to the project: Implement "Filter By Additional Fields" in view edit Implement quick create function Im...Base Class Libraries: BigRational: BigRational builds on the BigInteger introduced in .NET Framework 4 to create an arbitrary-precision rational number type. A rational number is a ...Base Class Libraries: Long Path: The long path wrapper provides functionality to make it easier to work with paths that are longer than the current 259 character limit of the Syste...Base Class Libraries: PerfMonitor: PerfMonitor is a command-line tool for profiling the system using Event Tracing for Windows (ETW). PerfMonitor is built on top of the TraceEvent li...Base Class Libraries: TraceEvent: TraceEvent is an experimental library that greatly simplifies reading Event Tracing for Windows (ETW) events. It is used by the PerfMonitor tool. ...BB Scheduler - BroadBand Scheduler: Broadband Scheduler v2.0: - Broadband service has some of the cheap and best monthly plans for the users all over the nation. And some of the plans include unlimited night d...BuildTools - Toolset for automated builds: BuildTools 2.0 Mar 2010 Milestone: The Mar 2010 Milestone release is a contains a bug fixes for projects not explicitly setting the StartingDate property, and no longer breaks when t...Business Rule Engine BizUnit Test Steps: BRE BizUnit Test Steps Ver. 1.0: Version 1.0Claymore MVP: Claymore 1.1.0.0: Changelog Added Compact Framework support Added fluent interface to configure the library.Content Edit Extender for Ajax.Net: ContentEditExtender 1.0 for Ajax.Net: Complete with source control and test/example Website and Web Service. Built with Visual Studio 2008 with the 3.5 BCL. Control requires the AjaxCon...dylan.NET: dylan.NET v. 9.6: This stable version of the compiler for both .NET 3.5 and 4.0 adds the loading of numbers in a bult-in fashion. See code below: #refasm mscorlib...EAV: March 2010: The initial release as demoed at the SSWUG Virtual Conference Spring 2010Fax .NET: Fax .NET 1.0.1: FIX : bugs for x64 and WOW64 architecture. The zip file include : Binary file Demo executable file Help fileFluent Ribbon Control Suite: Fluent Ribbon Control Suite 1.0 for NET 4.0 RC: Includes: Fluent.dll (with .pdb and .xml) compiled with .NET 4.0 RC Test application compiled with .NET 4.0 RC SourcesIceChat: IceChat 2009 Alpha 12.1 Full Install: Build Alpha 12.1 - March 30 2010 Fix Nick Name Change for Tabs/Server List for Queries Fix for running Channel List Multiple Times, clears list n...Import Excel data to SharePoint List: Import Data from Spreadsheet to SP List V1.5 x64: Import from Spreadsheet to a SharePoint List is the missing facet to the WSS 3.0 / MOSS 2007 List features. SharePoint lets a user create a custom...LINQ to Twitter: LINQ to Twitter Beta v2.0.9: New items added since v1.1 include: Support for OAuth (via DotNetOpenAuth), secure communication via https, VB language support, serialization of ...mojoPortal: 2.3.4.1: see release notes on mojoportal.com http://www.mojoportal.com/mojoportal-2341-released.aspxocculo: test: Release build for testers.PowerShell ToodleDo Module: 0.1: Initial Development Release - Very rough build.Quick Performance Monitor: Version 1.2: Fixed issue where app crash when performance counter disappear or becomes unavailable while the application is running. For now the exception is si...Quick Performance Monitor: Version 1.3: Add 'view last error'Rule 18 - Love your clipboard: Rule 18 (Visual Studio 2010 + .NET 4 RC Version): This is the second public beta for the first version of Rule 18. It has had a extensive private beta and been used in big presentations since the ...Selection Maker: Selection Maker 1.5: New Features:If the source folder does not exist,a dialog box will appear and ask the user if he/she wants to create that folder or if select anoth...sPATCH: sPatch v0.9a: + Fixed: wrong path to elementclient.exeSQL Server Bible Standards: March 2010: Initial release as presented at SSWUG Virtual Conference Spring 2010Survey - web survey & form engine: Source Code Documentation: Documentation.chm file as published with Nsurvey v. 1.9.1 - april 2005 Basic technical documentation and description of source code for developers...Theocratic Ministry School System: Theocratic Ministry School System - TMSS: This is the first release of TMSS. It is far from complete but demonstrates the possiablities of what can be done with Access 2007 using developer ...Weather Report WebControls: WeatherReport Controls: 本下载包含一个已经经过编译的二进制运行库和一个测试的WebApplication项目,是2010年3月30日发布的Most Popular ProjectsRawrWBFS ManagerASP.NET Ajax LibraryMicrosoft SQL Server Product Samples: DatabaseSilverlight ToolkitAJAX Control ToolkitWindows Presentation Foundation (WPF)LiveUpload to FacebookASP.NETMicrosoft SQL Server Community & SamplesMost Active ProjectsRawrjQuery Library for SharePoint Web ServicesBase Class LibrariesBlogEngine.NETManaged Extensibility FrameworkFarseer Physics EngineGraffiti CMSMicrosoft Biology FoundationLINQ to Twitterpatterns & practices – Enterprise Library

    Read the article

< Previous Page | 1 2 3 4